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Abstract

In this paper, we propose a framework for modelling human faces over scales. As a
person walks towards the camera, more details of the face will be revealed and thus
more random variables and parameters have to be introduced. Accordingly, a series of
existing generative models are organized as five regimes, which form nested probabilis-
tic families. The generative model in higher regime is augmented by (1) adding more
latent variables, features extractors, and (2) enlarging the dictionary of description,
e.g. PCA bases, local parts or sketch patches. Theminimum description length(MDL)
is used as a criterion for the model selection and transition. As observed in our experi-
ment, the optimal model switches among the different regimes when the scale changes.
A sequence of tasks, such as face detection, recognition, sketching and super-resolution
etc. can be accomplished based on the models in the different regimes.
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1. Introduction
Human faces appear in a wide range of scales in images and videos. When a person
walks towards the camera, his/her face can grow from a3 × 3 pixels to300 × 300
pixels in size or even more. While the changes over scales may appear continuous in
raw images (at retina), it evokes abrupt “quantum jumps” in our high level perception
(at visual cortex). In a mathematical term, we must be augmenting our perception
with more and more detailed representations/descriptions and switching the generative
models over scales.

Figure 1 demonstrates that while the image size is enlarged, the complexities of
graph structures increase and the dictionaries of description become more sparse to
account for the variety of features revealed. A series of existing generative models are
used to form the perceptual/model space. Based on the experience of human percep-
tion, we roughly divide this space into five regimes. (1)Texture regime. When faces
are viewed at far distance, such as the crowd image in Fig.4, we cannot see reliably
the individual faces and thus perceive a texture impression. This is modelled by the
FRAME model[17] on pixels. Such model can be used for segmenting crowds from
big scenes, (2)PCA regime. The PCA model[12, 11], AAM model[3, 4] and morphable
model[7, 8, 15] have been proven to be sufficient for characterizing the images at mid-
dle scales. Therefore some tasks for low resolution faces can be accomplished in this
regime, such as face detection[16]. (3)Parts regime. With higher resolutions, the eyes,
mouth and nose etc. can be clearly characterized by a bigger dictionary that consists of
the local facial component with iconic changes, eg. open/closed mouth or eyes, which
is useful for classification and recognition[18, 19]. (4)Sketch regime. With higher
resolutions, more details are revealed, such as the eyelid, eyebrows and wrinkles. We
use a much larger dictionary of small patches to account for the variety of these local
structures. The model in this regime can be used to automatically generate artistic face
sketches[1]. (5)Super-resolution regime. This regime is similar to the sketch regime
with more sparse dictionary. To describe even the facial marks of extremely high reso-
lutions, more detailed (usually smaller) structures are learned. The model can be used
for super-resolution.

In section 2 we talked about the description, learning and transition of the models
over scale. Section 3 described in details the five regimes models and their training. In
section 4 we briefly introduced the sampling and inference algorithm. And in section
5 is a sequence of experiments we conducted. Some discussions are given in section 6.

2. Learning Model over Scales
2.1. Model Description
Let I be an image on latticeΛ with an unknown number of faces at various loca-
tions and scales. We thus pose face modelling as a statistical learning problem whose
objective is to seek a probability modelp(I). It has become clear recently that the
p must integrate[6] generative (graphical) models with descriptive (Markov random
field) models. The former have multiple graph layers with each layer generating the
layer below by a dictionary of image elements. The latter specify the graph structure
and arrangement by feature statistics. In our framework, the probability models are
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Figure 1: Faces viewed at various distance (scales) fall in different regimes of mathe-
matical models. From far to near, the representation is augmented with more complex
graph structures and large dictionary sizes to account for details.

unified as the following form:

p(I; G,B,α,F, β)

,whereW = (G,B, α,F, β) are the latent variables.G is a graph representation of
multiple layers, where the vertices can be pixels, a single face, facial components or
local patches according to the layer they rest in. While the image scale goes up, the
graph structure becomes more complex by adding new layers on the previous ones.
The vertices of previous layers are expanded as subgraphs in the new layer, e.g. in
Figure 7 the vertex denoting nose expanding as a subgraph of local patches. Figure 1
roughly shows how graphs evolve over the scale.B andα denote the geometric and
photometric properties on the graph vertices, e.g. the PCA bases and their coefficients.
In Figure 1, we can see that dictionaries ofB become more sparse over scale to allow
more varieties and describe more details. On an attributed graphG, an inhomogeneous
Gibbs (MRF) model is used to characterize the spatial arrangement together with the
couplings of their attributes.F is a set of filters extracting features onG. β is the
parameters for the Gibbs potentials.

