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a b s t r a c t

Circular economy is recognized as a powerful integrative framework envisioned to solve societal prob-
lems linked to environmental pollution and resource depletion. Its adoption is rapidly reforming
manufacturing, production, consumption, and recycling across various segments of the economy.
However, circular economy may not always be effective or even desirable owing to the spatiotemporal
dimensions of environmental risk of materials, and variability of global policies. Circular flows involving
toxic materials may impose a high risk on the environment and public health such that overemphasis on
anthropogenic circularity is not desirable. Moreover, waste flows at a global scale might result in an
uneven distribution of risks and costs associated with a circular economy. Among other benefits, circular
economy needs to generate environmental advantages, energy savings, and reductions of greenhouse gas
emissions. Recent attempts to implement the carbon neutrality strategy globally will likely push the
circular economy further into more economic sectors, but challenges remain in implementing and
enforcing international policies across national boundaries. The United Nations Basel Convention on the
Transboundary Movement of Hazardous Waste and their disposal is used here as an example to illustrate
the challenges and to propose a way forward for anthropogenic circularity.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of Tsinghua University Press. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A linear model of resource consumption with a take-make-
dispose pattern has caused severe environmental disasters,
adverse human health impacts, and rapid depletion of non-
renewable energy and material resources (Didenko et al., 2018;
Feng & Yan, 2007; Johansson, 2021). Concerns about the limit to the
linear economy-driven growth are intensifying in many countries,
and the collective responsibility to emergency situations such as
global climate change has contributed to the urgency to find and
implement alternative models (IRP, 2017). Meanwhile, the sustain-
able development goals set by the United Nations (UN) are calling
for improvements to human well-being, refocusing economic
prosperity, and protection of healthy environments.
ier B.V. on behalf of Tsinghua Univ
The circular economy framework is regarded as a potentially
powerful strategy for solving the problems created by the linear
economy model of industrial activities and gross economic growth.
Circular economy describes an industrial system focused on closing
the loop for material and energy flows and contributing to long-
term environmental sustainability and resource conservation
(Geng et al., 2013). However, operating the circular economy is also
generating some concern among scholars and practitioners, and
has inspired research questions along the lifecycle of materials and
energy resources (Clark et al., 2016).

Circular economy is charged not only with improving the effi-
ciency of resource conservation, but also with reducing waste
through anthropogenic circularity, charactering reuse, remanu-
facturing, recycling, and recovery (Pauliuk et al., 2021; Zeng & Li,
2021). It is enabled by two approaches, namely a closed loop for
material circularity in the same function or an open loop for ma-
terial used for other functions. With the challenge of resource
availability of e.g. rare earth minerals, implementation of circular
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economy is increasingly deployed to meet demands of an increas-
ingly digital configuration of social interactions and commerce
(Sovacool et al., 2020). Additional benefits of circular economy are
energy savings and reductions in greenhouse gas emissions (Mayer
et al., 2019), while urban mining decreases demand for virgin
mining (Olivetti & Cullen, 2018; Wang et al., 2021).

The progressive industrial revolution of the past two centuries
relied on the extraction of natural resources from the lithosphere,
and then they are processed and transformed into desired products,
which at the end of their useful life (EoL) became wastes of un-
certain environmental fate. In this one-directional logistics, most
materials flow to sinks, at which the notorious substances
contaminate the environment. It has been recognized that some
materials in EoL products may be transformed into useful products
again, in a process known as reverse logistics (waste reclamation),
through the collection, component harvesting, refurbishment,
reuse, remanufacturing, recycling, and material extraction process,
all positioned within the circular economy framework to decrease
externalized waste (Fig. 1) (The Ellen MacArthur Foundation, 2012;
Zeng & Li, 2018, 2021).

