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Abstract

Gonadotropin-releasing hormone agonists (GnRHa) are used as an alternative to human chori-

onic gonadotropin (hCG) to trigger ovulation and decrease the risk of ovarian hyperstimulation

syndrome. GnRHa is less potent at inducing ovarian vascular endothelial growth factor (VEGF),

but may also affect endometrial angiogenesis and early placental development. In this study,

we explore the effect of superovulation on endometrial angiogenesis during critical periods

of gestation in a mouse model. We assigned female mice to three groups: natural mating or

mating following injection with equine chorionic gonadotropin and trigger with GnRHa or hCG

trigger. Females were killed prior to implantation (E3.5), post-implantation (E7.5), and at midges-

tation (E10.5), and maternal serum, uterus, and ovaries were collected. During peri-implantation,

endometrial Vegfr1 and Vegfr2 mRNA were significantly increased in the GnRHa trigger group

(P < 0.02) relative to the hCG group. Vegfr1 is highly expressed in the endometrial lining and

secretory glands immediately prior to implantation. At E7.5, the ectoplacental cone expression of

Vegfa and its receptor, Vegfr2, was significantly higher in the hCG trigger group compared to the

GnRHa group (P < 0.05). Soluble VEGFR1 and free VEGFA were much higher in the serum of mice

exposed to the hCG trigger compared to GnRHa group. At midgestation, there was significantly

more local Vegfa expression in the placenta of mice triggered with hCG. GnRHa and hCG triggers

differentially disrupt the endometrial expression of key angiogenic factors during critical periods
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of mouse gestation. These results may have significant implications for placental development

and neonatal outcomes following human in vitro fertilization.

Summary Sentence

The gonadotropin-releasing hormone agonists and human chorionic gonadotropin agents used

to trigger ovulation before in vitro fertilization differentially modulate levels of key angiogenic

factors during critical periods of implantation, trophoblast invasion, and placental development in

a mouse model.

Key words: gonadotropin-releasing hormone agonist, human chorionic gonadotropin, assisted reproductive
technology, superovulation, vascular endothelial growth factor, implantation, placental development

Introduction

Successful implantation requires synchronized communication
between the blastocyst and endometrium, which is tightly regulated
by several hormonal, immunologic, and pro-angiogenic processes.
During human in vitro fertilization (IVF), the hormonal milieu of
the endometrial–embryo environment is altered by gonadotropin
administration for follicular growth followed by a luteinizing
hormone (LH) analogue to induce the resumption of meiosis.
This results in supraphysiological levels of ovarian steroids and
excess production of vascular endothelial growth factor (VEGF)
[1], a critical mediator of angiogenesis and implantation [2]. Its
effects are mediated by two tyrosine kinase receptors, VEGFR1 also
called FLT1 (fms-like tyrosine kinase) and VEGFR2 [3]. Studies of
VEGFA, VEGFR1, or VEGFR2 homozygous knockout mice result
in embryonic death [4, 5]. Even heterozygous mutation of VEGFA
is lethal for mice [6, 7]. Interestingly, having too much activation
of soluble VEGFR1, also called sFLT1, has been implicated in
preeclampsia [8]. In IVF, VEGF is believed to be responsible for
complications such as ovarian hyperstimulation syndrome (OHSS)
[9]. Patients undergoing IVF and specifically patients with OHSS are
known to be at an increased risk for disorders of placentation and
lower birth weight [10–12].

Traditionally final oocyte maturation has been triggered using
human chorionic gonadotropin (hCG) to mimic the preovulatory LH
surge. In recent years, however, the hCG trigger has been replaced by
GnRH agonist either alone or mixed with a small amount of hCG in a
subset of patients [13]. Unlike hCG which has a long half-life lasting
24 h and efficacy of 5–7 days, gonadotropin-releasing hormone
(GnRH) agonists are short acting (12–24 h) and therefore reduce
the risk of OHSS [14]. This is believed to be due to lower VEGF
production by the ovaries and is supported by a rodent study looking
at the effect of superovulation followed by the GnRHa trigger on
ovarian production of Vegf . In this study, Miller et al. found that the
hCG and GnRHa triggering inversely modulated Vegf mRNA in rat
and human granulosa cells [15].