The triple(∆G, ∆B,∆F) represents the dictionaries of the model description.∆G

is the set of all valid graph configurations.∆B is a dictionary for basic representation
units on the graph vertices.∆F is the filter bank, in which many feature extractor on a
valid graph vertex and its neighbors are defined.

2.2. Model Learning and Transition
The probability modelp is pursued in a series of probability families which at the end
should be sufficient to approximate natural frequencyf(I) to any precision.

Ω0 ⊂ Ω1 ⊂ · · · ⊂ ΩK → Ωf
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Figure 2: Face image of256×256 was reconstructed by the four models with dictionary
where they reach theminimum description length.

The model space is divided into a number of regimes. At the beginning, a series
of generative models in the nested probabilistic families are learned in a supervised
way, which means the latent variablesW are partially or fully given. In our model,
the landmarks on face images are manually labelled to give the locations of the local
features, such as eyes, nose and face contour, etc.. Later we boostrap the learning
procedure by the unsupervised data inferred by the model.

A specific face population at certain scale is modelled by model from one of the
regimes. How to select the ”appropriate” model is therefore a key problem. In Fig. 8,
we compared the absolute value of theper-pixelreconstructed error (residua) of testing
images for a number of models. It shows that for the same model usually the residua
is reduced when the bigger dictionary is applied. However, if the image size keeps
increasing, performance of the simples model might level off. Then we have to switch
to more complex models. Although enlarging the dictionary size or switching to more
complex model can help us reduce the residua, they also increase the uncertainty of
estimating the parameters and model complexity. As discussed in [5], we would like
a model that is capable of representing any valid face instance and as compact as pos-
sible. By posing this problem as one of minimizing the description length (MDL) of
the model, we develop a criterion to select the most “sufficient and compact” model by
comparing the minimum coding length.

LetΩI = {I1, ..., IM} be the sample set. In general, the coding lengthDL required
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for a model to describeΩI using the dictionary∆ is:

DL = L(ΩI ;∆) + L(∆) (1)

,where the first term is the expected coding length ofΩI given∆ and the second term
is the coding length of∆.

Empirically, we can estimateDL by:

D̂L=
∑

Ii∈ΩI

∑
w∼p(w|Ii;∆)

(− log p(Ii|w;∆)− log p(w)) +
|∆|
2

log M (2)

,wherew ∼ p(w|Ii;∆) can be sampled by Markov Chain Monte Carlo (MCMC)
inference;M denotes the number of data;|∆| is the size of dictionary, e.g. in PCA
model it is the pixel number of meanface and eigenfaces used. In Figure 9, we plot how
the coding length of the models changes when different dictionary sizes are applied.
At small scales, like32× 32 or 64× 64, the MDL of PCA model is shorter than parts
model or sketch model. And at large scales, like128×128 and256×256, parts model
and sketch model outperform respectively.

To summarize, Figure 8 and Figure 9 show that: (1) in the sense of reducing the
residual, simple models perform as well as the complex ones at small scales, but their
performance levels off as scale goes up; (2) compared by using the MDL, simple mod-
els are sufficient and more compact for modelling faces at small scales, while better
(usually more complex) models are preferred when scales become larger.

3. Five Regimes
In this section, we specify 5 regimes of models and their training to illustrate the nested
families of models.

