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Prediction of Atomization Energy Using Graph Kernel and Active

Learning

Yu-Hang Tang* and Wibe A. de Jong

Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Abstract Data-driven prediction ofmolecular properties presents unique challenges to the design ofmachine
learning methods concerning data structure/dimensionality, symmetry adaption, and confidence manage-
ment. In this paper, we present a kernel-based pipeline that can learn and predict the atomization energy of
molecules with high accuracy. The framework employs Gaussian process regression to perform predictions
based on the similarity between molecules, which is computed using the marginalized graph kernel. To ap-
ply the marginalized graph kernel, a spatial adjacency rule is first employed to convert molecules into graphs
whose vertices and edges are labeled by elements and interatomic distances, respectively. We then derive
formulas for the efficient evaluation of the kernel. Specific functional components for the marginalized graph
kernel are proposed, while the effect of the associated hyperparameters on accuracy and predictive confi-
dence are examined. We show that the graph kernel is particularly suitable for predicting extensive properties
because its convolutional structure coincides with that of the covariance formula between sums of random
variables. Using an active learning procedure, we demonstrate that the proposed method can achieve a mean
absolute error of 0.62 ± 0.01 kcal/mol using as few as 2000 training samples on the QM7 data set.

Keywords data-driven modeling, structured data, labeled graph, kernel method, quantum mechanics, computational

chemistry

1 Introduction

The chemistry and materials communities have embraced data science and machine learning to bring about
revolutionizing solutions to long-standing challenges in molecular modeling, optimal experiment design, and
high-throughput structure screening [1–5]. One particularly promising application of machine learning tech-
niques is to train predictive models for molecular properties that are otherwise only available through expen-
sive dynamics simulations and quantum mechanical calculations. This type of regression tasks typically entail
quality requirements concerning the following:
1. accuracy: While the atomization energy of drug-like ligands are on or above the order of 103 kcal/mol,
it is the binding energy, i.e. the difference between the energy of two ligand-protein complexes, that
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is sought for applications such as drug screening. It is therefore expected that a good predictive model
should carry less than 1 kcal/mol absolute error, or 10−3 relative error;

2. smoothness: The prediction must be at least twice differentiable with regard to the molecular geometry
for a model to be usable as a force field for dynamics simulations;

3. outlier handling: Inevitably, a trained model could encounter outliers which triggers extrapolation far
beyond the training domain. Should the predictive model fail to maintain a desired level of accuracy in
this situation, a fail-safe mechanism should kick in to let the end user be aware of the potential quality
degradation and take remedy actions;

4. symmetry adaptation: The predictive model should be able to recognize configurations and conforma-
tions that are merely different by a permutation and/or a rigid body transformation, which only cause
covariant changes to the target property. Symmetry adaptation could take advantage of such knowledge
to simultaneously improve accuracy, smoothness, and generalization.

truth GPR training
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Figure 1: An active learning procedure is carried out to learn the Lennard-Jones potential between two atoms. By iteratively
adding the point with the largest predictive uncertainty into the training set, the GPR model quickly converges to the ground truth
using a relative small amount of samples.

Gaussian process regression (GPR) [6] is a robust regression method that features high accuracy, strong
smoothness guarantee, and built-in uncertainty estimation. It is a Bayesian inference method that models the
similarity among the sample points as covariance between random variables indexed by the input space. The
probabilistic model generated by GPR can make not only a point estimate about an unknown sample, but also
the associated posterior variance. Since the predictive variance vanishes around training samples and grows
in regions that are not supported by the sample data, it can be conveniently used as a measure for outlier
detection. As shown in fig. 1, the GPR predictive uncertainty can be readily used to implement an active-
learning protocol where test samples with large uncertainties are sought and added to the training set in an
iterative process.

A critical component in a GPR model is a function that estimates the covariance of target values between
pairs of data samples. In the context of molecular property prediction, a covariance function translates struc-
tural similarity into correlations between the target properties using the similar property principle [7]. In fact,
covariance functions belong to the family of similarity kernels, which are bivariate functions that compute the
closeness of two vectors in some normed vector space. A kernel is also a convenient place for encapsulating
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symmetry adaption mechanisms that are transparent to subsequent GPR computations. The two most well-
known kernels on Euclidean spaces are probably the dot product kernel and the square exponential kernel,
which defines similarity based on angle and distance, respectively.

Meanwhile, designing valid kernels on non-Euclidean spaces as those spanned by molecular configurations
and conformations is an inherently challenging task, because the kernel must possess certain properties such
as symmetry and positive-definiteness to ensure convexness of the resulting machine learning model [6]. An
approach that is commonly used in existing implementations [8, 9] is to apply an Euclidean kernel to fixed-
length feature vectors that are computed using a molecular fingerprinting algorithm. Examples of this ap-
proach include the atom-centered symmetry function fingerprints [10], the Coulomb matrix [11], the density-
encoded canonically-aligned fingerprint [12], the encoded bonds descriptor [13] and so on. The smooth overlap
of atomic positions kernel [14] used in practice also effectively computes the inner product using a fixed-length
vector representation of the spherical power spectra of atomic mass density.

