
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Learning-Augmented Online Decision Making with Guaranteed Trustworthiness

Permalink
https://escholarship.org/uc/item/3nf4s7w3

Author
Yang, Jianyi

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3nf4s7w3
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Learning-Augmented Online Decision Making With Guaranteed Trustworthiness

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

by

Jianyi Yang

September 2023

Dissertation Committee:

Dr. Shaolei Ren, Chairperson
Dr. Amit K. Roy-Chowdhury
Dr. Salman Asif

Copyright by
Jianyi Yang

2023

The Dissertation of Jianyi Yang is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I would like to express my sincere gratitude to all those who have helped me a lot during

my PhD study and the completion of this thesis.

First and foremost, I would like to extend my deepest gratitude to my Advisor,

Dr. Shaolei Ren, for his continuous guidance and support during my PhD study. Dr. Ren’s

insightful ideas consistently inspire me, particularly when I encounter difficulties in my

research. Without his invaluable mentorship, I would not have been able to navigate through

my dissertation work with such smoothness and success. Dr. Ren is a true role model for me

in my following academic career. His dedication to research has been a tremendous source

of encouragement for me. I am truly fortunate to have him as my PhD advisor in the past

five years and profoundly grateful for his mentorship. Additionally, I would like to express

my immense gratitude to Dr. Adam Wierman from Caltech, with whom Dr. Ren and I

have closely collaborated over the past year. Dr. Wierman’s invaluable advice and generous

support have significantly contributed to several aspects of this dissertation. I am deeply

appreciative of his contributions and would like to extend my sincere thanks to him.

I am also immensely grateful to Dr. Amit K Roy-Chowdhury and Dr. Salman

Asif for being in my dissertation committee and qualification committee. Their valuable

suggestions and feedback have played an important role in enhancing the quality of my

dissertation. I am truly grateful for their expertise and guidance throughout this process.

Additionally, I am deeply appreciative of Dr. Samet Oymak for his involvement in my

qualification committee. Although Dr. Oymak was unable to join my dissertation committee

due to availability, his encouragement have been invaluable to me during my PhD journey.

iv

Also, I am deeply appreciative of my collaborator, Dr. Tongxin Li from CUHK,

Shenzhen. With his extensive expertise in learning augmented control, he has played an

important role in shaping some aspects of this dissertation. Furthermore, I am immensely

grateful to my mentors, Dr. Jianshu Chen, and Dr. Xiaoman Pan during my research intern

at Tencent AI Lab. I learned a lot of knowledge and improved my skills during the intern

thanks to their guidance and expertise.

I would like to extend my gratitude to my excellent labmates, Pengfei Li, Bingqian

Lu, Zhihui Shao, Luting Yang, Fangfang Yang, Yejia Liu, and Mohammad Jaminur Islam at

UC, Riverside who have been great collaborators and friends during my PhD journey. The

dissertation is a product of collaborations and shared efforts with many of them.

Finally, I extend my heartfelt thanks to my family. This dissertation is dedicated

to my parents for their unconditional love and unwavering support.

Funding Acknowledgement. I appreciate the funding support from National

Science Foundation under grant number CNS-1910208, CNS-1551661 and ECCS-1610471.

Publication Acknowledgement. The text of this dissertation, in part or in full,

is a reprint of the material as it appears in list of publications below. The co-author Dr.

Shaolei Ren listed in that publication directed and supervised the research which forms the

basis for this dissertation.

• Jianyi Yang, and Shaolei Ren, “Robust Bandit Learning with Imperfect Context,”

AAAI Conference on Artificial Intelligence (AAAI), 2021.

Added to the dissertation as Chapter 2. Jianyi Yang is the major contributor of the

project.

v

• Jianyi Yang, and Shaolei Ren, Learning-Assisted Algorithm Unrolling for Online

Optimization with Inventory Constraints, AAAI Conference on Artificial Intelligence

(AAAI), 2023.

Added to the dissertation as Chapter 5. Jianyi Yang is the major contributor of the

project.

• Jianyi Yang, and Shaolei Ren, Towards Understanding Informed Deep Neural Networks:

Convergence, Generalization, and Sampling Complexity, International Conference on

Machine Learning (ICML),2022.

Added to the dissertation as Chapter 6. Jianyi Yang is the major contributor of the

project.

vi

To my parents for all the support.

vii

ABSTRACT OF THE DISSERTATION

Learning-Augmented Online Decision Making With Guaranteed Trustworthiness

by

Jianyi Yang

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2023

Dr. Shaolei Ren, Chairperson

Many mission-critical systems need to solve online decision-making problems such as

workload scheduling in datacenters, power allocation in edge computing, battery management

for EV charging, demand response in power systems, etc. Decision-making algorithms in

these systems are expected to achieve a high expected reward while guaranteeing some

important trustworthiness metrics such as robustness, safety, fairness, etc. Recently, machine

learning (ML) for decision processes, utilizing available statistical information to achieve

a high expected reward, has been attracting growing interests. However, ML algorithms

usually suffer from the lack of trustworthiness guarantees, which hinders their deployments

in real systems. On the other hand, domain expert algorithms have been programmed

in many real systems for a long time and can be trusted in terms of some performance

metrics, but they may not achieve a high enough expected reward. In this dissertation, given

various decision processes, we design algorithms to exploit corresponding expert knowledge

to achieve both high expected reward and provably-guaranteed worst-case performances, and

validate the performance of the proposed algorithms on applications of computing systems.

viii

Specifically, the dissertation includes learning-augmented algorithms and theory

in the following aspects. First, the dissertation consider bandit decision making with

imperfect context and proposes robust algorithms to maximize the worst-case reward

minimize the worst-case regret, respectively. The simulations of the algorithms on online

edge datacenter selection validate our theoretical analysis. Then, the dissertation considers

online optimization/control problems with known dynamic models and proposes expert

calibrated ML algorithms with provable guarantees for anytime competitiveness. The

theoretical analysis highlights the tradeoff between any-time competitiveness and average

performance. The empirical results on electric vehicle charging station management are

used to demonstrate the performance. Furthermore, without the knowledge of dynamic

models, the dissertation designs reinforcement learning algorithms to optimize the expected

reward while guaranteeing the anytime cost constraints for any episode. Experiments on the

application of carbon-intelligent computing verify the reward performance and cost constraint

guarantee for the proposed algorithm. Beyond that, the dissertation considers online decision

making with multiple budget constraints and proposes machine learning (ML) assisted

unrolling approach which unrolls the online decision pipeline and leverages an ML model for

updating the Lagrangian multiplier online. For efficient training via backpropagation, we

derive gradients of the decision model. Finally, the dissertation gives a theoretical analysis on

general domain knowledge informed learning, quantitatively demonstrating the two benefits

of do- main knowledge in informed learning — regularizing the label-based supervision and

supplementing the labeled samples.

ix

Contents

List of Figures xiii

List of Tables xiv

1 Introduction 1
1.1 Motivation and Challenges . 1
1.2 Learning-Augmented Decision Making . 2

1.2.1 Learning to Optimize . 2
1.2.2 Decision-Focused Learning . 3
1.2.3 Learning-Augmented Algorithms . 3
1.2.4 Constrained/Conservative RL . 4

1.3 Machine Learning With Domain Knowledge 5
1.3.1 Preliminaries of Knowledge Informed Learning 5
1.3.2 Algorithm Unrolling . 8

1.4 Dissertation Outline . 8

2 Robust Bandit Decision Making With Imperfect Context 11
2.1 Introduction . 11
2.2 Related Work . 14
2.3 Problem Formulation . 16

2.3.1 Context Imperfectness . 17
2.3.2 Reward Estimation . 17

2.4 Robustness Objectives . 20
2.4.1 Type-I Robustness . 20
2.4.2 Type-II Robustness . 21
2.4.3 Comparison of Two Robustness Objectives 23

2.5 Robust Bandit Arm Selection . 23
2.5.1 MaxMinUCB: Maximize Minimum UCB 24
2.5.2 MinWD: Minimize Worst-Case Degradation 26
2.5.3 Summary of Main Results . 30

2.6 Simulation . 30
2.7 Conclusion . 32

x

3 Learning-Augmented Online Decision Making With Known Dynamic
Models 33
3.1 Introduction . 33
3.2 Related Work . 36
3.3 Problem Formulation . 37

3.3.1 Finite-Horizon Control Model . 37
3.3.2 Objective and Performance Metrics 39

3.4 Algorithm Design . 41
3.4.1 Safe Action Set for Per-Episode Competitiveness 41
3.4.2 Learning-Augmented Competitive Control 43
3.4.3 Training the ML Policy . 45

3.5 Performance Analysis . 47
3.5.1 Expected Regret . 47
3.5.2 Convergence . 49

3.6 Simulation Study . 50
3.7 Concluding Remarks . 53

4 Learning-Augmented Online Decision Making With Unknown Dynamic
Models 54
4.1 Introduction . 54
4.2 Related Work . 57
4.3 Problem Formulation . 59

4.3.1 Anytime-Constrained MDP . 59
4.3.2 Motivating Examples . 62

4.4 Methods . 63
4.4.1 Guarantee the Anytime Constraints 64
4.4.2 Anytime-Constrained RL . 67

4.5 Performance Analysis . 70
4.5.1 Regret Due to Constraint Guarantee 70
4.5.2 Regret of ACRL . 71

4.6 Empirical Results . 73
4.6.1 Problem Formulation . 73
4.6.2 Baselines . 75
4.6.3 Experiment Settings . 76
4.6.4 Results . 77

4.7 Concluding Remarks . 80

5 Learning-Assisted Online Optimization With Budget Constraints 81
5.1 Introduction . 81
5.2 Related Works . 85
5.3 Problem Formulation . 86
5.4 Learning-Assisted Algorithm Unrolling . 88

5.4.1 Relaxed Optimization . 89
5.4.2 Algorithm Unrolling . 90

5.5 Training the Unrolling Architecture . 92

xi

5.5.1 Offline Training . 93
5.5.2 Online Training . 97

5.6 Performance Analysis . 98
5.7 Numerical Results . 101
5.8 Conclusion . 104

6 Theoretical Understanding of Domain Knowledge Informed Learning 105
6.1 Introduction . 105
6.2 Related Work . 107
6.3 Informed Neural Network . 109

6.3.1 Preliminaries of Neural Networks . 109
6.3.2 Integration of Knowledge . 110

6.4 Effects of Domain Knowledge . 113
6.4.1 Convergence . 113
6.4.2 Generalization . 118

6.5 A Generalized Training Objective . 121
6.5.1 Population Risk . 123
6.5.2 Sampling Complexity . 124

6.6 Further Discussions . 126
6.7 Numerical Results . 128

6.7.1 Problem Setup . 128
6.8 Conclusion . 129

7 Conclusions 130

Bibliography 131

xii

List of Figures

2.1 Illustration of reward and regret functions that Type-I and Type-II robustness
objectives are suitable for, respectively. The golden dotted vertical line
represents the imperfect context cI, and the gray region represents the defense
region B∆(cI). 19

2.2 Different cumulative regret objectives for different algorithms. 29

3.1 Comparisons of LACC with baselines. 53

4.1 Regret of different algorithms. 77
4.2 QoS costs of different algorithms. 78

5.1 Architecture of LACC. 91
5.2 Average utility with different episode lengths 102
5.3 Average utility with different Wasserstein distances. 102

6.1 Test MSE under different hyper-parameters. 126

xiii

List of Tables

2.1 Summary of Analysis . 30

xiv

Chapter 1

Introduction

1.1 Motivation and Challenges

Machine learning (ML) especially deep neural networks has achieved great success

in multiple fields, such as computer vision, natural language processing, etc [396]. In recent

year, the potential of ML in intelligently solving many difficult problems in mission-critical

computing systems has attracted increasing attention from both academia and industry.

However, this presents new challenges for algorithm design. First, it is well-known that

ML based on statistical learning lacks robustness/trustworthiness guarantee and can have

unsatisfactory performance especially for adversarial examples or out of distribution (OOD)

testing [141]. This impedes the applicability of ML for real computing systems. Besides,

domain knowledge can come from various sources in multiple forms. This brings challenges

about utilizing domain knowledge and integrating it into ML models to improve the ML

performance for computing systems. To solve these challenges, a series of learning-augmented

algorithms are being developed to promote the applicability of ML in computing systems.

1

In mission critical computing systems, there is always the need to solve sequen-

tial/online decision-making problems. Examples include online workload scheduling and

resource management in sustainable computing [326, 213], battery management for electrical

vehicle (EV) charging [374], online demand response with renewables [275, 376], etc. In

these problems, the actions at each time round rely on future unavailable information, which

makes them difficult to be solved by traditional algorithms. Despite this, ML can solve these

online problems well by exploiting enough training data to approximate the relationships

between actions and available inputs. However, computing systems usually have a high

requirement for robustness/trustworthiness to guarantee safety, quality of service, or fairness.

Pure ML-based solutions lack the robustness/trustworthiness guarantee, which limits their

applicability for online decision making problems in real systems. In this dissertation, we

focus on the learning-augmented algorithm design for online decision making problems in

mission-critical computing systems.

1.2 Learning-Augmented Decision Making

The learning augmented decision making design in this dissertation is related to

the following research directions.

1.2.1 Learning to Optimize

The dissertation is closely related to the quickly expanding area of learning to

optimize (L2O), which pre-trains an ML-based optimizer to directly solve optimization

problems [238, 96, 406]. Most commonly, L2O focuses on speeding up the computation for

2

otherwise computationally expensive problems, such as as DNN training [28], nonconvex op-

timization in interference channels [257, 116] and combination optimization [117]. Moreover,

ML-based optimizers have also been integrated into traditional algorithmic frameworks for

faster and/or better solutions [96, 227].

Studies that apply L2O to solve difficult online optimization problems where the

key challenge comes from the lack of complete offline information have been generally

under-explored. In [228], an ML model is trained as a standalone end-to-end solution for

a small set of classic online problems, such as online knapsack. In this dissertation, we

give L2O algorithms for various online decision making problems and design algorithms to

provably improve performance robustness.

1.2.2 Decision-Focused Learning

This dissertation is relevant to the recent decision-focused learning framework

[7, 23, 407, 399]. Decision-focused learning train an ML model by and end-to-end manner

to improve the decision-making performance. Decision-focused learning algorithms have

been designed for convex optimization [7], combinatorial optimizations [407], and general

optimizations [347]. In this dissertation, we apply the methodology of decision-focused

learning and train the ML models aware of the downstream calibration/robustification

procedure.

1.2.3 Learning-Augmented Algorithms

More recently, by combining ML-predicted actions with expert knowledge, ML-

augmented algorithm designs have been emerging in the context of online optimization,

3

control and decision making [402, 70, 284, 106, 31, 339, 110]. The goal of ML-augmented

online algorithms is to combine potentially untrusted ML predictions with robust poli-

cies (i.e., control priors). ML-augmented algorithms have been developed for online con-

trol/optimization by combining ML predictions and control priors through online switching

[340, 31] or adaptively setting a confidence on the ML prediction [248, 246]. However, many

learning-augmented algorithms for online decision making lacks the robustness guarantee

given a sequence. Although some of the existing studies [248, 340, 111, 244, 241] provide

provable competitive bounds, they cannot guarantee any-step trustworthiness constraints

that is needed for real decision making [282]. Moreover, these studies typically assume a

pre-trained ML model as a black box, whereas we study the policy learning process subject

to the competitiveness constraint against a control prior.

1.2.4 Constrained/Conservative RL

Constrained RL algorithms have been designed to solve various Constrained MDP

(CMDP) with reward objective and cost constraints. Among them, some are designed to

guarantee the expected cost constraints [139, 392], some can guarantee the cost constraints

with a high probability [97], and others guarantee a bounded violation of the cost constraints

[168, 130, 131, 5]. In addition, conservative RL algorithms [157, 423, 217, 422, 411] also

compare the cost performance with a policy prior, but they only guarantee the cost constraints

against a policy prior in expectation. In real mission-critical systems, however, the cost

constraints are often required to be satisfied at each round in any instance even in the worst

case, which hinders the deployment of these constrained/conservative RL policies. This

dissertation provide

4

1.3 Machine Learning With Domain Knowledge

The dissertation also contributes to machine learning with domain knowledge whose

preliminaries are given as below.

1.3.1 Preliminaries of Knowledge Informed Learning

Domain knowledge informed machine learning is rapidly emerging as a broad

paradigm that incorporates domain knowledge, either directly or indirectly, to augment the

purely data-driven approach and better accomplish a machine learning task. We provide a

summary of how domain knowledge is integrated with machine learning [396].

• Training Dataset. A straightforward approach to utilizing domain knowledge is to

generate (sometimes synthetic) data and enlarge the otherwise limited training dataset.

For example, based on the simple knowledge of image invariance, cropping[154],

scaling[436], flipping[59] and many other image pre-processing methods have been

used to augment the training data for image classification tasks. As another example,

in reinforcement learning (e.g., robot control and autonomous driving) where initial

pre-training is crucial to avoid arbitrarily bad decisions in the real world, simulated

environments can be built based on domain knowledge, providing simulations or

demonstrations to generate training data [156, 193]. Additionally, generative models

constructed based on specific knowledge have been shown useful for increasing training

data to improve model performance and robustness [154, 177].

• Hypothesis Set. The goal of a machine learning task is to search for an optimal

hypothesis that correctly expresses the relationships between input and output. To

5

reduce the training complexity, the target hypothesis set (decided by, e.g., different

neural architectures) should contain the optimal hypothesis and preferably be small

enough. Thus, domain knowledge can be employed for hypothesis set selection. For

example, [99] makes use of the prior knowledge from the existing neural architectures

to design new architectures (and hence, new hypothesis sets) for DNNs. As implicit

domain knowledge, long short-term memory recurrent neural networks are commonly

used for time series prediction [177]. Also, the structure of a knowledge graph helps to

determine the hypothesis set of graph learning [289, 56], while [385] maps the domain

knowledge represented in propositional logic into neural networks.

• Model Training. Domain knowledge can be integrated, either implicitly or explicitly,

with the model training procedure in various ways. First, domain knowledge can assist

with the initialization of training. For example, [332] provides a case-based method to

initialize genetic algorithms (i.e., generating the initial population based on different

cases), while [199, 230, 198] initialize neural network training with various domain

knowledge such as label co-occurrence and decision trees. Second, domain knowledge

can be used to better tune the hyper-parameters [52, 389, 285, 50]. In [52], implicit

knowledge from previous training is incorporated to improve hyper-parameter tuning,

and [389] extracts knowledge from multiple datasets to determine the most important

hyper-parameters. In addition, a more explicit way to integrate domain knowledge is

to directly modify the training objective function (i.e., risk function) based on rigorous

characterization of the model output [396]. For example, in [302], the knowledge of

constraints is incorporated into neural networks expressing the knowledge based loss

6

by the ReLu function. For another example, when learning to optimally schedule

transmissions for rate maximization in multi-user wireless networks, the communication

channel capacity can be added as domain knowledge to the standard label-based loss to

guide scheduling decisions; in physics, the analytical expression of a partial differential

equation can be utilized as domain knowledge on top of labeled data to better learn

the solution to the equation given different inputs

Such integration of explicit and rigorous domain knowledge can significantly benefit

machine learning tasks (e.g., fewer labels needed than otherwise). Thus, it is crucial

and being actively studied in informed machine learning [396, 408], which is also the

focus of our work. Note that using domain knowlege to generate pseudo labeled data

to augment the training dataset is a special case of integrating domain knowledge into

the training risk function (i.e., the knowledge-based risk is the same as the data-based

risk, except that its labels are generated based on domain knowledge).

• Final Hypothesis. Domain knowledge can also be used for consistency check on the

final learnt hypothesis or model [396]. For example, [216] employs physics domain

knowledge to construct the final model, [318] builds simulators to validate results of

learned model, and [145] leverages semantic consistency is used to refine the predicted

probabilities.

In this dissertation, we utilize the methodology of informed machine learning for

online decision making problems, provide a theoretical analysis of informed machine learning

to understand the benefits of domain knowledge.

7

1.3.2 Algorithm Unrolling

Many aspects in this dissertation rely on the techniques of algorithm unrolling

which integrate ML into traditional algorithmic frameworks for better trustworthiness, better

generalization, lower sampling complexity and/or smaller ML model size [6, 96, 227, 300, 272].

Algorithm unrolling has been used for sparse coding [183], signal and image processing

[300, 255], and solving inverse problems [226] and ordinary differential equations (ODEs)

[94]. Also, algorithm unrolling is important for Learning to Optimize (L2O) [96, 406]. These

studies have their own challenges orthogonal to our problem where the key challenge is

the lack of complete offline information. Thus, in this dissertation, we apply the idea of

algorithm unrolling to online decision making problems with the aim to achieve guaranteed

trustworthiness/robustness and better generalization than generic RL-based optimizers to

directly obtain end solutions [17, 134, 228].

1.4 Dissertation Outline

The dissertation focuses on learning augmented algorithms for online decision

making problems in computing systems and include the following aspects.

In Chapter 2, the dissertation considers bandit problems with imperfect context

and designs robust algorithms to optimize the worst-case performances. Bandit decision

problems model many practical problems in recommendation systems, mobile health, cloud

resource provisioning, etc. In many cases, however, the context observed by the agent is

imperfect and uncertain. This presents challenges for robust decision making. We design

robust bandit learning algorithms for different robustness objectives with provably bounded

8

regrets. The regret analysis shows that the proposed robust bandit algorithms achieves the

optimal worst-case performances as time goes to infinity.

In Chapter 3, we design Learning-augmented algorithms for online optimiza-

tion/control with known dynamic models. The considered settings including smoothed

online optimization and online control, is important to numerous applications such as robot

tracking, datacenter resource provisioning, battery management for EV charging station,

online renewable aggregation, etc. ML algorithms have been increasingly applied in various

online decision problems to achieve high average performance, but they lack worst-case per-

formance guarantee (competitiveness). We addresses this challenge by a learning-augmented

algorithm which minimizes the average cost under the provable anytime performance guar-

antee comparing with a trusted prior for each instance. Our results formally highlight the

tradeoff between the worst-case and average cost performance.

In Chapter 4, we design learning-augmented algorithms for online decision making

with unknown dynamic models. The goal is to optimize the average reward while guaranteeing

the anytime cost constraints comparing with a policy prior. This problem models many

real decision-making problems in mission critical systems without an exact dynamic model.

The problem is challenging since only the information regarding the selected actions is

fed back. With some assumptions on the dynamics, we propose the Anytime-Constrained

Reinforcement Learning to provably guarantee the anytime constraints.

In Chapter 5, we consider online optimization with budget constraints which

models problems including online virtual machine resource allocation, resource management

in wireless networks, and data center server provisioning. The problem is challenging due

9

to the strict budget constraints and the online nature. Existing online learning algorithms

like dual mirror descent have bounded average and worst-case performance only when the

contexts are independently distributed and the episodic length is long enough. Existing

competitive algorithms like CR-Pursuit have worst-case guarantee but are too conservative to

achieve satisfactory performance. This dissertation gives a deep unrolling model with better

average performance under general assumptions about context distribution and episode

length.

In Chapter 6, We give a rigorous analysis about the role of domain knowledge

in machine learning and how the quality of domain knowledge affect the generalization.