3.1. Texture Regime — FRAME Model
In this regime, each face appears as only a few pixels wide. The model treats faces as
a texture phenomenon without having to identify the individual faces. Thus we used
FRAME model [17] for the crowd scenes. As Figure 3(a) shows,G is a lattice with
each pixel in the image as one vertex,B are the pixels andα are their intensities,F
is a number of Gabor filters and Laplacian of Gaussian filters as shown in Figure 3(b).
As Wtex = {Itex(x, y), (x, y) ∈ Λ}, we can generate it as

p(Wtex) ∝ 1

Z
exp{−

K∑
α=1

< β(α), Hist(F (α) ∗ I) >} (3)

The image is then generated as

Itex = Wtex ∼ p(Wtex) (4)

We learned this model from several crowd scenes and drew random samples (Figure 4)
from it using Markov chain Monte Carlo simulation. The random images appear like
crowd visually.
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Figure 3: Texture regime for crowds. (a) GraphGtex is a lattice; (b) Dictionary∆tex

includes filter∆F = {LoG, GaborSine,GaborCos}.

 

(a). input image (b). synthesized image 

Figure 4: Faces in the texture regime. (a) is the observed crowd image; (b) is the
random sampled image from the learned texture model (FRAME)I ∼ p(I; Θ).

3.2. PCA Regime — Active Appearance Model
In this regime,G consists of two layers: the lattice from texture regime is inherited as
background, on which a number of attributed vertices for individual faces are added as
foreground. The connections among these face vertices are very weak, so we assumed
that they are independently distributed. AAM[4] was applied for modelling each face.
We divided the face patch into shape and intensity, where shape is represented by a
set of labelled landmarks (see Figure 5(a)) and intensity is obtained by warping the
observed face patch to the mean shape.B = {Bshape, Binten}, where the shape bases
Bshape include the mean shape and the eigen-shapes, and the intensity basessBinten

include the mean intensity and eigen-intensities (see Figure 5(b)). To allow more di-
versity, a mixture model of AAM was trained in our experiment. The training set was
clustered into two types: one of them as plain face with the mouth closed and the other
one as smiling face with the mouth open.α = {αshape, αinten, `}, whereαshape

andαinten are weights vectors of shape bases and intensity bases respectively.` is the
index of cluster in the mixture model.F = ∅ for the graph layer of individual faces.

As the iid assumption of individual faces in this regime,p(Wpca|Wtex) = p(Wpca).
The latent variablesWpca can be obtained as

p(Wpca) =
Ncluster∑

`=1

λ`p(Wpca,`|`), (5)

,whereλ` are weights of clusters in the mixture model and
∑Ncluster

`=1 λ` = 1. Then
Ipca is generated byItex andJpca:

Ipca(x, y) =

{
Itex(x, y) if(x, y) ∈ Λbackground

Jpca(x, y) + noise if(x, y) ∈ Λface
(6)

Jpca(β, α) = T (
∑

i

αshape
i bshape

i ,
∑

j

αinten
j binten

j ) (7)

,whereΛface is the domain covered by face andΛbackground is the background.T
is a warping function. Given the input as the reconstructed intensity patch and the
reconstructed shape,T gives the output as the reconstructed face patch.
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Figure 5: PCA regime. (a) Expanding graph fromGtex to Gpca; (b) ∆pca, including
both the intensity bases and shape bases;

3.3. Parts Regime
In this regime, the previous graph layers are first inherited toG, then a new layer
with the face vertex expanded as a subgraph is added on top of it. Each vertex in the
subgraph represents one of the local facial components (See Figure 6(a)). Similar to the
PCA regime, the mixture AAM model for each component was trained. Note that the
positions of every landmarks are governed by one or more corresponding landmarks in
the previous regime. For example, the weighted center of landmarks on nose in parts
regime must correspond to weighted center of those denoting nose in PCA regime.
The local components are clustered into several types, such as open mouth, closed
mouth, double-curved lid, single-curved lid, etc..B = {{Bshape,i}, {Binten,i}, i =
1, .., Npart} includes mean shape and eigen-shapes as shape bases, mean intensity and
the eigen-intensities as intensity bases for all local components (see Figure 6(b)).α =
{{`i, (xi, yi), si, θi, α

shape
`i

, αinten
`i

}, i = 1, .., Npart}. Npart is the number of local
facial components.̀ i is index of clusters for the mixture model.(xi, yi),si andθi

denote the center, size and orientation of theith component.αshape
`i

andαinten
`i

are
weights vectors of the shape bases and intensity bases.