Despite the success of the feature vector approach, it is important to point out that squashing a molecule,
which is intrinsically a non-linear structure with a variable number of degrees of freedom, into a fixed-length
feature vector could be a detour that compromises the generalizability of machine learning models across the
diverse chemical space. This is likely the reason why fingerprints are prevalently used to describe local atom-
istic neighborhoods that possess bounded complexities. In contrast, an intrinsically non-linear data structure,
such as a graph, could be a powerful and intuitive representation to capture all the geometric and topologi-
cal information of whole molecules [15, 16]. Moreover, there has been extensive work on the design of graph
kernels, which compute the similarity between graphs without resorting to a fixed length intermediate pre-
sentation [17–23]. A particularly attractive feature of the graph kernels is their ability to adapt to graphs with
arbitrary numbers of vertices and edges.

In this work, we present how a particular type of graph kernel, i.e. the marginalized graph kernel [24],
can be integrated into a Gaussian process regression-based active learning pipeline for molecular atomization
energy prediction. In section 2, we introduce the mathematical formulations for the techniques used in this
study, including the marginalized graph kernel, Gaussian process regression, and active learning. In section 3,
we present computational setup and results. We conclude the work in section 4.

2 Method

2.1 Overview

In fig. 2, we present an overview of the machine learning pipeline proposed in this work. Given a set of training
molecules, a GPRmodel can be constructed using the pairwise similarity matrix among the molecules to fit for
the assocaited target values. To compute the similarity, the molecules are converted into graphs with vertices
labeled by the atoms and edges encoding interatomic distances. Themarginalized graph kernel is then applied
to average over the similarities of all paths generated from simultaneous random walks on each pair of graphs.
Predictions for the energy of new molecules can be made using the pairwise similarity matrix among the
training molecules and the cross-similarity matrix between the new molecule and the training molecules. In
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Figure 2: An overview of the proposed machine learning pipeline. Upper: molecules are first converted into labeled graphs with
edges weighted by interatomic distances. The marginalized graph kernel the computes the similarity between two graphs as the
expectation of the similarity between all possible simultaneous randomwalk paths generated on the product graph. Lower: given
the training molecules and unknown molecules, the pairwise similarity matrices between and within each data set are computed
using the marginalized graph kernel. The training set self-similarity matrix and target values are used to construct a GPR model,
which makes predictions for the unknown samples using the training-unknown cross-similarity matrix.

sections 2.2 to 2.4, we will explain in detail each component of the procedure.

2.2 Preliminaries

We use lower case letters, e.g. a, in bold font to denote vectors, and upper case letters in bold font, e.g. A,
for matrices. By default, we assume vectors are column vectors. We use diag(a) to denote a diagonal matrix
whose diagonal elements are specified by a, and use I to refer to the identity matrix.
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Definition 1 Kronecker product
Given matrices A ∈ Rm1×n1 and B ∈ Rm2×n2 , the Kronecker product A⊗B ∈ Rm1m2×n1n2 is defined as:

A⊗B :=



A1,1B A1,2B . . . A1,n1B

A2,1B A2,2B . . . A2,n1B
...

...
. . .

...

Am1,1B Am1,2B . . . Am1,n1B


, e.g.

1 −1

2 10

⊗
1 2

3 4

 =



1 2 −1 −2

3 4 −3 −4

2 4 10 20

6 8 30 40


Definition 2 Hadamard (element-wise) product
The element-wise product, also known as the Hadamard product, between two matrices of the same size A, B ∈
Rm×n is another matrix A⊙B ∈ Rm×n with (A⊙B)ij := Aij Bij .

Definition 3 Undirected graph
An undirected graph G is a discrete structure consisting of a set of uniquely-indexed vertices V = {v1, v2, . . . , vn}
and a set of undirected edges E ⊂ V ×V . The vertices and edges may be labeled using elements from label sets Σv

and Σe, respectively.

Definition 4 Weighted graph
In a weighted graph, each edge (vi, vj) is associated with a non-negative weight wij . In undirected graphs wij =
wji. wij = 0 if vi and vj are not connected by an edge. An unweighted graph can be regarded as a specialized

weighted graph where wij = 1 between each pair of (vi, vj) connected by an edge and 0 elsewhere.

Definition 5 Walk on graph
Two vertices are neighbors if they are connected by an edge. A walk on a graph is a sequence of vertices such that

all pairs of adjacent vertices are neighbors.

Definition 6 Adjacency matrix
The adjacency matrix of a graph of n vertices is a matrix A ∈ Rn×n with Aij = wij . The adjacency matrices of

undirected graphs are symmetric since wij ≡ wji.