We define the metrics of the imperfectness of labels and domain knowledge and show

the dependency of the generalization bound on the imperfectness. Also, the analysis of

sampling complexity for informed ML establishes a quantitative equivalence between domain

knowledge and labeled samples. Based on the analysis, we provide a generalized training

objective to better exploit the benefits of knowledge and balance the label and knowledge

imperfectness. The study highlights the two benefits of do- main knowledge in informed

learning — regularizing the label-based supervision and supplementing the labeled samples.

10

Chapter 2

Robust Bandit Decision Making

With Imperfect Context

2.1 Introduction

Contextual bandits [280, 112] concern online learning scenarios such as recom-

mendation systems [239], mobile health [236], cloud resource provisioning [89], wireless

communications [344], in which arms (a.k.a., actions) are selected based on the underlying

context to balance the tradeoff between exploitation of the already learnt knowledge and

exploration of uncertain arms [40, 39, 73, 118].

The majority of the existing studies on contextual bandits [112, 388, 344] assume

that a perfectly accurate context is known before each arm selection. Consequently, as long

as the agent learns increasingly more knowledge about reward, it can select arms with lower

and lower average regrets. In many cases, however, the perfect (or true) context is not

11

available to the agent prior to arm selection. Instead, the true context is revealed after taking

an action at the end of each round [223], but can be predicted using predictors, such as time

series prediction[72, 164], to facilitate the agent’s arm selection. For example, in wireless

communications, the channel condition is subject to various attenuation effects (e.g., path

loss and small-scale multi-path fading), and is critical context information for the transmitter

configuration such as modulation and rate adaption (i.e., arm selection) [175, 344]. But,

the channel condition context is predicted and hence can only be coarsely known until the

completion of transmission. For another example, the exact workload arrival rate is crucial

context information for cloud resource management, but cannot be known until the workload

actually arrives. Naturally, context prediction is subject to prediction errors. Moreover, it

can also open a new attack surface — an outside attacker may adversarially modify the

predicted context. For example, a recent study [100] shows that the energy load predictor in

smart grid can be adversarially attacked to produce load estimates with higher-than-usual

errors. More motivating examples are provided in [419]. In general, imperfectly predicted

and even adversarially presented context is very common in practice.

As motivated by practical problems, we consider a bandit setting where the agent

receives imperfectly predicted context and selects an arm at the beginning of each round

and the context is revealed after arm selection. We focus on robust arm optimization given

imperfect context, which is as crucial as robust reward function estimation or exploration in

contextual bandits [138, 305, 446]. Concretely, with imperfect context, our goal is to select

arms online in a robust manner to optimize the worst-case performance in a neighborhood

domain with the received imperfect context as center and a defense budget as radius. In

12

this way, the robust arm selection can defend against the imperfect context error (from

either context prediction error or adversarial modification) constrained by the budget.

Importantly and interestingly, given imperfect context, maximizing the worst-case

reward (referred to as type-I robustness objective) and minimizing the worst-case regret

(referred to as type-II robustness objective) can lead to different arms, while they are the

same under the setting of perfect context [344, 239, 365]. Given imperfect context, the

strategy for type-I robustness is more conservative than that for type-II robustness in terms

of reward. The choice of the robustness objective depends on applications. For example,

some safety-aware applications [378, 159] intend to avoid extremely low reward, and thus

type-I objective is suitable for them. Other applications [239, 90, 184] focus on preventing

large sub-optimality of selected arms, and type-II objective is more appropriate. As a

distinction from other works on robust optimization of bandits [66, 222, 307], we highlight

the difference of the two types of robustness objectives.

We derive two algorithms — MaxMinUCB (Maximize Minimum UCB), which

maximizes the worst-case reward for type-I objective, and MinWD (Minimize Worst-case

Degradation), which minimizes the worst-case regret for type-II objective. The challenge of

algorithm designs is that the agent has no access to exact knowledge of reward function but

the estimated counterpart based on history collected data. Thus, in our design, MaxMinUCB

maximizes the lower bound of reward, while MinWD minimizes the upper bound of regret.

We analyze the robustness of MaxMinUCB and MinWD by deriving both regret and

reward bounds, compared to a strong oracle that knows the true context for arm selection

as well as the exact reward function. Importantly, our results show that, while a linear

13

regret term exists for both MaxMinUCB and MinWD due to imperfect context, the added

linear regret term is actually the same as the amount of regret incurred by respectively

optimizing type-I and type-II objectives with perfect knowledge of the reward function. This

implies that as time goes on, MaxMinUCB and MinWD will asymptotically approach the

corresponding optimized objectives from the reward and regret views, respectively.

Finally, we apply MaxMinUCB and MinWD to the problem of online edge datacenter

selection and run synthetic simulations to validate our theoretical analysis.

2.2 Related Work

Contextual Bandits. Linear contextual bandit learning is considered in LinUCB

by [239]. . The study [4] improves the regret analysis of linear contextual bandit learning,

while the studies [8, 9] solve this problem by Thompson sampling and give a regret bound.

There are also studies to extend the algorithms to general reward functions like non-linear

functions, for which kernel method is exploited in GP-UCB [369], Kernel-UCB [388], IGP-

UCB and GP-TS [109, 124]. Nonetheless, a standard assumption in these studies is that

perfect context is available for arm selection, whereas imperfect context is common in many

practical applications [222].

Adversarial Bandits and Robustness. The prior studies on adversarial bandits

[41, 214, 18, 271] have primarily focused on that the adversary maliciously presents rewards

to the agent or directly injects errors in rewards. Moreover, many studies [38, 162] consider

the best constant policy throughout the entire learning process as the oracle, while in our

setting the best arm depends on the true context at each round.

14

Recently, robust bandit algorithms have been proposed for various adversarial

settings. Some focus on robust reward estimation and exploration [18, 184, 138], and others

train a robust or distributionally robust policy [411, 380, 362, 361]. Our study differs from

the existing adversarial bandits by seeking two different robust algorithms given imperfect

(and possibly adversarial) context.

Optimization and Bandits With Imperfect Context. [331] considers online

optimization with predictable sequences and [205] focuses on adaptive online optimization

competing with dynamic benchmarks. Besides, [88, 211] study the robust optimization of

mini-max regret. These studies assume perfectly known cost functions without learning.

A recent study [66] considers Bayesian optimization and aims at identifying a worst-case

good input region with input perturbation (which can also model a perturbed but fixed

environment/context parameter). The study [398] considers the linear bandit where certain

context features are hidden, and uses iterative methods to estimate hidden contexts and model

parameters. The relevant papers [222] and [307] consider robust Bayesian optimizations

where context distribution information is imperfectly provided, and propose to maximize

the worst-case expected reward for distributional robustness. Although the objective of

MaxMinUCB in our paper is similar to the robust optimization objectives in the two papers,

we additionally derive a lower bound for the true reward in our analysis, which provides

another perspective on the robustness of arm selection. More importantly, considering that

the objectives in the two relevant papers are equivalent to minimizing a pseudo robust regret,

we propose MinWD and derive an upper bound for the incurred true regret.

15

2.3 Problem Formulation

In this section, we give the problem formulation for the contextual bandit with

imperfect context. We model the context imperfectness captured by an error budget. Also,

we provide the preliminaries for reward estimation by kernel ridge regression,

Assume that at the beginning of round t, the agent receives imperfect context

x̂t ∈ X which is exogenously provided and not necessarily the true context xt. Given the

imperfect context x̂t ∈ X and an arm set A, the agent selects an arm at ∈ A for round t.

Then, the reward yt along with the true context xt is revealed to the agent at the end of round

t. Assume that X × A ⊆ Rd, and we use xat,t to denote the d-dimensional concatenated

vector [xt, at].

The reward yt received by the agent in round t is jointly decided by the true context

xt and selected arm at, and can be expressed as follows

yt = f(xt, at) + nt, (2.1)

where f : X × A → R is the reward function, X is the context domain, and nt is the

noise term. We assume that the reward function f belongs to a reproducing kernel Hilbert

space (RKHS) H generated by a kernel function k : (X ×A) × (X ×A) → R. In this

RKHS, there exists a mapping function ϕ : (X ×A) → H which maps context and arm

to their corresponding feature in H. By reproducing property, we have k ([x, a], [x′, a′]) =

⟨ϕ (x, a) , ϕ (x′, a′)⟩ and f (x, a) = ⟨ϕ (x, a) , θ⟩ where θ is the representation of function f(·, ·)

in H. Further, as commonly considered in the bandit literature [365, 239], the noise nt

follows b-sub-Gaussian distribution for a constant b ≥ 0, i.e. conditioned on the filtration

Ft−1 = {xτ , ya,τ , aτ , τ = 1, · · · , t− 1}, ∀σ ∈ R, E [eσnt |Ft−1] ≤ exp
(
σ2b2

2

)
.

16

Without knowledge of reward function f , bandit algorithms are designed to decide

an arm sequence {at, t = 1, · · · , T} to minimize the cumulative regret

RT =
T∑
t=1

f(xt, A
∗(xt)) − f(xt, at), (2.2)

where A∗ (xt) = arg maxa∈A f(xt, a) is the oracle-optimal arm at round t given the true

context xt. When the received contexts are perfect, i.e. x̂t = xt, minimizing the cumulative

regret is equivalent to maximizing the cumulative reward FT =
∑T

t=1 f(xt, at).

2.3.1 Context Imperfectness

The context error can come from a variety of sources, including imperfect context

prediction algorithms and adversarial corruption [222, 100] on context. We simply use

context error to encapsulate all the error sources without further differentiation. We assume

that context error ∥xt − x̂t∥, where ∥ · ∥ is a certain norm [66], is less than ∆. Also, ∆ is

referred to as the defense budget and can be considered as the level of robustness/safeguard

that the agent intends to provide against context errors: with a larger ∆, the agent wants

to make its arm selection robust against larger context errors (at the possible expense of its

reward). A time-varying error budget can be captured by using ∆t. Denote the neighborhood

domain of context x as B∆ (x) = {y ∈ X | ∥y − x∥ ≤ ∆}. Then, we have the true context

xt ∈ B∆ (x̂t), where x̂t is available to the agent.

2.3.2 Reward Estimation

Reward estimation is critical for arm selection. Kernel ridge regression, which

is widely used in contextual bandits [365] serves as the reward estimation method in our

17

algorithm designs. By kernel ridge regression, the estimated reward given arm a and context

x is expressed as

f̂t(x, a) = kT
t (x, a)(Kt + λI)−1yt (2.3)

where I is an identity matrix, yt ∈ Rt−1 contains the history of yτ , kt(x, a) ∈ Rt−1 contains

k([x, a], [xτ , aτ]), and Kt ∈ R(t−1)×(t−1) contains k([xτ , aτ], [xτ ′ , aτ ′]), for τ,τ ′∈{1, · · · , t− 1}.

The confidence width of kernel ridge regression is given in the following concentration

lemma followed by a definition of reward UCB.

Lemma 1 (Concentration of Kernel Ridge Regression). Assume that the reward function

f(x, a) satisfies |f(x, a)| ≤ B, the noise nt satisfies a sub-Gaussian distribution with pa-

rameter b, and kernel ridge regression is used to estimate the reward function. With a

probability of at least 1 − δ, δ ∈ (0, 1), for all a ∈ A and t ∈ N, the estimation error satisfies

|f̂t(x, a)−f(x, a)| ≤ htst(x, a), where ht =
√
λB+b

√
γt − 2 log (δ), γt = log det(I+Kt/λ) ≤

d̄ log(1 + t
d̄λ

) and d̄ is the rank of Kt. Let Vt = λI+
∑t

s=1 ϕ(x, a)ϕ(x, a)⊤, the squared confi-

dence width is given by s2t (x, a) = ϕ(x, a)⊤V−1
t−1ϕ(x, a) = 1

λk([x, a], [x, a]) − 1
λkt(x, a)T (Kt +

λI)−1kt(x, a).

Definition 2. Given arm a ∈ A and context x ∈ X , the reward UCB (Upper Confidence

Bound) is defined as Ut (x, a) = f̂t (x, a) + htst(x, a).

The next lemma shows that the term st (xt, at) has a vanishing impact on regret

over time.

Lemma 3. The sum of confidence widths given xt for t ∈ {1, · · · , T} satisfies
∑T

t=1 s
2
t (xt, at)≤

2γT , where γT = log det(I + KT /λ) ≤ d̄ log(1 + T
d̄λ

) and d̄ is the rank of KT .

18

cI
CRntext

R
ew

ar
d

arm 1
arm 2

cI
CRntext

R
eg

re
t

arm 1
arm 2

(a) Type-I Robustness

cI
CRntext

R
ew

ar
d

arm 1
arm 2

cI
CRntext

R
eg

re
t

arm 1
arm 2

(b) Type-II Robustness

Figure 2.1: Illustration of reward and regret functions that Type-I and Type-II robustness
objectives are suitable for, respectively. The golden dotted vertical line represents the
imperfect context cI, and the gray region represents the defense region B∆(cI).

Then, we give the definition of UCB-optimal arm which is important in our

algorithm designs.

Definition 4. Given context x ∈ X , the UCB-optimal arm is A†
t (x) = arg maxa∈A Ut (x, a) .

Note that if the received contexts are perfect, i.e. x̂t = xt, the standard contextual

UCB strategy selects arm at round t as A†
t (xt). Under the cases with imperfect context,

a naive policy (which we call SimpleUCB) is simply oblivious of context errors, i.e. the

agent selects the UCB-optimal arm regarding imperfect context x̂t, denoted as a†t = A†
t (x̂t),

by simply viewing the imperfect context x̂t as true context. Nonetheless, if we want to

guarantee the arm selection performance even in the worst case, robust arm selection that

accounts for context errors is needed.

19

2.4 Robustness Objectives

In the existing bandit literature such as [41, 189, 239], maximizing the cumulative

reward is equivalent to minimizing the cumulative regret, under the assumption of perfect

context for arm selection. In this section, we will show that maximizing the worst-case

reward is equivalent to minimizing a pseudo regret and is different from minimizing the

worst-case true regret.

2.4.1 Type-I Robustness

With imperfect context, one approach to robust arm selection is to maximize

the worst-case reward. With perfect knowledge of reward function, the oracle arm that

maximizes the worst-case reward at round t is

āt = arg max
a∈A

min
x∈B∆(x̂t)

f(x, a). (2.4)

For analysis in the following sections, given āt, the corresponding context for the worst-case

reward is denoted as

x̄t = arg min
x∈B∆(x̂t)

f (x, āt) , (2.5)

and the resulting optimal worst-case reward is denoted as

MFt = f (x̄t, āt) . (2.6)

Next, Type-I robustness objective is defined based on the difference
∑T

t=1MFt−FT ,

where FT =
∑T

t=1 f(xt, at) is the actual cumulative reward.

20

Definition 5. If, with an arm selection strategy {a1, · · · , aT }, the difference between the

optimal cumulative worst-case reward and the cumulative true reward
∑T

t=1MFt − FT is

sub-linear with respect to T , then the strategy achieves Type-I robustness.

If an arm selection strategy achieves Type-I robustness, the lower bound for the

true reward f (xt, at) approaches the optimal worst-case reward MFt in the defense region

as t increases. Therefore, a strategy achieving type-I robustness objective can prevent very

low reward. For example, in Fig. 2.1(a), arm 1 is the one that maximizes the worst-case

reward, which is not necessarily optimal but always avoids extremely low reward under any

context in the defense region.

Note that maximizing the worst-case reward is equivalent to minimizing the robust

regret defined in [222], which is written using our formulation as

R̄T =
T∑
t=1

min
x∈B∆(x̂t)

f (x, āt)− min
x∈B∆(x̂t)

f (x, at) . (2.7)

However, this robust regret is a pseudo regret because the rewards of oracle arm āt and

selected arm at are compared under different contexts (i.e., their respective worst-case

contexts), and it is not an upper or lower bound of the true regret RT . To obtain a robust

regret performance, we need to define another robustness objective based on the true regret.

2.4.2 Type-II Robustness

To provide robustness for the regret with imperfect context, we can minimize the

cumulative worst-case regret, which is expressed as

R̃T =

T∑
t=1

max
x∈B∆(x̂t)

[f (x,A∗(x))−f (x, at)] . (2.8)

21

Clearly, the true regret RT ≤ R̃T , and minimizing the worst-case regret is equivalent to

minimizing an upper bound for the true regret. Define the instantaneous regret function

with respect to context x and arm a as r (x, a) = f(x,A∗ (x)) − f(x, a). Since given the

reward function the optimization is decoupled among different rounds, the robust oracle

arm to minimize the worst-case regret at round t is

ãt = arg min
a∈A

max
x∈Bt(x̂t)

r(x, a). (2.9)

For analysis in the following sections, given ãt, the corresponding context for the worst-case

regret is denoted as

x̃t = arg max
x∈B∆(x̂t)

r(x, ãt), (2.10)

and the resulting optimal worst-case regret is

MRt = r(x̃t, ãt). (2.11)

Now, we can give the definition of Type-II robustness as follows.

Definition 6. If, with an arm selection strategy {a1, · · · , aT }, the difference between the

cumulative true regret and the optimal cumulative worst-case regret RT −
∑T

t=1MRt is

sub-linear with respect to T , then the strategy achieves Type-II robustness.

If an arm selection strategy achieves Type-II robustness, as time increases, the

upper bound for the true regret r(xt, at) also approaches the optimal worst-case regret MRt.

Hence, a strategy achieving type-II robustness objective can prevent a high regret. As shown

in Fig. 2.1(b), arm 1 is selected by minimizing the worst-case regret, which is a robust arm

selection because the regret of arm 1 under any context in the defense region is not too high.

22

2.4.3 Comparison of Two Robustness Objectives

The two types of robustness correspond to the algorithms maximizing the worst-

case reward and minimizing the worst-case regret, respectively. In many cases, they result

in different arm selections. Take the two scenarios in Fig. 2.1 as examples. In the scenario

of Fig. 2.1(a), given the defense region, arm 1 is selected by maximizing the worst-case

reward and arm 2 is selected by minimizing the worst-case regret. It can be observed that

the worst-case regrets of the two arms are very close, but the worst-case reward of arm 2 is

much lower than that of arm 1. Thus, the strategy of maximizing the worst-case reward is

more suitable for this scenario. Differently, in the scenario of Fig. 2.1(b), arm 2 is selected

by maximizing the worst-case reward and arm 1 is selected by minimizing the worst-case

regret. Since the worst-case rewards of the two arms are very close and the worst-case regret

of arm 2 is much larger than arm 1, it is more suitable to minimize the worst-case regret.

2.5 Robust Bandit Arm Selection

In this section, we propose two robust arm selection algorithms: (1) MaxMinUCB

(Maximize Minimum Upper Confidence Bound), which aims to maximize the minimum

reward (Type-I robustness objective); and (2) MinWD (Minimize Worst-case Degradation),

which aims to minimize the maximum regret (Type-II robustness objective). We derive the

regret and reward bounds for both algorithms and the proofs are available in [419]. The

regret and reward bounds show that both algorithms achieve the corresponding types of

robustness.

23

Algorithm 1 Robust Arm Selection with Imperfect Context

Require: Context error budget ∆

for t = 1, · · · , T do

Receive imperfect context x̂t.

Select arm aIt to solve Eqn. (2.12) in MaxMinUCB; or select arm aIIt to solve Eqn. (2.16)

in MinWD

Observe the true context xt and the reward yt.

end for

2.5.1 MaxMinUCB: Maximize Minimum UCB

To achieve type-I robustness, MaxMinUCB in Algorithm 1 selects an arm aIt by

maximizing the minimum UCB within the defense region B∆(x̂t):

aIt = arg max
a∈A

min
x∈B∆(x̂t)

Ut (x, a) . (2.12)

The context that attains the minimum UCB in Eqn.(2.12) is xIt = minx∈B∆(x̂t) Ut

(
x, aIt

)
.

Analysis

The next theorem gives a lower bound of the cumulative true reward of MaxMinUCB

in terms of the optimal worst-case reward and a sub-linear term.

Theorem 2.5.1. If MaxMinUCB is used to select arms with imperfect context, then for any

true contexts xt ∈ B∆(x̂t) at round t, t = 1, · · · , T , with a probability of 1 − δ, δ ∈ (0, 1), we

have the following lower bound on the worst-case cumulative reward

FT ≥
T∑
t=1

MFt − 2hT

√
2T d̄ log(1 +

T

d̄λ
) (2.13)

24

where MFt is the optimal worst-case reward in Eqn. (2.6), d̄ is the rank of Kt and hT is

given in Lemma 1.

Remark 7. Theorem 2.5.1 shows that by MaxMinUCB, the difference between the optimal

cumulative worst-case reward and the cumulative true reward is sub-linear and thus effec-

tively achieves Type-I robustness according to Definition 5. This means that the reward

by MaxMinUCB has a bounded sub-linear gap compared to the optimal worst-case reward∑T
t=1MFt obtained with perfect knowledge of the reward function. □

We are also interested in the cumulative true regret of MaxMinUCB which is given

in the following corollary.

Corollary 8. If MaxMinUCB is used to select arms with imperfect context, then for any

true contexts xt ∈ B∆(x̂t) at round t, t = 1, · · · , T , with a probability of 1 − δ, δ ∈ (0, 1), we

have the following bound on the cumulative true regret defined in Eqn. (2.2):

RT ≤
T∑
t=1

MRt + 2hT

√
2T d̄ log(1 +

T

d̄λ
) (2.14)

where MRt = maxx∈B∆(x̂t) f (x,A∗ (x)) − MFt, MFt is the optimal worst-case reward in

Eqn. (2.6) .

Remark 9. Corollary 8 shows that the worst-case regret by MaxMinUCB can be quite larger

than the optimal worst-case regret MRt given in Eqn. (2.11) (Type-II robustness objective).

Actually, despite being robust in terms of rewards, arms selected by MaxMinUCB can still

have very large regret as shown in Fig. 2.1(b). Thus, to achieve type-II robustness, it is

necessary to develop an arm selection algorithm that minimizes the worst-case regret.

25

2.5.2 MinWD: Minimize Worst-Case Degradation

MinWD is designed to asymptotically minimize the worst-case regret. Without the

oracle knowledge of reward function, MinWD performs arm selection based on the upper

bound of regret. Denote Da (x) = Ut

(
x,A†

t (x)
)
− Ut (x, a) referred to as UCB degradation

at context x. By Lemma 1, the instantaneous true regret can be bounded as

r(xt, at)≤ [Dat (xt)+2htst (xt, at)]

≤Dat +2htst (xt, at) ,

(2.15)

where Dat = maxx∈B∆(x̂t)Da (x) is called the worst case degradation, and 2htst (xt, at) has

a vanishing impact by Lemma 3. Thus, to minimize worst-case regret, MinWD minimizes its

upper bound Dat excluding the vanishing term 2htst (xt, at), i.e.

aIIt = min
a∈A

max
x∈B∆(x̂t)

{
Ut

(
x,A†

t (x)
)
− Ut (x, a)

}
. (2.16)

The context that attains the worst case in Eqn. (2.16) is written as xIIt = arg maxx∈B∆(x̂t)DaIIt
(x).

Analysis

Given arm aIIt selected by MinWD, the next lemma gives an upper bound of

worst-case degradation.

