
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Helical Contour Dynamics

Permalink
https://escholarship.org/uc/item/3ng4s8vk

Author
Chu, Tianyi

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3ng4s8vk
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Helical Contour Dynamics

A thesis submitted in partial satisfaction of the
requirements for the degree

Master of Science

in

Engineering Sciences (Mechanical Engineering)

by

Tianyi Chu

Committee in charge:

Professor Stefan G. Llewellyn Smith, Chair
Professor Antonio L. Sanchez
Professor Oliver T. Schmidt

2018



Copyright

Tianyi Chu, 2018

All rights reserved.



The thesis of Tianyi Chu is approved, and it is acceptable in

quality and form for publication on microfilm and electroni-

cally:

Chair

University of California San Diego

2018

iii



TABLE OF CONTENTS

SIGNATURE PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ABSTRACT OF THE THESIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 HELICAL SYMMETRIC FLOW . . . . . . . . . . . . . . . . . . . . . . 3

CHAPTER 3 INVERTING L ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER 4 CONTOUR DYNAMICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

CHAPTER 5 STABILITY ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1 BASE FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 PERTURBED EQUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 DISPERSION RELATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

CHAPTER 6 NUMERICAL CALCULATIONS . . . . . . . . . . . . . . . . . . . . . . 23
6.1 PERTURBED CONTOUR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 SHIFTED CONTOUR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

CHAPTER 7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CHAPTER 8 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iv



LIST OF FIGURES

FIGURE 2.1: SCHEMATIC OF THE HELICAL COORDINATE SYSTEM. . . . . . . . 4

FIGURE 4.1: SCHEMATIC OF PARAMETRIZATION. . . . . . . . . . . . . . . . . . 13

FIGURE 6.1: r-φ PLANE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
FIGURE 6.2: CONTOUR EVOLUTION IN r-φ PLANE WITH η4(0) = 10−3 . . . . . 25
FIGURE 6.3: CONTOUR EVOLUTION IN r-φ PLANE WITH η9(0) = 10−3 . . . . . 26
FIGURE 6.4: EVOLUTION OF THE HELICAL VORTEX TUBE WITH INITIAL MODE

AMPLITUDE η4(0) = 10−3 . . . . . . . . . . . . . . . . . . . . . . 27
FIGURE 6.5: EVOLUTION OF THE HELICAL VORTEX TUBE WITH INITIAL MODE

AMPLITUDE η9(0) = 10−3 . . . . . . . . . . . . . . . . . . . . . . 27
FIGURE 6.6: MODE SPECTRUM WITH INITIAL MODE AMPLITUDE η4(0) = 10−3 28
FIGURE 6.7: MODE SPECTRUM WITH INITIAL MODE AMPLITUDE η9(0) = 10−3 29
FIGURE 6.8: EVOLUTION OF THE NORMALIZED PATCH AREA . . . . . . . . . . 29
FIGURE 6.9: ROTATION RATES VERSUS EXPECTED ANALYTIC LINEAR MODE

FREQUENCIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
FIGURE 6.10: CONTOUR EVOLUTION IN r-φ PLANE WITH (r0,φ0)= (

√
13,arctan(2/3)),

R0 = 1,C = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
FIGURE 6.11: EVOLUTION OF THE VORTEX TUBE WITH (r0,φ0)= (

√
13,arctan(2/3)),

R0 = 1,C = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
FIGURE 6.12: CONTOUR EVOLUTION IN r-φ PLANE WITH (r0,φ0)= (

√
13,arctan(2/3)),

R0 = 1,C = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
FIGURE 6.13: CONTOUR EVOLUTION IN r-φ PLANE WITH (r0,φ0) = (3,0), R0 =

0.8,C = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
FIGURE 6.14: EVOLUTION OF THE CONTOURS WITH (r0,φ0) = (

√
13,arctan(2/3)),

R0 = 1,C = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
FIGURE 6.15: EVOLUTION OF THE CONTOURS WITH (r0,φ0) = (3,0), R0 = 0.8,

C = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
FIGURE 6.16: STRENGTH OF VORTEX SHEET WITH (r0,φ0) = (

√
13,arctan(2/3)),

R0 = 1,C = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
FIGURE 6.17: STRENGTH OF VORTEX SHEET WITH (r0,φ0) = (3,0),R0 = 0.8,C = 20 36

v



ACKNOWLEDGEMENTS

I would like to acknowledge Professor Stefan G. Llewellyn Smith for his support as the

chair of my committee. Although he was very busy, he spent a lot of time meeting with me. He

took me under his wing, saw the potential in this project and gave for insightful guidance.

I would also like to acknowledge Ching Chang who gave me a lot of valuable advice for

my thesis. Without him my research would no doubt take much longer. His support that helped

me in an immeasurable way.

The thesis is currently being prepared for submission for publication of the material.

Tianyi Chu, Stefan G. Llewellyn Smith and Ching Chang. The thesis author was the primary

investigator and author of this material.

vi



ABSTRACT OF THE THESIS

Helical Contour Dynamics

by

Tianyi Chu

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2018

Professor Stefan G. Llewellyn Smith, Chair

In an incompressible inviscid flow system, helical symmetry means invariance though

combined axial translation and rotation about the same axis. In helical symmetry, the axial

vorticity is materially conserved if the velocity components along the helical lines are proportional

to (1+ε2r2)−1, where ε is the pitch and r is the distance from the z axis. Linear instability analysis

shows that a circular helical vortex patch centered at the origin is neutrally stable. We present

the evolution of a family of helically symmetric vortices using contour dynamics, a Lagrangian

technique to compute the motion of vortices via contour integrals. For contours perturbed by both

lower and high modes, the first mode always becomes the most unstable mode for large time. We

can inspect the features induced by the lower perturbed mode. We take mode 4 and mode 9 as

vii



examples in this work. Adding a vortex sheet on the boundary of the shifted contour accelerates

the twisting and rotating process. The distribution of vortex sheet forms a sharpening shock in

the evolution and may lead to the discontinuity.
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Chapter 1

Introduction

Helical vortices are commonly found in the wake of rotating bladed devices such as

marine propellers, wind turbines, or helicopters [S.V. ALEKSEENKO & S.I.SHTORK(1999)].