The row-normalized adjacency matrix P := diag(d)−1A, where di :=
∑

j Aij is the vertex degree vector, can

be used as the transition matrix of a Markovian random walk process. In other words, Pij could be interpreted

as the conditional probability for a random walker at vertex vi to jump to vj during a single step.

2.3 Graph Kernel for Molecules

2.3.1 Graph Representations for Molecules

The practice of using labeled graphs, with the exemplary ball-and-stick model, to represent molecules has
gained popularity well before the era of machine learning. In this work, we represent a molecule of n atoms
as an undirected graph G =

{
V = {vi}, E = {eij}

}
, i, j ∈ {1 . . . n}, where atoms are represented by vertices

vi ∈ {H, C, N, O, . . .} that are labeled by chemical elements. Each edge eij ∈ R between vertices i and j is

5



Tang et al. Graph kernel and active learning for molecular energy

labeled by the distance between the atoms, while its weightwij is set by a spatial adjacency ruleA(ri, rj), whose
specific form will be discussed in section 3.1. The adjacency matrix of a molecular graph is thusAij = A(ri, rj).
Note that the edges are often supersets of the collection of covalent bonds in a molecule.

2.3.2 Marginalized Graph Kernel

The marginalized graph kernel K(G, G′) [24] defines the overall similarity between two graphs G and G′ as
the expectation of the similarity between all pairs of paths that can be obtained by performing simultaneous
random walks on the two graphs. The explicit formula for the path similarity expectation takes the form:

K(G, G′) =
∞∑

ℓ=1

∑
h

∑
h′

[
ps(h1) p′

s(h′
1) Kv(vh1 , v′

h′
1
) pq(hℓ) p′

q(h′
ℓ)

×

(
ℓ∏

i=2
pt(hi|hi−1)

)

×

 ℓ∏
j=2

p′
t(h′

j |h′
j−1)


×

(
ℓ∏

k=2

Kv(vhk
, v′

h′
k
)Ke(ehk−1hk

, e′
h′

k−1h′
k
)

) ]
. (1)

Here, ℓ is the length of the path, h and h′ are paths on the graphs represented by length-ℓ vectors of vertex
labels, ps(·) is the starting probability of the random walk on each vertex, pq(·) is the stopping probability
of the random walk on each vertex at any given step, pt(·, ·) is the transition probability between a pair of
vertices, Kv(·, ·) is an elementary kernel that computes the similarity between two vertices, Ke(·, ·) is another
elementary kernel that computes the similarity between pairs of bonds.

Despite the overwhelming appearance of the infinite summation, eq. (1) can be reformulated under the
spirit of dynamic programming as:

K(G, G′) =
∑

h1∈V,h′
1∈V ′

ps(h1) p′
s(h′

1) Kv(h1, h′
1) R∞(h1, h′

1), (2)

where R∞ is the solution to the linear system:

R∞(h1, h′
1) = pq(h1) p′

q(h′
1) +

∑
i∈V,j∈V ′

t(i, j, h1, h′
1) R∞(i, j), (3)

with

t(i, j, h1, h′
1) := pt(i|h1) p′

t(j|h′
1) Kv(vi, vj) Ke(ei h1 , ej h′

1
). (4)

Equations (2) to (4) in fact exhibit a Kronecker product structure, which can be readily recognized in matrix
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form:

K(G, G′) =
(

p⊗ p′
)T
· diag

(
v

Kv

⊗ v′
)
· r∞, (5)

with r∞ being the solution to the linear system

r∞ = q ⊗ q′ +
[(

P⊗P′
)
⊙
(

E
Ke

⊗ E′
)]
· diag

(
v

Kv

⊗ v′
)
· r∞, (6)

where
v is the vertex label vector of G with vi = vi;
p is the starting probability vector of G with pi = ps(vi);
q is the stopping probability vector of G with qi = pq(vi);
P is the transition probability matrix as defined in definition 6, where the augmented degree

d̃i =
∑

j Aij/(1− qi) ensure that the transition and stopping probabilities on each node sum
to 1;

E is the edge label matrix of G with Eij = eij ;
v′, p′, q′, P′, E′ are the corresponding vectors and matrices for G′;

Kv

⊗ is the kernelized Kronecker product between v and v′ where Kv(·, ·) replaces the product
operation between the vertex labels;

Ke

⊗ is the kernelized Kronecker product between E and E′ where Ke(·, ·) replaces the product
operation between the edge labels.

For clarity of the discussion below, we denote

V× := diag
(

v
Kv

⊗ v′
)
,

D× := diag(d̃)⊗ diag(d̃′),
A× := A⊗A′,
P× := P⊗P′ = D−1

× A×,

E× := E
Ke

⊗ E′,
p× := p⊗ p′,
q× := q ⊗ q′.