Lemma 10. If MinWD is used to select arms with imperfect context, then for each t =

1, 2, · · · , T , with a probability at least 1 − δ, δ ∈ (0, 1), we have

DaIIt ,t ≤ MRt + 2htst

(
ẋt, A

†
t (ẋt)

)
, (2.17)

where MRt is the optimal worst-case regret defined in Eqn. (2.11), ẋt = arg maxx∈B∆(x̂t)Dãt (x)

is the context that maximizes the degradation given the arm ãt defined for the optimal worst-

case regret in Eqn. (2.10).

26

Then, in order to show that DaIIt ,t approaches MRt, we need to prove that

2htst

(
ẋt, A

†
t (ẋt)

)
vanishes as t increases. But, this is difficult because the considered

sequence
{
ẋt, A

†
t (ẋt)

}
is different from the actual sequence of context and selected arms{

xt, a
II
t

}
under MinWD. To circumvent this issue, we first introduce the concept of ϵ−

covering [412]. Denote Φ = X × A as the context-arm space. If a finite set Φϵ is an ϵ−

covering of the space Φ, then for each φ ∈ Φ, there exists at least one φ̄ ∈ Φϵ satisfying

∥φ− φ̄∥2 ≤ ϵ. Denote Cϵ (φ̄) = {φ | ∥φ− φ̄∥2 ≤ ϵ} as the cell with respect to φ̄ ∈ Φϵ. Since

the dimension of the entries in Φ is d, the size of the Φϵ is |Φϵ| ∼ O
(
1
ϵd

)
. Besides, we assume

the mapping function ϕ is Lipschitz continuous, i.e. ∀x, y ∈ Φ, ∥ϕ(x) − ϕ(y)∥ ≤ Lϕ∥x− y∥.

Next, we prove the following proposition to bound the sum of confidence widths.

Proposition 11. Let XT = {xa1,1, · · · , xaT ,T } be the sequence of true contexts and selected

arms by bandit algorithms and ẊT = {ẋȧ1,1, · · · , ẋȧT ,T } be the considered sequence of contexts

and actions. Suppose that both xat,t and ẋȧt,tbelong to Φ. Besides, with an ϵ− covering

Φϵ ⊆ Φ, ϵ > 0, there exists κ ≥ 0 such that two conditions are satisfied: First, ∀φ̄ ∈ Φϵ,

∃t ≤
⌈
κ/ϵd

⌉
such that xat,t ∈ Cϵ (φ̄). Second, if at round t, xat,t ∈ Cϵ (φ̄) for some φ̄ ∈ Φϵ,

then ∃t ≤ t′ < t +
⌈
κ/ϵd

⌉
such that xa′t,t′ ∈ Cϵ (φ̄). If the mapping function ϕ is Lipschitz

continuous with constant Lϕ, the sum of squared confidence widths is bounded as

T∑
t=1

s2t (ẋȧt,t)≤
√
T

(
4d̃ log

(
1+

T

d̃λ

)
+

1

λ

)
+

8L2
ϕκ

2/d

λ
T 1−1/d,

where d is the dimension of xat,t, d̃ is the effective dimension defined in the proof, s2t (ẋȧt,t)=

ϕ(ẋȧt,t)
⊤V−1

t−1ϕ(ẋȧt,t) and Vt=λI +
∑t

s=1 ϕ(xas,s)ϕ(xas,s)
⊤.

Remark 12. The conditions in Proposition 11 guarantee that the time interval between the

events that true context-arm feature lies in the same cell is not larger than
⌈
κ/ϵd

⌉
, which is

27

proportional to the size of the ϵ-covering |Φϵ|. That means, similar contexts and selected

arms occur in the true sequence repeatedly if T is large enough. If contexts are sampled from

a bounded space X with some distribution, then similar contexts will occur repeatedly. Also,

note that the arm in our considered sequence A†
t (ẋt) is the UCB-optimal arm, which becomes

close to the optimal arm for ẋt if the confidence width is sufficiently small. Hence, there

exists some context error budget sequence {∆t} such that, starting from a certain round

T0, the two conditions are satisfied. The two conditions in Proposition 11 are mainly for

theoretical analysis of MinWD.

By Lemma 10 and Proposition 11, we bound the cumulative regret of MinWD.

Theorem 2.5.2. If MinWD is used to select arms with imperfect context and as time goes

on, and the conditions in Proposition 11 are satisfied, then for any true context xt ∈ B∆(x̂t)

at round t, t = 1, · · · , T , with a probability of 1 − δ, δ ∈ (0, 1), we have the following bound

on the cumulative true regret:

RT ≤
T∑
t

MRt + 2hTT
3
4

√(
4d̃ log

(
1 +

T

d̃λ

)
+

1

λ

)
+

4

√
2

λ
Lϕκ

1
dhTT

1− 1
2d + 2hT

√
2T d̄ log(1+

T

d̄λ
),

where MRt is the optimal worst-case regret for round t in Eqn. (2.11), d is the dimension

of xat,t, d̃ is the effective dimension defined in the proof of Proposition 11, d̄ is the rank of

Kt and hT is given in Lemma 1.

Remark 13. Theorem 2.5.2 shows that by MinWD, RT −
∑T

t=1MRt is sub-linear w.r.t. T

and thus Type-II robustness is effectively achieved according to Definition 6. This means the

true regret bound approaches
∑T

t MRt, the optimal worst-case regret, asymptotically.

28

0 200 400 600 800 1000
Time Slots

0

5

10

15
Re

gr
et

SimpleUCB
MaxMinUCB
MinWD

(a) Robust regret.

0 200 400 600 800 1000
Time Slots

0

5

10

15

Re
gr

et

SimpleUCB
MaxMinUCB
MinWD

(b) Worst-case regret.

0 200 400 600 800 1000
Time Slots

0

5

10

15

Re
gr

et

SimpleUCB
MaxMinUCB
MinWD

(c) True regret.

Figure 2.2: Different cumulative regret objectives for different algorithms.

Next, in parallel with MaxMinUCB, we derive the bound of true reward for MinWD.

Corollary 14. If MinWD is used to select arms with imperfect context and as time goes on,

and the true sequence of context and arm obeys the conditions in Proposition 11, then for

any true contexts xt ∈ B∆(x̂t) at round t, t = 1, · · · , T , with a probability of 1 − δ, δ ∈ (0, 1),

we have the following lower bound of the cumulative reward

FT ≥
T∑
t=1

[MFt−MRt]−2hTT
3
4

√(
4d̃ log

(
1 +

T

d̃λ

)
+

1

λ

)

− 4

√
2

λ
Lϕκ

1
dhTT

1− 1
2d − 2hT

√
2T d̄ log(1+

T

d̄λ
),

where MRt is the optimal worst-case regret for round t in Eqn. (2.11), d is the dimension

of xat,t, d̃ is the effective dimension defined in the proof of Proposition 11, d̄ is the rank of

Kt, and hT is given in Lemma 1.

Remark 15. Corollary 14 shows that as t becomes sufficiently large, the difference between

the optimal worst-case reward and the true reward of the selected arm is no larger than

the optimal worst-case regret MRt. With perfect context, we have MRt = 0, and hence

MaxMinUCB and MinWD both asymptotically maximize the reward, implying that these two

types of robustness are the same under perfect context.

29

Table 2.1: Summary of Analysis

Algorithms Regret Reward

MaxMinUCB
∑T

t=1MRt +
O(

√
TlogT)

∑T
t=1MFt −

O(
√
TlogT)

MinWD
∑T

t=1MRt +

O(T
3
4
√

logT +

T 1− 1
2d +

√
TlogT)

∑T
t [MFt−MRt]−

O(T
3
4
√

log T +

T 1− 1
2d +

√
TlogT)

2.5.3 Summary of Main Results

We summarize our analysis of MaxMinUCB and MinWD in Table 2.1, while the

algorithms details are available in Algorithm 1. In the table, d is the dimension of context-

arm vector [x, a], MRt = maxx∈B∆(x̂t) f (x,A∗ (x)) −MFt, and MFt and MRt are defined

in Eqn. (2.6) and (2.11), respectively. Type-I and type-II robustness objectives are achieved

by MaxMinUCB and MinWD respectively.

2.6 Simulation

Edge computing is a promising technique to meet the demand of latency-sensitive

applications [357]. Given multiple heterogeneous edge datacenters located in different

locations, which one should be selected? Specifically, each edge datacenter is viewed as an

arm, and the users’ workload is context that can only be predicted prior to arm selection.

Our goal is to learn datacenter selection to optimize the latency in a robust manner given

imperfect workload information. We assume that the service rate of the edge datacenter a,

a ∈ A, is µa, the computation latency satisfies an M/M/1 queueing model and the average

communication delay between this datacenter and users is pa. Hence, the average total

30

latency cost can be expressed as l(x, a) = pa · x+ x
µa−x which is commonly-considered in the

literature [262, 416, 261]. The detailed settings are given in [419].

In Fig. 2.2, we compare different algorithms in terms of three cumulative regret

objectives: robust regret in Eqn. (2.7), worst-case regret in Eqn. (2.8) and true regret

in Eqn. (2.2). We consider the following algorithms: SimpleUCB with imperfect context,

MaxMinUCB with imperfect context and MinWD with imperfect context. Given a sequence of

true contexts, imperfect context sequence is generated by sampling i.i.d. uniform distribution

over B∆(xt) at each round. In the simulations, Gaussian kernel with parameter 0.1 is used

for reward (loss) estimation. λ in Eqn. (2.3) is set as 0.1. The exploration rate is set as

ht = 0.04.

As is shown in Fig. 2.2(a), MaxMinUCB has the best performance of robust regret

among the three algorithms. This is because MaxMinUCB targets at type-I robustness

objective which is equivalent to minimizing the robust regret. However, MaxMinUCB is not

the best algorithm in terms of true regret as is shown in Fig. 2.2(c) since robust regret is

not an upper or lower bound of true regret. Another robust algorithm MinWD is also better

than SimpleUCB in terms of robust regret, and it has the best performance among the three

algorithms in terms of the worst-case regret, as shown in Fig. 2.2(b). This is because the

regret of MinWD approaches the optimal worst-case regret (Theorem 2.5.2). MinWD also

has a good performance of true regret, which coincides with the fact that the worst-case

regret is the upper bound of the true regret. By comparing the three algorithms in terms

of the three regret objectives, we can clearly see that MaxMinUCB and MinWD achieve

performance robustness in terms of the robust regret and worst-case regret, respectively.

31

2.7 Conclusion

In this chapter, considering a bandit setting with imperfect context, we propose:

MaxMinUCB which maximizes the worst-case reward; and MinWD which minimizes the

worst-case regret. Our analysis of MaxMinUCB and MinWD based on regret and reward

bounds shows that as time goes on, MaxMinUCB and MinWD both perform as asymptotically

well as their counterparts that have perfect knowledge of the reward function. Finally, we

consider online edge datacenter selection and run synthetic simulations for evaluation.

32

Chapter 3

Learning-Augmented Online

Decision Making With Known

Dynamic Models

3.1 Introduction

We consider an online control problem with time-varying dynamics and cost

functions that are revealed sequentially to the control agent. This model has practical

applications to numerous problems such as control of cooling systems [282], online renewable

aggregation [246], battery management for electrical vehicle (EV) charging [374], workload

scheduling in datacenters [342], among others.

By exploiting the statistical information, machine learning (ML) has been widely

applied for various online decision problems [17, 134, 243, 421]. In the context of online

33

control/optimization, ML has been leveraged to discover novel policies that often exceed the

performance of manually-designed policies [246, 249, 251, 242]. While ML can progressively

improve its policy for online control and achieve a low average cost in the long run, it suffers

from the lack of performance guarantees in each step of an episode, especially when the

amount of training data is insufficient and/or the ML model is not well designed. This

potentially hinders the deployment of learning-based controller in real systems.

On the other hand, control priors, such as human-designed online algorithms

or rule-based heuristic controllers, have provably worst-case performance guarantees or

certified performances in real-world control systems. For example, competitive online

control/optimization algorithms [233, 103, 356, 355, 170, 427, 172, 356, 171, 316] can achieve

bounded worst-case cost ratio relative to the offline optimal control policy (a.k.a competitive

ratio). In addition, heuristic controllers have been widely adopted in real systems (e.g.,

Sequence of Operations for industrial/commercial cooling [282, 104]), providing certified

performance as the ground truth. That being said, these competitive algorithms or herustics

typically cannot achieve as good average cost performance as ML-based algorithms due to

the limited ability to utilize available statistical information.

To address the critical need for worst-case guarantees and good average performance

in control systems, learning-augmented control/optimization algorithms [248, 246, 435, 340,

111, 244, 241], which combine the ML output with a robust control prior, have been developed

in recent years. Among them, [248] provides a learning-augmented algorithm for Linear

Quadratic Control (LQC) with performance bounds under both imperfect and perfect ML

predictions. In addition, learning-augmented algorithms [340, 111, 244, 241] are also designed

34

for a finite-memory control problem, called Smoothed Online Convex Optimization (SOCO),

where switching costs are included in the cost function and the state dynamic is a known

and fixed function of the previous finite-step actions. Nonetheless, these studies typically

focus on simple settings where the system dynamic follows a linear or fixed model completely

known in advance, which may not capture real complex systems (e.g., industrial cooling

[104]). Moreover, they only guarantee performance robustness for an entire episode, whereas

the performance within an episode can still be much worse compared to running the control

prior alone.

This paper considers a more general and challenging online control problem with

non-linear and time-varying dynamic models that are sequentially revealed online. Impor-

tantly, to provide stronger performance robustness, we consider any-step competitiveness

(Definition 16): given any λ > 0, the total cost cannot exceed that of the control prior

scaled by (1 + λ) at any step within any episode. The key challenges for utilizing ML-based

controllers to improve the average performance while still being able to guarantee any-step

competitiveness come from uncertainties of time-varying dynamics and cost functions that

are revealed sequentially over the online control process. To address these challenges, we

design a novel competitiveness-constrained online policy learning algorithm, called LACC

(Learning-Augmented Online Competitive Control). Concretely, LACC leverages construc-

tion of novel reservation costs to provably guarantee any-step (1 + λ)-competitiveness and

meanwhile trains the ML-based policy based on available data to improve the average

performance. Our analysis quantifies highlights the impact of the any-step competitiveness

constraint on the average cost performance of LACC, revealing the tradeoff between the

35

average performance with worst-case competitiveness governed by λ > 0. Finally, we also

show the convergence of LACC as the number of episodes increases and empirically validate

LACC using battery management in charging stations.

3.2 Related Work

Online Competitive Control/Optimization. Our work is relevant to the

literature of online competitive control/optimization. In our problem setting, the target

is to minimize the cumulative cost in the nonlinear dynamics, which is different from the

traditional control literature that uses measures for stabilization purposes [321, 147, 148, 218].

Like the recent works on competitive control [170, 169, 427, 172, 356, 171, 316], our work

considers guarantees on the worst-case competitiveness, but our main focus is different —

we leverage ML to explore policies with low average cost while enforcing competitiveness

guarantees for any step in any episode. This enables the use of the existing competitive

control policies as priors. Achieving our objective requires novel design of safe action sets

and new analysis techniques to find the trade-off between the average performance and

worst-case competitiveness.

Conservative Learning. The literature on conservative learning uses a policy

prior to guide the exploration process [423, 5, 422, 84, 97, 20, 130, 103]. They consider

an average constraint or a total T -episode constraint (with respect to a policy prior) with

a high probability. Additionally, any-step constraints have also been considered in other

contexts [274, 314], but these studies only require any-step constraints in expectation instead

of our any-step competitiveness for any instance. Thus, our any-step competitiveness

36

provides stronger robustness that is desired in real mission-critical control systems such

as industrial cooling. Other studies consider orthogonal constraints such as safe states or

per-step (non-commulative) constraints [84, 20, 97].

ML-Augmented Online Algorithms. Our study is most relevant to the emerging

ML-augmented online algorithms [402, 70, 284, 106, 110]. The goal of ML-augmented online

algorithms is to combine potentially untrusted ML predictions with robust policies (i.e., con-

trol priors). ML-augmented algorithms have been developed for online control/optimization

by combining ML predictions and control priors through online switching [340, 31] or

adaptively setting a confidence on the ML prediction [248, 246]. Compared to these stud-

ies, we make contributions by considering a more challenging setting, i.e., non-linear and

time-varying dynamic models that are sequentially revealed online. Although some of the

existing studies [248, 340, 111, 244, 241] provide provable competitive bounds, they cannot

guarantee any-step competitiveness that is needed for real control [282]. Moreover, these

studies typically assume a pre-trained ML model as a black box, whereas we study the policy

learning process subject to the competitiveness constraint against a control prior.

3.3 Problem Formulation

3.3.1 Finite-Horizon Control Model

We consider a general finite-horizon control problem with time-varying nonlinear

dynamics. More specifically, at time h ∈ [H − 1], the control agent observes the current

state xh ∈ X ∈ Rn, chooses an action uh ∈ U ⊆ Rd and incurs a non-negative system cost

ch(xh, uh) : Rn × Rd → R+. Given xh and uh, the system transitions to xh+1 at time h + 1

37

following system dynamics as:

xh+1 = fh(xh, uh) + wh, h = 0, . . . ,H − 1, (3.1)

where fh : Rn×Rd → Rn denotes a time-varying function, and wh is an additive perturbation

noise. At the last time H, the terminal cost cH(xH) only relies on the final state xH .

Unlike the prior literature [316, 340, 248, 325, 249, 435] that focuses on simple

linear or fixed models completely known a priori, we consider a more general setting and

assume that the dynamics fh and cost function ch are sequentially revealed to the control

agent before choosing uh, while the additive noise wh is not revealed or observed and can

only be calculated as wh = xh+1 − fh(xh, uh) after xh+1 is observed at time h + 1. For

convenience, we denote yh := (fh, ch, wh) and y0:H = (y1, · · · , yH) as the information of an

entire episode. Importantly, y0:H ∈ Y is sampled from an unknown distribution Py0:H . An

online control policy denoted by π is a function which outputs the action uh ∈ U . With an

initial state x0, the cumulative cost up to round h is expressed as

Jπ
h =

h∑
i=0

ci(xi, ui) for h ∈ [H − 1], and Jπ
H(y0:H) :=

H∑
h=0

ch(xh, uh) + CH(xH), (3.2)

We summarize the standard assumptions on the system dynamics and costs below.

Our first assumption is the Lipschitz continuity assumption on the functions (fh : h =

0, . . . ,H − 1) and it is common in finite-horizon control models [248, 249, 427].

Assumption 1 (Lipschitz continuity of dynamics). For each time h, the function fh is

Lipschitz continuous with respect to xh and uh with Lipschitz constants σx ≥ 0 and σu ≥ 0,

respectively, i.e., for any (x, u) and (x′, u′), fh satisfies ∥fh(x, u) − fh(x′, u)∥ ≤ σx∥x− x′∥

and ∥fh(x, u) − fh(x, u′)∥ ≤ σu∥u− u′∥.

38

The second assumption is the smoothness of the costs (ch : h = 0, . . . ,H), which is

a common regularity condition on control system costs [249, 269, 355, 267].

Assumption 2 (Well-conditioned costs). For each time h, the cost function ch is non-

negative, convex, and β-smooth with respect to (xh, uh).

Note that, if the Lipschitz continuous fh is the linear dynamics xh+1 = Dxxh +

Duuh + wh where Dx and Du are controllable matrices, and the smooth cost functions ch

is the quadratic function, i.e. ch(xh, uh) = x⊤hQxh + u⊤hRuh, CH(xH) = x⊤HQxH where Q,

R ≻ 0 are all positive definite, our control model reduces to the classic setting of linear

quadratic control [248, 325, 249, 435].

3.3.2 Objective and Performance Metrics

We seek to design a control policy π to minimize the average cost Ey0:H [Jπ
H(y0:H)]

while ensuring a competitiveness guarantee for any step in each instance/episode against

a control prior π†. Let Jπ
h =

∑h
i=0 ci(xi, ui) and Jπ†

h =
∑h

i=0 ci(x
†
i , u

†
i) are respectively the

cumulative costs of the policy π and control prior π† defined in Eqn.(3.2). We first give the

formal definition of competitiveness.

Definition 16 (Any-step competitiveness). A policy π is (1 + λ)-competitive against a

control prior π† for λ > 0 if Jπ
h ≤ (1 + λ)Jπ†

h for all h ∈ [H] is satisfied for any episode

y0:H ∈ Y.

Any-step competitiveness requires that, given any instance y0:H ∈ Y, the cost of a

controller never exceeds (1 +λ) times the cost of a control prior π† at any time h. Compared

to the per-episode constraint considered in the literature [248], any-step competitiveness is

39

stricter and also more practical in practical control systems, because the control process

might stop at any round h ≤ H while the agent does not know the stopping time in advance.

Our competitiveness constraint is also strongly motviated by real-world control

systems. For example, in industrial cooling, a control agent decides to turn on/off various

pieces of equipment to optimize the energy efficiency [282, 104, 409]. Control priors, such as

Sequence of Operations (SOO), have been programmed into systems with a long history

and provide certified performance. To deploy a new learning-based controller, strong

performance robustness compared to the control prior is required. In another example of

workload scheduling in datacenters, the learning-based control agent needs to decide the

number of active servers for carbon efficiency while ensuring that its performance always

stays competitive against a control prior. For this application, there exist both empirically-

strong [326] and theoretically-competitive [171, 356] online control policies that can readily

serve as control priors. Thus, by using a control policy that is competitive against the

offline-optimal cost, our any-step competitiveness also immediately translates into guaranteed

competitiveness against the offline-optimal algorithm with a scaling of (1 + λ).

Under any-step competitiveness constraints, a learning-based controller is utilized

to optimize the average performance over the distribution of y0:H ∈ Y. Thus, our objective

is to find an online policy that optimizes the following:

min
π

Ey0:H [Jπ
H(y0:H)] , s.t., Jπ

h ≤ (1 + λ)Jπ†
h , ∀h ∈ [H], ∀y0:H ∈ Y. (3.3)

For convenience, we define the collection of all (1 + λ)-competitive control policies as

Πλ = {π | Jπ
h ≤ (1 + λ)Jπ†

h , ∀h ∈ [H], ∀y0:H ∈ Y}. If λ is larger, then the size of Πλ is

also larger and we have more flexibility to optimize the average cost. With episodic data

40

{y0:H ∈ Y} collected online, we use ML to learn a control policy πλ ∈ Πλ while satisfying

the any-step competitiveness. In the online setting, we update our policy πt
λ in each episode

t = 1, . . . , T , with each episode corresponding to an instance of our finite-horizon control

problem in Section 3.3.1.

We define the unconstrained-optimal policy as π∗ = arg maxπ∈Π∞ Ey0:H [Jπ
T (y0:H)],

which minimizes the expected cost without considering any-step competitiveness. Next, we

define the expected regret defined as follows.

Definition 17 (Expected regret). Given the any-step competitiveness constraint in (3.3)

for each episode, the expected regret of an online competitive control policy πλ with respect

to the unconstrained-optimal policy π∗ = arg maxπ∈Π∞ Ey0:H [Jπ
T (y0:H)] is defined as

R(πλ, π
∗) = Ey0:H

[
Jπλ
T (y0:H) − Jπ∗

T (y0:H)
]
. (3.4)

The expected regret R(πλ, π
∗) quantifies the tradeoff between the average cost

performance and the competitiveness requirement with respect to a control prior. The

tradeoff between average and worst-case performance is inevitable and well-known in the

online optimization literature [110, 284], but algorithm designs are needed to achieve a lower

R(πλ, π
∗).