Chronic exposure to hCG has also been found to downregulate
LH receptors in the endometrium of baboons and humans lead-
ing to decreased endometrial receptivity [16]. Evans et al. inves-
tigated the effect of the hCG trigger on the endometrium and
found enlarged spiral artery formation in superovulated women
compared to natural cycle endometrium [17], suggesting an effect
of superovulation on the vasculogenesis of the endometrium during
the preimplantation period. However, there is little data on the
effects of the GnRH agonist on endometrial receptivity and pla-
centation. GnRH and LH receptors have been reported in human
and rodent endometrium [18]. Several clinical studies have suggested

decreased pregnancy rates related to inadequate luteal support fol-
lowing GnRH agonist trigger [19]. This is the first study to assess
the impact of the GnRH trigger on uterine angiogenesis in a mouse
model.

Therefore in this study we examine the effect of hCG or GnRH
agonist trigger on endometrial angiogenesis, implantation, and pla-
cental vasculogenesis in a mouse model. Our objective is to deter-
mine the impact of superovulation (with final oocyte maturation
induced with hCG or GnRH agonist) on endometrial angiogen-
esis during critical periods of murine gestation. We hypothesize
that the GnRH agonist will differentially alter endometrial Vegf
production, and impact implantation leading to aberrant placental
development and function, which may have clinical implications in
human IVF.

Materials and methods

Ethics

All experiments with mice were conducted in accordance with the
SSR’s specific guidelines and standards.

Animals

All experiments were approved by the Institutional Animal Care and
Use Committee at Case Western Reserve University. Female CF1 mice
(6–10-weeks old, Envigo) and adult B6D2F1/J males (Jackson Labs)
were housed at 25 ◦C on a 14/10-h light (6 AM/8 PM) schedule. All
mice were fed with breeder diet of irradiated 9F sterilizable rodent
diet (24% crude protein, 9.3% fat, 36% carbohydrate) from Harlan
laboratories (#7960, Teklad diets, Madison, WI, USA). All mice were
maintained in accordance with the National Institute for Health
Guide for Care and Use of Laboratory Animals.

Superovulation, tissue, and serum collection

Female mice were assigned to three different treatment protocols:

• GnRH agonist trigger group: 5 IU PMSG (G5270, MilliporeSigma,
Burlington, MA, USA) was given via intraperitoneal (IP) injection,
followed 48 h later by an IP injection of 3.5 μg GnRH agonist
(leuprolide acetate, Sandoz Inc., Princeton, NJ, USA) as previously
described [15].

• Human chorionic gonadotropin (hCG) trigger group: IP injection
of 5 IU PMSG, followed 48 h later by IP injection of 5 IU hCG
(Pregnyl, Merck & Co., Inc., Whitehouse Station, NJ, USA) [20].

• Control group: no injections.

All three groups (n = 10 per group) were mated to fertile
B6D2F1/J males. The presence of a vaginal plug confirmed mating
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Figure 1. Experimental design: female mice were superovulated and ovulation was induced with either hCG or GnRHa trigger followed by mating with fertile

males. A control group was also mated naturally. Vaginal plugs were checked the following day, embryonic day 0.5 (E0.5). Females were then killed at E3.5, E7.5,

and E10.5 generating three groups at each gestational time point. Tissues and serum were collected for analysis. PMSG, pregnant mare serum gonadotropin;

hCG, human chorionic gonadotropin; GnRHa, gonadotropin releasing hormone agonist.

and was considered embryonic day (E) 0.5. The females were then
separated from the males after copulation (Figure 1).