To solve eq. (6), first observe that only the product V×r∞ as a whole is needed to compute K(G, G′). We
can thus rearrange eq. (6) to form a symmetric linear system.

r∞ − (P× ⊙E×) V×r∞ = q×, (7)(
V−1

× −P× ⊙E×
)

V×r∞ = q×, (8)

V×r∞ =
(
V−1

× −P× ⊙E×
)−1 q× (9)

=
[
V−1

× −
(
D−1

× A×
)
⊙E×

]−1 q× (10)

=
(
D×V−1

× −A× ⊙E×
)−1 D×q×. (11)

7



Tang et al. Graph kernel and active learning for molecular energy

The linear systemD×V−1
× −A×⊙E× in eq. (11) is symmetric and positive-definite, as long as q > 0,Kv(·, ·) <=

1, and Ke(·, ·) <= 1. It can be solved efficiently using an iterative method such as conjugate gradient [25, 26].
The full expression for the marginalized graph kernel in matrix form is then

K(G, G′) = pT
×
(
D×V−1

× −A× ⊙E×
)−1 D×q× (12)

‘Stray’ atoms, i.e. atoms that are not neighbors to any other atoms, have di = 0. This pathological situation
can render the linear system singular, and is resolved by setting the corresponding di = qi = 1. This is
equivalent to immediately terminating any random walk path originating from the stray atoms.

2.4 Gaussian Process Regression and Active Learning

2.4.1 Energy Regression

Given a training set D of m molecules and their associated energy {(M1, . . . , Mm), (E1, . . . , Em)}, as well as
a marginalized graph kernel K, the GPR prediction for the energy {E∗

1 , . . ., E∗
n} of a test set of n unknown

molecules {M∗
1 , . . . , M∗

n} can be derived analytically as

E∗ := [E∗
1 , . . . , E∗

n]T = KT
D∗ K−1

DD yD, (13)

which is identical to that in kernel ridge regression [27]. The predictive uncertainty is given by the posterior
covariance matrix

Σ∗ = K∗∗ −KT
D∗ K−1

DD KD∗. (14)

Here,

Kn×n
DD (i, j) = K(Mi, Mj), (15)

Kn×m
D∗ (i, j) = K(Mi, M∗

j ), (16)

Km×m
∗∗ (i, j) = K(M∗

i , M∗
j ) (17)

are the training set covariance matrix, training-test cross-covariance matrix, and test set covariance matrix,
respectively, that are obtained by iterating the graph kernel over all pairs of molecules from the corresponding
datasets.

Themarginalized graph kernel is particularly suitable for predicting extensive properties such asmolecular
energy. To see why, first recall that the kernel possesses a vertex-wise summation structure

∑
h,h′ · · · as

manifested in eq. (2), and that R∞(h1, h′
1) can be alternatively expressed as

R∞(h1, h′
1) =

∞∑
ℓ=1

rℓ(h1, h′
1) (18)
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with

r1(h1, h′
1) = pq(h1) p′

q(h′
1), (19)

rℓ(h1, h′
1) =

∑
h2,h′

2

t(h2, h′
2, h1, h′

1)
∑

h3,h′
3

[
t(h3, h′

3, h2, h′
2)
∑
...

[
. . .
∑

hℓ,h′
ℓ

t(hℓ, h′
ℓ, hℓ−1, h′

ℓ−1) pq(hℓ) p′
q(h′

ℓ)
]] . (20)

Equation (2), eq. (18), and eq. (20) together indicate that each of the ps(h1) p′
s(h′

1) Kv(h1, h′
1) R∞(h1, h′

1) terms
effectively computes the expectation of the similarity between all randomwalk paths originating from the pair
of vertices (h1, h′

1). We could thus regard it as a vertex-wise atomistic neighborhood similarity kernel, denoted
as κ(·, ·):

κ(h1, h′
1) .= ps(h1) p′

s(h′
1) Kv(h1, h′

1) R∞(h1, h′
1). (21)

The overall similarity between two graphs as computed by the marginalized graph kernel is thus merely a
summation over the similarity between all pairs of vertices, i.e.

K(G, G′) =
∑
v,v′

κ(v, v′). (22)

From this perspective, the graph kernel can also be viewed as a global structural kernel, as mentioned in [28],
that sums over the environment covariance matrix computed between atomistic neighborhoods.

To ensure extensiveness of the energy prediction, we can hypothetically predict the individual contribu-
tions of each atom to the total energy of an unknownmolecule, and then sum up the contributions. We assume
that there exists some energy decomposition algorithm (EDA) [29] that could localize the energy of a molecule
among its atoms as {e1, e2, . . .} = EDA(E; M) subject to

∑
i ei = E. Note that the EDA scheme is purely for-

mal and is never explicitly used, as will be shown shortly. Using κ(·, ·) as a covariance function, we obtain the
following GPR formulation:



e∗
1

e∗
2

...

e∗
n


=



κ(v∗
1 , v1

1) κ(v∗
2 , v1

1) . . .