Because of the great varieties of facial elements, a compact PCA representation
may not be sufficient to model the spacial relationship among the vertices and their
neighbors. Therefore, we use a non-parametric Gibbis distribution on the graphG
to capture the non-Gaussian properties. HereG consists of three layers, including two
layers inherited from previous regimes and one expanded in current regime. We can au-
tomatically learn the most effective features by the Minimax Entropy framework [17].
For simplicity we used a set of manually designed featuresF , such as the distance,
the size ratio and the geometrical symmetry of the eyes, the tilting angel of mouth and
nose, or the intensity similarity between overlapped domain of the different regimes,
etc.. In our experiment these features seemed to be sufficient.

The latent variables in parts regime is obtained as

p(Wpart|Wpca) ∝ exp{−
∑

<Pi,Pj>∈E

∑
`

λ`ψ`(Pi, Pj)} (8)

E denotes the edge set on graphG. ψ` is the potential function on the attributes of two
connected componentsPi andPj , which are governed byW . The face imageIpart is
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(b)

(a)

Figure 6: Parts regime. (a) Expanding graph fromGpca to Gpart; (b) Dictionary∆part,
including both the intensity bases and shape bases;

generated by updating the local facial components onIpca, i.e. the reconstructed patch
in parts regime will occlude the overlapped domain in PCA regime.

Ipart(x, y) =

{
Ipca(x, y) if(x, y) ∈ Λface

Jpart(x, y) + noise if(x, y) ∈ Λpart,i
(9)

,wherei = 1, .., Npart and for theith component we have:

Jpart,i(β, α)=T (
∑

j

αshape
`i,j bshape

`i,j ,
∑

k

αinten
`i,k binten

`i,k , xi, yi, si, θi) (10)

,whereT is a function warping the reconstructed intensity to reconstructed shape,
while it also performs affine transformation of the reconstructed local patches.

3.4. Sketch Regime
In this regime, as shown in Figure 7,G consists of all the previous layers and a new
layer with two kind of subgraphs. Each facial component, which is a vertex in the
previous regime, is expanded as a subgraph{Gcom,i, i = 1, .., Mcom}, whereMcom

is the number of facial components. There are also several chains to capture the
curve features of the face{Gcur,i, i = 1, .., Mcur}, whereMcur is the number of
curves. For each vertexvi in the graph, we denote the geometry parameters of it as:
Ti = {(xi, yi), si, θi}, where(xi, yi), si, θi are the center, scale and orientation of
the ith local patch respectively. They are conditioned on previous regime, e.g. the
center of the small patch is governed by positions of the corresponding landmarks in
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(a)

(b)

Figure 7: Sketch regime. (a) Expanding graph fromGpart to Gskh, with subgraph of
the nose expanded as an example; (b) A subset of dictionary∆skh, including both the
intensity bases and their sketch correspondingly;

parts regime. Then the image patches can be obtained by using affine transforma-
tion Ti. We normalized the image patch of each vertexvi by photometric transfor-
mationAi. Similar to parts regime, we trained these normalized patches with mix-
ture PCA.B = {Bcom, Bcur} includes the mean and PCA bases for both the ver-
tices on subgraphsGcom,i, i = 1, .., Mcom and Gcur,j, j = 1, ..,Mcur. Some ex-
amples are shown in figure 7(b). Each image patch can be represented by(`i, αi),
where`i is the cluster label andαi is the weights vector of the PCA bases. Thus
α = {((xi, yi), si, θi, Ai, `i, αi), i = 1, .., Nskh}, whereNskh is the number of ver-
tices on sketch layer.

For p(Wskh|Wpart), if we define a set of featuresF = {ψ`, ` = 1, .., NF } on the
vertices and the edges that link them, a Gibbs model as in [17] can be built.

P (Wskh|Wpart) ∝ exp{−
∑

l

λlψl(W )} (11)

There are two type of edges inG. One type link the vertices inGcom,i, i =
1, .., Mcom with the corresponding vertex in parts regime. The other type connect
adjacent vertices in current layer. So we define the following features:

9



• For the edges between two layers, denote the vertex inGskh asvi, and the vertex
in Gpart asvj . The feature set has two parts: geometry features and intensity
features.

Givenvj , we can predict the location ofvi by linear regression as(x̂i, ŷi). The
geometry features is defined as the distance between(x, y) and(x̂i, ŷi).