To assess the peri-implantation uterine microenvironment,
pregnant mice were anesthetized using isoflurane (Butler Animal
Health Supply, Dublin, OH, USA) and killed by cervical dislocation
on embryonic day 3.5 (E3.5), and the ovaries and uterus were
removed. Whole blood was collected using cardiac puncture
for steroid hormone quantification. Serum was isolated and
stored at −80 ◦C and analyzed for progesterone, VEGFA, and
sVEGFR1 levels using Progesterone ELISA kit (Enzo Life Sciences,
Farmingdale, NY, USA), Quantikine Mouse VEGF Immunoassay
(R&D Systems, Minneapolis, MN, USA), and Quantikine ELISA
Mouse VEGFR1/Flt-1 Immunoassay (R&D Systems, Minneapolis,
MN, USA), respectively.

Uterine tissue was fixed overnight in 4% paraformaldehyde in
Phosphate buffered saline (PBS) for histologic analysis and snap
frozen and stored at −80 ◦C for molecular analysis; total RNA was
extracted from the whole mouse uterus and ovaries for quantita-
tive reverse transcription polymerase chain reaction (qRT-PCR). To
assess early placentation, a second set of female mice were mated
with B6D2F1/J males in one of the three treatment groups as above
and killed on E7.5. The number of implantation sites was recorded.
The implantation sites were then dissected to collect ectoplacental
cones and decidua, which were snap frozen and stored at −80 ◦C
for molecular analysis. Pooled RNA from the ectoplacental cone was
analyzed via qRT-PCR for expression of genes regulating trophoblast
differentiation including Hand1, Mash2, Stra13, and Tpbpa.

Another set of mice (n = 10) were killed at E10.5 to assess resorp-
tion rate at midgestation. Placentas were dissected, snap frozen, and
stored at −80 ◦C for molecular analysis. A subset of placentas and
embryos were photographed using the Leica MZFLIII fluorescence
stereo microscope (Leica Microsystems, Wetzlar, Germany) and then
placed in formalin for histologic analysis and fixed overnight at 4 ◦C.

RNA extraction and quantitative RT-PCR

Total RNA was extracted from frozen mouse tissue using the Total
RNA Isolation/NucleoSpin RNA II Kit (Macherey-Nagel, Bethle-
hem, PA, USA), treated with DNase (DNA-free, Life Technologies),
and quantified by absorbance at 260 nM. RNA (300 ng) was reverse-
transcribed with random primers using SuperScript IV Reverse Tran-
scriptase (Thermo Fisher Scientific). RNA quality was assessed using
the RNA ScreenTape Analysis which uses an RNA integrity number
equivalent (RINe) to provide user-independent quality score for total
RNA (Agilent Technologies, Inc., Germany). Gene primer sequences
for Vegfa, Vegfr1, Vegfr2, Lhr, Tpbpa, Stra13, Mash2, Hand1, and
Gapdh are shown in Supplementary Table S1. PCR was performed
on an ABI PRISM 7500 sequence detector (Thermo Fisher Scientific,
Waltham, MA, USA) with SYBR Green1 (Thermo Fisher Scientific).
Each sample was run in triplicate, and the reactions were carried
out in 40 cycles. Abundance of mRNA relative to reference gene
Gapdh was calculated using the �CT method [relative mRNA
abundance = 2 – (CT gene of interest – CT GAPDH)].

Immunofluorescence

Uterine tissue was fixed overnight at 4 ◦C in 4% paraformaldehyde
in PBS, dehydrated, and paraffin embedded. Serial tissue sections of
4 μm thickness were cut and mounted on glass slides. Tissues were
deparaffinized and rehydrated. Antigen retrieval was performed
using citrate buffer (10 mM citric acid, 0.05% Tween 20, pH 6.0).
Nonspecific antibody was blocked by incubation with 1% bovine
serum albumin in Tris-buffered saline (TBS; 50 mM Tris base,
9% NaCl, pH 8.4). The primary antibody for VEGFR1 (ab32152,
Abcam, Cambridge, MA, USA) diluted 1:400 in immunofluorescence
antibody dilution buffer (Cell Signaling Technology; cat #12378)
was applied and incubated overnight at 4 ◦C. Sections were then
washed sequentially in TBS containing 0.5% Tween 20 (TBST; pH
8.4) and TBS followed by incubation at room temperature for 30 min
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Figure 2. The ovarian response to superovulation induced with hCG and the GnRHa trigger on E3.5. (A) Representative H&E ovaries of superovulated mice