3.4 Algorithm Design

3.4.1 Safe Action Set for Per-Episode Competitiveness

Our goal is to find a policy satisfying any-time competitiveness with a low expected

cost. In online control, however, it is challenging to guarantee the any-step competitiveness

41

constraint in (3.3) for any episode. This is because the competitiveness constraint relies

on the cost Jπ
h of the control policy and the cost Jπ†

h of the control prior π† which can

both be evaluated only after the information (f0:h, c0:h, x0:h) is observed at step h. If the

competitiveness constraint is violated at some step h, the selected online actions before h

cannot be revised. As a result, we must construct a safe action set Uλ,h for each round

h ∈ [0, H − 1] within an episode: if actions are selected from the safe action sets, any-step

competitiveness is always satisfied even in the worst case.

A naive design is to directly ensure the competitiveness constraint (3.3) for each

step h, i.e.

Uλ,h =

{
uh |

h∑
i=0

ci(xi, ui) ≤ (1 + λ)
h∑

i=0

ci(x
†
i , u

†
i)

}
. (3.5)

In online control, however, the naive safe action set Uλ,h can be empty at some step h,

resulting in no feasible actions to meet any-step competitiveness, which we explain as follows.

Suppose that
∑h

i=0 ci(xi, ui) = (1 + λ)
∑h

i=0 ci(x
†
i , u

†
i) is satisfied at time h. If xh+1 = x†h+1

holds at round h + 1, the agent can always choose uh+1 = u†h+1 to satisfy (3.5) at round

h + 1. However, when xh+1 ̸= x†h+1, it is possible that the control prior has a low cost for

its state x†h+1 at time h + 1 such that for any action u ∈ U the true cost ch+1(xh+1, u) is

lager than the prior cost (1 + λ)ch+1(x
†
h+1, u

†
h+1). In such a case, the naive safe action set

Uλ,h is empty and the control agent cannot maintain the inequality in (3.5), thus potentially

violating the subsequent any-step competitiveness constraints.

Consequently, if an action in the safe action set Uλ,h leads to a state xh+1 different

from the state x†h+1 of the control prior, the resulting cumulative cost should satisfy∑h
i=0 ci(xi, ui) + ϕh ≤ (1 + λ)

∑h
i=0 ci(x

†
i , u

†
i) with an added reservation cost ϕh > 0 for

42

hedging. For the design of the reservation cost, we must consider all the possible future

control environments yh+1:H before the decision at each time h =∈ [H−1] and hedge against

the worst case for competitiveness. To this end, we design a reservation cost in the next

proposition.

Proposition 18. With Assumptions 1 and 2, if the action uh at round h is selected from

the safe set Uλ,h, λ > 0 defined as

Uλ,h :=
{
u ∈ U |Jh−1 + ch(xh, u) + ϕh(u) ≤ (1 + λ)Jπ†

h

}
(3.6)

where Jh−1 =
∑h−1

i=0 ci(xi, ui) and Jπ†
h =

∑h
i=0 ci(x

†
i , u

†
i) are the true costs and the cost of

control prior, respectively, with the reservation cost function defined as

ϕh(u) = qh∥fh(xh, u) − fh(x†h, u
†
h)∥2 (3.7)

where qh = C1(1+ 1
λ)β2

∑H−h−1
h′=0 (C2σ

2
x)h

′
for constants C1 ≥ 1 and C2 ≥ 1, then the any-step

(1 + λ)-competitiveness (3.3) is guaranteed.

The key insight for the reservation cost ϕh(u) in (3.7) is to account for the worst-

case future cost gap between the control policy πλ and the control prior π† resulting from the

current state/action difference at each round h = 0, . . . ,H − 1. By adding the reservation

cost at each time h, there always exists a non-empty safe action set Uλ,h in the subsequent

steps, ensuring any-step competitiveness.

3.4.2 Learning-Augmented Competitive Control

By Proposition 18, any-step competitiveness in (3.3) is strictly satisfied if the action

at each time h is chosen from the safe action set Uλ,h. Therefore, given an ML policy π̃

43

Algorithm 2 Online Competitive Control with LACC

Require: ML Policy π̃ and policy prior π†

1: for time horizon h = 0, · · · , H − 1 do

2: Observe state xh and information {ch, fh}, and calculate last-step noise wh−1.

3: Update the policy prior’s state x†h = fh−1(x
†
h−1, u

†
h−1) + wh−1

4: Obtain an action u†h by the prior π†, and update prior cost Jπ†
h = Jπ†

h−1 + ch(x†h, u
†
h)

5: Obtain the ML action ũh via the ML model π̃

6: if the ML action ũh ∈ Uλ,h then take uh = ũh

7: else take uh = m(ũh) end if // Map to a safe action set Uλ,h (3.6) using m

8: Update true cost Jh = Jh−1 + ch(xh, uh)

9: end for

and a control prior π†, we design a learning-augmented competitive controller as shown in

Algorithm 2.

At each round h within an episode, the control agent first evaluates the cost of the

control prior. To achieve this, after observing the true state xh and the dynamics fh−1, we

first inversely calculate the noise at the last round as wh−1 = xh − fh−1(xh−1, uh−1), which

implies a “virtual state” corresponding to the control prior for the same online information

y0:h−1, denoted by x†h = fh−1(x†h−1, u
†
h−1) + wh−1. Next, we query the control prior π† with

a state x†h and obtain an action u†h, which can be used to update the cumulative cost at

round h, denoted by J†
h = J†

h−1 + ch(x†h, u
†
h). By doing so, a safe action set Uλ,h can be

constructed as in Proposition 18.

It remains to select an action from the safe action set. If the ML action ũh is in

the safe action set Uλ,h, then we simply select uh = ũh. Otherwise, we can use a projection

44

Algorithm 3 Online Policy Training

1: Initialize the ML policy π̃(0)

2: for episode t = 1, . . . , T do

3: Implement Algorithm 2 with π̃(t−1) and record y
(t)
0:H .

4: Append y
(t)
0:H to the replay buffer Dt

5: Update the ML policy π̃(t) by (3.9).

6: end for

function m : Rd → Uλ,h that projects the ML action ũh into an action in the safe action set.

Thus, the selected action can be represented as

uh = m(ũh,Uλ,h) = arg min
u∈Uλ,h

∥ũh − u∥. (3.8)

When the safe action set is a convex set (e.g. the dynamic functions {fh : h ∈ [H]} are

linear [170, 427, 169, 435]), the projection can be efficiently solved by convex optimization.

Otherwise, projection can be performed by alternative low-complexity algorithms [256, 87].

Algorithm 2 strictly guarantees any-time (1+λ)-competitiveness against the control

prior π† even when the ML policy π̃ has an arbitrarily bad performance (e.g., when only

limited data is collected), thus ensuring a strong any-step competitiveness than the existing

constrained learning-based control that focuses on average constraints or constraints over a

horizon.

3.4.3 Training the ML Policy

With the any-step competitiveness constraint, training the ML policy becomes

significantly different compared with an unconstrained (or only average-constrained) setting,

45

and is shown in Algorithm 3. Specifically, the ML policy π̃ interacts with the control

environment through a mapping onto the safe action set Uλ,h. Denoting the mapping in (3.8)

by uh = m(ũh,Uλ,h), given the ML action ũh, the dynamics is xh+1 = fh(xh,m(ũh,Uλ,h))+wh

and the cost becomes ch = (xh,m(ũh,Uλ,h)). We update the ML policy π̃ by Algorithm 3 in

an episodic setting, i.e., whenever an episode is solved by Algorithm 2 after the episode t, we

append the information y0:H of the full episode to the replay buffer Dt. Then, the ML policy

denoted by π̃
(t)
λ is updated by minimizing the empirical cost on the replay buffer Dt as

π̃
(t)
λ = arg min

π̃∈Π

∑
y0:H∈Dt

H∑
h=0

ch
(
xh,m (π̃(sh),Uλ,h)

)
, (3.9)

where the ML input sh consists of the current system state xh, available environment

information {fi, ci, i ∈ [0, h]} and {wi, i ∈ [0, h− 1]}, and the actions {u†i , i ∈ [0, h]} of the

control prior π†. The updated ML policy π̃
(t+1)
λ is then used for the (t + 1)−th episode.

To train an ML policy based on (3.9), we can directly parameterize the ML policy

using an ML model with trainable weights (e.g. neural networks) and use gradient descent

to optimize the weights in the minimization (3.9). To be more precise, we perform the back-

propagation through the online control process where all the operations are differentiable

(e.g. the projection operator can be implicitly differentiated by the KKT conditions, as

shown in [7]). The ML policy can also be obtained by value-based methods wherein, e.g., a

Qh(s, u) function that evaluates the expected long-term cost given the input s and action u

is learned and the ML action is chosen as ũh = arg maxuQh(s, u).

46

3.5 Performance Analysis

With any-step competitiveness of LACC guaranteed by design, we now bound its

expected regret.

3.5.1 Expected Regret

To highlight the impact of λ on the tradeoff between the average performance and

any-step competitiveness, we first consider a case where the ML model is optimally trained

(with a sufficiently large mumber of training samples) to minimize the expected cost of

the online control process, i.e., π̃∗
λ = arg minπ̃∈Π Ey0:H

[∑H
h=0 ch(xh,m(π̃(sh),Uλ,h))

]
. The

convergence of online training in Algorithm 3 to π̃∗
λ as the number of episodes increases will

be studied in Section 3.5.2.

Given the ML model π̃∗
λ(sh), for notation convenience, we denote the corresponding

optimal competitive policy as π∗
λ : π∗

λ(sh) = m(π̃∗
λ(sh),Uλ,h). Due to the irreducible gap

introduced by the any-step competitiveness constraint, the expected cost of π∗
λ is no less

than that of the optimal-unconstrained policy π∗ = arg minπ∈Π Ey0:H

[∑H
h=0 ch(xh, π(sh))

]
.

Thus, we bound the expected regret between our competitive policy π∗
λ and the optimal

policy π∗, showing the tradeoff between the worst-case and the average performances. For

the sake of analysis, we first make the following Lipschitz assumption which is not overly

restrictive. The policy space Π can be a space of neural networks which satisfy Lipschitz

continuity by using spectrum normalization [53, 296, 221].

Assumption 3. The optimal-unconstrained policy π∗ = arg minπ∈Π∞ Ey0:H [Jπ
T (y0:H)] is

Lπ-Lipschitz continuous in terms of the input sh for any h ∈ [H − 1].

47

Theorem 3.5.1. With Assumption 3, by choosing ϕh(u) = qh∥fh(xh, uh)−ft(x
†
h, u

†
h)∥2 with

qh =
(√

1+λ+1
λ + 1

)
β
2

∑H−h−1
i=0

(
2σ2

x

)i
, the expected regret is bounded by

R(π∗
λ, π

∗) ≤ min

{
BE

[
H−1∑
h=0

[
ηh − (

√
1 + λ− 1)2Gc†h

]+]
, R(π†, π∗)

}
(3.10)

where ηh = ∥u∗h − u†h∥ is the action discrepancy between the optimal unconstrained pol-

icy and the control prior, G = 2
(
βA
(
1 + 2σ2

u(1 − (2σ2
x)H−h)/(1 − 2σ2

x)
))−1

and B =

βA
(

1 + (1 + 2Lπ)σu
∑H−1

i=0 (σx + 2σuLπ)h−i−1
)
are constants that only depend on the con-

trol system, in which β is the smoothness parameter of the cost function ch, the size of the

state-action set is A = max(x,u),(x′,u′)∈X×U ∥(x, u) − (x′, u′)∥, Lπ is the Lipschitz constant of

the unconstrained-optimal policy π∗, σx and σu are the Lipschitz constants of the dynamics

model fh (Assumption 1).

The results in Theorem 3.5.1 can be interpreted as follows. First, the any-step

competitiveness constraint naturally creates a gap of expected cost between the competitive

optimal policy π∗
λ and the unconstrained optimal policy π∗. More specifically, given a control

prior π†, when λ > 0 becomes smaller, the competitiveness constraint is more stringent,

which thus makes the actions of control policy π∗
λ potentially deviate more from those of the

unconstrained-optimal policy π∗ and increases the first term inside the minimum operator

(3.10). On the contrary, when λ > 0 becomes larger, the competitiveness constraint is more

relaxed, reducing the expected regret of the control policy π∗
λ to the optimal unconstrained

policy π∗. In particular, if c†h > 0 for all h ∈ [H] and λ is sufficiently large, the terms[
ηh − (

√
1 + λ− 1)2Gc†h

]+
can reduce to zero, voiding the competitiveness constraint and

resulting in a zero expected regret. In any case, the expected regret of π∗
λ is always bounded

by the control prior’s regret R(π†, π∗), because the actions of both π∗
λ and π† are in the safe

48

action sets Uλ,h and π∗
λ is the optimal policy with such constraints. Note that the tradeoff

in Theorem 3.5.1 comes from conservativeness to address the worst-case problem instance

and is unavoidable for online control and optimization in general [110].

We now discuss the intrinsic impact of the control system parameters on the

expected regret bound. The bound increases with the episode length H (inside the constant

B) because the competitiveness-induced state perturbation compared to the optimal uncon-

strained policy π∗ accumulates as we use a constrained online policy π∗
λ different from π∗.

Another parameter that affects the expected cost ratio is ηh, i.e. the discrepancy between

the action of the optimal policy π∗ and that of the control prior π†. The intuition is that

given a larger η, the control prior π† is more different than the unconstrained-optimal policy

π∗, naturally making it more difficult for our control policy to approach π∗ while meeting

any-step competitiveness.

3.5.2 Convergence

In this section, we denote the competitive policy at the end of episode t as

π
(t)
λ (sh) = m(π̃

(t)
λ (sh),Uλ,t) with π̃

(t)
λ obtained by Algorithm 3 and bound its expected regret.

Theorem 3.5.2. If ML policy is trained by Eqn. (3.9), with probability at least 1−δ, δ ∈ (0, 1),

the expected regret of our competitive policy is bounded by

R
(
π
(T)
λ , π∗) ≤ BE

[
H−1∑
h=0

[
ηh − (

√
1 + λ− 1)2Gc†h

]+]
+ O

√ 1

T
ln

N(ϵ,Πλ, L̂
T
1)

δ

 ,

where the system-related parameters B,G and η have the same definition as in Theorem

3.5.1, N(ϵ,Πλ, L̂
T
1) is the ϵ-covering number of the competitive policy space Πλ with L1-

norm as the distance measure (the distance of two policies π and π′ is ∥π − π′∥L̂T
1

=

49

1
T

∑T
t=1

∑H
h=1 ∥π(s

(t)
h) − π′(s

(t)
h)∥1), and O indicates the scaling with cost upper bound c̄ and

episode length H.

Theorem 3.5.2 shows that our policy with the online-trained ML model converges

with a rate of
√

1/T . In particular, the convergence rate is affected by λ through the

covering number N(ϵ,Πλ, L̂
T
2) which indicates the richness of the competitive policy class Πλ.

The covering number of the competitive policy class Πλ is no larger than the unconstrained

policy set Π∞. This is because with the same ML model, the competitiveness constraint

reduces the set of feasible actions — with a smaller λ > 0, the competitiveness policy space

becomes smaller, making it easier for the convergence of LACC.

3.6 Simulation Study

In this section, we evaluate the empirical performance of our competitiveness-

constrained policy by performing a simulation study for battery management in electric

vehicle (EV) charging stations [382].

Setup. We consider the EV charging problem described as follows. At each time

h, suppose that xh ∈ Rn
+ represents the State of Charge (SoC) and uh ∈ Rd represents

the decision for battery charging/discharging. The battery dynamics are xh+1 = Axxh +

Auuh−wh, where the matrices Ax and Au are positive definite and capture the effects of self

leakage and charging efficiency, respectively; wh is the additive demand, and uh represents the

charging/discharging rate (kW). The goal is to decide the online charging/discharging rates to

minimize the total charging cost while maintaining the battery SoC around a nominal value x̄

[248, 316, 247, 382]. Formally, the control objective is minuh:h∈[H−1]

∑H−1
h=0 ∥xh−x̄∥2+b∥uh∥2.

50

In our case study, we use a recently open-sourced dataset for an EV charging

station at Caltech [235]. We use data containing records from April to August of 2018. Each

charging record contains the start time and end time of the EV charging session, and the

total energy demand during this session. Without details of the batteries, we consolidate

the energy demand within each hour as wh. We consider each problem episode as one day

(H = 24 hours) and generate 2856 problem episodes with a sliding window moving one hour

ahead each time. We set Ax = Au = 1 and b = 5 for the control model. For fair comparison,

we use the same neural network architecture for different policies with the same initialized

weights. Specifically, for learning, we use a neural network with 2 hidden layers, each with 8

neurons, and train the model using PyTorch. After each episode, we sample 14 available

history instances from the dataset and train the model in an online manner. We use the

reservation function in Theorem 3.5.1. We use the first 200 episodes as a warm-up stage for

pre-training the baselines.

Baselines. For empirical comparison, we consider the the baseline algorithms

as follows. Offline Optimal Policy (OPT) is the optimal offline policy that knows all the

information in advance for each episode. Model Predictive Control (MPC)[158] solves the

control problem by leveraging predictions of the future information. Linear Quadratic

Regulator without Predictions (LQR) is a classic competitive controller that performs online

control without predictions [426]. The control problem for EV charging can be formulated

in the form of smoothed online convex optimization, for which Regularized Online Balanced

Descent (ROBD) is the order-optimal online algorithm with the best-known competitive ratio.

We also compare with a standard ML for control (ML) without competitiveness constraints.

51

Results. In Fig. 3.1, we show the simulation results for the setting with the

competitiveness parameter λ = 0.5. The shadow region around the lines indicates the

variance for each performance metric for different runs. Fig. 3.1(a) shows the empirical

average cost. As LQR essentially assumes wh = 0 which is not satisfied in our problem, its

episodic cost is too high (greater than 200) to be included in the figure and hence it is

omitted. The costs for our competitiveness-constrained policy LACC described in Algorithm 3

are highlighted in a thickened blue curve. We can find that the costs of ML and LACC both

decrease when the number of episode increases. Among the early episodes (e.g. 200-300),

both ML and LACC have higher costs than the policy prior ROBD, because ML and LACC need

more data samples to learn a good policy. Nevertheless, LACC significantly outperforms ML at

these early episodes due to its guarantee of (1 + λ)-competitiveness against the prior policy

ROBD (Proposition 18). Moreover, as the number of episodes increases, both ML and LACC

can achieve a low cost close to that of OPT, which shows the empirically good performance

of LACC while being able to formally guarantee (1 + λ)-competitiveness against the control

prior.

Fig. 3.1(b) shows the violation percentage that an algorithm exceeds the cost

of (1 + λ)JROBD
H where ROBD is used as the control policy prior due to its order-optimal

competitive ratio. Note that LACC is guaranteed to have a zero violation rate for all episodes.

We see that ML has a high violation probability at the beginning. In the training process,

when the number of episodes increases, the violation rate of ML decreases, but the average

violation probability over 800 episodes of ML is still as high as 0.212, even though we exclude

the first 200 episodes during which ML is warmed up. MPC-0.04 and MPC-0.08 have average

52

200 400 600 800 1000
Episode

4

8

12

16

Ep
iso

di
c

Co
st

 J H
LACC
ROBD
MPC-0.04

ML
OPT
MPC-0.08

(a) Average cost per episode JH

200 400 600 800 1000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Vi
ol

at
io

n
Pr

ob
ab

ilit
y

ML
MPC-0.04
MPC-0.08
LACC

(b) Competitiveness violation

200 400 600 800 1000
Episode

1

2

3

4

5

Ra
tio

 o
f J

H
 to

 J* H

LACC
ML
ROBD

MPC-0.04
MPC-0.08

(c) Episodic ratio of JH to JOPT
H

Figure 3.1: Comparisons of LACC with baselines.

violation probabilities of 0.096 and 0.540, respectively. The results shows the necessity to

guarantee the competitiveness for each episode, especially when ML or ML predictions (for

MPC) cannot be fully trusted yet.

Fig. 3.1(c) shows the per-episode cost ratios of different policies to OPT, comple-

menting the results in Fig. 3.1(a).

3.7 Concluding Remarks

This chapter considers an online control problem with time-varying dynamics and

cost functions. We focus on a novel setting where the goal is to minimize the average

cost subject to the any-step competitiveness against a given control prior. We design

a competitiveness-constrained algorithm, LACC, that uses reservation functions to ensure

competitiveness. Our analysis formally highlights the impact of the competitiveness factor

λ > 0 that trades off the average cost performance with worst-case competitiveness. We also

show the convergence of LACC as the number of episodes increases and empirically validate

LACC using simulations.

53

Chapter 4

Learning-Augmented Online

Decision Making With Unknown

Dynamic Models

4.1 Introduction

In mission-critical online decision-making problems such as cloud workload schedul-

ing [326, 122], cooling control in datacenters [409, 104, 282], battery management for

Electrical Vehicle (EV) charging [374, 373], and voltage control in smart grids [358, 443],

there is always a need to improve the reward performance while meeting the requirements

for some important cost metrics. In these mission-critical systems, there always exist some

policy priors that meet the critical cost requirements, but they may not perform well in

terms of the rewards. In the application of cooling control, for example, some rule-based

54

heuristics [120, 282] have been programmed into the real system for a long time and have

verified performance in maintaining a safe temperature range, but they may not achieve a

high energy efficiency. In this paper, we design a Reinforcement Learning (RL) algorithm

with the goal of optimizing the reward performance under the guarantee of cost constraints

against a policy prior for any round in any episode.

Constrained RL algorithms have been designed to solve various Constrained MDP

(CMDP) with reward objective and cost constraints. Among them, some are designed to

guarantee the expected cost constraints [139, 392], some can guarantee the cost constraints

with a high probability [97], and others guarantee a bounded violation of the cost constraints

[168, 130, 131, 5]. In addition, conservative RL algorithms [157, 423, 217, 422, 411] also

compare the cost performance with a policy prior, but they only guarantee the cost constraints

against a policy prior in expectation. In real mission-critical systems, however, the cost

constraints are often required to be satisfied at each round in any instance even in the worst

case, which hinders the deployment of these constrained/conservative RL policies. Recently,

learning-augmented online control algorithms [248, 246, 435, 340, 111, 244] have been

developed to exploit machine learning predictions with the worst-case control performance

guarantee. Nonetheless, the learning-augmented control algorithms require the full knowledge

of the dynamic models, which limits their application in many systems with unknown random

dynamic models.

To fill in this technical blank, we model the mission-critical decision-making problem

as a new Markov Decision Process (MDP) which is called the Anytime-Constrained MDP

(A-CMDP). In A-CMDP, the environment feeds back a reward and a cost corresponding to

55

the selected action at each round. The next state is updated based on a random dynamic

model which is a function of the current action and state and is not known to the agent.

The distribution of the dynamic model is also unknown to the agent and needs to be learned.