Within a certain downstream distance of the rotating device, the flow system can be con-

sidered as locally helical symmetric, which means that it is locally invariant through com-

bined translation and rotation about the same axis. With this assumption, previous works

have studied the time evolution of viscous helical vortices. [DELBENDE(2012)] simulated

the viscous dynamics of several helical vortices and presented quasi-steady states using a

DNS method. [SELÇUK et al.(2017)SELÇUK, DELBENDE & ROSSI] described characterizes

of helical quasi-equilibrium states as a function of helix radius, angular velocity, stream func-

tion, and core properties. Recent studies have also examined the linear stability of a heli-

cal vortices. [WIDNALL(1972)] initially considered the linear stability of a vortex filament

of finite core by obtaining the self-induced motion due to small sinusoidal displacements.

[LUCAS & DRITSCHEL(2009)] used helical symmetry to compute equilibria of helical vor-

tices with arbitrary sizes and constant pitch in a rotating frame of reference. For such heli-

cally symmetric flows with a particular choice of the velocity component parallel to vortex

lines, the axial vorticity is materially conserved in an absolute frame of reference. The class
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of equilibria is parametrized by mean core radius and also by centroid position. Each equi-

librium state consists of a single closed contour bounding a uniform distribution of vorticity.

[HATTORI & FUKUMOTO(2014)] investigated the linear stability of a helical vortex tube with

axial flow. They expanded the linearized incompressible Euler equations in the ratio of the core

to curvature radius of the tube. The unstable growth rate can be evaluated using the Kelvin waves

with the expanded equations.

In this work, we examine the time evolution of inviscid helical vortex with helical

symmetry through contour dynamics methods. This approach reduces the evolution of vortex

patches to the evolution of the boundary and thus the dimensionality of the system. Similar to

[LUCAS & DRITSCHEL(2009)], we take the vorticity as well as the velocity component parallel

to vortex lines to be piecewise constant, and allow a vortex sheet to develop on the boundary.

From the stream function-vorticity relation in helical coordinates, we can compute velocities

by inverting a linear helical operator L ψ analytically. The two main problems posed by our

approach are in finding an appropriate Green’s function for the system and obtaining the equations

for contour dynamics. The linear instability analysis is presented to compare with the result from

contour dynamics.
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Chapter 2

Helical Symmetric Flow

Consider an inviscid and incompressible flow which has helical symmetry , which means

that the velocity, vorticity and pressure fields are invariant with respect to the helical vector hhh

[DRITSCHEL(1991)]. In cylindrical coordinates (r,θ,z), hhh is given by

hhh = h2 (eeez− εreeeθ) , (2.1)

where h2 = (1+ ε2r2)−1 and ε is the pitch of the helix. Note that /boldsymbolh is not a unit

vector here. Helical symmetry also implies that hhh ·∇ = 0 for any scalar functions of r,φ and t,

where φ = θ+εz is the helical coordinate. When ε = 0, the flow becomes two-dimensional, while

ε = ∞ represents the axisymmetric case. The unit vector for the helical coordinate φ is defined by

eeeφ = h−1hhh× eeer = h(eeeθ + εreeez) . (2.2)

In helical coordinates, the gradient operator becomes

∇ = eeer
∂

∂r
+ eeeθ

1
r

∂

∂θ
+ eeez

∂

∂z
= eeer

∂

∂r
+(heeeφ− εrhhh)

1
r

∂

∂φ
+ ε(h+ εrheeeφ)

∂

∂φ
= eeer

∂

∂r
+ eeeφ

1
rh

∂

∂φ
.
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A schematic of the helical coordinate system is shown in figure 2.1.

x

2 /

y

z

ee
h

e
r

Figure 2.1: Schematic of the helical coordinate system. The axial distance between successive
twists is 2π/ε. Note that the vectors hhh and eeeφ lie on the surface of the cylinder r =constant. The
special case we considered in this work is that the vorticity ωωω is everywhere tangent to hhh.

In order for the velocity and vorticity to be divergence free, we have the following

decomposition in terms of helical scalar functions:

uuu = hhh×∇ψ+hhhv, (2.3)

ωωω = hhh×∇χ+hhhζ. (2.4)

The quantities ψ and v only depend on r and φ. From this decomposition, the velocity

components in cylindrical coordinate systems are given by

ur =−
1
r

∂ψ

∂φ
, uθ = h2

(
∂ψ

∂r
− εrv

)
, uz = h2

(
v+ εr

∂ψ

∂r

)
. (2.5)
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In helical coordinates, we have

ur =−
1
r

∂ψ

∂φ
, uφ = h

∂ψ

∂r
, uh = v. (2.6)

From to the definition of vorticity ωωω = ∇×uuu, consider the term ω = hhh ·ωωω. We have

ω = h · (∇×u) = h · [∇× (h×∇ψ+hv)] =−2εh2h · (h×∇ψ)−∇ ·
[
h2

∇ψ
]
−2εh4v

=
1
r

∂

∂r

(
rh2 ∂ψ

∂r

)
+

1
r2

∂ψ

∂φ
−2εh4v.

The equation coupling vorticity and stream function becomes [DRITSCHEL(1991)]:

L ψ =
1
r

∂

∂r

(
rh2 ∂ψ

∂r

)
+

1
r2

∂ψ

∂φ
= ω+2εh4v. (2.7)

From the inviscid Navier-Stokes and vorticity equation, we have

∂uuu
∂t

+ωωω×uuu =−∇

(
P
ρ
+

1
2
|uuu|2
)
,

∂uuu
∂t

+∇× (ωωω×uuu) = 0.

Taking the scalar product of both equations with hhh, we obtain the following:

hhh ·
(

∂uuu
∂t

+ωωω×uuu
)
= hhh ·

[
−∇

(
P
ρ
+

1
2
|uuu|2
)]

.

⇒hhh · ∂

∂t
(hhh×∇ψ+hhhv)+ [hhh× (−hhh×∇v+hhhζ)] · (hhh×∇ψ+hhhv) = 0.

⇒h2
(

∂v
∂t

+hhh · (∇ψ×∇v)
)
= 0.
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h ·
[

∂ωωω

∂t
+∇× (ωωω×u)

]
= 0.

⇒h · ∂

∂t
(−h×∇v+hζ)+(∇×h) · (ωωω×u)−∇ · [h× (ωωω×u)] = 0.

⇒∂ω

∂t
−2εh4hhh · (∇ψ×∇v)+2ε

2h4v
∂v
∂φ

+hhh · (∇ψ×∇ω) = 0.