Nations vary according to policies and practices to adopt the
circular economy framework. For example, Germany and Japan
have comprehensive plans for recycling (through Germany's Closed
Substance Cycle and Waste Management Act of 1996 and Japan's
2000 Fundamental Law for Establishing a Sound Material-cycle
Society). The European Commission announced a Circular Econ-
omy Package in December 2015, and launched the latest Circular
Economy Action Plan in measures in 2020 (European Economic and
Social Committe, 2020). In the United States, the Comprehensive
Environmental Response, Compensation and Liability Act has
stimulated numerous corporate recycling and resource recovery
initiatives, although challenges remain in the adverse impacts of
inefficient recycling processes, such as recent problems in lead-acid
Fig. 1. Circular economy linking forward and reverse logistics towards circularity (Zeng
& Li, 2021, reprinted with permission © The Author(s)).
battery recycling (Ogunseitan, 2016). The United States also has a
notable regional program such as the Zero Waste scheme in San
Francisco, California. In China, rapid consumption of the world's
resources has incentivized regulatory policies to promote the
recirculation of waste materials (Mathews & Tan, 2016).

2. Circular economy progress: international challenges and
opportunities

2.1. Controlling toxic releases across material lifecycles

Despite inherent toxicity to most living organisms, some ele-
ments such as lead and mercury are still allowed to be used with
exceptions by RoHS Directive due to their irreplaceable functions.
Despite attempts to use policies and economic incentives to avoid
toxic releases and exposures during the lifecycle of such products,
fugitive emissions occur and vulnerable populations and environ-
mental are impacted adversely. Therefore promoting recycling of
such materials is incompatible with long-term ecological sustain-
ability (Ayres, 1992). For example, tin-lead solder even in low
concentration was used extensively in electronic packaging. The
typical EoL disposal of products made with such solders have
contaminated the environment in the absence of adequate recy-
cling policies (Ogunseitan et al., 2009).Without a strategy to embed
informal recycling into the circular economy of such products, it
will be impossible to avoid the release of toxic materials into the
environment with impacts on ecosystems and human health
(Heacock et al., 2016; Li et al., 2015b). Insufficient investments in
environmental protection in low- and middle-income countries
have resulted in a high burden of toxic pollution-related mortality
rates. Therefore, it may be more desirable to eliminate some toxic
materials from the circular economy of products to avoid the
disincentive of diminishing returns on investments in collection
and recycling.

On the other hand, another vital aspect of circular economy is
the issue of mixing materials in recycling that can compromise the
quality of the products. During the reuse and remanufacturing, the
quality of material and function can commonly go down (Ohno
et al., 2014; Winterstetter et al., 2021). Regarding the recycling
and recovery, for instance, metal in product can be high quality as
pure metal for high recyclability, or low quality as alloy for low
recyclability, difficult to recover as pure metal (Fang et al., 2018;
Kanwal et al., 2021; Zeng& Li, 2016). The same plastic resins, which
are non-toxic for specific electronic applications, can become haz-
ardous for other applications, such as toys and food containers
(Leslie et al., 2016; van Eygen et al., 2018). Old iron scrap often
downgrades via oxidation, weathering, or process. Mixing iron
scrap with copper and tin reduces the quality of recycled steel
(Daehn et al., 2017; Dworak & Fellner, 2021; Ohno et al., 2015).
Therefore, some additional process like smelting could be needed
to raise the material quality.

2.2. International flows of materials and products

International flowofmaterials andwastes is essential for closing
gaps in the circular economy. However, the international flow
challenges the protection of health and the environment. For
example, lead-acid batteries and electronic waste (e-waste) are
used here to illustrate the weaknesses at the start and end of
transnational flows. In the US, a major producer of spent LABs
(formally recognized as hazardous waste) have been exported to
relatively poor countries for the endmaterial recovery (Ogunseitan,
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2016). Illegal transboundary flow of e-waste occurred frequently in
the 2000s from affluent industrialized nations to poorer countries
(Lee et al., 2018; Lepawsky, 2015; Li et al., 2015a). The improper
recycling in poverty regions resulted in disastrous consequences for
environmental quality and public health. The sustainability of long-
distance transportation of materials and waste are depending on
fluctuations of transportation cost, potential for leakage, energy
expenditure, carbon footprint, and supply chain logistics
(Dietzenbacher et al., 2020; Xu et al., 2020). Thus, lifecycle thinking
includes acknowledgment of trade-off subject to subjective values
of stakeholders within the circular economy.
2.3. Harmonization of international policies and regulation

The international regulatory framework for materials, manu-
factured products, and wastes has been reinforced since the 1990s
from regional to global jurisdictions. Globally, the Basel Convention
on the Transboundary Movement of Hazardous Waste and their
disposal focus on protecting human health and the environment
against the adverse effect of hazardous wastes, which were noto-
riously and unfairly traded across national boundaries due to
imbalance and diversity of policies, regulation, and value systems in
various countries and regions. The EU, Japan, and China are leading
in e-waste regulation and policy, but most countries with econo-
mies in transition are still at the early stages (Fig. 2). Such loopholes
of policies and regulations keep the international flow of toxic
products unencumbered. Locally, for instance, in China, some
provinces and cities established special regulations to prohibit the
hazardous waste flow stemmed from other regions, considering
carrying capacity of the local ecosystems.