κ(v∗
1 , v1

2) κ(v∗
2 , v1

2) . . .

...
...

...

κ(v∗
1 , v2

1) κ(v∗
2 , v2

1) . . .

κ(v∗
1 , v2

2) κ(v∗
2 , v2

2) . . .

...
...

...
...

...
...



T 

κ(v1
1 , v1

1) κ(v1
1 , v1

2) . . . κ(v1
1 , v2

1) κ(v1
1 , v2

2) . . . . . .

κ(v1
2 , v1

1) κ(v1
2 , v1

2) . . . κ(v1
2 , v2

1) κ(v1
2 , v2

2) . . . . . .

...
...

. . .
...

... . . . . . .

κ(v2
1 , v1

1) κ(v2
1 , v1

2) . . . κ(v2
1 , v2

1) κ(v2
1 , v2

2) . . . . . .

κ(v2
2 , v1

1) κ(v2
2 , v1

2) . . . κ(v2
2 , v2

1) κ(v2
2 , v2

2) . . . . . .

...
...

...
...

...
. . . . . .

...
...

...
...

...
...

. . .



−1 

e1
1

e1
2

...

e2
1

e2
2

...

...



,

(23)

where the superscripts correspond to molecule ids and the subscripts correspond to atom ids within each
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molecule.
Under the multivariate normality condition, the total energy E, being the sum of individual random vari-

ables representing atomic energies, is itself a normally distributed random variable, The variance of E is
var[E] = var[

∑
i ei] =

∑
ij cov(ei, ej), while the covariance between E and E′ is cov[E, E′] = cov[

∑
i ei,

∑
j e′

j ] =∑
ij cov[ei, e′

j ]. Note that this exhibits exactly the same pairwise summation structure as that of the marginal-
ized graph kernel. Thus, by summing up the cross-covariance submatrices between pairs of molecules in
eq. (23) and substituting K(·, ·) for

∑
ij κ(vi, v′

j), we could define an alternative GPR model that bypasses en-
ergy decomposition:

E∗ =


K[M∗, M1]

K[M∗, M2]
...



T 
K[M1, M1] K[M1, M2] . . .

K[M2, M1] K[M2, M2] . . .

...
...

. . .



−1 
E1

E2

...

 . (24)

This leads exactly back to eq. (13). Thus, we have shown that when only the total energy is of interest, a GPR
prediction for the energy of an entire molecule using the marginalized graph kernel is equivalent to a sum-
mation of the GPR predictions for the localized atomic contributions using an atomistic neighborhood kernel.
The former approach, however, avoids the potentially costly and controversial explicit energy decomposition,
while still enjoying automatic scaling of the predicted energy with respect to molecule size. This approach can
also speed up GPR computation by creating covariance matrices whose size is proportional to the number of
molecules, rather than the number of total atoms, in the data set.

2.4.2 Active Learning Protocol

Given a training set S, a test set T , an acquisition function Q(·, ·) that measures the learning value of a sample
given a GPR model, active learning can be performed using the following protocol:

1: repeat
2: G← TrainGPR(S),
3: α← argmax

i∈T
Q(G, i),

4: S ← S ∪ {α},
5: T ← T \ {α},
6: until stop criteria met.

A natural choice of the acquisition functionwould be prediction error, which is the absolute difference between
the GPR prediction and the truth value of the target function at the sample points. However, since the ground
truth may not be known or is too difficult to obtain for every point in practice, the GPR predictive uncertainty
could be used as an alternative acquisition function. In this case, the ‘unsupervised’ learning procedure can
proceed evenwithout any target function value due to the fact that theGPRposterior variance does not depend
on the target value.

10



Tang et al. Graph kernel and active learning for molecular energy

3 Computation and Results

3.1 Kernel Specification and Data Set

The vertex elementary kernel that we use for the marginalized graph kernel is an elevated Kronecker delta
function on element symbols:

Kv(v, v′) =

1, if v = v′,

ν ∈ (0, 1), otherwise.
(25)

The edge elementary kernel is a square exponential function on edge lengths, which evaluates to 1 if two edges
are of the same length and smoothly transitions to 0 as the difference in lengths grows:

Ke(e, e′) = exp
[
−1

2
(e− e′)2

λ2

]
. (26)

The adjacency rule that computes the weights for each edge also assumes a square exponential form:

A(ri, rj) = exp
[
−1

2
∥ri − rj∥2

(ζ σij)2

]
, (27)

where σij , as given in the appendix, are element-wise length scale parameters derived from typical bonding
lengths. A uniform starting probability ps(·) ≡ s and a uniform stopping probability pq(·) ≡ q are used across
all vertices.

In fig. 3, we visualize inmatrix form the atomistic neighborhood similaritiesV×r∞ between amethoxyethane
(CH3CH2OCH3) molecule and a 2-ethoxyethanol (CH3CH2OCH2CH2OH) molecule, computed with ν = 0.25,
ζ = 1, λ = 0.02, s = 1, q = 0.01. Note that the marginalized graph kernel can, for example, differentiate
between atoms of the same element yet are embedded in different local chemical environments.