By using the helical Jacobian J( f ,g) defined by

J( f ,g) =
1
r

(
∂ f
∂r

∂g
∂φ
− ∂ f

∂φ

∂g
∂r

)
= hhh · (∇ f ×∇g),

the full nonlinear dynamical equations in an absolute frame [LUCAS & DRITSCHEL(2009)] can

be obtained as

Dv
Dt

=
∂v
∂t

+ J (ψ,v) = 0, (2.8)

Dω

Dt
=

∂ω

∂t
+ J (ψ,ω) = 2εh4

(
J (ψ,v)− vε

∂v
∂φ

)
. (2.9)

It is clear that the quantity v is materially conserved. For the special case that v is piecewise

constant, ω is also materially conserved except on boundaries. Note that v is non-zero outside the

vortex to obtain appropriate decay at infinity, as will be discussed in Chapter 4.
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Chapter 3

Inverting L ψ

We have determined the quantity ω in terms of the helical stream function ψ. The

following task is to invert the helical operator L ψ. Through (2.6), the derivative of ψ respective

to r and φ need to be computed to obtain the velocity field. [LUCAS & DRITSCHEL(2009)]

provided a method to obtain the analytic solution: they decomposed ψ and ω as Fourier series in

φ and found Green’s functions for each mode. In this section, we invert L ψ by seeking the direct

Green’s function solution for (2.7).

With G(r,φ′;r′,φ′) the appropriate Green’s function, we write the Green’s function solution

to (2.7) as

ψ =
∫

G
(
r,φ′;r′,φ′

)
F
(
r′,φ′

)
J(r′,φ′)dr′dφ

′. (3.1)

where F(r,φ) = ω+2εh4v and the helical Jacobian J(r,φ) = rh which can be obtained from the

gradient operator. The Green’s function satisfies

L G(r,φ′;r′,φ′) =
δ(r− r′)δ(φ−φ′)

J(r,φ)
. (3.2)

Taking the source point to have coordinates r′ and φ′, using a discrete Fourier transform in the

7



azimuthal direction φ leads to a decomposition of G in the form:

G(r,r′;φ,φ′) = ∑
m

Ĝm(r;r′)eim(φ−φ′).

Then (2.7) now leads to a set of ordinary differential equations for m > 0:

L̂mĜm = h
[

d
dr

(
rh2 d

dr

)
− m2

r

]
Ĝm = δ(r− r′). (3.3)

The modes with non-zero m satisfy:

L̂mĜm = h
[

r
1+ ε2r2 G′′m +

1− ε2r2

(1+ ε2r2)2 G′m−
m2

r
Gm

]
= δ(r− r′). (3.4)

Introduce a new function u(r) with Ĝm = ru. Then we have the derivatives Ĝ′m = ru′+u, Ĝ′′m =

ru′′+2u′. Then (3.4) becomes

r2(1+ ε
2r2)u′′+(3r+ ε

2r3)u′+(1− ε
2r2)u−m2(1+ ε

2r2)2u = 0.

Change variable to R = εmr, then we can write

R2(m2 +R2)uRR +R(3m2 +R2)uR +(m2−R2)u− (m2 +R2)2u = 0. (3.5)

Recall that the modified Bessel function of order m with solutions Im(x) and Km(x) satisfy:

x2y′′+ xy′− (x2 +m2)y = 0.

Differentiating the equation with respect to x and multiplying by m2 + x2, we obtain

x2(m2 + x2)y′′′+ x(3m2 + x2)y′′+(m2− x2)y′− (m2 + x2)2y′ = 0.

8



Comparing the equation to (3.5), we can obtain the solution for u as

u(r) = aI′m(εmr)+bK′m(εmr),

where the prime denotes the derivative respect to r and Im and Km are the modified Bessel

functions of the first and second kind, of order m. Since Ĝm is bounded at origin and infinity, it

can be shown that Ĝm has the form

Ĝm(r;r′) = A0


rI′m (εmr)K′m(εmr′) r < r′,

rK′m(εmr)I′m(εmr′) r > r′.
(3.6)

where A0 is a function of r′, the term h′ represents h(r′) and so on. The jump condition at r = r′

gives

h′
[[

rh2 ∂

∂r
Ĝm

]]
= 1. (3.7)

Together with the relations for modified Bessel functions:

I′′m(r) =
(r2 +m2)Im(r)− rI′m(r)

r2 , K′′m(r) =
(r2 +m2)Km(r)− rK′m(r)

r2 ,

I′m(r)Km(r)− Im(r)K′m(r) =
1
r
,

we can obtain

1 = r′h′3 ·A0εmr′
[
I′m(εmr′)K′′m(εmr′)− I′′m(εmr′)K′m(εmr′)

]
= r′h′3 ·A0m

1+ ε2r′2

r′
[
Im(εmr′)K′m(εmr′)− I′m(εmr′)Km(εmr′)

]
= A0

h′

εr′
,

9



which gives A0 = εr′/h′. We can now write (3.6) as

Ĝm(r;r′) =


ε

rr′

h′
I′m(εmr)K′m(εmr′) r < r′,

ε
rr′

h′
K′m(εmr)I′m(εmr′) r > r′.

(3.8)

For the axisymmetric mode with m = 0, we can write

L̂0Ĝ0 = 2πh
[

d
dr

(
rh2 dĜ0

dr

)]
= δ(r− r′). (3.9)

We have the coefficient 2π here since the integral of L G in space is unity. (3.9) can be solved

directly to give:

Ĝ0(r;r′) =


0 r < r′,

1
2πh′

∫ r

r′

1
r0h2(r0)

dr0 r > r′.
(3.10)

Having derived each mode of the Green’s function G(r,r′;φ,φ′), we can obtain the stream

function ψ by inverting L ψ directly. We introduce the approach of [DRITSCHEL(1989)] in the

next chapter, which requires the direct Green’s function solution.
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Chapter 4

Contour Dynamics

Consider the characteristic function f describing the material contour with f > 0 on the

inside and f < 0 outside. Since f is materially conserved,

D f
Dt

= 0. (4.1)

The quantity ω is materially conserved except on this boundary where a non-uniform

vortex sheet develops in time. With a given initial vorticity inside the domain, we write

ω = AH [ f ]+Ω|∇ f |δ[ f ], v =CH[ f ]+ v∞, (4.2)

where A and C are materially conserved, Ω is the strength of the vortex sheet and H and δ are

the Heviside and delta functions, respectively. For large r, the contribution from non-zero modes

11



tends to zero, and we can write the axial velocity (2.3) in terms of the axisymmetric mode:

lim
r→∞

uz = lim
r→∞

h2
(

v∞ + εr
∂ψ

∂r

)
= lim

r→∞
h2
(

v+ εr
∫

∂Ĝ0

∂r
F ′r′h′d′φ′

)
= lim

r→∞
h2
[

v∞ + εr
(∫

V
(A+2εCh′4)