compared to control. Scale bar: 700 μm. (B) Superovulation increased the number of corpora lutea in the superovulated groups compared to controls (n = 4–5

per group). (C) Ovarian Lhr mRNA expression was significantly higher in superovulated groups compared to naturally mated mice at E3.5 (n = 4–5 mice per

group, P < 0.02). (D) Production of progesterone was elevated in the serum of superovulated mice compared to control (n = 3, P < 0.05). (E) Ovarian Vegf a

mRNA expression was higher in the superovulated groups compared to control (n = 4–5 mice per group, P < 0.01). Mean ± SEM reported.

with anti-rabbit secondary antibody conjugated to Alexa Fluor 488
(goat anti-rabbit, Thermo Fisher Scientific, Rockford, IL, USA cat#
A-11008) diluted 1:500 in immunofluorescence antibody dilution
buffer. The sections were then washed with TBS, and coverslip
was mounted with a mounting medium containing 4′,6-diamidino-
2-phenylindole (Vector Laboratories, Burlingame, CA, USA; cat
#H-1200). Sections were photographed using the DeltaVision
fluorescent microscope imaging system (GE Life Sciences, Pittsburgh,
PA, USA).

Histologic analysis

Ovaries and placentas were fixed overnight at 4 ◦C in 4%
paraformaldehyde in PBS, dehydrated, and paraffin embedded.
Placentas were oriented vertically so that cross-sections could

be obtained. Serial tissue sections of 4 μm thickness were cut
and mounted on glass slides by the Case Western Reserve
Core (University Hospitals, Cleveland, OH, USA). Tissues were
deparaffinized using citrate buffer and stained with hematoxylin
and eosin (H&E). Corpora lutea were counted manually using the
widest representative section. For the microvessel analysis, placentas
were deparaffinized and stained with monoclonal antibody to PLVAP
(MECA-32) (Bio-Rad, Raleigh, NC, USA). Quantification of vessel
density was performed using Spectrum and ImageJ software [21].

Statistical analysis

All statistical analyses were performed using GraphPad Prism ver-
sion 7.0 for Mac OS X (GraphPad Software, La Jolla, CA, USA).
All experiments were performed in triplicate or greater. Preliminary
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Figure 3. VEGFA and its receptors mRNA expression in the uterus after superovulation during the preimplantation period (E3.5). Adult female mice superovulated

and triggered with hCG or the GnRH agonist had significantly higher uterine expression of (A) Vegfa at day 3.5 of gestation (P < 0.05). The GnRHa trigger

increased (B) uterine Vegfr1 and (C) Vegfr2 compared to the hCG trigger (P < 0.02, n = 4–5 mice per group) (n = 4–5 mice per group). (D) Serum free VEGF

levels were similar between the groups (n = 3 mice per group, P = 0.6). Data are presented as mean ± SEM. (E) VEGFR1 (stained green) is highly expressed

in the uteri of E3.5 luminal epithelium lining (arrows) and secretory glands (stars). Negative controls in lower panels show no specific staining with secondary

antibody alone. Scale bars: 15–25 μm.

power calculation demonstrated that 10 mice per group would
provide 80% power at α = 0.05, to detect an 8% difference in
VEGF expression. One-way ANOVA followed by post hoc multiple
comparisons testing was used to assess the differences in serum
markers and gene expression between the three groups at E3.5.
Only the hCG trigger group and GnRHa were compared at E7.5
and E10.5 using Student t-test. Control groups were not included
in the statistical analyses at these time points due to the lower
number of implantation sites in control compared to experimental
groups. Controls were shown as a reference of “normal” values
of the multiple variables. Differences were considered statistically
significant when P < 0.05.