The QM7 dataset, which contains 7165 molecules with up to 7 heavy atoms and 23 total atoms along with
their atomization energies, is used as the data set for benchmarking purposes [11,30].

3.2 Hyperparameter Selection

The complete marginalized graph kernel as specified in section 3.1 is controlled by 5 hyperparameters ν, ζ, λ,
s, and q, each of which possesses a unique physical interpretation:

• ν is the baseline, or ‘prior’, similarity that we assign between atoms of difference elements. ν must be
within (0, 1) to ensure that the linear system in eq. (11) is positive-definite.

• ζ controls how quickly the weight of an edge decays with regard to increasing interatomic distance.
It affects the edge density of the molecular graph and is one of the two factors that determines the
neighborhood range of each atom.

• λ control the sensitivity of the kernel with respect to differences in edge length. Since the order of a
covalent bond is strongly correlated with its length, λ can be effectively used to discriminate different
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Figure 3: An illustration of the marginalized graph kernel computation result among two molecules: methoxyethane
CH3CH2OCH3 and 2-ethoxyethanol CH3CH2OCH2CH2OH. Each square tile corresponds to an element of the V×R∞ vec-
tor, which is a weighted average (marginalization) of the similarity between all paths generated by simultaneous random walks
originating from a pair of atoms. The matrices effectively visualizes the atomistic neighborhood similarities with darker colors
indicate higher similarity. Note for example the difference in similarity between the oxygen atoms in the ether bonds and to the
oxygen atom in the alcohol group.

types of bonds.
• s affects the sampling preference of the simultaneous random walk among pairs of vertices, and could
thus be thought as a factor of significance. From the perspective of GPR modeling, the magnitude of s is
the a priori standard deviation of atomic contributions tomolecular energy. In practice, wemay abandon
the probabilistic interpretation of s and allow it to assume values that do not sum up to unity.

• q determines the average length of the randomwalk paths being sampled, and together with ζ determines
the range of the atomistic neighborhoods that are effectively compared between atoms.

Maximum likelihood estimation (MLE) is commonly regarded as the ‘default’ method for selecting hyper-
parameters in Bayesian inference. However, this should be exercised with caution because certain choices
of the hyperparameters could arbitrarily maximize the log-likelihood function without actually improving the
predictive power of the GPR model. To obtain an insight into the influence of the hyperparameters on model
performance, we performed an exhaustive scan of the hyperparameters within the range ν ∈ [0.1, 0.9], ζ ∈
[0.5, 1.5], λ ∈ [0.01, 0.4], s ∈ [10, 500], q ∈ [0.01, 0.5]. The mean absolute error (MAE)-likelihood joint distributions,
as shown in the upper panels of fig. 4, reveal the fact that likelihood alone does not necessarily indicate high
prediction accuracy. This is manifested by the noticeable amount of hyperparameter sets that lies on the up-
per left parts of the joint distribution density. Aside from that, as shown by the lower panels of fig. 4, there
are fortunately many hyperparameter sets that exists in the upper left parts of the joint distributions between
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MAE and error-uncertainty correlation. These hyperparameters lead to GPRmodels with both high predictive
accuracy and uncertainty-error correlation, the latter of which is crucial for unsupervised active learning.
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Figure 4: Upper: The extended vertical tail of the error-likelihood joint distribution indicate that GPRmodelswith high log-likelihood
could still possess good predictive power. Lower: Despite that the correlation between the predictive uncertainty and error
generally decrease as the accuracy of the GPR models improve, it is still always possible to find sets of hyperparameters that lie
close to the upper left corner of the plots, which are the regions corresponding to relatively low errors and high uncertainty-error
correlation. The latter property is crucial for effective unsupervised active learning. The densities are estimated using a grid of
5400 hyperparameters sets.

A further examination on the conditional distribution of the mean absolute error, log-log-likelihood, and
error-uncertainty correlation provides additional insights into the effect of the hyperparameters. As shown
by fig. 5, the edge kernel length scale parameter λ appears to be the single most sensitive hyperparameter,
followed by ζ, ν, and q, that affects both predictive accuracy and error-uncertainty correlation. A uniform
starting probability s seems to only affect the model likelihood. However, s actually scales the magnitude of
the predictive uncertainty, which in turn controls the width of the GPR predictive confidence interval. As
shown in fig. 6, we examine how s affects the quality of the predictive uncertainty as an alternative to the
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true error, which may not be known in practice, by checking if the predictive confidence intervals contain
a proportional percentage of the true value of the test samples. For example, an interval surrounding the
predictive mean that corresponds to a 50% confidence level should roughly contain the true value of 50% of
the test samples. Overall, we found that a proper choice of s can lead to a coverage curve that lies very close to
the diagonal. Meanwhile, the GPR model has a general tendency to be overconfident with large training sets,
most likely due to the existence of molecules that consistently cause large errors as demonstrated later in the
lower panel of fig. 7. In section 3.3, we use ζ = 1, ν = 0.3, λ = 0.05, s = 250, and q = 0.05 for all GPR modeling
tasks.