Let denote thedi as the vectorized intensity patches ofvi, anddj as the corre-
sponding vectorized intensity patches onIpart. As in [10], we choose a set of
linear features over combined(di, dj) as{ψdif

int (vi, vj)`, ` = 1, ..NF }, where
NF is the number of selected features.

• For adjacent nodesvi andvj , di anddj are the vector of the overlapped pixels.
nij is the number of overlapped pixels. We define feature as the absolute value
of per-pixeldifference betweendi anddj .

We can learn the parametersλl in Eqn 11 by the gradient descent algorithm in Minmax
Entropy framework [17].

Similar to the parts regime, the face imageIskh is generated by occluding the local
patches onIpart with domain covered by sketch layer.

Iskh(x, y) =

{
Ipart(x, y) if(x, y) ∈ Λpart

Jskh(x, y) + noise if(x, y) ∈ Λskh,i
(12)

,wherei = 1, .., Nskh and for theith we have:

Jskh,i(B, α) = Ti(
∑

j

α`ijb`ij , xi, yi, si, θi, Ai) (13)

, where theb`ij andα`ij are the PCA bases and weights respectively.Ti is the affine
transformation andAi is the photometric transformation.

3.5. Super-resolution Regime
In this regime, we build model for two purpose: (1) to represent vertices in sketch
regime graph with more details, such as decomposing the strokes of eyebrow into even
smaller patches to represent every single hair; (2) to describe the independent structures
such as the beauty spots, the tiny curves and the skin texture. Above the previous layers,
the new layer ofG consists of: (a) subgraphs expanded from vertices in sketch regime;
(b) vertices for independent structures. The vertices in (a) are the same kind of patches
in sketch regime but smaller (Figure 7(b)), we learn these patches in the same way as
in sketch regime and form the dictionaryBdep. For vertices in (b), locally they appear
as texture phenomenon, so we may model them by combinations of the bases in texture
regime (Figure 3(b)) and form the dictionaryBind. With B = {Bdep, Bind} and given
latent variables, we can generate face imageI in super-resolution regime.

A similar feature bankFdep = {ψdep
l , l = 1, .., Ndep

l } can be defined as in sketch
regime. Also the filter bankFind = {ψind

k , k = 1, .., N ind
k } as in texture regime are

used. Thus the latent variablesWsup = {W ind,W dep} can be obtained by

P(Wsup|Wskh)∝exp{−
∑

l

λdep
l ψdep

l (W dep)−
∑

k

λind
k ψind

k (W ind)} (14)
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The face imageIsup is generated by occluding the sketch domain by the domain cov-
ered by super-resolution layer

Isup(x, y) =

{
Iskh(x, y) if(x, y) ∈ Λskh

Jsup(x, y) if(x, y) ∈ Λsup
(15)

Jsup = Jind
sup + Jdep

sup (16)

4. Sampling and Inference
After the model is learned over scales, we can draw random samplesIsyn or infer hid-
den variableW for given imageIobs. Therefore, we are able to boostrap the learning
procedure by unsupervised data. These basic operations and their combinations can
also be applied for many tasks. In this section we briefly discuss how the sampling and
inference can be done.

4.1 Sampling Over Scales

Had model learned, we are able to draw random samplesIsyn ∼ p(I|W )p(W ). Be-
cause of the hierarchical structure of our model, we can sample it from coarse to fine.
For two adjacent regimes, we denote the latent variables asW− in lower regime and
W+ in higher regime respectively. GivenW−, W+ can be sampled fromp(W+|W−).
Due to the high dimension ofW , MCMC is selected for sampling method. To re-
duce the burn-in time and mixing rate, we use a mixing MCMC which combines two
dynamics. The first dynamic is Metroplis-Hasting algorithm. We estimate a simple
modelq(W+|W−) =

∏
i

q(W+
i |Ni(W−)), whereNi(W−) is a subset ofW− related

to W+
i . q(W+

i |Ni(W−) can be modelled by Gaussian or Mixture Gaussian to simplify
the sampling.q(W+|W−) is used as the proposal distribution of the Metroplis-Hasting
algorithm. This type of dynamic can produce long jumps and can jump between dif-
ferent dimension solution space. The second dynamic is Gibbs sampler. The latent
variableW+

i ∼ p(W+
i |W−, N(W+

i )) is sampled iteratively.