Results

Angiogenic signaling during early pregnancy

In order to confirm that our model of superovulation was successful,
we examined the ovaries of mice superovulated with PMSG followed
by the hCG or GnRH agonist trigger. We found more corpora lutea

in the superovulated groups compared to the control group on day
3.5 of gestation (Figure 2A and B). Females exposed to superovula-
tion had elevated ovarian mRNA expression of LH receptors and
elevated serum progesterone levels (P < 0.02; Figure 2C and D). In
addition, the superovulated groups had significantly higher ovarian
Vegfa expression compared to naturally mated controls (P < 0.01;
Figure 2E). There were no significant differences in the number
of corpora lutea or serum progesterone levels between the two
superovulated groups.

To investigate the mechanisms of how superovulation followed
by the hCG and GnRH agonist trigger affects angiogenesis, we
examined the uterus of pregnant mice on E3.5. We found increased
expression of uterine Vegfa mRNA in both superovulated groups
compared to controls (Figure 3A). Interestingly, mice triggered
with the GnRHa had higher levels of uterine Vegr1 and Vegfr2
compared to the hCG trigger group (Figure 3B and C). However,
serum levels of free VEGFA were similar regardless of the trigger
agent (Figure 3D, Supplementary Figure S1). Using fluorescent
immunohistochemistry, VEGFR1 was highly localized to the uterine
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Figure 4. The impact of superovulation (induced with hCG and GnRHa triggers) on the post-implantation uterus. (A) The number of implantation sites in the

superovulated groups were significantly higher relative to naturally mated controls (P < 0.0001, n = 6–10 mice per group). Data are represented as mean ± SEM.

(B) Gross morphologic appearance of pregnant uteri at E7.5 (top) and E10.5 (bottom). Marked implantation sites at midgestation (E10.5) are resorption sites

(black arrows).

secretory glands and endometrial lining during the preimplantation
period (Figure 3E). This data suggest an important regulatory role
of VEGFA/VEGFR1 during implantation.

Effect of superovulation with the GnRHa and hCG

trigger on angiogenesis-related gene expression

during early trophoblast invasion

On E7.5 and E10.5, there were significantly more implantation
sites in both superovulated groups compared to the natural mating
group. There was no difference in the number of implantation sites
between the trigger groups (Figure 4). During this critical period in
mouse gestation, the trophoblast of the ectoplacental cone begins to
invade the decidua and differentiate into trophoblastic giant cells.
Superovulation followed by the hCG trigger led to significantly
higher expression of local Vegfa and its receptor, Vegfr2, in the ecto-
placental cone as compared to the GnRHa trigger group (Figure 5).
This suggests that hCG adversely affects angiogenic processes at
the time of placental development. In addition, soluble Vegfr1 (also
called sflt1), known to be implicated in preeclampsia, is elevated
in the hCG trigger group, which leads to less bioavailable VEGFA
(Figure 6B and C). Total Vegfa (which includes bound and unbound
VEGFA) was similar between the groups (Figure 6A).

During the post-implantation period, there are robust angio-
genesis and invasion of the trophoblast into the decidua [22].

Markers of trophoblast differentiation, Mash2 and Hand1, were
similar between the superovulated groups. In contrast, Stra13,
essential for the final step of trophoblast giant cell differentiation,
was significantly higher in the hCG trigger group (Figure 7).
This aberrant expression may account for some of the gross
morphological abnormalities observed in superovulated placentas
(Figure 8B).

Effect of superovulation on placental development

Midgestational (E10.5) embryos and uteri of naturally mated
and superovulated mice were dissected and captured on the
microscope. The embryos of superovulated mice were smaller
compared to naturally mated embryos (Figure 8A). In addition,
the corresponding placentas of superovulated mice were more
fragmented and smaller compared to control mice (Figure 8B).
A critical factor for maternal spiral artery formation, Tpbpa,
was significantly lower in the placenta from the superovulated
groups (Figure 8C). Finally, the number of resorptions was
significantly higher in the superovulated groups comparedto controls
(Figure 8D).