Different from CMDP, at each round h in any episode, the policy of A-CMDP must guarantee

that the cumulative cost Jh is upper bounded by a scaled cumulative cost of the policy prior

π† plus a relaxation, i.e. Jh ≤ (1 + λ)J†
h + hb with λ, b > 0, which is called an anytime

constraint. Under these anytime cost constraints for all rounds, the RL agent explores the

policy to optimize the expected reward.

The anytime constraint guarantee is much more strict than the requirements of

constraints in typical CMDPs, which presents new challenges for RL algorithm design. First

of all, the anytime constraints are required to be satisfied for any episode, even for the

early episodes when the collected sequence samples are not enough. Also, to guarantee the

constraints for each round, we need to design a safe action set for each round to ensure

that feasible actions exist to meet the constraints in subsequent rounds. Last but not

least, without knowing the full transition model, the agent has no access to the action sets

defined by the anytime constraints, which makes it more difficult to guarantee the anytime

constraints than the setting with known transition model [248].

Contributions. In this paper, we design algorithms to solve the novel problem

of A-CMDP. The contributions are summarized as follows. First, we propose an Anytime-

Constrained Decision-making (ACD) algorithm to provably guarantee the anytime constraints

given any ML policy by projection to safe action sets. The safe action sets are updated at

each round according to a designed rule to gain as much flexibility as possible to optimize

56

the reward. Then, we develop a new model-based RL algorithm (ACRL) to learn the optimal

ML policy to be used in ACD. The proposed model-based RL can effectively utilize the new

dynamic defined by ACD to reduce the learning complexity. Last but not least, we give

rigorous analysis on the reward regret of ACRL comparing with the optimal-unconstrained

policy. The analysis shows that the learned policy performs as well as the optimal ACD policy

and these exist a fundamentally-irreducible performance gap between ACD policy and the

optimal-unconstrained policy which is resulted from the anytime constraint guarantee.

4.2 Related Work

Conservative/Constrained RL. Compared with the existing literature on conser-

vative/constrained RL [423, 5, 422, 84, 20, 130, 168, 139, 131, 392], our study has important

differences. Concretely, the existing constrained RL works consider an average constraint

with or without constraint violation. In addition, existing conservative RL works [423]

consider an average constraint comparing with a policy prior. However, the constraints

can be violated especially at early exploration episodes. In sharp contrast, our anytime

constraint ensures a strict constraint for any round in each episode. In fact, with the same

policy prior, our anytime-constrained policy can also meet the average constraint without

violation in conservative/constrained RL [423, 137].

Our study is also relevant to safe RL. Some studies on safe RL [84, 20, 97] focus

on constraining that the system state or action at each time h cannot fall into certain

pre-determined restricted regions (often with a high probability), which is orthogonal to

our anytime constraint requirement that constrains the cumulative cost at each round of

57

an episode. Our study is related to RL with safety constraints [84, 250], but is highlighted

by the strict constraint guarantee for each round in each episode. In a study on safe RL

[84], the number of safety violation events is constrained almost surely by a budget given in

advance, but the safety violation value can still be unbounded. By contrast, our work strictly

guarantee the anytime constraints by designing the safety action sets. In a recent study

[20], the safety requirement is formulated as the single-round cost constraints. Differently,

we consider a cumulative cost constraints which has direct motivation from mission-critical

applications.

Learning-Augmented Online Decision-Making. Learning-based policies can

usually achieve good average performance but suffer from unbounded worst-case performance.

To meet the requirements for worst-case performance for learning-based policy, learning-

augmented algorithms are developed for online control/optimization problems [248, 340, 111,

244, 241]. To guarantee the performance for each problem instance, learning-augmented

algorithm can perform an online switch between ML policy and prior [340], combine the ML

policy and prior with an adaptive parameter [248], or project the ML actions into safe action

sets relying on the prior actions [244]. Comparing with learning-augmented algorithms, we

consider more general online settings with unknown dynamic model and the safe action set

design does not rely on any model information. Also, our problem can guarantee the cost

performance for each round in any episode comparing with a policy prior, which has not

been studied by existing learning-augmented algorithms.

58

4.3 Problem Formulation

4.3.1 Anytime-Constrained MDP

In this section, we introduce the setting of a novel MDP problem called Anytime-

Constrained Markov Decision Process (A-CMDP), denoted as M(X ,A,F , g,H, r, c, π, π†). In

A-CMDP, each episode has H rounds. The state at each round is denoted as xh ∈ X , h ∈ [H].

At each round of an episode, the agent selects action ah from an action set A. The environment

generates a reward rh(xh, ah) and a cost ch(xh, ah) with rh ∈ R and ch ∈ C. We model

the dynamics as xh+1 = fh(xh, ah) where fh ∈ F is a random transition function drawn

from an unknown distribution g(fh | xh, ah) with the density g ∈ G. The agent has no

access to the random function fh but can observe the state xh at each round h. Note

that we model the dynamics in a function style for ease of presentation, and this dynamic

model can be translated into the transition probability in standard MDP models [383, 36]

as P(xh+1 | xh, ah) =
∑

fh
1(fh(xh, ah) = xh+1)g(fh | xh, ah). A policy π is a function

which gives the action ah for each round h ∈ [H]. Let V π
h (xh) = E

[∑H
i=h ri(xi, ai))

]
denote

the expected value of the total reward from round h by policy π. One objective of A-

CMDP to maximize the expected total reward from the first round which is denoted as

Ex1 [V π
1 (x1)] = E

[∑H
h=1 rh(xh, ah))

]
.

Besides optimizing the expected total reward as in existing MDPs, A-CMDP also

guarantees the anytime cost constraints comparing with a policy prior π†. The policy prior

can be a policy that has verified cost performance in real systems or a heuristic policy with

strong empirically-guaranteed cost performance, for which concrete examples will be given

in the next section. Denote yh = (fh, ch, rh), and y1:H = {yh}Hh=1 ∈ Y = F × R × C is

59

a sampled sequence of the models in an A-CMDP. Let Jπ
h (y1:H) =

∑h
i=1 ci(xi, ai) be the

cost up to round h ∈ [H] with states xi, i ∈ [h] and actions ai, i ∈ [h] of a policy π. Also,

let Jπ†
h (y1:H) =

∑h
i=1 ci(x

†
i , a

†
i) be the cost of the prior with states x†i , i ∈ [h] and actions

a†i , i ∈ [h] of the prior π†. The anytime constraints are defined as below.

Definition 19 (Anytime constraints). If a policy π satisfies (λ, b)−anytime constraints, the

cost of π never exceeds the cost of the policy prior π† relaxed by parameters λ ≥ 0 and b ≥ 0,

i.e. Jπ
h (y1:H) ≤ (1 + λ)Jπ†

h (y1:H) + hb,∀h ∈ [H], ∀y1:H ∈ Y.

Now, we can formally express the objective of A-CMDP with Π being the policy

space as

max
π∈Π

Ex1 [V π
1 (x1)] , s.t. Jπ

h (y1:H) ≤ (1 + λ)Jπ†
h (y1:H) + hb, ∀h ∈ [H],∀y1:H ∈ Y. (4.1)

Let Πλ,b be the collection of policies that satisfy the anytime constraints in (4.1). We design

an anytime-constrained RL algorithm that explores the policy space Πλ,b in K episodes to

optimize the expected reward Ex1 [V π
1 (x1)]. Note that different from constrained/conservative

MDPs [139, 168, 392, 423, 5, 422], the anytime constraints in (4.1) must be satisfied for

any round in any sampled episode y1:H ∈ Y given relaxed parameters λ, b ≥ 0. To evaluate

the performance of the learned policy πk ∈ Πλ,b, k ∈ [K] and the impact of the anytime

constraints, we consider the regret performance metric defined as

Regret(K) =

K∑
k=1

Ex1

[
V π∗
1 (x1) − V πk

1 (x1)
]
,with πk ∈ Πλ,b (4.2)

where π∗ = arg maxπ∈Π Ex1 [V π
1 (x1)] is the optimal policy without considering the anytime

constraints. When λ or b becomes larger, the constraints get less strict and the algorithm

60

has more flexibility to minimize the regret in (4.2). Thus, the regret analysis will show the

trade-off between optimizing the expected reward and satisfying the anytime cost constraint.

In this paper, we make additional assumptions on the cost functions, transition

functions, and the prior policy which are important for the anytime-constrained algorithm

design and analysis.

Assumption 4. All the cost functions in the space C have a minimum value ϵ ≥ 0, i.e.

∀(x, a),∀h ∈ [H], ch(x, a) ≥ ϵ ≥ 0, and are Lc-Lipschitz continuous with respect to action ah

and the state xh. All the transition functions in the space F are Lf -Lipschitz continuous

with respect to action ah and the state xh. The parameters ϵ, Lc and Lf are known to the

agent.

The Lipschitz continuity of cost function space C and transition function space F

can also be found in other works on Lipschitz MDP [36, 161]. The Lispchitz assumptions

actually apply to many continuous mission-critical systems like cooling systems, power

systems and carbon-aware datacenters [104, 98, 326]. In these systems, the agents have no

access to concrete cost and transition functions, but they usually have the knowledge of the

minimum cost values and the Lipschitz constants of cost and dynamic functions by system

evaluation, and thus can utilize the information to satisfy anytime constraints.

Definition 20 (Telescoping policy). A policy π satisfies the telescoping property if the policy

is used from round h1 to h2 with initialized states xh1 and x′h1
, the corresponding states xh2

and x′h2
at round h2 satisfies

∥xh2 − x′h2
∥ ≤ p(h2 − h1)∥xh1 − x′h1

∥, (4.3)

where p(h) is called a perturbation function with h and p(0) = 1.

61

Assumption 5. The prior policy π† satisfies the telescoping property with some perturbation

function p. Furthermore, π† is Lipschitz continuous.

The telescoping property in Definition 20 is useful, because if it is satisfied by a

policy, then with an initial state perturbation at a fixed round, the maximum divergence

of the states afterwards by employing the policy can be bounded. The telescoping policies

are assumed or verified for many policy priors for online control and decision makings

[387, 269, 268, 245]. A stable policy typically satisfies the telescoping property with small

enough perturbations p(h), h ∈ [H] [387, 253].

4.3.2 Motivating Examples

The anytime constraints have direct motivations from many mission-critical control

systems.

Constrained Cooling Control in Data Centers. In mission-critical infrastruc-

tures like data centers, the agent needs to make decisions on cooling equipment management

to maintain temperature range and achieve high energy efficiency. Over many years, rule-

based policies have been used in cooling systems and have verified cooling performance

in maintaining a suitable temperature for computing [282]. Recently, RL algorithms are

developed for cooling control in data centers to optimize the energy efficiency [409, 104, 282].

The safety concerns of RL policies, however, hinder their deployment in real systems. In

data centers, an unreliable cooling policy can overheat devices and denial critical services,

causing a huge loss [120, 282]. The safety risk is especially high at the early exploration

stage of RL in the real environment. Therefore, it is crucial to guarantee the constraints

62

on cooling performance at anytime in any episode for safety. With the reliable rule-based

policies as control priors, A-CMDP can accurately model the critical parts of the cooling

control problem, opening a path towards learning reliable policy for cooling of data centers.

Workload Scheduling in Carbon-Intelligent Computing. The world is

witnessing a growing demand for computing power due to new computing applications like

AI. The large carbon footprint of computing has become a problem that cannot be ignored

[326, 410, 345, 132]. Studies find that the amount of carbon emission per kilowatt-hour on

electricity grid varies with time and locations due to the various types of electricity generation

[240, 219, 77]. Exploiting the time-varying property of carbon efficiency, recent studies are

developing workload scheduling policies (e.g. delay some temporally flexible workloads)

to optimize the total carbon efficiency [326]. However, an unreliable workload scheduling

policy in warehouse-scale computers can cause a large computing latency, resulting in an

unsatisfactory Quality of Service (QoS). Thus, to achieve a high carbon efficiency while

guaranteeing a low computing latency, we need to solve an A-CMDP which leverages RL to

improve the carbon efficiency while always guaranteeing the QoS requirement compared with

a policy prior focusing on computing latency [122, 174, 95, 442, 441]. This also resembles

the practice of carbon-intelligent computing adopted by Google [326].

4.4 Methods

In this section, we first propose a projection-based algorithm to guarantee the

anytime constraints given any RL policy. Then, we model a new MDP based on the

projection-based algorithm and give an RL algorithm to solve it.

63

4.4.1 Guarantee the Anytime Constraints

It is challenging to guarantee the anytime constraints in (4.1) for an RL policy

in any episode due to the following. First of all, in MDPs, the agent can only observe the

real states {xh}Hh=1 corresponding to the truly-selected actions {ah}Hh=1. The agent does not

select the actions a†h of the prior, so the states of the prior x†h are virtual states that cannot

be observed. Thus, the agent cannot evaluate the costs of the prior jπ
†

h which is in the

anytime constraint at each round h. Also, the action at each round h has an impact on the

costs in the future rounds i, i > h based on the random transition models fi, i ≥ h. Thus,

besides satisfying the constraints in the current round, we need to have good planning for

the future rounds to avoid any possible constraint violations even without exact knowledge

of transition and/or cost models. Additionally, the RL policy may be arbitrarily bad in the

environment and can give high costs (especially when very limited training data is available),

making constraint satisfaction even harder.

Despite the challenges, we design safe action sets {Ah, h ∈ [H]} to guarantee the

anytime constraints: if action ah is strictly selected from Ah for each round h, the anytime

constraints for all rounds are guaranteed. As discussed above, the anytime constraints

cannot be evaluated at any time since the policy prior’s state and cost information is not

available. Thus, we propose to convert the original anytime constraints into constraints that

only depend on the action differences between the real policy and the policy prior and the

known information. We give the design of the safe action sets based on the next proposition.

For the ease of presentation, we denote ci = ci(xi, ai) as the real cost and c†i = ci(x
†
i , π(x†i))

as the cost of the policy prior at round i.

64

Proposition 21. Suppose that Assumption 4 and 5 are satisfied. At round h with costs

{ci}h−1
i=1 observed, the anytime constraints Jπ

h′ ≤ (1 + λ)Jπ†
h′ + h′b for rounds h′ = h, · · · , H

are satisfied if for all subsequent rounds h′ = h, · · · , H,

h′∑
j=h

Γj,j∥aj − π†(xj)∥ ≤ Gh,h′ , ∀h′ = h, · · · , H, (4.4)

where Γj,n =
∑H

i=n qj,i, (j ∈ [H],∀n ≥ j), with qj,i = Lc1(j = i) + Lc(1 + Lπ†)Lfp(i− 1 −

j)1(j < i), (∀j ∈ [H], i ≥ j), relying on known parameters, and Gh,h′ is called the allowed

deviation which is expressed as

Gh,h′ =
h−1∑
i=1

(
(1 + λ)ĉ†i − ci − Γi,hdi

)
+ (h′ − h + 1)(λϵ + b), (4.5)

where ĉ†i = max
{
ϵ, ci −

∑i
j=1 qj,idj

}
, (∀i ∈ [H]), is the lower bound of of c†i , and dj =

∥aj − π†(xj)∥,∀j ∈ [H] is the action difference at round j.

At each round h ∈ [H], Proposition 21 provides a sufficient condition for satisfying

all the anytime constraints from round h to round H given in (4.1). The meanings of the

parameters in Proposition 21 are explained as follows. The weight qj,i measures the impact

of action deviation at round j on the cost difference |ci − c†i | at round i ≥ j, and the weight

Γj,n indicates the total impact of the action deviation at round j on the sum of the cost

differences from rounds n to round H. Based on the definition of qj,i, we get ĉ†i as a lower

bound of the prior cost c†i . With these bounds, we can calculate the maximum allowed total

action deviation comparing with the prior actions π†(xj) from round j = h to h′ as Gh,h′

By applying Proposition 21 at initialization, we can guarantee the anytime con-

straints for all rounds h′ ∈ [H] if we ensure that for all rounds h′ ∈ [H],
∑h′

j=1 Γj,j∥aj −

π†(xj)∥ ≤ G1,h′ = h′(λϵ + b). This sufficient condition is a long-term constraint relying on

65

minimum cost value ϵ and the relaxation parameters λ and b. Although we can guarantee

the anytime constraints by the sufficient condition obtained at initialization, we apply

Proposition 21 at all the subsequent rounds with the cost feedback information to get larger

action sets and more flexibility to optimize the average reward. In this way, we can update

the allowed deviation according to the next corollary.

Corollary 22. At round 1, we initialize the allowed deviation as D1 = λϵ + b. At round

h, h > 1, the allowed deviation is updated as

Dh = max {Dh−1 + λϵ + b− Γh−1,h−1dh−1, Rh−1 + λϵ + b} (4.6)

where Rh−1 =
∑h−1

i=1

(
(1 + λ)ĉ†i − ci − Γi,hdi

)
with notations defined in Proposition 21. The

(λ, b)−anytime constraints in Definition 19 are satisfied if it holds at each round h that

Γh,h∥ah − π†(xh)∥ ≤ Dh.

Corollary 22 gives a direct way to calculate the allowed action deviation at each

round. In the update rule (4.6) of the allowed deviation, the first term of the maximum

operation is based on the deviation calculation at round h − 1 while the second term is

obtained by applying Proposition 21 at round h. By Corollary 22, we can define the safe

action set at each round h as

Ah(Dh) =
{
a | Γh,h∥a− π†(xh)∥ ≤ Dh

}
. (4.7)

With the safe action set design in (4.7), we propose a projection-based algorithm

called ACD in Algorithm 4. We first initialize an allowed deviation as D1 = λϵ + b. When

the output ãh of the ML model is obtained at each round h, it is projected into a safe

66

Algorithm 4 Anytime-Constrained Decision-making (ACD)

Initialization: Initialize an allowed deviation: D1 = λϵ + b.

for h = 1, · · · , H do

Obtain the output of the ML policy π̃ as ãh.

Select the action at by projecting ãh into the safe action set Ah(Dh) in (4.7).

Update the allowed deviation Dh+1 by (4.6).

end for

action set Ah(Dh) depending on the allowed deviation Dh, i.e. ah = PAh(Dh)(ãh) =

arg mina∈Ah(Dh) ∥a− ãh∥. The projection can be efficiently solved by many existing methods

on constrained policy learning or machine learning [422, 87, 24, 256, 133]. The allowed

deviation is then updated based on Corollary 22. Intuitively, if the actions are closer to the

prior actions before h, i.e. the action deviations {di}h−1
i=1 get smaller, then Rh−1 becomes

larger and Dh becomes larger, leaving more flexibility to deviate from a†i , i ≥ h in subsequent

rounds.

4.4.2 Anytime-Constrained RL

The anytime constraints have been satisfied by Algorithm 4, but it remains to

design an RL algorithm to optimize the average reward under the anytime cost constraints,

which is given in this section.

The anytime-constrained decision-making algorithm in Algorithm 4 defines a new

MDP, with an additional set of allowed deviations D to the A-MDP defined in Section 4.3.1,

denoted as M̃(X ,D,A,F , g,H, r, c, π̃, π†). In the new MDP, we define an augmented

state sh which include the original state xh, the allowed deviation Dh ∈ D, and history

67

information {ci}h−1
i=1 and {di}h−1

i=1 . The transition of xh is defined by fh in Section 4.3.1

and needs to be learned while the transition of Dh is defined in (4.6) and is known to the

agent. The ML policy π̃ gives an output ãh and the selected action is the projected action

ah = PAh(Dh)(ãh). Then the environment generates a reward rh(xh, PAh(Dh)(ãh)) and a cost

ch(xh, PAh(Dh)(ãh)). Thus, the value function corresponding to the ML policy π̃ can be

expressed as Ṽ π̃
h (sh) = E

[∑H
i=h ri(xi, PAh(Dh)(ãh))

]
with ãh being the output of the ML

policy π̃. For notation convenience, we sometimes write the actions of π∗ and π† as π∗(s)

and π†(s) even though they only reply on the original state x in s.

To solve the MDP, we propose a model-based RL algorithm called ACRL in Algorithm

5. Different from the existing model-based RL algorithms [312, 42, 440], ACRL utilize the

dynamic model of A-CMDP and ACD (Algorithm 4) to reduce the learning complexity for

A-CMDP. Given an estimation of the transition distribution ĝk at episode k, we perform

value iteration to update Q̃ functions for h = 1, · · · , H.

Q̃k
h(sh, ãh) = rh(xh, ah) + max

g∈Gk

Eg

[
Ṽ k
h+1(sh+1) | sh, ah

]
, Ṽ k

h (sh) = max
a∈A

Q̃k
h(sh, a),

Eg

[
Ṽ k
h+1(sh+1) | sh, ah

]
=
∑
f∈F

Ṽ k
h+1(f(xh, ah), Dh+1)g(f | sh, ah),

(4.8)

where ah = PAh(Dh)(ãh), Q̃H+1,k(s, a) = 0, ṼH+1,k(s) = 0, Gk is the confidence set based on

the estimation of the transition model g. The transition model g is fitted as

ĝk = arg min
g∈G

k−1∑
i=1

H∑
h=1

(
Eg

[
Ṽ i
h+1(sh+1) | sh, ah

]
− Ṽ i

h+1(sh+1, ah+1)
)2

. (4.9)

Based on the transition estimation, we can calculate the confidence set as

Gk =

{
g ∈ G

∣∣∣∣∣
k−1∑
i=1

H∑
h=1

(
Eg

[
Ṽ i
h+1(sh+1) | sh, ah

]
−Eĝk

[
Ṽ i
h+1(sh+1) | sh, ah

])2
≤ βk

}
,

(4.10)

68

Algorithm 5 Anytime-Constrained Reinforcement Learning (ACRL)

1: Initialization: Transition model set G1 = {ĝ1}.

2: for each episode k = 1, · · · ,K do

3: Observe the initial state sk1.

4: Select gk = arg maxg∈Gk Eg

[
V1(s

k
1)
]
.

5: Perform value iteration in Eqn. (4.8) and update Q̃ functions Q̃k
1 · · · , Q̃k

H .

6: for each round h = 1, · · · , H do

7: Run ACD (Algorithm 4) by ML policy π̃k(sh) = arg maxa∈A Q̃k
h(sh, a)

8: Observe state skh+1 and store values Ṽ k
h+1(s

t
h+1).

9: end for

10: Update transition model ĝk+1 using (4.9) and calculate confidence set Gk+1.

11: end for

where βk > 0 is a confidence parameter.

With a learned ML policy π̃k at each episode k, the policy used for action selection

is the ACD policy πk. Given the optimal ML policy π̃∗ = arg maxπ̃∈Π̃ Ṽ π̃
1 (s1) with Π̃ being

the ML policy space, the optimal ACD policy is denoted as π◦. For an augmented state sh at

round h, they select action as

πk(sh) = PAh(Dh)(π̃
k(sh)), π◦(sh) = PAh(Dh)(π̃

∗(sh)). (4.11)

69

4.5 Performance Analysis

In this section, we analyze the regret of ACRL to show the impacts of anytime cost

constraints as well as the reinforcement learning process on the average reward.

4.5.1 Regret Due to Constraint Guarantee

Intuitively, due to the anytime constraints in Eqn. (4.1), there always exists an

unavoidable reward gap between an ACD policy and the optimal-unconstrained policy π∗. In

this section, to quantify this unavoidable gap, we bound the regret of the optimal ACD policy

π◦, highlighting the impact of anytime cost constraints on the average reward performance.