∂Ĝ0

∂r
r′h′dr′dφ

′+
∮

Ωr′

2πrh2 ds′+4εv∞π

∫
∞

0

∂Ĝ0

∂r
r′h′5dr′

)]
= lim

r→∞
h2
[

v∞ + εrh
(

A
2πrh2

∫
V

r′dr′dφ
′+2εC

∫
V

∂Ĝ0

∂r
r′h′5dr′dφ

′+
1

2πrh2

∮
Ωr′ds′+ εv∞r

)]
= lim

r→∞

[
v∞ +

εA
2π

Aarea +
ε2C
π

∫
V

r′h′4dr′dφ
′+

ε

2π

∮
Ωr′ds′

]
,

where Aarea =
∫

V r′dr′dφ′ is the area of the patch in r-φ plane. We want the axial velocity to vanish

in this limit, and we can satisfy this constraint by setting

v∞ =−
[

εA
2π

Aarea +
ε2C
π

∫
V

r′h′4dr′dφ
′+

ε

2π

∮
Ωr′ds′

]
, (4.3)

a constant not necessarily equal zero. For the special case when C and Ω vanish, we find

v∞ =−εA
2π

Aarea. (4.4)

In this case Aarea is conserved. Considering both sides of (2.9), we have

Dω

Dt
=

D
Dt

(AH[ f ]+Ωδ[ f ]|∇ f |) = Aδ[ f ]
D f
Dt

+δ[ f ]|∇ f |DΩ

Dt
+Ωδ[ f ]

D|∇ f |
Dt

+Ωδ
′[ f ]|∇ f |D f

Dt

= δ[ f ]
(

DΩ

Dt
|∇ f |+Ω

D|∇ f |
Dt

)
,

2εh4
(

J (ψ,v)− vε
∂v
∂φ

)
= 2εh4

[
Cδ[ f ]

1
r
(
∂ψ

∂r
∂ f
∂φ
− ∂ψ

∂φ

∂ f
∂r

)− 1
2

ε
∂((CH[ f ]+ v∞)

2

∂φ

]
= 2εh4

δ[ f ]
[
CJ(ψ, f )− 1

2
ε(C2 +2Cv∞)

∂ f
∂φ

]
.
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Substituting into (2.9) leads to the governing equation for the vortex sheet strength in the form

DΩ

Dt
|∇ f |+Ω

D|∇ f |
Dt

= 2εh4
[
CJ(ψ, f )− 1

2
ε(C2 +2Cv∞)

∂ f
∂φ

]
. (4.5)

Let ξ be a parameter taken clockwise along the patch boundary in the (r,φ) plane and let

(r,φ) = (R(ξ, t),Φ(ξ, t)) be the parametric representation of the boundary. Then the Lagrangian

advection equations for the contour (R,Φ) in helical coordinates are

∂R
∂t

= ur(R,Φ, t),
∂Φ

∂t
=

1
Rh(R)

uφ(R,Φ, t). (4.6)

We have Rh(R) here since
dxxx
dt
· eeeφ = rh

∂φ

∂t
.

A schematic of parametrization is shown in figure 4.1.

(
i
,t)

R(
i
,t)

i

i+1

i-1

f>0 f<0

Figure 4.1: Schematic of parametrization (R(ξ, t),Φ(ξ, t)). ξ is taken counter-clockwise along
the patch boundary with f < 0 on the inside and f > 0 outside.
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It follows from (4.1) that

1
|∇ f |

D|∇ f |
Dt

=
1
L

DL
Dt

+
ur

r
, (4.7)

where

L2(ξ, t) = |∇ f |2 =
(

Rh
∂Φ

∂ξ

)2

+

(
∂R
∂ξ

)2

.

Consider Ω as a function of ξ and t, we have

DΩ

Dt
|∇ f |+Ω

D|∇ f |
Dt

= L
[

DΩ

Dt
+Ω

(
1
L

DL
Dt

+
ur

r

)]
= L

[
∂Ω

∂t
+Ω

(
1
L

∂L
∂t

+
1
R

∂R
∂t

)]
.

Then from the relations:

∂ f
∂r

=−rh
∂Φ

∂ξ
,

1
rh

∂ f
∂φ

=
∂R
∂ξ

,

the governing equation (4.5) can be written as

∂Ω

∂t
+Ω

(
1
L

∂L
∂t

+
1
R

∂R
∂t

)
=

2εh5

L

[
C
(

1
h

∂R
∂ξ

uφ−R
∂Φ

∂ξ
ur

)
− 1

2
ε(C2 +2Cv∞)R

∂R
∂ξ

]
. (4.8)

Introduce γ = ΩLR simplifies (4.8) to

∂γ

∂t
= 2εh5R

[
C
(

1
h

∂R
∂ξ

uφ−R
∂Φ

∂ξ
ur

)
− 1

2
ε(C2 +Cv∞)R

∂R
∂ξ

]
. (4.9)

When v is uniform and there is no vortex sheet on the boundary initially, we have C = γ(0) = 0.

Through (4.9), we can deduce that there will be no vortex sheet generated at later times.

The approach of [DRITSCHEL(1989)] is applied to to obtain a contour dynamics formu-

lation. From (3.1), the vortex sheet part Fs = Ω|∇ f |δ( f ) leads to the following contour integral

14



for the stream function ψ:

ψs =
∮

G(r,φ;r′φ′)Ω(r′,φ′)r′h′ds′, (4.10)

which can be differentiated directly to obtain the contribution of velocity.

To obtain the rest of the velocity field, we start with Green’s theorem [DRITSCHEL(1989)]

in the form

∫
V

(
1

r′h′
∂(r′h′Q)

∂r′
− 1

r′h′
∂P
∂φ′

)
r′h′dr′dφ

′ =
∮

C

(
Pdr′+ r′h′Qdφ

′) , (4.11)

Define new functions by

rh
∂P
∂φ′

= r′h′
∂G
∂φ

,
1

r′h′
∂(r′h′Q)

∂r′
=

1
r′h′5

∂(r′h′S)
∂r

=
∂G
∂r

. (4.12)

This gives

P(r,φ;r′,φ′) =−r′h′

rh ∑
m≥0

Ĝm(r;r′)eim(φ−φ′),

Q(r,φ;r′,φ′) =
1

r′h′∑m

∫
∂Ĝm(r;r′)

∂r
r′h′dr′eim(φ−φ′),

S(r,φ;r′,φ′) =
1

r′h′∑m

∫
∂Ĝm(r;r′)