At midgestation (E10.5), serum levels of free VEGFA were
most elevated in the hCG trigger group (Figure 9) corresponding
to low levels of serum sVEGFR1. When analyzing the placenta,
the hCG trigger group had the highest levels of local Vegfa
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Figure 5. Superovulation followed by the hCG trigger differentially alters

levels of VEGFA and its activating receptor VEGFR2 at E7.5. (A) During

trophoblast development, the hCG trigger group increases ectoplacental

cone expression of Vegfa relative to the GnRH trigger group (P = 0.05). (B)

Vegfr1 is not significantly higher (P = 0.09). (C) Vegfr2 mRNA expression

locally in the ectoplacental cone is significantly higher in the hCG triggered

group (P < 0.02, n = 6 mice per group). Data are represented as mean ± SEM.

Note: statistical analysis was only performed between superovulated groups

(Student t-test). Controls (black) are shown as a reference.

Figure 6. Post-implantation (E7.5) serum levels of total VEGF, soluble VEGFR1,

and free VEGFA. (A) Total bound and unbound VEGF is similar between the

groups (P = 0.3). (B, C) Soluble VEGFR1 is higher in the hCG group leading

to less bioavailable VEGFA compared to the GnRH agonist group (P < 0.05,

n = 4–6 mice per group). Mean ± SEM reported. Note: statistical analysis

was only performed between superovulated groups (Student t-test). Controls

(black) are shown as a reference.
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Figure 7. RT-qPCR analysis of trophoblast markers in the pooled ectoplacental

cones of the three treatment groups. (A) Stra13 is higher in the hCG trigger

group compared to GnRH agonist and the control group (P < 0.03, n = 6 mice

per group). (B, C) There were no differences in expression for Mash2 and

Hand1 between the superovulated groups. Data displayed as mean ± SEM.

Note: statistical analysis was only performed between superovulated groups

(Student t-test). Controls (black) are shown as a reference.

expression (Figure 10A). Of note, the Vegfa receptors, membrane-
bound Vegfr1 and Vegfr2, were similar among the trigger

groups (Figure 10B and C). There were no differences in placental
microvessel density between the groups (Figure 10D). This suggests
that elevated levels of bioavailable VEGFA at midgestation may
stimulate placental Vegfa production.

Plasma progesterone, VEGFA, and soluble VEGFR1

concentrations

Circulating progesterone levels were significantly higher in both
superovulated groups compared to natural mating at E3.5 (P < 0.05;
Figure 2D). Levels of free VEGFA were lowest in the hCG trigger
group on E7.5 and then found to be highest on E10.5. Free VEGFA
levels were inversely related to soluble VEGFR1 (also called sFLT1),
with the hCG trigger groups having the highest levels of sVEGFR1
on E7.5 and lowest levels on E10.5 (Supplementary Figure S1).
This important negative regulator of VEGFA is associated with
the development of preeclampsia [23], and levels were altered by
superovulation.