4.2 Inference Over Scales

Similar to the sampling algorithm, we can inferW ∗ ∼ p(W |Iobs) in a coarse-to-fine
strategy. GivenW−∗ in the lower regime, we inferW+∗ in higher regime according
to W+∗ = arg max

W+
p(W+|W−, I+;∆). To improve the efficiency of our algorithm,

We can also integrate several existing efficient method such as Adaboosting face de-
tector, AAM and ASM algorithms. To summarize, our inference algorithm consists of
following steps:

• Draw several samples fromq(W+|W−);

• For each node or subgraph, run efficient algorithm with the samplesq(W+|W−)
as the starting point to get a set of candidatesW+∗(i). For example, we use
AAM algorithm for each cluster of PCA Regime and each node in Parts Regime,
and ASM algorithm for every modes of each subgraph in Sketch regime.
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Figure 8: Plot ofper-pixelreconstructed error v.s. dictionary size|∆| at four scales.
(a)32× 32; (b) 64× 64; (c) 128× 128; (d) 256× 256

• Run MCMC with two dynamics. One dynamic using Metroplis-Hasting algo-
rithm with the proposal distribution:

q(W+
A |W+

B ,W−, I) =
∑

G(W+∗(i), σ2I) (17)

whereσ is a small constant. Gibbs sampler is used as another dynamic to jump
in the solution space with same dimension.

5. Experiments
To verify the framework we proposed, three experiments were conducted based on 350
frontal face images chosen from different genders, ages and races — 200 for training
and 150 for testing. All the images are resized to four different scale levels:32 × 32,
64 × 64, 128 × 128 and256 × 256. The landmarks over scale for the face images
are manually labelled. With the inference algorithm, later we can keep including more
training data with the landmarks automatically located.
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Figure 9: Plot of coding lengthD̂L for the ensemble of testing images v.s. dictionary
size|∆| at four scales. (a)32× 32; (b) 64× 64; (c) 128× 128; (d) 256× 256

• Experiment I. The four models, PCA, Parts, Sketch and Super-resolution, were
trained at four scales respectively. Given the testing images, we first inferred
the latent variables asW ∼ p(W |Iobs). After that the testing images were re-
constructed byIrec ∼ p(I|W ) and the absolute value of reconstructed error
(residua)‖Iobs − Irec‖ were then calculated. Figure 8 plots theper-pixel re-
constructed error to dictionary size for four scales. It shows that although we
can somehow reduce the residua at the beginning by using bigger dictionary and
more parameters, the performance of a relatively simple model will finally level
off as image scale increases, e.g. adding the high-order PCA bases becomes in-
effective. In order to further reduce the residua, we have to switch to a higher
regime in the model space, which usually means the use of a more complex
model.

• Experiment II. To select a most appropriate model for given image size, we com-
pared theminimum description length(MDL) for PCA model, Parts model and
Sketch model. Figure 9 plots the coding length to dictionary size for four scales.
We can see that at small scale like32 × 32 simple model such as PCA has the
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minimum coding length, while at larger scale like128 × 128 the Parts model
outperforms, and at the largest scale like256 × 256 the Sketch model beats the
other two. By applying this criterion we are able to select the most ”sufficient
and compact” generative model for coding a given set of face data at certain
scales.

• Experiment III. We tested the performance of our framework in reconstructing
and rendering face images of256×256. Using all the models with corresponding
dictionary where they reach theminimum coding length, we inferred and recon-
structed the new coming testing face images respectively. Figure 2 shows the
reconstructed results. As a benefit of our generative models, the sketch of face
at each scales are automatically obtained by simply replacing the dictionary of
intensity bases with symbolic/sketch bases. More results of reconstruction and
face sketch are shown in Figure 10. With the model, we also randomly sampled
some new faces and their sketches for different scales, which are not included in
this paper due to the page limit.