Theorem 4.5.1. Assume that the optimal-unconstrained policy π∗ has a value function

Qπ∗
h (x, a) which is LQ,h-Lipschitz continuous with respect to the action a for all x. The

regret between the optimal ACD policy π◦ that satisfies (λ, b)−anytime constraints and the

optimal-unconstrained policy π∗ is bounded as

Ex1

[
V π∗
1 (x1) − V π◦

1 (x1)
]
≤ Ey1:H

{
H∑

h=1

LQ,h

[
η − 1

Γh,h
(λϵ + b + ∆Gh)

]+}
, (4.12)

where η = supx∈X ∥π∗(x) − π+(x))∥ is the maximum action discrepancy between the policy

prior π† and optimal-unconstrained policy π∗; Γh,h is defined in Proposition 21; ∆Gh =

[Rh−1]
+ is the gain of the allowed deviation by applying Proposition 21 at round h.

The regret bound stated in Theorem 4.5.1 is intrinsic and inevitable, due to

the committed assurance of satisfying the anytime constraints. Such a bound cannot be

improved via policy learning, i.e., converge to 0 when the number of episodes K → ∞.

This is because to satisfy the (λ, b)−anytime constraints, the feasible policy set Πλ,b defined

70

under (4.1) is a subset of the original policy set Π, and the derived regret is an upper bound

of maxπ∈Π Ex1 [V π
1 (x1)] − maxπ∈Πλ,b

Ex1 [V π
1 (x1)]. Moreover, the regret bound relies on the

action discrepancy η. This is because if the optimal-unconstrained policy π∗ is more different

from the prior π†, its actions are altered to a larger extent to guarantee the constraints,

resulting in a larger degradation of reward performance. More importantly, the regret bound

indicates the trade-off between the reward optimization and anytime constraint satisfaction

governed by the parameters λ and b. When λ or b becomes larger, we can get smaller regret

because the anytime constraints in (4.1) are relaxed to have more flexibility to optimize the

average reward. In the extreme cases when λ or b is large enough, all the policies in Π can

satisfy the anytime constraints, so we can get zero regret.

Moreover, the regret bound shows that the update of allowed deviation by applying

Proposition 21 based on the cost feedback at each round will benefit the reward optimization.

By the definition of Rh−1 in Corollary 22, if the real actions deviate more from the prior

actions before h, the gain ∆Gi for i ≥ h can be smaller, so the actions must be closer to

the prior actions in the subsequent rounds, potentially causing a larger regret. Thus, it is

important to have a good planing of the action differences {di}Hi=1 to get larger allowed

deviation for reward optimization. Exploiting the representation power of machine learning,

ACRL can learn a good planning of the action differences, and the ACD policy π◦ corresponding

to the optimal ML policy π̃∗ can achieve the optimal planing of the action differences.

4.5.2 Regret of ACRL

To quantify the regret defined in Eqn. (4.2), it remains to bound the reward gap

between the ACD policy πk and the optimal ACD policy π◦. In this section, we show that πk

71

by ACRL approaches the optimal one π◦ as episode K → ∞ by bounding the pseudo regret

PReg(K) = Ex1

[
K∑
k=1

(
V π◦
1 (s1) − V πk

1 (s1)
)]

. (4.13)

Theorem 4.5.2. Assume that the value function is bounded by V̄ . Denote a set of function

as

Q =

{
q | ∃g ∈ G,∀(s, a, v) ∈ S ×A× V, q(s, a, v) =

∫
Eg

[
v(ds′) | s, a

]}
. (4.14)

If βk = 2(V̄ H)2 log
(
2N (Q,α,∥·∥∞)

δ

)
+CV̄ H with α = 1/(KH log(KH/δ)), C being a constant,

and N (Q, α, ∥ ·∥∞) being the covering number of Q, with probability at least 1−δ, the pseudo

regret of Algorithm 5 is bounded as

PReg(K) ≤ 1 + dQHV̄ + 4
√
dQβKKH + H

√
2KH log(1/δ), (4.15)

where dQ = dimE(Q, 1
KH) is the Eluder dimension of Q defined in [338].

Theorem 4.14 bounds the pseudo regret for each episode k. Existing works on

function approximation of reinforcement learning show that the regret is sublinear with

assumptions on the transition model space [42, 102, 142, 440]. The concrete sublinear regret

bounds under different model space assumptions are of independent interest of this paper,

but we give the regret bound when the transition model g can be represented by a linear

kernel as in [42, 440], i.e. g(f | s, a) = ⟨ϕ(f |, s, a), θ⟩ with dimension of θ as dθ. Under this

assumption, we have βK = O((V̄ H)2 log(1δN (Q, α, ∥ · ∥∞))) = O
(
(V̄ H)2 log(1δ (1/α)dθ

)
=

Õ((V̄ H)2(dθ + log(1/δ))) [42], and the Eluder dimension is dQ = Õ(dθ) [338]. Thus the

pseudo regret is PReg(K) = Õ(
√
H3V̄ 2K log(1/δ)) which is sublinear in terms of K.

With the sublinear pseudo regret, the ACD policy πk performs as asymptotically

well as the optimal ACD policy π◦ when K → ∞. Combining with the regret of the optimal

72

ACD policy in Theorem 4.5.1, we can bound the regret of ACRL as

Regret(K)≤KEy1:H

{
H∑

h=1

LQ,h

[
η − 1

Γh,h
(λϵ + b + ∆Gh)

]+}
+Õ(

√
H3V̄ 2K log(1/δ)),

(4.16)

which includes an unavoidable part due to the commitment to satisfy the anytime constraints

as illustrated in Theorem 4.5.1 and a sublinear part induced by policy learning. The first

regret term indicates the trade-off between the optimization of the average reward and the

anytime constraint satisfaction while the second term shows the effect of ACRL in improving

the reward under the anytime constraints.

We also experiment with the application of resource management for carbon-aware

computing [326] to empirically show the benefits of ACRL. Unlike the existing algorithms that

either result in a low reward or violate the anytime Quality-of-Service constraint, our results

demonstrate that ACRL can improve the average performance in terms of the operational

cost while still offering guaranteed QoS.

4.6 Empirical Results

4.6.1 Problem Formulation

We consider the sustainable workload scheduling problem in datacenters to jointly

optimize carbon efficiency and revenue while guaranteeing the quality-of-service (QoS). In

this problem, the average carbon efficiency and revenue can be optimized while QoS must

always be ensured at each step. The agent needs to decide the computing resource ah

measured by energy (kWh) for each round h. The state xh is the remaining demand for

73

each round h and is updated as

xh = f(xh−1, µh, ah) = [Vx(xh−1) + µh − Va(ah)]+, (4.17)

where Vx is a random function of xh−1 measuring the randomly decayed remaining demands

(e.g., due to workload dropping), µh is arrival demand at round h, and Va is a random

function in terms of ah and xh and outputs the amount of processed workload. With

the random functions Vx and Va, the remaining workload xh at round h is drawn from

P(xh | xh−1, µh, ah). Here, we focus on flexibly deferrable workloads (e.g., model training

and batch data processing) [326].

The energy efficiency reward is modeled by a penalty for the carbon footprint at

each round. Let Ch be the amount of renewable at round h, the energy efficiency reward is

expressed as efficiencyh = −([ah − Ch]+)2. The revenue function is modeled as a general

power-law function [349] as revenueh = CrV
α
a (ah) with α ∈ (0, 1). In datacenters, we also

need to consider a switching cost γ2∥ah − ah−1∥ at each round h to avoid switching on/off

servers frequently. Thus, the reward in this problem is formulated as

rewardh = efficiencyh + γ1 · revenueh − γ2 · ∥ah − ah−1∥2. (4.18)

Besides the reward, QoS is also crucial for deferrable workloads in datacenters. In

this work, we model QoS as a cost function of the remaining demand as follows:

costQoS,h = x⊤hQ1xh + Q⊤
2 xh + Q3, (4.19)

where Q1, Q2 and Q3 are constants.

As shown in Eqn. (4.1), given a baseline π† that has been verified to achieve a

satisfactory QoS, our goal is to optimize the expected reward and guarantee the QoS for

74

any time in any sequence, i.e.

min
π∈Π

E

[
H∑

h=1

rewardh

]
,

s.t.

h′∑
h=1

costQoS,h(π) ≤ (1 + λ)

h′∑
h=1

costQoS,h(π†) + h′b, ∀h′ ∈ [H],

(4.20)

which is consistent with the definition of anytime constraints in Definition 19.

4.6.2 Baselines

In the experiments, we consider different baselines as below.

• QoS Optimization (OPT-QoS): This baseline policy prior directly optimizes QoS

in (4.19) based on estimated models V̂x and V̂a. Without taking efficiency or revenue into

consideration, OPT-QoS essentially always schedules as many computing resources as possible

to lower the QoS cost based on the estimated arrival demand.

• Reinforcement Learning (RL): This is a model-based reinforcement learning

algorithm [42] to optimize the expected reward E
[∑H

h=1 rewardh

]
without considering any

QoS constraints.

• Constrained Reinforcement Learning (CRL): This is a constrained reinforcement

learning to optimize the reward with the expected QoS cost constraint as shown below:

min
π∈Π

E

[
H∑

h=1

rewardh

]
, s.t.E

[
H∑

h=1

costQoS,h(π) − (1 + λ)

H∑
h=1

costQoS,h(π†)

]
≤ B. (4.21)

• Random RL policy with ACD (Random +ACD): This algorithm selects actions by

ACD in Algorithm 4 with a random RL policy π̃ as input of ACD.

• Trained RL policy with ACD (RL +ACD): This algorithm selects actions by ACD in

Algorithm 4 with the RL policy trained to optimize the expected reward without accounting

for QoS.

75

• Anytime-Constrained Reinforcement Learning (ACRL): This is the proposed

Algorithm 5 which optimizes the expected reward while guaranteeing the anytime QoS cost

constraints in (4.1). In each inference, ACD in Algorithm 4 is used to select actions.

4.6.3 Experiment Settings

In the experiments, we evaluate the performances with the following experiment

settings.

System Parameters. We evaluate the regret and the cost constraints for different

choices of parameters. The results are given for different anytime constraint parameters

including λ chosen from [0, 10] and b chosen from {2, 6}. With smaller λ and b, we have

more stringent constraints, and vice versa. In the experiments, we choose α = 0.5 for the

revenue function to simulate a typical effect of the scheduled resource on the revenue. To

scale different rewards into the same magnitude, we choose the weight for the revenue as

γ1 = 4, and the weight for the switching cost as γ2 = 1. For the QoS cost function, we

choose Q1 = Q2 = Q3 = 1, so we have the minimum QoS cost as ϵ = Q3 = 1. The transition

model f are from a function space defined by random functions Vx and Va. To create the

environment for RL, Vx(xh) is drawn from a uniform distribution with range [0.9 · xh, xh],

and Va(ah) is drawn from a normal distribution with 0.8 · ah as the center.

Data. For experiments, we create an environment based on a renewable dataset and

a demand dataset. The renewable dataset is a public dataset from California Independent

System Operator [310] which contains the hourly renewable generation in 2019. The

renewable sequences from multiple sources (solar, wind, water) are summed together and

scaled to be the renewable of {Ch}Hh=1 in the problem formulation. In addition, we use the

76

0 100 200 300 400 500
Episode

0

20

40

60

80

Re
gr

et

OPT-QoS
RL
CRL (= 2, b = 2)

ACRL (= 2, b = 2)
ACRL (= 10, b = 2)
ACRL (= 10, b = 6)

(a) Regret per episode

0 2 4 6 8 1030

40

50

60

Re
gr

et

RL+ACD (b = 2)
RL+ACD (b = 6)

ACRL (b = 2)
ACRL (b = 6)

(b) Regret w.r.t. λ

Figure 4.1: Regret of different algorithms.

Azure Cloud Dataset [115] as the demand dataset which includes hourly CPU utilization

in the same year of 2019. We choose the sequences of the first three months and augment

them to 4000 episodes for policy exploration, and we hold out the sequences of the last two

months for testing.

Learning Settings. To ensure fair comparisons, we choose the same neural

network architecture as the policy network for different methods. The policy neural network

has two hidden layers and each hidden layer has 40 neurons. For training, the policy network

parameters are initialized by Gaussian distribution. The reinforcement learning has total

K = 4000 episodes. We update the neural network every 50 episodes with a weight update

rate of 10−3. We apply Adam optimizer to update the weights of neural networks.

4.6.4 Results

We show the empirical results for both regret and QoS cost.

Regret Evaluation. The reward regrets as defined in Eqn. (4.2) are given in

Figure 4.1. To evaluate the regret, we use the RL policy after the exploration for total 4000

77

CRL Random+ACD RL+ACD ACRL
Algorithm

0
100
200
300
400
500

W
or

st
-c

as
e

Co
st

3 max(JH) + 48

7 max(JH) + 48

= 2
= 6

(a) Worst-case cost

CRL Random+ACD RL+ACD ACRL
Algorithm

0

100

200

300

Av
er

ag
e

Co
st

3 (JH) + 48

7 (JH) + 48 = 2
= 6

(b) Average cost

Figure 4.2: QoS costs of different algorithms.

episodes as the optimal RL policy π∗. The results are given for different anytime constraint

parameters λ and b

Figure 4.1(a) shows the varying regret of different algorithms for the first 500

episodes. Without including reward as an objective, the policy prior OPT-QoS is an algorithm

that is not updated over time and always gives the highest regret. Without the QoS cost

constraints, RL approaches the optimal RL policy that can give the best regret as time goes

on. The constrained RL CRL and anytime-constrained RL ACRL are guaranteed to satisfy

the expected constraint in (4.21) and the anytime constraints in (4.1), respectively, so their

reward regrets are higher than RL. Also, we can find that with larger λ and/or b, ACRL

can achieve lower regret after about 200 episodes. This is because the larger λ or b gives

less stringent anytime constraints and leave more flexibility to reduce regret as shown in

Theorem 4.5.1. Moreover, we can observe that ACRL with small λ and b (e.g. λ = 2, b = 2 in

the figure) converges faster to the optimal policy under the anytime constraints. The reason

is that the constraints with small λ and b provide small policy space to explore, resulting in

a smaller Eluder dimension dQ shown in Theorem 4.5.2.

78

In Figure 4.1(b), we give the optimal regret of the algorithms after enough explo-

ration. ACRL and RL +ACD are different in terms of the RL policy π̃ used in Algorithm 4.

The regret of Random +ACD uses randomly initialized RL policy as π̃ and has a regret as

large as from 61 to 64.51, exceeding the limit of the regret axis. The optimal regrets of

different algorithms decrease the parameter λ given a fixed b, and a smaller b gives smaller

optimal regrets given a fixed λ, which is consistent with the findings in Theorem 4.5.1.

Importantly, we can find that under the same λ and b, ACRL can always improve the regret

of RL +ACD. This is because RL explores the original A-CMDP defined in Section 4.3.1 while

ACRL explores the new MDP defined at the beginning of Section 4.4.2, which represents

the true environment created by ACD. This highlights the advantage of ACRL in terms of

reducing the reward regret by learning with awareness of the anytime constraints in the true

environment.

Cost Evaluation.

Figure 4.2(a) gives the worst-case cost of different algorithms for all the sequences

in the testing dataset. The RL algorithm without considering the cost objective achieves

the worst-case cost of 5015.62, exceeding the range of the cost axis to a large extent. The

dotted horizon lines show the maximum cost bound required by the anytime constraint in

Definition 19. Clearly, we can find that given any RL policy (even a randomly initialized

RL policy) as input ACD can guarantee the anytime constraints even for the worst-case, but

CRL fails to guarantee the anytime constraints. In the experiments, we verify that all ACD

algorithms have zero violation of anytime constraints no matter what ML policy is used,

but CRL has a violation rate of 27.5% for λ = 2 and a violation rate of 58.6% for λ = 6.

79

Figure 4.2(b) shows the average cost of different algorithms for all the sequences in

the testing dataset. The RL algorithm achieves an average QoS cost of 2070.14, exceeding

the range of the cost axis to a large extent. The dotted lines give the maximum average QoS

cost bound required by the expected constraint in (4.21). Since CRL is designed to optimize

the regret subject to the average QoS constraints in (4.21), it has no violation in terms of the

average QoS cost. The algorithms that use ACD guarantees the stricter anytime constraints

than the average constraint, so they can also guarantee the average QoS constraint.

4.7 Concluding Remarks

This chapter considers a novel MDP setting called A-CMDP where the goal is

to optimize the average reward while guaranteeing the (λ, b)−anytime constraints. The

anytime constraints require the cost of a learned policy never exceed that of a policy prior

π† for any round h in any episode. To guarantee the anytime constraints, we design ACD,

which projects the output of an ML policy into a safe action set at each round. Then, to

optimize the average reward under the anytime constraints, we formulate the decision process

of ACD as a new MDP and propose an efficient model-based RL algorithm to explore the

optimal RL policy in ACD. Our performance analysis shows that the regret compared with

the optimal-unconstrained policy includes a term quantifying the impact of (λ, b)−anytime

constraints on the average reward optimization and a term showing the effectiveness of

policy learning.

80

Chapter 5

Learning-Assisted Online

Optimization With Budget

Constraints

5.1 Introduction

Online optimization with budget (or inventory) constraints, also referred to as

OOBC, is an important problem modeling a wide range of sequential decision-making

applications with limited resources, such as online virtual machine resource allocation

[213, 315], one-way trading in economics [140], resource management in wireless networks

[304, 231], and data center server provisioning [165]. More specifically, when virtualizing

a physical server into a small number of virtual machines (VMs) to satisfy the demand of

multiple sequentially-arriving jobs, the agent must make sure that the total VM resource

81

consumption is no more than what the physical server can provide [395]. Under such

resource constraints, the agent decides the VM allocations to optimize the reward of demand

satisfaction.

In an OOBC problem, online actions are selected sequentially to maximize the

total utility over a short time horizon while the resource consumption over the time horizon

is strictly constrained by a fixed amount of budgets (i.e., violating the budget constraint is

naturally prohibited due to physical constraints). Consequently, the short time horizon (e.g.,

24 hourly decisions in a day) and the strict budget constraint present substantial algorithmic

challenges — the optimal solution relies on complete offline context information, but in

the online setting, only the online contexts are revealed and the exact future contexts are

unavailable for decision making [266, 265].

A relevant but different problem is online optimization with (long-term) constraints

[48, 146, 304, 43]. In the literature, a common approach is to relax the long-term capacity

constraints and include them as additional weighted costs into the original optimization

objective, i.e., Lagrangian relaxation [126, 447, 48, 304]. The Lagrangian multiplier can be

interpreted as the resource price [315], and is updated at each time step by a manually-

designed algorithm such as Dual Mirror Descent (DMD) [48, 405, 210]. These algorithms

require a sufficiently long time horizon for convergence, which hence may not provide

satisfactory performance for short-term budget constraints, especially when contexts in an

episode are not identically independently distributed (i.i.d.). Additionally, some studies

consider constraints on average (i.e., equivalently, long-term constraints) [324, 191] or bound

the violation of the constraints [304, 429, 376]. Thus, these algorithms consider different

82

settings and do not apply to strict budget constraints over a short time horizon, and we

need to design new algorithms for settings with short time horizon.

The challenges of OOBC with short-term and strict budget constraints can be

further highlighted by that competitive online algorithms have only been proposed very

recently under settings with linear constraints [266, 265]. Concretely, CR-Pursuit algorithms

are proposed to make actions by following a pseudo-optimal algorithm based on the com-

petitive ratio pursuit framework. Nonetheless, to make sure the solution exists for each

OOBC episode, the guaranteed competitive ratio (ratio between the algorithm cost and

the offline-optimal cost) can be large. Also, they treat each OOBC problem instance as

a completely new one and focus on the worst-case competitive ratio without considering

the available historical data obtained when solving previous OOBC episodes. Thus, their

conservative nature does not result in a satisfactory average performance, which may limit

the practicability of these algorithms.

By tapping into the power of historical data, a natural idea for OOBC is to train an

machine learning (ML) based optimizer. Indeed, reinforcement learning has been proposed to

solve online allocation problems in other contexts [228, 17, 134]. But, the existing ML-based

algorithms for online optimization typically learn online actions in an end-to-end manner

without exploiting the structure of the online problem being studied, which hence can have

an unnecessarily high learning complexity and create additional challenges for generalization

to unseen problem instances [96, 272].

Contribution. We study OOBC with short-term and strict budget constraints,

and propose a novel ML-assisted unrolling approach based on recurrent architectures, called

83

LACC (Learning-Assisted Algorithm Unrolling). Instead of using an end-to-end ML model

to directly learn online actions, LACC uniquely exploits the LACC problem structure and

unrolls the agent’s online decision pipeline into decision pipeline with three stages/layers

— update the Lagrangian multiplier, optimize decisions subject to constraints, and update

remaining resource budgets — and only plugs an ML model into the first stage (i.e.,

update the Lagrangian multiplier) where the key bottleneck for better performance exists.

Thus, compared with the end-to-end model, LACC benefits generalization by exploiting the

knowledge of decision pipeline [96]. Moreover, when the action dimension is larger than

the number of constraints (i.e., the dimension of Lagrangian multipliers), the complexity

advantage of using LACC to learn Lagrangian multipliers can be further enhanced compared

to learning the actions using an end-to-end model.

It is challenging to train LACC through backpropagation since the constrained

optimization layer is not easily differentiable. Thus, we derive tractable gradients for back-

propagation through the optimization layer based on Karush-Kuhn-Tucker (KKT) conditions.

In addition, we rigorously analyze the performance of LACC in terms of the expected cost for

both the case when the offline distribution information is available and the case when the

data is collected online. Finally, to validate LACC, we present numerical results by considering

online resource allocation for maximizing the weighted fairness metric. Our results highlight

that LACC can significantly outperform the existing baselines and is very close to the optimal

oracle in terms of the fairness utility.

84

5.2 Related Works

Constrained Online Optimization. Some earlier works [125, 146] solve online

optimization with (long-term) constraints by estimating a fixed Lagrangian multiplier using

offline data. This approach works only for long-term or average constraints. Many other

studies design online algorithms by updating the Lagrangian multiplier in an online style

[126, 48, 405, 210]. These algorithms guarantee sub-linear regrets under the i.i.d. context

setting, and thus can achieve high utility if the number of time steps is sufficiently large.

Likewise, the Lyapunov optimization approach addresses the long-term packing constraints

by introducing virtual queues (equivalent to the Lagrangian multiplier) [304, 429, 197].

Nonetheless, it also requires a sufficiently large number of time steps for convergence. By

contrast, we consider online optimization with short-term strict budget constraints, which,

motivated by practical applications, makes OOBC significantly more challenging.

Our work is relevant to the studies on OOBC [266, 265] which design online

algorithms to achieve a worst-case performance guarantee. However, to guarantee the worst-

case performance and the feasibility of the algorithm, the algorithms are very conservative

and their average performances are unsatisfactory. Comparably, we consider a more general

setting where the budget constraint can be nonlinear, and utilize available historical data

more efficiently to design ML-based LACC that unrolls the online decision pipeline and

achieves favorable average performance.