Discussion

In this study, we used a novel mouse model involving superovula-
tion and GnRHa trigger to examine early pregnancy and placental
development. This is the first study to compare the GnRHa and
hCG trigger on angiogenic processes of early pregnancy and pla-
cental development in a mouse model. Our results indicate that the
GnRHa and hCG triggers differentially modulate levels of local and
systemic VEGF and its receptors throughout pregnancy, which may
have significant implications for the development of preeclampsia
and intrauterine growth restriction. During early pregnancy, mice
triggered with the GnRHa had increased expression of endometrial
Vegfr1 and Vegfr2 compared to the hCG trigger group on E3.5.
Importantly, VEGFR1 was localized to the luminal epithelium where
the blastocyst is implanting, suggesting a possible regulatory role for
Vegfa/Vegfr1 during embryo implantation. During the critical period
of trophoblast invasion and differentiation (E7.5), we found an
increased production of Vegfa and Vegfr2 in the ectoplacental cones
of mice triggered with hCG. There was a trend toward increased
membrane-bound Vegfr1 in the ectoplacental cone (P = 0.09). Most
clinically significant was the increased systemic levels of soluble
VEGFR1 in mice triggered with hCG, similar to the animal models
used to induce preeclampsia [24]. At midgestation, we found local
placental Vegfa production to be highest in the hCG trigger group
and serum levels of soluble VEGFR1 (also called sFLT1) highest in
the GnRHa trigger group. This again mimics the animal models of
preeclampsia induced by excess placental expression of Vegfa. We
found higher VEGF levels at E7.5, while the HCG group showed
high VEGF levels at E10.5. One possible explanation for these
findings may be related to the half-life of HCG compared to the
GnRH agonist. In humans, we know the half-life of hCG is 24 h
with an efficacy of 5–7 days compared to GnRH agonists which
are metabolized within 12–24 h. Perhaps this phenomenon is also
occurring in the mouse where the GnRH agonist is causing an initial
surge in free VEGFA levels at E7.5 and then it drops off by E10.5.
However, the hCG continues its effects leading to a steady rise in free
VEGFA levels at E10.5.

Large epidemiological studies have shown that singletons con-
ceived from fresh embryo transfer had an increased risk of low
birth weight, preterm delivery, and preeclampsia as compared to
spontaneous conception [25–27]. Many human and animal stud-
ies have shown these adverse outcomes are due to exposure to
supraphysiological hormone levels from ovarian stimulation [28,
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Figure 8. Impact of superovulation on embryonic and placental development. (A) Gross morphological appearance of E10.5 embryos developed in superovulated

mice triggered with hCG and GnRHa. (B) Gross morphological appearance of E10.5 placentas from superovulated and control mice. Scale bars: 1 mm. (C) qRT-

PCR of placental Tpbpa, essential for maternal spiral artery formation, is similarly low in both superovulated groups. (D) The number of resorbed sites was

similar in the superovulated groups regardless of trigger agent, but significantly higher than controls (n = 7–10 mice per group). Mean ± SEM reported. Note:

statistical analysis was only performed between superovulated groups. Controls (black) are shown as a reference.

29]. It is unknown if the adverse pregnancy outcomes associated
with IVF have their origins during the preimplantation environment,
which then translate into abnormal trophoblast differentiation and
eventually placental formation. Human studies have attempted to

understand this critical period of development and found that IVF
pregnancies had significantly lower placental volumes and lower
perfusion of the endometrium during the first trimester when com-
pared to natural conception, with fresh embryo pregnancies having
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Figure 9. Serum levels of critical angiogenic factors at midgestation. (A) Both

trigger groups had similar total serum VEGFA. (B) The hCG trigger group

had lower levels of soluble VEGFR1 (P < 0.02) leading to (C) elevated free

bioavailable VEFA (P < 0.02). (D) Progesterone levels at midgestation were

similar in the superovulated groups. Mean ± SEM reported (n = 3–6 per

group). Note: statistical analysis was only performed between superovulated

groups. Controls (black) are shown as a reference.

Figure 10. Superovulation with hCG trigger leads to overexpression of placen-

tal VEGFA at midgestation. (A) Local placental Vegfa production was higher in

the hCG group compared to the GnRHa trigger group (P < 0.003). (B, C) Vegf

receptors were similar in the trigger groups (n = 8–10 placentas). (D) Placental

microvessel density was similar between all groups (n = 7–11 placentas).

Note: statistical analysis was only performed between superovulated groups.

Controls (black) are shown as a reference.
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the lowest placental volume compared to frozen-thawed embryos
[30, 31]. Indeed, in our assisted reproductive technology (ART)
mouse model, we found altered levels of Vegfa and its receptors
in the endometrium, developing trophoblast and placentas of mice
exposed to supraphysiological hormones and further modulated by
the ovulation trigger agent. This may be part of the mechanism for
the impaired implantation and abnormal placentation observed in
superovulated mice [11].