6. Discussion
In the literature, there is a well-known scale space theory which is characterized by the
Gassian and Laplacian pyramids (see[9]). This theory is mostly focused on theimage
spacewith continuous and linear additive representations. We argue that there is a
need for developing a new scale space theory on theperceptual spaceor model space.
This new scale space consists of a series of generative models from nested probabilistic
families, each characterizing the face population at a certain scale. The new theory is
mostly concerned with the augmentation and switches/jumps of models over the image
scale. There are two main axes for this augmentation: (1) adding more latent variables,
features extractor on graphs, parameters, and (2) enlarging the vocabulary (dictionary)
of representation. This new scale-space theory is needed for an integrated treatment of
various vision tasks, such as detection, recognition and super-resolution in a common
framework. As scaling is ubiquitous in all natural images, study of the new scale-space
theory will be crucial for generic vision modelling with generative models.

References

[1] H. Chen, Y. Q. Xu, H. Y. Shum, S. C. Zhu, and N. N. Zhen, “Example-based facial sketch
generation with non-parametric sampling”, ICCV, 2001.

[2] C. Choi, T. Okazaki, H. Harashima, and T. Takebe, “A system of analyzing and synthesizing
facial images”,Proc. of IEEE, 2665-2668, 1991.

[3] T.F.Cootes, C.J.Taylor, D. Cooper, and J. Graham, “Active Appearance Models–Their train-
ing and applications”,Computer Vision and Image Understanding, 61(1):38-59, 1995.

[4] T.F.Cootes, G.J. Edwards and C.J.Taylor. “Active Appearance Models”,Proceedings of
ECCV, 1998

[5] R.H. Davies, T.F. Cootes, C.Twining and C.J. Taylor, “An Information Theoretic Approach
to Statistical Shape Modelling”,Proc. British Machine Vision Conference, pp.3-11, 2001

14



[6] C.E. Guo, S.C. Zhu, and Y.N. Wu, “Modeling visual patterns by integrating descriptive and
generative models”,IJCV, 53(1), 2003.

[7] P.L. Hallinan, G.G. Gordon, A.L. Yuille, and D.B. Mumford, “Two and Three Dimensional
Patterns of the Face”,A.K. Peters, Natick, MA, 1999.

[8] M. J. Jones and T. Poggio, “Multi-dimensional morphable models: a framework for rep-
resenting and matching object classes”,Int’l J. of Computer Vision, 2(29), 107-131, 1998.

[9] T. Lindeberg,“Scale-Space Theory in Computer Vision”, Kluwer Academic Publishers,
Netherlands, 1994.

[10] C. Liu, S.C. Zhu, and H.Y. Shum, “Learning inhomogeneous Gibbs models of faces by
minimax entropy”,Proc. 8th Int’l Conf. on Computer Vision, Vancouver, CA, 2001.

[11] M. Turk and A. Pentland, “Eigenfaces for recognition,”J. of Cognitive Neurosciences,
vol.3, no.1, pp. 71-86, 1991.

[12] L. Sirovich and M. Kirby, “Low-dimensional procedure for the characterization of human
faces”,J. of Optical Society of America, 4:519-524, 1987.

[13] K.K. Sung and T. Poggio, “Example-based learning for view-based human detection”,
IEEE trans. on PAMI, vol.20, no.1, 39-51, 1998.

[14] M. Turk and A. Pentland, “Eigenfaces for recognition,”J. of Cognitive Neurosciences,
vol.3, no.1, pp. 71-86, 1991.

[15] T. Vetter, “Synthesis of novel views from a single face image”,Int’l J. Computer Vision,
2(28), 103-116, 1998.

[16] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,”,
CVPR, 2001.

[17] S. C. Zhu, Y. N. Wu and D. B. Mumford, “Minimax entropy principle and its application
to texture modeling”,Neural ComputationVol. 9, no 8, Nov. 1997.

[18] S. Ullman, E. Sali, “Object Classification Using a Fragment-Based Representatio”,First
IEEE International Workshop, BMVC, 2000

[19] B. Heisele, P. Ho, J. Wu and T. Poggio, “Face Recognition: Component-based versus
Global Approaches”,Computer Vision and Image Understanding, Vol. 91, No. 1/2, 6-21
2003.

15



Input

Face Image

Reconstructed

Face Image

Automatic

Sketch Result

Figure 10: More results of reconstructed image and generated sketch of our model.
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