Algorithm Unrolling. LACC is related to the recent studies on ML-assisted

algorithm unrolling and deep implicit layers, which integrate ML into traditional algorithmic

frameworks for better generalization and interpretability, lower sampling complexity and/or

85

smaller ML model size [6, 96, 227, 300, 272]. Algorithm unrolling has been used for sparse

coding [183], signal and image processing [300, 255], and solving inverse problems [226] and

ordinary differential equations (ODEs) [94]. Also, algorithm unrolling is applied in learning

to optimize (L2O) [96, 406]. Among these works, [303] predicts the Lagrangian multiplier by

a model to efficiently solve offline optimizations which may have a large number of constraints

but allow constraint violations. These studies have their own challenges orthogonal to our

problem where the key challenge is the lack of complete offline information. Thus, LACC,

to our knowledge, is the first to leverage ML to unroll an online optimizer for solving the

online convex optimization with budget constraints, thus having better generalization than

generic RL-based optimizers to directly obtain end solutions [17, 134, 228].

5.3 Problem Formulation

In this section, we formulate the problem of OOBC and fomally show the challenges

of OOBC. As in the existing ML-based optimizers for online problems [228, 17, 134], we

consider an agent that interacts with a stochastic environment. The time horizon of an

episode consists of N time steps. For an episode, two vectors c = [c1, · · · , cN]⊤ and

B = [B1, · · · , BM]⊤, where ct is a context vector and Bm ∈ R+ is the total budget for

resource m, are drawn from a certain joint distribution (c,B) ∼ P, which we refer to as

the environment distribution. Note that ci and cj for i ̸= j can follow different probability

distributions, and so can Bi and Bj for i ≠ j. The random vector B = [B1, · · · , BM]⊤

are revealed at the beginning of an episode, and represents the budgets for M types of

resources. On the other hand, c = [c1, · · · , cN]⊤ are online contexts sequentially revealed

86

over N different steps within an episode. That is, at step t, the agent only knows c1, · · · , ct,

but not the future parameters ct+1, · · · , cN .

At each step t = 1, · · · , N , the agent makes a decision xt ∈ Rd, consumes some

budgets, and also receives a utility. Given the decision xt and parameter ct, the amount

of the resource consumption is denoted as a non-negative function gm(xt, ct) ≥ 0, for

m = 1, · · · ,M . To be consistent with the notation of loss function, we use a cost or loss

l(xt, ct) to denote the negative of the utility — the less l(xt, ct), the better. As the cost

function l(·, ct) is parameterized by ct, knowing ct is also equivalent to knowing the cost

function. We assume that the loss function l and the constraint functions gm,m = 1, · · · ,M

are twice continuously differentiable, and either the loss function l or one of the constraint

functions gm,m = 1, · · · ,M is strongly convex in terms of the decision xt.

For each episode with (c,B) ∼ P , the goal of the agent is minimizing its total cost

over the N steps subject to M resource capacity constraints, which we formulate as follows:

min
x=(x1,··· ,xN)

N∑
t=1

l(xt, ct),

s.t.

N∑
t=1

gm(xt, ct) ≤ Bm,m = 1, · · · ,M.

(5.1)

This is an online optimization problem with inventory constraints (referred to as OOBC) in

the sense that the short-term strict inventory constraints are imposed for each episode of N

time steps. An episode has its own M capacity constraints which should be strictly satisfied,

and the unused budgets cannot roll over to the next episode. For ease of notation, given a

policy π which maps available inputs to feasible actions, we denote L(π) =
∑N

t=1 l(xt, ct) as

the total loss for one episode and E [L(π)] as the expected total loss over the distribution of

(c,B) ∼ P.

87

The setting of OOBC presents new technical challenges compared with existing

works on constrained online optimization. Specifically in OOBC, the time horizon in an

episode (episode length) is finite and can be very short. In this case, there are not many

steps for algorithms to converge, and bad decisions at early steps have a large impact on

the overall performance. Thus, DMD [48, 405, 210] and Lyapunov optimization [304] which

are specifically designed for long episodes may not provide good results for OOBC. Besides,

unlike some studies that satisfy average constraints [324, 191] or that only approximately

satisfy the constraints under bounded violations (i.e., soft constraints) [429, 428, 376], OOBC

requires all the constraints in Eqn. (5.1) be strictly satisfied. This requirement is necessary

for many practical applications with finite available resources (e.g., a data center’s power

capacity must not be exceeded [143]), but makes the problem more challenging. Last but

not least, the contexts in one episode in OOBC are drawn from a general joint distribution

(not necessarily i.i.d.). Under non-i.i.d. cases, DMD[48] has performance guarantees only

when each episode is long enough. CR-Pursuit[266, 265] has competitive ratios but is too

conservative and may not perform well on average. To improve the average performance of

OOBC, new algorithms are needed to effectively utilize history data of previous episodes.

5.4 Learning-Assisted Algorithm Unrolling

In this section, we propose a novel learning-assisted online algorithm, called LACC,

to solve the OOBC problem.

88

5.4.1 Relaxed Optimization

The design of LACC is based on the Lagrangian relaxed optimization method which

is introduced here. Since it is difficult to directly solve the constrained optimization in

Eqn. (5.1) due to the lack of complete offline information in an online setting, many studies

[35, 48, 304] solve the Lagrangian relaxed form written as follows:

min
x=(x1,··· ,xN)

N∑
t=1

l(xt, ct) + λ⊤
N∑
t=1

g(xt, ct), (5.2)

where g(xt, ct) = [g1(xt, ct), · · · , gM (xt, ct)]
⊤ and λ = [λ1, · · · , λM]⊤ is the non-negative

Lagrangian multiplier corresponding to the M constraints
∑N

t=1 g(xt, ct) ≤ B. The multiplier

λ with M dimensions essentially relaxes the M inventory constraints, thus decoupling the

decisions over the N time steps within an episode. It is also interpreted as the resource

price in the resource allocation literature [315, 71, 304]: A greater λt means a higher price

for the resource consumption, thus pushing the agent to use less resource. Clearly, had we

known the optimal Lagrangian multiplier λ∗ at the beginning of each episode, the OOBC

problem would become very easy. Unfortunately, knowing λ∗ also requires the complete

offline information (c,B), which is not possible in the online case. Nevertheless, if we can

appropriately update λt in an online manner while strictly satisfying the constraints, we can

also efficiently solve the OOBC problem. Formally, by using λt that is updated online for

each step t, we can instead solve the following relaxed problem:

min
xt

l(xt, ct) + λ⊤
t g(xt, ct), s.t., g(xt, ct) ≤ bt, (5.3)

where λt = [λt,1, · · · , λt,M]⊤, g(xt, ct) = [g1(xt, ct), · · · , gM (xt, ct)]
⊤, and the remaining

budget for step t is bt = B −
∑t−1

s=1 g(xs, cs).

89

In fact, designing good update rules for λt for each step t = 1, · · · , N is commonly

considered in the literature [48, 10]. For example, [48] update λt by DMD, in order to meet

long-term constraints while achieving a low regret compared to the optimal oracle. Nonethe-

less, it requires a large number of time steps to converge to a good Lagrangian parameter.

Likewise, the Lyapunov optimization technique introduces a virtual queue, whose length

essentially takes the role of λt and is updated as λt+1 = max
{
λt + g(xt, ct) − 1

NB, 0
}

or in

other similar ways [304]. Nonetheless, the convergence rate of using Lyapunov optimization

is slow (even assuming ct is i.i.d. for t = 1, · · · , N), and there exists a tradeoff between cost

minimization and long-term constraint satisfactory, making it unsuitable for the short-term

constraints that we focus on.

Alternatively, one may want to exploit the distribution information of (c,B) ∼ P

and solve a relaxed problem offline by considering M average constraints (referred to

as AVG-LT). That is, we replace the short-term capacity constraints in Eqn. (5.1) with

EP

[∑N
t=1 gm(xt, ct)

]
≤ Bm for m = 1, · · · ,M . By solving this relaxed problem, we can

obtain a Lagrangian multiplier λP that only depends on P but not the specific (c,B).

Thus, we can replace λt in Eqn. (5.3) with λP . However, since this method uses a constant

Lagrangian multiplier for all episodes, we will either be overly conservative and not using

the budgets as much as possible, or violating the the constraints.

5.4.2 Algorithm Unrolling

We propose to leverage the powerful capacity of ML to find a solution. One

approach is to train an end-to-end model that takes the online input information and

90

Algorithm 6 Online Inference Procedure of LACC

Require: ML model fθ.

1: for t=1 to N do

2: Receive ct, forward propagate fθ and get Lagrangian multiplier λt = fθ (bt, ct, t̄).

3: Solve the constrained convex optimization in (5.4) and make action xt.

4: Update the resource budget bt+1 = bt − g(xt, ct).

5: end for

Figure 5.1: Architecture of LACC.

directly outputs a decision. But, the end-to-end model should be large enough to capture

the possibly complex logic of the optimal policy, and the end-to-end models often have

poor interpretability and worse generalization (see the comparison between LACC and the

generic end-to-end approach in Section 5.7). Therefore, instead of replacing the whole

decision pipeline with ML, we only plug an ML model in the most challenging stage — online

updating of the Lagrangian multiplier λt needed to solve the relaxed problem in Eqn. (5.3).

As shown in Algorithm 6 and illustrated in Fig. 5.1, the decision pipeline at step t

can be decomposed into three stages as follows.

91

Updating λt. At the beginning of step t = 1, · · · , N , the ML model takes

the parameter ct, the remaining budget bt = [bt,1, · · · , bt,m]⊤ and the normalized number

of remaining steps t̄ = N−t
N as the inputs, and outputs the Lagrangian multiplier λt =

[λt,1, · · · , λt,m]⊤. Letting fθ denote the ML model parameterized by θ, we have λt =

fθ (bt, ct, t̄) .

Optimization Layer. In the optimization layer, we solve a relaxed convex problem

formulated in Eqn. (5.3). The natural constraints on the remaining resource budgets ensure

that the strict inventory constraints are always satisfied by LACC. We denote the optimization

layer as p(ct, λt, bt) and thus have:

xt = p(ct, λt, bt)=argmin
x

(
l(x, ct) + λ⊤

t g(x, ct)
)
,

s.t., g(x, ct) ≤ bt.

(5.4)

Updating Resource Budgets. In the last stage, the remaining resource budgets

serve as an input for the next recurrence and are updated as bt+1 = B −
∑t

s=1 g(xs, cs) =

bt − g(xt, ct).

Each episode includes N recurrences, each for one decision step. The cost for step

t is calculated after the optimization layer as l(xt, ct). Note that in the N -th recurrence

which is the final stopping step, the remaining budget br = bN − g(xN , cN) will be wasted if

not used up. Thus, we directly set λN = 0 for the N -th unrolling unit.

5.5 Training the Unrolling Architecture

In this section, we first consider the offline training where offline data is available.

Then we extend to the online training setting where the data is collected online.

92

5.5.1 Offline Training

Training Objective

For the ease of notation, we denote the online optimizer as hθ (B, c). For offline

training, we are given an unlabeled training dataset S = {(c1,B1) , · · · , (cn,Bn)}, with n

samples of (c,B). The training dataset can be synthetically generated by sampling from

the target distribution for the online input (c,B), which is a standard technique in the

context of learning to optimize [96, 117, 238, 134]. By forward propagation, we can get

the empirical training loss as L(hθ, S) = 1
n

∑n
i=1

∑N
t=1 l(xi,t, ci,t) where xi,t is the output

of the online optimizer hθ regarding ci and Bi. By minimizing the empirical loss, we get

θ̂ = arg minθ L(hθ, S).

Backpropagation

Typically, the minimization of the training loss is performed by gradient descent-

based algorithms like SGD or Adam, which need back propagation to get the gradient of the

loss with respect to the ML model weight θ. Nonetheless, unlike standard ML training (e.g.,

neural network training with only linear and activation operations), our unrolled recurrent

architecture includes an implicit layer — the optimization layer [227]. Additionally, the

unrolling architecture has multiple skip connections. Thus, the back-propagation process

is dramatically different from that of standard recurrent neural networks. Next, we derive

the gradients for back propagation in our unrolling design. Note that the loss l(xt, ct) for

any t = 1, · · · , N is directly determined by the output of the optimization layer xt and the

93

parameter ct, and xt needs back propagation. Thus, by the chain rule, we have

▽θl(xt, ct)=▽xtl(xt, ct)(▽λtxt▽θ λt+▽btxt▽θ bt) . (5.5)

To get ▽λtxt and ▽btxt in Eqn. (5.5), we need to perform back propagation for

the optimization layer p(ct, λt, bt). This is a challenging task and will be addressed in

Section 5.5.1. The other gradients in Eqn. (5.5) include ▽θλt and ▽θbt. Note that λt, which

is the ML model output directly determined by its ML model weight θ, and the remaining

budget bt both need back propagation. Thus, the gradient of λt with respect to the ML

model weight θ is expressed as

▽θλt = ▽θfθ (bt, ct, t̄) + ▽btfθ (bt, ct, t̄) ▽θ bt, (5.6)

Now, it remains to derive ▽θbt, which is important since bt is the signal connecting two

adjacent recurrences. By the expression of bt in Line 4 of Algorithm 6, we have

▽θbt = ▽θbt−1 + ▽xt−1g(xt−1, ct−1) ▽λt−1xt−1 ▽θ λt−1, (5.7)

Combining Eqn. (5.5), (5.6) and (5.7), we get the recurrent expression for back propagation.

Then, by adding up the gradients of the losses over N time steps, we get the gradient of the

total loss as ▽θL(hθ, S) = 1
n

∑n
i=1

∑N
t=1▽θl (xi,t, ci,t).

Differentiating the Optimization Layer

It is challenging to get the close-form solution and its gradients for many constrained

optimization problems. One possible remedy is to use some black-box gradient estimators

like zero-order optimization [273, 337]. However, zero-order gradient estimators are not

computationally efficient since many samples are needed to estimate a gradient. Another

94

method is to train a deep neural network to approximate the optimization layer in Eqn. (5.4)

and then calculate the gradients based on the neural network. However, we need many

samples to pre-train the neural network, and the gradient estimation error can be large.

To address these challenges, we analytically differentiate the solution to Eqn. (5.4) in

the optimization layer with respect to the inputs λt, and bt by exploiting KKT conditions

[227, 71]. The KKT-based differentiation method, given in Proposition 23, is computationally

efficient, explainable and accurate (under mild technical conditions).

Proposition 23 (Back-propagation by KKT). Assume that xt and µt are the primal and

dual solutions to Eqn. (5.4) , respectively. Let ∆11 = ▽xtxt l (xt, ct)+
∑M

m=1 (λm,t + µm,t)▽xtxt

gm(xt, ct), ∆12 = [▽xtg (xt, ct)]
⊤, ∆21 = diag(µt)▽xtg (xt, ct), and ∆22 = diag (g (xt, ct) −Bt).

If the conditions in Proposition 24 are satisfied, the gradients of the optimization layer w.r.t.

λt and bt are

▽λtxt = −
(

∆−1
11 + ∆−1

11 ∆12Sc (∆,∆11)
−1 ∆21∆

−1
11

)
∆12,

▽btxt = −∆−1
11 ∆12Sc (∆,∆11)

−1 diag(µt),

where Sc (∆,∆11) = ∆22 − ∆21∆
−1
11 ∆12 denotes the Shur-complement of ∆11 in ∆ =

[[∆11,∆12]; [∆21,∆22]]. □

We find that to get truly accurate gradient computation by Proposition 24, the Shur-

complement Sc (∆,∆11) and ∆11 should be invertible. Otherwise, we can get approximated

gradients by taking pseudo-inverse of Sc (∆,∆11) and ∆11. The sufficient conditions to

guarantee perfectly accurate gradient computation are given in Proposition 24.

95

Proposition 24 (Sufficient Conditions of Accurate Differentiation). Assume that the problem

in Eqn. (5.4) satisfies strong duality. The loss l or one of the constraints gm,m = 1, · · · ,M is

strongly convex with respect to x. Denote A as the index set of constraints that are activated

(i.e., equality holds) under the optimal solution. If µm,t ̸= 0, ∀m ∈ A, the size of the activation

set satisfies |A| ≤ d with d as the action dimension, and the gradients ▽xtgm(xt),m ∈ A

are linearly independent and not zero vectors, the gradients in Proposition 23 are perfectly

accurate.

Remark 25. To derive the gradient of Eqn. (5.4) with respect to an input parameter, we

take gradients on both sides of the equations in KKT conditions by the chain rule and get new

equations about the gradients. By solving the obtained set of equations and exploiting the block

matrix inversion, we can derive the gradients with respect to the inputs in Proposition 23.

The conditions in Proposition 24 are mild in practice. First, strong duality is easily

satisfied for the considered convex optimization in Eqn. (5.4) given the Slater’s condition [71].

Besides, the requirement of strong convexity excludes linear programming (LP). Actually,

LP problems with resource constraints are usually solved by other relaxations other than

our considered relaxation in Eqn. (5.2) [126]. The other conditions are related to activated

constraints. According to the condition of complementary slackness [71], the condition that

optimal dual variables corresponding to the activated constraints are not zero typically holds.

We also require that the number of activated constraints is less than the action dimension,

and the gradient vectors of the activated constraint functions under optimal solutions should

be independent from each other. Given that at most a small number of constraints are

activated in most cases, the two conditions are easily satisfied. Actually, the independence

96

condition requires that the activated constraints are not redundant — an activated constraint

function is not a linear combination of any other activated constraint functions; otherwise,

it can be replaced by other constraints.

5.5.2 Online Training

Algorithm 7 Online Training of LACC

1: Initialization: The weight θ̂0 of the unrolling model, step size ᾱ.

2: while a new instance i arrives do

3: Perform N -step online inference by Algorithm 6.

4: Collect context ci and budget Bi of instance i and update the model by

θ̂i = θ̂i−1 − ᾱ▽θL(hθ̂i−1
, ci),

where ▽θL(hθ̂i−1
, ci) is obtained by back propagation in Eqn. (5.5).

5: end while

In practice, we may have a cold-start setting without many offline samples. An

efficient approach for this setting is online stochastic gradient descent (SGD). Concretely,

when the i-th instance arrives, we perform online inference by Algorithm 6. After the instance

with N steps ends, we collect the context and budget data of this episode and update the

ML model weight θ̂i by performing one-step gradient descent, i,e, θ̂i = θ̂i−1− ᾱ▽θL(hθ̂i−1
, ci)

where L(hθ̂i−1
, ci) is the loss of the unrolling model for the ith instance and ᾱ is the stepsize.

Then, with the updated θ̂i, we perform inference by Algorithm 6 for the instance in the

(i + 1)-th round. We will show by analysis that the average cost decreases with time.

97

5.6 Performance Analysis

In this section, we bound the expected cost when the trained ML model fθ is used

in LACC.

Definition 26. The weight in the ML model fθ (and also the online optimizer hθ) that

minimizes the expected loss E [L(hθ, c)] with respect to the distribution of (c,B) ∼ P is

defined as θ∗ = arg minθ∈Θ E [L(hθ, c)] , and the weight that minimizes the empirical loss

L(hθ, S) is defined as θ̂∗ = arg minθ∈Θ L(hθ, S), where Θ is the weight space.

In Definition 26, given the weight space Θ, hθ∗ is the best online optimizer based

on the unrolling architecture in terms of the expected cost. hθ∗ is not the offline-optimal

policy, but it is close to the policy that performs best given available online information

when the capacity of the ML model and weight space Θ are large enough. Next, we show

the performance gap of LACC compared with hθ∗ .

Theorem 5.6.1. By the optimization layer in Eqn. (5.4), LACC satisfies the inventory

constraints for each OOBC instance. Suppose that θ̂ is the ML model weight by offline

training on dataset S with n samples, and that we plug it into the online optimizer hθ̂. With

probability at least 1 − δ, δ ∈ (0, 1),

E
[
L(hθ̂)

]
−E [L(hθ∗)] ≤ E

(
hθ̂, S

)
+ 4Rn(L ◦H)

+2 (ΓL,cωc + ΓL,bωb)

√
ln(2/δ)

n
,

(5.8)

where E
(
hθ̂, S

)
= L(hθ̂, S) − L(hθ̂∗ , S) is the training error, Rn(L ◦H) is the Rademacher

complexity regarding the loss space L ◦H = {L(h),h ∈ H} with H being the ML model set,

ωc = maxc,c′∈C ∥c− c′∥ is the size of the parameter space C, ωb = maxB,B′∈B ∥B −B′∥ is

98

the size of the capacity constraint space B, ΓL,c and ΓL,b are the Lipschitz constants of the

total loss L(hθ, c) =
∑N

t=1 l(xt, ct) with respect to c and B, respectively.

Proposition 27. If a linear model fθ(v) = θ⊤ϕ(v), ∥θ∥ ≤ Z is used as the ML model in LACC,

the Rademacher complexity Rn(L◦H) is bounded ny O
(
ZW√

n

)
, where W = supv

√
ϕ(v)⊤ϕ(v).

If a neural network, where the depth is K, the width is less than u, activation functions

are Γα-Lipschitz continuous, and the spectrum norm of the weight matrix in layer k with is

less than Zk, is used as the ML model, the Rademacher complexity Rn(L ◦H) is bounded

by Rn(L ◦H) ≤ O
(
K3/2uΓα(βb+βc)

∏K
k=1 Zk√

n

)
, where βb, βc are the largest l2-norm of B and

c. The notation O in this proposition indicates the scaling relying on M , N , the Lipschitz

constants of loss function l, constraint function g, optimization layer p and neural network

f .

Remark 28. Theorem 5.6.1 shows that the performance gap between LACC and the pseudo-

oracle hθ∗ in terms of expected loss is bounded by the empirical training error, plus a

generalization error which relies on the Radmacher complexity, the LipSchitz constant of the

online optimizer, and the number of training samples. The Radmacher complexity indicates

the richness of the loss function space with respect to the online optimizer space H and the

distribution P and is further bounded in Proposition 27. From the bound of Radmacher

complexity, we find that for both linear model and neural network, the generalization error

increases with episode length N and the number of constraints M . Besides, the Rademacher

complexity relies on the ML model designs. For example, if a linear model is used as the

ML model, the generalization error relies on the norm bounds of feature mapping and linear

weights, while if a neural network is used as the ML model, the generalization error is related

99

to the network length , width, the smoothness of activation functions, and spectral norm

bounds of the weights in each layer. The last term of the expected cost bound is scaled by

(ΓL,cωc + ΓL,bωb) which indicates the sensitivity of the loss when the inputs are changed.

This term highly depends on the Lipschitz constants of the total loss regarding the two inputs.