Clinical studies have suggested elevated levels of sVEGFR1 (also
called sFLT1) to be correlated with the development of preeclampsia,
usually increasing 5 weeks before development of symptoms [32,
33]. These studies collected serum levels of sVEGFR1 in the early
third trimester in humans and animals [32, 34]. Very few studies have
actually looked at the origins of preeclampsia from the early stages
of trophoblast invasion. One animal study attempted to understand
the mechanism of elevated sVEGFR1 in pregnancies complicated
by preeclampsia. By overexpressing Vegf specifically in the mouse
endometrium, they found that endometrial Vegf induced placental
sVegfr1 production and elevated maternal sVEGFR1 serum levels
which led to miscarriage, placental dysfunction, and preeclampsia
[24]. Our model is consistent with these findings, as we also observed
elevated local production of Vegf in the hCG trigger group at E7.5
and E10.5, elevated serum levels of VEGFR1 in both trigger groups,
and consequently lower bioavailable VEGF leading to adverse preg-
nancy outcomes. Interestingly, at midgestation (E10.5), we found
elevated levels of sVEGFR1 in the GnRHa trigger group. Regardless
of the trigger agent, superovulation altered the levels of endometrial-
specific Vegf leading to abnormal serum concentrations of VEGFR1
and bioavailable VEGFA, mimicking the current working model used
to induce preeclampsia.

Mechanisms for abnormal placental vasculogenesis may origi-
nate with abnormal trophoblast differentiation and invasion. We
found significantly higher Stra13 and a trend toward increased levels
of Mash2 and Hand2 mRNA expression in the ectoplacental cones
of mice triggered with hCG (Figure 7). Stra13 has been shown to
induce arrest of cell cycle proliferation and stimulate trophoblast
giant cell formation [ 35]. These transcription factors are critical
for differentiation of the trophoblast [36], and aberrant expression
of Stra13 may account for the dysfunction observed in placentas
from IVF pregnancies. Future studies could pool more ectoplacental
cones after an embryo transfer to see if there is an effect of the
trigger agent or superovulation on trophoblast invasion compared
to natural pregnancy. Finally, at E10.5, Tpbpa, a transcription factor
critical for maternal spiral artery remodeling and placental func-
tion [37], was found to be abnormally low in both superovulated
groups. This could explain in part the decreased placental size in
the superovulated groups. However, when we analyzed microvessel
density between the groups, we found no differences. Although we
found no changes in microvessel density, this only sheds light on
placental vasculogenesis. If there were changes in uterine arterial
angiogenesis, which could directly impact blood flow to the fetus,
these would not be seen in the microvessel density. Measuring
changes in uterine blood flow by Doppler ultrasound studies could
be a target of future work. Recent findings have also suggested an
association between the immune response of the endometrium and
endometrial angiogenesis (extension of existing blood vessels) and
placental vasculogenesis (de novo formation of new blood vessels)
[38, 39]. Future studies could analyze immune response in the
placenta as a marker of aberrant angiogenesis, including expression
of natural killer cells [40], which are also involved in the regulation of
angiogenesis [41].

Our data on pregnancy outcomes are limited by the lack of an
embryo transfer. We mitigated this by limiting our comparisons
at E7.5 and E10.5 to the experimental groups only, where litter
size was similar, and excluding controls, which had a smaller litter
size. It is possible that overcrowding may have skewed placental
size, embryo health, and production of the measured outcomes.
However, since both trigger groups were similarly superovulated,
any differences could be attributed to the trigger agent and not
the uterine overcrowding. Future studies involving embryo transfer
would be useful to assess later pregnancy outcomes and to directly
compare to a natural environment.

The implications of our pilot study indicate that the trigger agent
has the potential to alter levels of critical angiogenic factors involved
in early pregnancy establishment and placental development follow-
ing human IVF. More studies are needed to characterize the effect
of the GnRH agonist trigger on embryonic growth, pregnancy, and
neonatal outcomes as its use is increasing to mitigate the risk of
OHSS.
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