∂r
r′h′5dr′eim(φ−φ′),

With (3.1), we can arrive at the equations for contour dynamics:

∂ψH

∂φ
=

∫
V

∂G
∂φ

(A+2εh′4C)r′h′dr′dφ
′+2εv∞

∫ 2π

0

∫
∞

0

∂G
∂φ

r′h′5dr′dφ
′

=−rh
∮

C
P(A+2εh′4C)dr′+2εv∞ ∑

m

∫ 2π

0

∫
∞

0
imĜmr′h′5eim(φ−φ′)dr′dφ

′

=−rh
∮

C
P(A+2εh′4C)dr′,

(4.13)
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∂ψH

∂r
=

∫
V

(
A

∂G
∂r

+2εC
∂G
∂r

r′h′4
)

r′h′dr′dφ
′+2εv∞

∫ 2π

0

∫
∞

0

∂G
∂r

r′h′5dr′dφ
′

= A
∫

V

∂G
∂r

r′h′dr′dφ
′+2εC

∫
V

∂G
∂r

r′h′h′4dr′dφ
′+2εv∞ ∑

m

∫ 2π

0

∫
∞

0

∂Ĝm

∂r
r′h′5eim(φ−φ′)dr′dφ

′

= A
∮

C
Qr′dφ

′+2εC
∮

C
Sr′h′dφ

′+ εv∞r.

(4.14)

Then from (2.6), the corresponding velocity components can be obtained as

ur(r,φ, t) =−
1
r

(
∂ψs

∂φ
+

∂ψH

∂φ

)
, uφ(r,φ, t) = h

(
∂ψs

∂r
+

∂ψH

∂r

)
. (4.15)

These five equations, (4.6),(4.9) and (4.13-4.15), form a closed set of equations on the boundary.
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Chapter 5

Stability analysis

In this section we perform a linear normal-modes stability analysis for a circular vortex

patch with radius R0. The perturbed boundary is r = R0 + η(φ, t). To obtain the dynamic

boundary conditions, [LUCAS & DRITSCHEL(2009)] allows the mean and the perturbed parts of

the azimuthal velocity component to have a jump across the perturbed boundary r = R+η, and

requires the full azimuthal component to be continuous. In this work, we assume that the pressure

is continuous across the boundary. The dispersion relations obtained from the two different

boundary conditions is the same.

5.1 Base flow

Start from the basic state with η = 0, so that ψ is only a function of r. We take v and ω to

be piecewise constant inside and outside the patch, denoted by V0,Ω0 and V∞,0. Then (2.7) can

be written as

L Ψ1 =
1
r

d
dr

(
rh2 dΨ1

dr

)
= Ω0 +2εh4V0, 0 < r < R0,

L Ψ2 =
1
r

d
dr

(
rh2 dΨ2

dr

)
= 2εh4V∞, r > R0,

(5.1)
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which can be solved directly to give

dΨ1

dr
=

Ω0r
2

(1+ ε
2r2)+V0εr, 0 < r < R0

dΨ2

dr
=

c
r
(1+ ε

2r2)+V∞εr, r > R0

(5.2)

with dΨ1/dr being bounded at the origin. In order for the axial momentum to remain bounded at

infinity, zero axial velocity uz is needed then, which gives

lim
r→∞

uz = lim
r→∞

h2
(

V∞ + εr
dΨ2

dr

)
= lim

r→∞
(V∞ + εc) = 0.

This leads to

dΨ2

dr
=−V∞

εr
, r > R0.

In such case, uz = 0 is zero outside the vortex patch. We consider a basic state that there is

no vortex sheet on the boundary, the continuity of uθ and uz across the boundary at r = R0 are

required, which leads to

V0 =V∞ =−1
2

εΩ0R2
0. (5.3)

Finally,
dΨ1

dr
=

Ωr
2
(1+ ε

2r2− ε
2R2

0), 0 < r < R0

dΨ2

dr
=

ΩR2
0

2r
. r > R0

(5.4)

5.2 Perturbed equation

Introduce perturbations with ω = Ω0(r)+ω′, ψ1 = Ψ1(r)+ψ′1, ψ2 = Ψ2(r)+ψ′2, p =

P(r)+ p′, where ψ1 and ψ2 denote the streams function inside and outside the patch. Then from

18



(2.7), (2.8) and (2.9), the corresponding linearized perturbed equations become

1
r

∂

∂r

(
rh2 ∂ψ′

∂r

)
+

1
r

∂2ψ′

∂φ2 = 0, (5.5)

Dv′

Dt
=

∂v′

∂t
+

1
r

(
∂ψ

∂r
∂v′

∂φ
− ∂v′

∂r
∂ψ

∂φ

)
= 0, (5.6)

Dω′

Dt
=

∂ω′

∂t
+

1
r

(
∂ψ

∂r
∂ω′

∂φ
− ∂ω′

∂r
∂ψ

∂φ

)
= 0, (5.7)

Both ψ′1 and ψ′2 satisfy (5.5).

Consider the patch boundary described by f = R0+η(φ, t)−r. From the kinetic boundary

condition (4.1), we can write

0 =
∂η

∂t
+

1
r

∂ψ

∂φ
+

1
r

∂ψ

∂r
∂η

∂φ
.

at r = R0+η, valid both inside and outside the patch. Through linearization, the kinetic boundary

conditions become

0 =
∂η

∂t
+

1
r

∂ψ′1
∂φ

+
1
r

dΨ1

dr
∂η

∂φ
, 0 =

∂η

∂t
+

1
r

∂ψ′2
∂φ

+
1
r

dΨ2

dr
∂η

∂φ
, (5.8)

at r = R0.

For the dynamic boundary condition, the momentum equation in azimuthal direction gives

∂uφ

∂t
+ur

uφ

∂r
+

uφ

rh
∂uφ

∂φ
+

uφur

r
=− 1

ρrh
∂p
∂φ

.

Then, substituting with the helical velocity components from (2.6) leads to

h
∂2ψ

∂t∂r
− 1

r
∂ψ

∂φ

∂

∂r

(
h

∂ψ

∂r

)
+

h
r

∂ψ

∂r
∂2ψ

∂φ∂r
− h

r
∂ψ

∂φ

∂ψ

∂r
=− 1

ρrh
∂p
∂φ

.