Within individual countries such as China, regulation and policy
have stipulated the rigorous governance for products and compo-
nents. Two major gaps exist in the existing regulation: lack of
adequate attention to the recovered materials and substances and
no control of substances to avoid toxic metals which are manu-
factured in new products (Zeng et al., 2017), thus amplifying po-
tential risks on the environment and human health beyond secure
disposal practices.
Fig. 2. Material flow of resources in the environment and anthroposp
2.4. Classification of anthropogenic resources

Rawmaterial supply is of key relevance for nations, industries, and
modern lifestyles. Today, primary raw materials dominate raw ma-
terial supply, but secondary rawmaterials are gettingmore attention
in the context of climate protection and circular economy. In circular
economy, material recovery from residues is of crucial concern. In
recent years, several case studies estimated the availability of sec-
ondary raw material from anthropogenic resources in analogy to
primary raw materials from geogenic sources. For instance, JORC
(2012) and National Instrument 43e101 (OSC, 2016) were used to
classify downstream projects (Blasenbauer et al., 2020) and the
McKelvey box (McKelvey & Kleepe, 1976) and the United Nations
Framework Classification for Resources (UNFC) (Heiberg et al., 2018;
UNECE,2020)wereused toclassifynationalmaterial stocksandflows,
post-consumer residues and landfills (Winterstetter et al., 2021). The
initiatives for classifying anthropogenic resources facilitate the
development of recovery projects, but are challenged by essential
differences between natural and anthropogenic resources. Anthro-
pogenic resources are, for instance, ferrous and non-ferrous metals,
precious metals, plastics, or rubber in residues such as e-waste, au-
tomobiles, wires, cables, and packages.

In contrast to natural resources, anthropogenic resources are
influenced by anthropogenic activities. Thus, the most salient
feature of an anthropogenic resource is that its constituents are all
manufactured and refined. Therefore, de-manufacturing processes
are needed to deal with residues. This implies that urban mining
differs from virgin mining. The known natural mineral stocks
decrease with exploitation and increase with newly discovered
mineral sources. In contrast, anthropogenic stocks are converted, at
one point or another, into residues, which then can be recovered
during recycling (Fig. 2). The classification of anthropogenic re-
sources, in analogy to geogenic resources, enables comparable es-
timates of anthropogenic and geogenic resource availabilities. It
facilitates sustainable recovery project development and national
resource management if environmental, social, and governance
criteria are considered. These factors can be integrated into the
UNFC in order to communicate the viability of recovery projects to
governments, investors, industry, and the public.
here (UNECE, 2018, reprinted with permission © The Author(s)).
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3. The way forward

At the global scale, restrictions on the treatment and recycling of
toxic materials, and restricted circulation can be considered urgent
for efficient circular economy in the near future. This approach
needs to be translated and integrated into the UN's Basel Conven-
tion. At the countries or regional scale, more regulatory policies
related to waste management should be implemented for toxic
materials and substances, and even prohibition of their recycling in
backward technological circumstances. Among other instruments,
the UNFC can be a potential enabler to develop sustainable recy-
cling projects in alignment with the UN sustainable development
goals.

Although spatiotemporal, geographic, and international di-
mensions pose major challenges for the effectiveness of circular
economy, there are opportunities to transition from a linear model
of material and energy flows, including innovations in technical
and policy capacities. Despite many economic, environmental, and
social challenges, the harmonization and compatibility of regula-
tions and policies among the countries, regions, and even provinces
are needed in the circular economy policy support framework so
that the updating and revising of circular economy implementation
in the US, the EU, Japan, and China can be achieved without delay.
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