MAE (kcal/mol)

Log-log-likelihood

Error-uncertainty correlation

0 3 6 9 12

0.5

0.75

1

1.25

1.5

ζ

0 3 6 9 12

0.1

0.3

0.5

0.7

0.9

ν

0 3 6 9 12

0.01

0.02

0.04

0.08

0.2

0.4

λ (Å)

0 3 6 9 12

10

20

50

100

200

500

s

0 3 6 9 12

0.01

0.02

0.05

0.1

0.2

0.5

q

0 10 20

0.5

0.75

1

1.25

1.5

0 10 20

0.1

0.3

0.5

0.7

0.9

0 10 20

0.01

0.02

0.04

0.08

0.2

0.4

0 10 20

10

20

50

100

200

500

0 10 20

0.01

0.02

0.05

0.1

0.2

0.5

0 0.5 1

0.5

0.75

1

1.25

1.5

0 0.5 1

0.1

0.3

0.5

0.7

0.9

0 0.5 1

0.01

0.02

0.04

0.08

0.2

0.4

0 0.5 1

10

20

50

100

200

500

0 0.5 1

0.01

0.02

0.05

0.1

0.2

0.5

Figure 5: Shown here is the distribution of the mean absolute error, log-log-likelihood, and error-uncertainty correlation of GPR
models conditioned on each specific value of the hyperparameters. 300 molecules are randomly selected from the QM7 dataset
as the training set, while the remaining 6865 molecules form the test set. The accuracy and error-uncertainty correlation of the
resulting GPR model are influenced mostly by ζ , ν , λ, and q, while the log-likelihood function is most strongly affected by s and
q. The choice of the optimal hyperparameter apparently becomes a subtle problem due to the non-trial dependency between
accuracy and error-uncertainty correlation.
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Figure 6: The generalized starting probability parameter s determines thewidth of the predictive confidence interval, which should
contain a proportional percentage of the ground truth energy of the test samples. Smaller s values lead to aggressive confidence
interval estimations, yielding coverage curves below the diagonal. Larger s values, in contrast, lead to conservative estimations
and wide confidence intervals, yielding curves that lie above the diagonal.

3.3 Energy Prediction

As a first benchmark of prediction accuracy, we use a random selection ofN molecules from theQM7 dataset to
train GPR models and measure the MAE and root-mean square error (RMSE) on energy prediction for the rest
of the molecules. As shown in the upper left panel of fig. 7 and in Table 1, using 15 randomly selected training
sets, the presented method delivers an MAE of 1.01 ± 0.04 kcal/mol when N = 5000. This is comparable to
the best of existing methods [13, 28, 31–35]. It also achieves an MAE of 1.48 ± 0.05 kcal/mol on a significantly
smallerN = 2000. The training time ranges between∼ 0.3 s forN = 100 to∼ 380 s forN = 5000 on an in-house
GPU-accelerated implementation, while the prediction time ranges between 0.005 s/sample with 100 training
samples to 0.086 s/sample with 5000 training samples.

We further examined the performance of the method for carrying out the active learning protocol as de-
scribed in section 2.4.2. In each parallel test, the process starts with a seeding set of 50 training samples and
iteratively adds the test sample with the highest acquisition score into the training sets until the N reaches
2000. As shown in the upper right panel of fig. 7 and in Table 1, supervised active learning, which uses the true
predictive error as the acquisition function, leads to GPR models with significantly lower MAE and RMSE than
those trained on a randomly selected training set. Averaging over 7 parallel runs, we obtain MAE and RMSE of
0.62 ± 0.01 kcal/mol and 0.76 ± 0.01 kcal/mol, respectively. Meanwhile, unsupervised active learning, which
uses the predictive uncertainty as the acquisition function, seems to perform only slightly better than those
trained on random training sets with an MAE of 1.28 ± 0.03 kcal/mol , but does achieve a significantly lower
RMSE of 1.81 ± 0.06 kcal/mol.

In the lower panel of fig. 7, we visualize some of the molecules that consistently cause large prediction
errors even with the various GPR models trained with up to 5000 molecules. It is easy to recognize that a
common feature present in molecule A-D is the three-membered ring, which is a highly distorted structure.
Molecule E and F contain a conjugated triple bond system and an unsaturated bicyclic ring with an oxygen
bridge, respectively, which are rare in the benchmark dataset. The lack of explicit angular information in
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Table 1: Energy prediction accuracy of the present and previously published methods.