Since the pressure is continuous across the boundary, so is ∂p/∂φ. Then at the boundary r = R0,
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we can obtain

[[
h

∂2ψ

∂t∂r
− 1

r
∂ψ

∂φ

∂

∂r

(
h

∂ψ

∂r

)
+

h
r

∂ψ

∂r
∂2ψ

∂φ∂r
− h

r2
∂ψ

∂φ

∂ψ

∂r

]]
= 0. (5.9)

The linearized dynamic boundary conditions become

h
∂2ψ′1
∂t∂r

− 1
r

∂ψ′1
∂φ

∂

∂r

(
h

dΨ1

dr

)
+

h
r

dΨ1

dr
∂2ψ′1
∂φ∂r

− h
r2

∂ψ′1
∂φ

dΨ1

dr

=h
∂2ψ′2
∂t∂r

− 1
r

∂ψ′2
∂φ

∂

∂r

(
h

dΨ2

dr

)
+

h
r

dΨ2

dr
∂2ψ′2
∂φ∂r

− h
r2

∂ψ′2
∂φ

dΨ2

dr
,

(5.10)

at r = R0.

5.3 Dispersion relation

Introduce normal modes with [ω′,ψ′1,ψ
′
2,η] = [ω̂(r), ψ̂1(r), ψ̂2(r), η̂(r)]est+imφ, where m

is a non-negative integer. Note that here we actually mean η = Re
(
η̂est+imφ

)
. Using temporal

analysis with s = sR + isI , we obtain

η = |η̂|esRt cos(sIt +mφ+ arg(η̂)).

When sR is greater than zero, the flow has a positive growth rate and is unstable. For the case that

sR is equal or less than zero, the flow is neutrally stable or stable, respectively.

Starting from (5.5) for perturbed helical streamfunction leads to the following set of

ordinary differential equation

1
r

d
dr

(
rh2 dψ̂

dr

)
− m2

r
ψ̂ = 0, (5.11)
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the homogeneous problem for (3.3). Hence we obtain

ψ̂ = B1rI′m(εmr)+B2rK′m(εmr).

for m > 0. To have ψ̂1,2 be bounded at r = 0,∞, we require

ψ̂1 = B1rI′m(εmr), ψ̂2 = B2rK′m(εmr), (5.12)

where B1 and B2 are constant. The two boundary conditions (5.8) and (5.10) then lead to

B2K′m(α)
(

s+
1

R0
Ψ
′
1

)
= B1I′m(α)

(
s+

1
R0

Ψ
′
2

)
, (5.13)

B1

[(
sh+

imh
R0

Ψ
′
1

)
I− imI′mF1

]
= B2

[(
sh+

imh
R0

Ψ
′
2

)
K− imK′mF2

]
. (5.14)

Here we write F1,2 = h
(

h2Ψ′1,2/R0 +Ψ′′1,2

)
, I = I′m +αI′′m and K = K′m +αK′′m with α = εmR0.

We also write I′m = I′m(α) and so on. All the functions take values at r = R0. Multiplying of (5.13)

and (5.14) leads to the quadratic dispersion relations:

− 1
ε2R2

0h
s2 + s

im
R0

[
K′mΨ

′
1
(
2hI−R0I′mF1

)
− I′mΨ

′
2(2hK−R0K′mF2)

]
− m2

R2
0

[
K′mΨ

′
1
(
hΨ
′
1I−R0I′mF1

)
− I′mΨ

′
2
(
hΨ
′
2K−R0K′mF2

)]
= 0.

(5.15)

We use the basic solution (5.4) when there is no vortex sheet on the patch boundary. Then (5.15)

can be simplified to

(
s+

imΩ0

2

)[
− 1

ε2R2
0h

s+
imΩ0

R0

(
− 1

2ε2R0h
− R0

h
K′m(α)I

′
m(α)

)]
= 0. (5.16)

Note that, the quadratic equation (5.15) holds for the case with vortex sheet as well. The solutions
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for (5.16) are

s =− imΩ0

2
, −imΩ0

(
1
2
+ ε

2R2
0K′m(α)I

′
m(α)

)
. (5.17)

Note that s =−imΩ0/2 is not a valid solution: it solves (5.13) but it is not a solution for (5.14).

Identifying the linear mode frequencies Ωm [LUCAS & DRITSCHEL(2009)] with

Ωm =− si
mΩ0

=−
(

1
2
+ ε

2R2
0K′m(α)I

′
m(α)

)
, (5.18)

For α� 1, these tend to the two-dimensional values (m−1−1)/2, while for α� 1, they tend

to the axisymmetric values εR0/2m [SAFFMAN(1993)]. The solutions indicate that Re(s) = 0

for all modes, R0 and ε. This implies that the helical vortex patch is neutrally stable under linear

instability analysis. However, the nonlinear evolution may lead to instability.

In this work, we only discuss the basic state that the vortex patch is centered at origin.

When the patch is off center, obtaining the basic state is much more challenging. Such work will

be done in further studies.
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Chapter 6

Numerical calculations

We place N = 128 nodes on the boundary to represent the contour. We use Fourier series

in terms of the parameter ξ to interpolate these nodes as

R(ξ) = Re

{
N/2−1

∑
|k|=0

R̂keikξ

}
, Φ(ξ) = Re

{
N/2−1

∑
|k|=0

Φ̂keikξ

}
, (6.1)

where R̂k and Φ̂k are the Fourier transform of R and Φ, and ξ is equally spaced in [0,2π). The

terms ∂R/∂ξ and ∂Φ/∂ξ can be obtained directly by differentiating (6.1) with respect to ξ. We

use the centroid position parameter (r0,φ0) to represent that we set the core of the vortex patch at

r = r0 and φ = φ0 in r-φ plane initially. The initial circular contour is given by

R(ξ,0) =
√

R2
0 + r2

0 +2R0r0 cos(ξ−φ0), Φ(ξ,0) = arctan
R0 sinξ+ r0 sinφ0

R0 cosξ+ r0 cosφ0
, (6.2)

where R0 is the patch radius and ξ ∈ [0,2π). Note that, for a certain patch in space, its contour in

r-φ plane represents the projection of the patch on the x-y plane along the helical line which is

shown in figure 6.1. For the ith node, we obtain ∂Ri/∂t and ∂Φi/∂t from (4.6) and (4.13-4.15),

∂γi/∂t from (4.9). The contour integrals are computed using the trapezoidal rule. Then, R,Φ

and γ are advanced in time using Fourth Order Runge-Kutta method with time step δt = 0.05 for
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Figure 6.1: The higher bold curve represents the contour in three-dimensional space while the
lower bold curve represents the contour in r-φ plane.

perturbed contour and δt = 10−3 for shifted contour.