Training set Representation Kernel Regression MAE (kcal/mol) RMSE (kcal/mol) Source

2000, random molecular graph graph kernel GPR 1.4ɝ±0.05 3.57±0.4ɛ present

2000, supervised molecular graph graph kernel GPR 0.ɛ2±0.01 0.7ɛ±0.01 present

2000, unsupervised molecular graph graph kernel GPR 1.2ɝ±0.03 1.ɝ1±0.0ɛ present

2000 CM Laplacian KRR 4.32 - [31]

5000, random molecular graph graph kernel GPR 1.01±0.04 2.29±0.57 present

5000 MBTR Gaussian KRR 0.ɛ0 0.97 [33]

5000 SOAP REMatch KRR 0.92 1.ɛ1 [2ɝ]

5000 BAML Laplacian KRR 1.15 2.54 [3ɛ]

5732 CM Laplacian KRR 3.07±0.07 4.ɝ4±0.40 [31]

5732 BoB Laplacian KRR 1.50 - [32]

5732 BoB Gaussian KRR 2.40 - [13]

5732 CM Laplacian KRR 3.37 - [13]

5732 EB Gaussian KRR 1.19 - [13]

57ɛɝ nuclear charge &
interatomic distance

- DTNN 1.04 1.43 [34]

CM: Coulomb Matrix; MBTR: many-body tensor representation;
SOAP: smooth overlap of atomic positions; BoB: bag of bonds; EB: encoded bond.

our current implementation could have weakened the performance of the graph kernel in such situations.
Nonetheless, the GPR model is potentially able to use high predictive uncertainties as a form of alert to trigger
fall-back mechanisms such as alternative calculations.

4 Conclusion

In this paper, we presented a new machine learning pipeline, which integrates the marginalized graph kernel,
the Gaussian process regressionmethod, and an active learning protocol, for predictingmolecular atomization
energies. The method achieves excellent accuracy while using significantly smaller training sets as compared
with previous methods. We show that the marginalized graph kernel defines a molecular similarity metric
that is computed using both topological and geometric information, and that the kernel can naturally adapt to
molecules containing diverse topology, number of atoms, and element species. GPR models created using the
marginalized graph kernel can produce energy predictions that scale properly with molecule size while by-
passing any explicit energy decomposition procedure. We demonstrate that the convolutional — or pairwise
summation — structure of the kernel is crucial in enabling the prediction of extensive properties that auto-
matically scales with molecule size. It is worth noting that the work is inspired by the localized random walk
graph kernel for molecules proposed by Ferré et al [35], which is essentially a localized marginalized graph
kernel equipped with constant vertex and edge kernels.

We expect that the presented method could benefit from a more thorough design and selection of the
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Figure 7: Upper left: Saturation curves for the mean absolute error and root-mean square error of the presented method and pre-
vious methods on predicting the atomization energy of molecules in the QM7 dataset. The data points for the graph kernel are
averaged over 15 random training sets and 7 active learning realizations, respectively. Vertical bars indicate standard deviation.
Reference designation: FHB [35], HMB [31], HBR [32]. Upper right: Comparison of the performance between GPR models built
from random training sets and those built from an active learning process. Lower: Even with models trained on 5000 randomly
chosen samples, some molecules can consistently cause large prediction error. This behavior is attributed to highly strained
geometric features such as 3-rings and conjugated triple bonds. Fortunately, the GPR model is able to use high predictive uncer-
tainties to inform users of such situations , and to prioritize the inclusion of those molecules during active learning.

hyperparameters involving, for example, pairwise priors that are tailored between each type of atoms and
bonds. Incorporation of explicit angular information into the vertices should greatly improve the ability of
the kernel to recognize and differentiate molecules with highly strained geometry. A wider adoption of the
graph kernel entail a more efficient computer implementations that can work around the quartic asymptotic
computational cost for solving the Kronecker product system induced by large molecules such as polymers,
proteins, and polynucleotides.

Acknowledgment

This work was supported by the Luis W. Alvarez Postdoctoral Fellowship at Lawrence Berkeley National Lab-
oratory. YHT appreciates advice from Timur Takhtaganov regarding predictive confidence interval analysis.

17



Tang et al. Graph kernel and active learning for molecular energy

Appendix

Length scale parameters in the square exponential adjacency rule

The length scale parameter σij , which are used in the square exponential adjacency rule to weight the edges,
are given in table 2.

Table 2: Common bond lengths averaged over multiple sources [37–40].

H C O N F S

H 0.74 1.09 0.9ɛ 1.01 0.92 1.34

C 1.09 1.39 1.27 1.34 1.35 1.ɝ2

O 0.9ɛ 1.27 1.4ɝ 1.23 1.42 1.44

N 1.01 1.34 1.23 1.2ɛ 1.3ɝ 1.ɛɝ

F 0.92 1.35 1.42 1.3ɝ 1.42 1.57

S 1.34 1.ɝ2 1.44 1.ɛɝ 1.57 2.05
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