6.1 Perturbed contour

We perturb the initial contour given by the circular vortex patch centered at origin with

different modes. The simulations are performed at a fixed value of the original patch radius R0 = 1,

with pitch ε = 1.5, vortex strength A = 1 and C = 0. Note that, C is the jump of v described

in (4.2), and C = 0 corresponds to the case that there is no vortex sheet on the boundary. The

strength of vortex sheet Ω has been set to zero initially, and we set v∞ =−1/2εR2
0 to ensure that

the velocity components are continuous across the boundary. Figure 6.2 and 6.3 show the time

evolution of vortex patch in the r-φ plane when we give perturbation initially with η4(0) = 10−3

and η9(0) = 10−3. These two cases do not give the same evolution. For η4(0) = 10−3 (figure

6.2), the contour remains circular at short time (t < 2.0s), and deforms later (t = 3.0,4.0s): 4
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Figure 6.2: Contour evolution in r-φ plane with Initial mode amplitude η4(0) = 10−3. Star
denotes the first node on the contour.

protrusions induced by initial perturbation have formed on the boundary like a quadrangular. The

contour keeps deforming and the distribution of the nodes is no longer uniform (t = 4.0,5.0s).

In the evolution, the core of the vortex patch nearly remains at the origin. For the second case

with η9(0) = 10−3 (figure 6.3), the contours remains circular for a longer time (t < 3s), and one

half of the contour no longer have a smooth curvature later (t = 4.5s). Meanwhile, the core of

the vortex patch has shifted. We stop the calculation when the contours get close to the origin to

avoid the singularity.

To have a clearer view in space, we show the temporal evolution of the full three-

dimensional helical vortex tube in figures 6.4 and 6.5. Each contour represents the horizontal

cross-section of the vortex tube and all the contours for a certain instant are identical according

to the helical symmetry. Note that the contours do not generally correspond to the same fluid

particles for different instants since fluid particles do not have the same axial velocity while the

contours are the horizontal cross-sections. Figure 6.4 describes the case that the initial mode
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Figure 6.3: Contour evolution in r-φ plane with Initial mode amplitude η9(0) = 10−3. Star
denotes the first node on the contour.

amplitude is η4(0) = 10−3. , The vortex tube remains cylindrical at the beginning (t < 1.0s)

and becomes wavy later (t = 2.0s). Note that the cylindrical vortex tubes corresponds to the

circular vortex patch centered at origin: all the cross sections have the same helical vectors hhh. As

the contours no longer remaining circular (t > 3.0s), the vortex tubes are deformed and twisted.

When we perturbed initially with η9(0) = 10−3 (figure 6.5), the vortex tube become helical later

(t > 4.0s) since the core of the patch is shifted.

Turning now to figure 6.6 and 6.7, we are able to observe the amplitude of each mode

ηm(t) at different instants from the mode spectrum. Note that the amplitudes have been normalized

to the original radius R0. For the first case with η4(0) = 10−3 (figure 6.6), contrary to what we

are expecting in the linear temporal analysis, η1(t) grows with time. The contour is dominated

by the 4th mode initially (t < 3.0s) and led to the quadrangular like deformation. The first mode

grows rapidly and has higher amplitude later. For the case with η9(0) = 10−3 (figure 6.7), the

mode spectrum has a different trend as time increases: the amplitude of the 9th mode remains
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Figure 6.4: Shown are the evolution of the helical vortex tube with the full three-dimensional
with Initial mode amplitude η4(0) = 10−3, viewed from a perspective of 30◦ elevation. Each
contour denotes the horizontal cross-section of the vortex tube.
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contour denotes the horizontal cross-section of the vortex tube.
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Figure 6.6: Shown are the mode spectrum for different instants with initial mode amplitude
η4(0) = 10−3.

at a low level and the 1st mode grows significantly and dominates at later times. In this case,

rather than the 9th mode, the 1st mode becomes the most unstable mode. These results imply that

nonlinear terms need to be considered in further studies to investigate the instability of the helical

vortex patch.

When there is no vortex sheet generated on the boundary, as in (4.4), we expect the area

of the patch in the r-φ plane to be conserved. Figure 6.8 shows the evolution of the normalized

patch area. For both the two cases, the normalized areas remain at unity initially (t < 2.5s) and

grow rapidly later (t > 4s). The areas are not conserved since the error from numerical process is

accumulated.

28



0 2 4 6 8 10 12 14 16 18 20

mode #

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

M
o
d
e
 a

m
p
lit

u
d
e
 

m
(t

)

t=0s

t=1.0s

t=2.0s

t=3.0s

t=4.0s

t=4.5s

Figure 6.7: Shown are the mode spectrum for different instants with initial mode amplitude
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Figure 6.9: Curves showing the evolutions of the rotation rate computed from the evolution
process (Ω4,9,comp) and the expected analytic linear mode frequencies (Ω4,9,exp) of a perturbed
helical symmetric vortex. The expected values are Ω4 =−0.2750 and Ω9 =−0.3999 obtained
from (5.18) when we take m = 4 and 9.

From (5.18), the angular frequencies of the linear helical modes are Ω4 =−0.2750 and

Ω9 = −0.3999. Figure 6.9 shows Ω4 and Ω9 versus the rotation rate Ωm computed from the

evolution process. Initially, the computed Ω4,comp and Ω9,comp are quite close to the expected

values and decay rapidly in a short time. The computed Ω4,comp decays slowly while the computed

Ω9,comp decays rapidly in a short time and oscillates.

6.2 Shifted contour

Having examined parameter space in the case of vortex patch centered at origin, we extend

the method to the shifted circular patch. When performing the simulation, we fix the value of the

vortex strength A = 1, pitch ε = 1.5 and the initial strength of vortex sheet Ω0 = 0. For different

original patch radii R0, we set v∞ =−1/2εR2
0− ε2C/π

∫
V r′h′4dr′dφ′.

First, we consider the case with C = 0, which means no vortex sheet will be generated

30



-2 0 2 4

-2

0

2

4

t=0s

-2 0 2 4

-2

0

2

4

t=0.1s

-2 0 2 4

-2

0

2

4

t=0.2s

-2 0 2 4

-2

0

2

4

t=0.3s

-2 0 2 4

-2

0

2

4

t=0.4s

-2 0 2 4

-2

0

2

4

t=0.5s

Figure 6.10: Contour evolution in r-φ plane with (r0,φ0) = (
√

13,arctan(2/3)),R0 = 1,C = 0.
Star denotes the first node on the contour.

on the boundary at the later times. Figure 6.10 describes the time evolution of vortex patch

in r-φ plane. The vortex patches are twisted and flipped around. The contour crosses itself at

t = 0.4s. The whole vortex patch is moving clockwise. We show evolution of the contours along

with the full three-dimensional helical vortex in figure 6.11. At t = 0, the contours represent the

horizontal cross-section of the vortex tube while each contour contains the same fluid particles

for different instants. Contrary to the case that the contour centered at the origin, the vortex tube

for the shifted contour is already helical in three-dimension initially.

When taking the vortex sheet into account, figure 6.12 and 6.13 shows the time evolution

of vortex patch with C = 20 in r-φ plane. Two cases have been considered in this figure: the

circular patch with centroid position parameter (r0,φ0) = (
√

13,arctan(2/3)) and patch radius

R0 = 1.0 (figure 6.12) and the circular patch with centroid position parameter (r0,φ0) = (3,0)

and R0 = 0.8 (figure 6.13). With higher shifted radius r0 and patch radius R0, the contour in first

case has a higher rotation rate in the first case. Compared to the case without vortex sheet, the
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Figure 6.11: Shown are the evolution of the contours for (r0,φ0) = (
√

13,arctan(2/3)),R0 =
1,C = 0 along with the full three-dimensional helical vortex tube, viewed from a perspective of
30◦ elevation. At t = 0, the contours are the horizontal cross section of the vortex tube.

effect of adding a vortex sheet on the contour boundary is to accelerate the process twisting and

rotating the patch. The distribution of the nodes for the second case is not uniform in the later

time. For some instants, the contours in r-φ plane may cross themselves since the fluid particles

on the contours do not generally have the some velocity components in the helical direction hhh

and then the contours will evolve in space.

We show the time evolution of the contours along with the full three-dimensional helical

vortex tube in figure 6.14 and 6.15. The contours represent the horizontal cross section of the

vortex tube at t = 0. The contours are flipping in space and this deformation leads to the crossing

in r-φ plane.

Figure 6.16 and6.17 show the evolution of the vortex sheet strength Ω. In this figure,

l̃ denotes distance for each node along the sheet normalized by its total length; l̃ = 0 always

corresponds to the first node and l̃ = 1 coincides with l̃ = 0. Note that the same value of l̃ does not

generally correspond to the same fluid particle for different instants since the distance between
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Figure 6.12: Contour evolution in r-φ plane with (r0,φ0) = (
√

13,arctan(2/3)),R0 = 1,C = 20.
Star denotes the first node on the contour.
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Figure 6.13: Contour evolution in r-φ plane with (r0,φ0) = (3,0),R0 = 0.8,C = 20. Star
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Figure 6.14: Shown are the evolution of the contours for (r0,φ0) = (
√

13,arctan(2/3)),R0 =
1,C = 20 along with the full three-dimensional helical vortex tube, viewed from a perspective
of 30◦ elevation. At t = 0, the contours are the horizontal cross section of the vortex tube.
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Figure 6.15: Shown are the evolution of the contours for C = 20,(r0,φ0) = (3,0),R0 = 0.8,C =
20 along with the full three-dimensional helical vortex tube, viewed from a perspective of 30◦

elevation. At t = 0, the contours are the horizontal cross section of the vortex tube.
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Figure 6.16: Strength of vortex sheet Ω as a function of normalized length l̃ for (r0,φ0) =
(
√

13,arctan(2/3)),R0 = 1,C = 20.

successive nodes changes with time. In each case, the sheet strength remains zero at two specific

values of the normalized length: l̃ = 0.1,0.6 in figure 6.16 and l̃ = 0,0.5 in figure 6.17. The

sheet strength and the difference across the l̃ axis generally increase with time. The sharpen

shocks of the vortex sheet strength Ω are generated for both cases and leads to the discontinuity.

Separated by the sharpen shock, Ω behaves oppositely like a shifted odd function.
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Figure 6.17: Strength of vortex sheet Ω as a function of normalized length l̃ for C =
20,(r0,φ0) = (3,0),R0 = 0.8,C = 20.
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Chapter 7

Conclusion

This paper has presented an analytic method for computing contour dynamics formulations

for helically symmetric vortices. Fourier transforms were employed to invert the linear operator

L ψ for axial vorticity and Green’s theorem in helical coordinates was applied to obtain the

contour integral for the stream function ψ. One can obtain the inversion relation linking vortex

patch and sheet strength to velocity to compute the motion, (3.1), (4.13) and (4.14), and evolution

equation for the vortex sheet strength (4.9).

We apply a temporal linear instability analysis for a piecewise constant distribution of

axial vorticity. It turns out that this kind of vortex patch is neutrally stable to the infinitesimal

perturbations. The linear mode frequencies Ωm are shown in (5.18).

The contours we presented are parametrized by pitch ε, mean core radius R0, centroid

position (r0,φ0), axial vorticity A and initial velocity jump across the boundary C. Small ε shows

two-dimensional flow while large ε recovers the axisymmetric case.

First we computed the evolution described by contours bounding regions of unity axial

vorticity. We presented two different cases for perturbed contours, both of them showed unstable

features. When we give perturbation with η4(0) and η9(0), we can inspect the feature induced

by the mode 4 while the amplitude of mode 9 remains at a low level at all time. The first mode
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always becomes the most unstable mode at later times. This implies that the modes are coupled

in the evolution and nonliear theory need to be applied.

For the shifted contours, we added the vortex sheet around the boundary. The numerical

simulations of the evolution of vortex sheets were performed and shown in (6.16) and (6.17).

Adding the vortex sheet on the boundary of the shifted contour accelerated the twisting and

rotating process. In the distribution of Ω, sharpening shocks were generated for both cases. This

leads to the discontinuity of Ω in the later time.
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Chapter 8

Future Work

One of the very first steps in the future is to consider the non-linear relation in instability

analysis. From the results for perturbed contours, they do not follow what we expected in linear

stability analysis. The modes couple with each other which implies that the non-linear term need

to be investigated in further studies. Meanwhile, obtaining the basic state for off center contours

will help us to study the stability for such contours.

The next step would be to evaluate integrals with singularities in complicated domains. In

our case, T]the calculation becomes complicated when the contours get close to the origin by

the existence of singularities. For the evaluation of layer potentials, the method: Quadrature by

Expansion [A.KLÖCKNER & O’NEIL(2013)] might be helpful.

The thesis is currently being prepared for submission for publication of the material.

Tianyi Chu, Stefan G. Llewellyn Smith and Ching Chang. The thesis author was the primary

investigator and author of this material.

39



Bibliography
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