□

Proposition 29 (Average Cost of Online Training). Assume that for each round i,

▽θE[L(hθ̂i)] is Γ▽L,θ-Lipschitz continuous, and the Polyak-Lojasiewicz inequality is sat-

isfied, i.e. ∃ς > 0,
∥∥∥▽θE[L(hθ̂i)]

∥∥∥2 ≥ 2ς
(

E[L(hθ̂i)] − E[L(hθ∗)]
)
. Also, assume that for

the distribution of ci,, ∃ιG > ι > 0 such that ∀i,
〈
▽θE[L(hθ̂i)],E

[
▽θL(hθ̂i , ci)

]〉
≥

ι
∥∥∥▽θE[L(hθ̂i)]

∥∥∥2
2
, ∥E[▽θL(hθ̂i , ci)]∥2 ≤ ιG

∥∥∥▽θE[L(hθ̂i)]
∥∥∥
2
, and there exist ϖ,ϖV > 0 such

that ∀i, Var
[
▽θL(hθ̂i , ci)

]
≤ ϖ + ϖV

∥∥∥▽θE[L(hθ̂i)]
∥∥∥2
2
. Then with the same notations

as Theorem 5.6.1, for the online setting where LACC is trained by SGD with stepsize

0 < ᾱ ≤ ι
Γ▽L,θ(ϖV +ι2G)

, with probability at least 1 − δ, δ ∈ (0, 1), we have for each round i

E
[
L(hθ̂i

)−L(hθ∗)
]
≤
ᾱΓ▽L,θϖ

2ις
+ O

(
(1 − ᾱις)i

)
, (5.9)

where the expectation is taken over the randomness of context c and budget B and the model

weight θ̂i by SGD.

Proposition 29 bounds the expected loss gap between the learned weight θ̂i by SGD

and the optimal weight θ∗ in Definition 26. The first non-reducible term is caused by the

randomness of the context and budget {(ci,Bi)}. The second term decreases with time,

and the convergence rate depends on the sequence randomness and the parameter ς in the

Polyak-Lojasiewicz inequality.

100

5.7 Numerical Results

Weighted fairness is a classic performance metric in the resource allocation literature

[231], including fair allocation in computer systems [165] and economics [200]. Here, we

consider a general online setting. A total of N jobs arrive sequentially, and job t has a

weight ct ≥ 0. The agent allocates resource xt ≥ 0 to job t at each step t. We consider the

commonly-used weighted fairness
∑N

t=1 ct log(xt) [231]. We create the training and testing

samples based on the Azure cloud workload dataset, which contains the average CPU reading

for tasks at each step [348].

We consider several baseline algorithms as follows. The Offline Optimal Oracle

OPT is the solution to the problem in Eqn. (5.1). We consider two heuristics: One is

Equal Resource Allocation (Equal) which equally allocates the total resource capacity

to N jobs, and another one is Resource Allocation with Average Long-term Constraints

(AVG-LT) which relaxes the inventory constraints of the weighted fairness problem as

EP

[∑N
t=1 xt

]
≤ B and uses the optimal Lagrangian multiplier for this relaxed problem as

λt for online allocation. We consider two algorithms based on dual mirror descent which

are Dual Gradient Descent (DGD) and Multiplicative Weight (MW) [48]. To reduce the

resource waste after the last step, we slightly revise DGD and MW by setting the allocation

decision for job N as min (bN , xmax). CR-pursuit (CR-pursuit) is the state-of-the-art

online algorithm that makes online actions by tracking a pseudo-optimal algorithm with a

competitive guarantee [266, 265]. We also compare LACC with the end-to-end Reinforcement

Learning (RL). A neural network with the same size of the ML model as in LACC is used in

101

OPT Equal AVG-LT DGD MW LAAU
Algorithm

0.8

1.0

1.2

Av
er

ag
e

U
ti

lit
y N = 10 N = 20 N = 40

Figure 5.2: Average utility with different episode lengths

0.00 0.05 0.10 0.15 0.20 0.25
Wasserstein distance

1.0

1.1

1.2

Av
g.

 U
ti

lit
y

OPT
MW

LAAU
RL

Figure 5.3: Average utility with different Wasserstein distances.

RL to directly predict the solution xt, given parameter ct and budget bt as inputs.

Average Utility. We first show in Fig. 5.2 the average utilities (per time step).

We do not add the average utility of CR-pursuit in the figure because its average utility for

our evaluation instances is as low as 0.562, exceeding the utility range of the figure. Clearly,

OPT achieves the highest utility, but it is infeasible in practice due to the lack of complete

offline information. We can observe that the average utilities by expert algorithms including

AVG-LT, DGD, MW are even below the average utility by the simple equal allocation

(Equal) when the episode length is N = 10. This is because all the three algorithms are

designed for online optimizations with long-term constraints, and not suitable for the more

102

challenging short-term counterparts. By contrast, LACC performs well for all cases with large

and small episode lengths, and outperforms the other algorithms designed for long-term

constraints even when N is as large as 40. This demonstrates the power of LACC in solving

challenging online problems with inventory constraints.

OOD Testing. In practice, the training-testing distributional discrepancy is

common and decreases ML model performance. We measure the training-testing distri-

butional difference by the Wasserstein distance dW . We choose the setting with episode

length N = 20 to perform the OOD evaluation. To create the distributional discrepancy,

we add i.i.d. Gaussian noise with different means and variances to the training data and

keep the testing data the same as the default setting. The offline optimal and MW do not

make use of the training distribution, and hence are not affected. We can see in Fig. 5.3

that, the OOD testing decreases the performance of both LACC and RL, but LACC is less

affected by OOD testing than RL and is still higher than that of the baseline MW even

under large Wasserstein distance. This is because the unrolling architecture in LACC has an

optimization layer and a budget update layer, which are deterministic and have no training

parameters, so only the ML model to learn the Lagrangian multiplier is affected by OOD

testing. Comparably, RL uses an parameterized end-to-end policy model trained on the

offline data, so it has worse performance under OOD testing. This highlights that by the

unrolling archietecture, LACC has better generalization performance than end-to-end models.

103

5.8 Conclusion

In this chapter, we focus on OOBC and propose a novel ML-assisted unrolling

approach based on the online decision pipeline, called LACC. The key novelty of LACC is

that it leverages an ML model for updating the Lagrangian multiplier online. We derive

the gradients for back-propagation and perform rigorous analysis on the expected cost.

Finally, we present numerical results on weighted fairness and highlight LACC significantly

outperforms the existing baselines in terms of the average performance.

104

Chapter 6

Theoretical Understanding of

Domain Knowledge Informed

Learning

6.1 Introduction

The remarkable success of deep neural networks (DNNs), or more generally machine

learning, largely relies on the proliferation of data samples with ground-truth labels for

supervised learning. Nonetheless, labeled data of high quality can often be very limited

and/or extremely expensive to collect in real application domains, including medical sciences,

security-related fields, and specialized engineering areas [396].

In parallel with the data-driven learning paradigm, domain knowledge (which we

simply refer to as knowledge) has been utilized to assist with decision making and system

105

designs, with a long history of success. As its name would suggest, domain knowledge is

naturally domain-specific and can come from various sources in multiple forms, such as

subjective experiences (e.g., medical prognosis), external sources, and scientific laws. For

example, partial differential equations are used to govern many flow dynamics in physics, and

the Shannon channel capacity is the fundamental principle to guide the design of modern

communications systems [175, 408].

Importantly, domain knowledge has already been, sometimes implicitly, integrated

into every stage of the machine learning pipeline, including training data augmentation,

hypothesis set selection, model training and hypothesis finalization. For example, differential

equations and logic rules from physical sciences and/or common knowledge provide additional

constraints or new functional regularization terms for model training [55, 67, 363, 302, 417].

Despite the numerous successful examples [396, 123], there still lacks a rigorous

understanding of the role of domain knowledge in informed learning. In this chapter, we

focus on informed DNNs — DNNs with domain knowledge explicitly integrated into the

training risk/loss function. Concretely, we consider an over-parameterized DNN with a

sufficiently large network width [306], and study how domain knowledge affects the DNN

from three complementary aspects: convergence, generalization, and sampling complexity,

which is summarized as below.

Convergence (Theorem 6.4.1): We show the convergence of training an informed

risk function under milder technical assumptions than the prior works (Section 6.4.1). More

specifically, we show that for inputs within a smooth set (Definition 31), the network outputs

converge to the optimal solution jointly determined by all the samples in the set.

106

Generalization (Theorems 6.4.2 and 6.5.1): We show in Theorem 6.4.2 that

the population risk relies on the knowledge imperfectness (Definition 38) as well as knowledge-

regularized label imperfectness (Definition 39). Specifically, knowledge has two benefits:

regularization for noisy labels and supplementing labels. We propose a generalized informed

risk function which disentangles the two effects by introducing another hyper-weight β,

followed by the population risk bounds in Theorem 6.5.1 and Corollary 41.

Sampling Complexity (Corollay 43): By establishing a quantitative equivalence

between domain knowledge and labeled samples, we show that domain knowledge (with a

reasonable quality) can effectively reduce the number of labeled samples while achieving the

same generalization performance, compared to the no-knowledge case.

6.2 Related Work

Informed Machine Learning. The broad paradigm of informed machine learning

[396] includes several existing learning frameworks, such as learning using privileged infor-

mation (LUPI) [391] where side knowledge is available for labeled samples [391, 301, 352].

Likewise, knowledge distillation [327, 194, 181, 107] transfers prior knowledge from teacher

networks to a student network. Some recent studies have also focused on understanding

knowledge distillation [13]. In [319], a generalization bound is derived for knowledge dis-

tillation based on linear classifiers and deep linear classifiers, providing insights towards

the mechanism of knowledge distillation. The subsequent analysis [207, 327] extends to

neural networks, showing that the student network may generalize better by exploiting

soft labels from the teacher model. Teacher imperfectness is investigated in [119], which

107

bounds the learning error and proposes enhanced methods to address imperfect teachers.

Physics-informed neural networks (PINNs) have been recently proposed to solve partial

differential equations (PDEs) [187, 203, 330, 45, 123, 408]. Besides empirical studies, [359]

bounds the expected PINN loss, showing that the minimizer of the regularized loss converges

to the PDE solution.

More broadly, informed machine learning also includes weakly-supervised learning

[445, 336] and few-shot learning [400], where knowledge provides weak supervision. Domain-

specific constraints [302] and semantic information [417, 128] can also be viewed as knowledge

injected into training. Our work complements these empirical studies and provides a rigorous

understanding of knowledge in a unified framework.

Over-Parameterized Neural Networks. Several recent studies [44, 366, 30, 29,

204, 234, 418, 16, 34, 33, 81, 14, 306] show that over-parameterized neural networks have

good convergence and generalization performance. In addition to assuming data separability

in a strong sense, another crucial assumption often made in the existing studies is that the

network widths increase polynomially with the total number of training samples. In informed

DNNs, however, we can have many (unlabeled) training samples fed into the knowledge

risk, which hence may not satisfy these assumptions. Thus, we analyze knowledge-informed

over-parameterized neural networks under relaxed assumptions (Section 6.4).

Regularization. In the broad context of regularization, [404] shows that over-

parameterized neural networks with l2-regularization can achieve a larger margin and thus

better generalization, [63] proves that SGD with label noise is equivalent to an implicit

regularization term, while [403] shows that the drop-out operation for neural networks has

108

both explicit and implicit regularization effects. These regularizers are usually imposed on

the network weights, whereas the knowledge-based regularizer in informed machine learning

also incorporates inputs and directly regularizes the network output.

6.3 Informed Neural Network

Notations: We use the expression [L] to denote the set {1, 2, · · · , L} for a positive

integer L. Denote the indicator function as 1(x) = 1 if x > 0, and 1(x) = 0 otherwise. E is

the expectation operator and P is a probability measure. Rd is d-dimensional real number

space. N (x, σ2) is the Gaussian distribution with mean x and variance σ2. Denote |A| as the

size of a set A. For a vector x, ∥x∥ is l2-norm and [x]j is the jth entry. For a matrix X, ∥X∥2

represents the spectral norm, and ∥X∥ is the Frobenius norm. B(x, τ) = {y | ∥x− y∥ ≤ τ}

is the neighborhood domain.

6.3.1 Preliminaries of Neural Networks

Consider a supervised learning task to learn a relationship mapping the input

x ∈ X ⊆ Rb to its output y ∈ Y ⊆ Rd. The pair of input and output (x, y) follows a joint

distribution PXY . More concretely, we consider a fully-connected DNN with an input layer,

L ≥ 1 hidden layers, and an output layer. Each hidden layer has m neurons, followed by

ReLu activation denoted as σ(·). Denote W0 ∈ Rb×m as the weights for the input layer,

Wl ∈ Rm×m as the weights for the l-th layer for l ∈ [L], and V ∈ Rd×m as the weights for

the output layer. We denote the output of the l-th layer as hl = σ (Wlhl−1), for l ∈ [L],

where h0 is the input x. The output of the neural network can be expressed as hW = V hL,

109

where W = {W0,W1, · · · ,WL}. Thus, the DNN can be expressed as

hW (x) = V σ (WLσ(WL−1 · · ·σ (W1σ(W0x)))) . (6.1)

Given a DNN hW , the risk for a labeled sample (x, y) is denoted as r (hW (x) , y). The goal

of the learning task is to learn a DNN that minimizes the population risk:

R (h) = E [r (h (x) , y)] . (6.2)

6.3.2 Integration of Knowledge

We consider a commonly-used informed learning method, i.e., integrating knowledge

into the neural network during the training stage [396]. During training, a labeled dataset

Sz = {(x1, z1) , · · · , (xnz , znz)} with nz samples drawn from PXZ is provided. We assume

xi, i ∈ [n] are drawn from the distribution PX , but the training label zi ∈ Y may not be the

same as the true label yi for the input xi, because the training label may be of low quality

(e.g., corrupted, noisy, and/or quantized)[80, 445]. Denote hW ,i = hW (xi) as the output of

the neural network with respect to the input xi. Based on the labeled dataset, the empirical

label-based risk can be written as R̂Sz (W) = 1
nz

∑
Sz

r (hW ,i, zi) .

The domain knowledge includes a knowledge-based model g(x) regarding the input

x and a knowledge-based risk function rK (hW (x) , g(x)) that relates the DNN’s output

hW (x) to g(x).

For the ease of analysis, we assume that both the risk function r and the knowledge-

based risk function rK are Lipschitz continuous, upper bounded, and strongly convex with

respect to the network output, and the eigenvalues of their Hessian matrix regarding the

network output lie in [ρ, 1] for ρ ∈ (0, 1]. Note that the incorporated domain knowledge

110

may not necessarily be perfect since it can be obtained based on subjective experiences

(e.g., medical prognosis) [302, 62], pre-existing machine learning models [194] or theoretical

models which itself can deviate from the real physical world [203].

For training, in addition to the labeled dataset Sz, a dataset Sg with ng unlabeled

samples is generated for knowledge-based supervision. Note that Sg can also include inputs

in Sz, and ng can be sufficiently large since unlabeled samples are typically easier to obtain

than labeled ones. The training risk of the informed neural network, which we simply refer

to as informed risk, is

R̂I(W)=
1 − λ

nz

∑
Sz

r(hW ,i,zi)+
λ

ng

∑
Sg

rK(hW ,i,gi) , (6.3)

where λ ∈ [0, 1] is a hyper-weight, hW ,i = hW (xi), and gi = g(xi). Note that Eqn. (6.3) can

also be re-written as

R̂I(W)=
∑

Sz
⋃

Sg

[µir (hW ,i, zi)+λirK (hW ,i, gi)] (6.4)

with hyper-parameters chosen as µi = 1−λ
nz

1(xi ∈ Sz) and λi = λ
ng
1(xi ∈ Sg). Eqn. (6.4) is

used for convergence analysis.

To train the informed DNN, we consider a gradient descent approach in Algorithm 8.

This training approach has also been commonly considered in the literature [16, 449, 136]

for theoretical analysis of standard DNNs without domain knowledge. For the sake of

analysis, we also define a hypothesis space H =
{
hW | W ∈ B

(
W (0), τ

)}
where W (0) is the

initialized weight and τ is the maximum distance between the weights in gradient descent

and the initialized weights. We denote h
(0)
l (x), l ∈ [L] as the output of the l-th layer for an

input x at initialization.

111

Algorithm 8 Informed Neural Network Training by Gradient Descent

Initialization: Initialize each entry of weights W
(0)
0 , W

(0)
l , l ∈ [L] independently by

N
(
0, 2

m

)
and each entry of V (0) independently by N

(
0, 1d
)
.

for t = 0, · · · , T − 1 do

Update the weights as W (t+1) = W (t) + η ▽W R̂I

(
W (t)

)
.

end for

Output: W (T).

Remark 30. The considered informed learning is relevant to several other frameworks. For

example, it can model weakly-supervised learning [445, 400] with a few (possibly imperfectly)

labeled samples as well as other weak supervision signals (i.e., knowledge). Besides, by

viewing {zi} as hard labels and the knowledge-based model g(x) as soft labels provided by a

teacher model, the informed learning captures knowledge distillation [194, 319, 327]. Thus,

our work can complement the existing analysis for the aforementioned learning frameworks

from a different and more unified perspective. Additionally, PAC-Bayesian learning optimizes

the PAC-Bayesian bound which is a trade-off between the empirical error and a regularization

term based on a prior distribution given by knowledge [185, 22, 163]. But, different from

PAC-Bayesian learning which considers random hypothesis, we analyze an over-parameterized

neural network with a predetermined architecture.

112

6.4 Effects of Domain Knowledge

6.4.1 Convergence

Since the domain knowledge is integrated into a neural network during training, it is

important to analyze the convergence to understand how the label and knowledge supervision

jointly determine the network output. While convergence based on gradient descent for

over-parameterized neural networks has been studied extensively [44, 16, 449, 33, 136], the

current analysis is not suitable to study the convergence of informed over-parameterized

neural networks. The reasons are summarized as follows.

• Inapplicable for Multiple Supervisions. Typically, assuming one unique label for

each distinct training sample and a large enough network width, the prior studies show that

the neural network can fit to the labels, i.e., the network output for each training input

converges to the corresponding label [432, 33, 449, 313]. But, in our case, one training input

can have multiple supervisions from both label and knowledge with possibly different forms

of risks. Thus, the network output for an input may not be necessarily determined by a

unique label. The convergence of knowledge distillation supervised by both hard and soft

labels is studied by [327], but only the quadratic risk and shallow networks are considered.

• Strong Data Separability Assumption. Some prior studies require a lower-bounded

distance of any two samples [16, 449, 136], but this may not be satisfied for an informed

DNN because the input samples for label-based and knowledge-based risks can be very

close or even the same. Other studies assume data separability by a neural tangent model

[101, 208, 82, 308], but data separability by a neural tangent model is not well defined for

training with multiple supervisions in informed DNNs.

113

To address these challenges, we provide convergence analysis for informed over-

parameterized neural networks based on a new data separability assumption of smooth

sets. The construction of smooth sets approximates the space X with discrete pieces, each

containing samples that jointly satisfy the smooth properties. The smooth sets are formally

defined below, followed by the data separability assumption.

Definition 31 (Smooth sets). Given ϕ > 0, construct a ϕ−net [113] Xϕ = {x′k, k ∈

[N], x′k ∈ X} with N ∼ O(1/ϕb) such that ∀x′i, x′j ∈ Xϕ and x′i ̸= x′j, ∥x′i − x′j∥ ≥ ϕ holds,

and ∀xi ∈ Sz
⋃
Sg, there exists at least one x′k ∈ Xϕ satisfying ∥xi − x′k∥ ≤ ϕ. Each input

x′k ∈ Xϕ, referred to as a representative input, determines a smooth set Cϕ,k = {x ∈ X |

∥x−x′k∥ ≤ ϕ, ∥x−x′j∥ ≥ ϕ/2, ∀j ≠ k, x′k, x
′
j ∈ Xϕ}. The index set of training samples within

the kth smooth set is Iϕ,k = {i | xi ∈ Sz
⋃
Sg, xi ∈ Cϕ,k} , k ∈ [N].

Assumption 6 (Data separability by smooth sets). For each smooth set k with representative

sample x′k, there exists a non-empty subset of neuron indices Gk,α ∈ [m] with size |Gk,α| =

αm,α ∈ (0, 1] such that at initialization, ∀i ∈ Iϕ,k, ∀j ∈ Gk,α, 1

([
h
(0)
L (xi)

]
j
≥ 0

)
=

1

([
h
(0)
L (x′k)

]
j
≥ 0

)
, and ∀j /∈ Gk,α, the pre-activation of the L-th layer

∣∣∣∣[W (0)
L h

(0)
L−1(xi)

]
j

∣∣∣∣ ≥
3
√
2πϕb+1

16
√
m

.

Instead of requiring a lower-bounded distance of any two training samples, the

data separability assumption requires that, at initialization, for samples in one smooth set,

the outputs of the last hidden layer either have the same signs as those of the representative

sample, or their absolute values are larger than a very small threshold. Thus, this data

separability assumption is set-wise and addresses the cases where two training inputs are

very close or the same, and hence is milder than the one in existing studies (e.g., [16]). The

114

parameter α indicates slackness: with larger α, more neurons have the same signs. Actually,

data separation by smooth set with ϕ > 0 in Assumption 6 always exists: when ϕ is small

enough such that only one inputs or several same inputs are included in a smooth set,

Assumption 6 is satisfied with α = 1. Even in this worst case, our assumption is still milder

than the data separability assumption considered in [16, 449] that excludes the existence of

two training samples with the same inputs but different supervisions.

With the data-separability assumption by smooth sets, we are ready to show the

labels and knowledge jointly determine the network output for training inputs. We introduce

the notation effective label, as formally defined below.

Definition 32 (Effective label). For the k-th smooth set, define the effective label as yeff,k =

arg minh
∑

i∈Iϕ,k {µir(h, zi) + λirK(h, gi)} with µi, λi defined in Eqn. (6.3) and h in the space

of network output, and the effective optimal risk as reff,k =
∑

i∈Iϕ,k {µir(yeff,k, zi) + λirK(yeff,k, gi)}.

Next, we show the convergence analysis. Note that the proof based on the data

separability by smooth sets (Assumption 6) invalidates the proofs in previous studies, and

we need new lemmas that lead to novel convergence to effective labels in Definition 32. In

particular, in Lemma 33, to approximate the outputs in the smooth set k by the output of

the representative input x′k, we need to bound the difference of the outputs with respect to

x′k and an input in the smooth set k. Also, based on Assumption 6, we derive in Lemma 34

the gradient lower bound which relies on the number of smooth sets N instead of the sample

size nz +ng in the previous analysis. This makes the network width m in our analysis directly

rely on the smooth set size ϕ. Moreover, in Lemma 35, we prove based on the definition of

smooth sets that the first-order approximation error of the total informed risk depends on

115

the difference between the risk and effective risk in Definition 32. This is important to prove

the convergence to the effective labels.

Lemma 33. For any i ∈ Iϕ,k, k ∈ [N], let hl,k = hl(x
′
k), hl,i = hl(xi), and fl,k = Wlhl−1(x′k),

fl,i = Wlhl−1(xi) and denote D′
l,i,k ∈ Rm×m as the diagonal matrix with [D′

l,i,k]j,j =

1([f
(0)
l,i]j ≥ 0)−1([f

(0)
l,k]j ≥ 0). Assuming ϕ ≤ O(L−9/2 log−3(m) log−3/4(1/ϕ)), we have with

probability at least 1 − ϕ over the randomness of W (0),

(a) At initialization, ∥D′
l,i,k∥0 ≤ O(mϕ2/3L log1/2(1/ϕ))

(b) For W ∈ B(W (0), τ) with τ ≤ O(ϕ3/2) we have ∥hl,i−hl,k∥ ≤ O(L5/2ϕ
√

log(m) log(1/ϕ))

and ∥fl,i − fl,k∥ ≤ O(L5/2ϕ
√

log(m) log(1/ϕ)).

Lemma 34 (Gradient Lower Bound). For any W : ∥W − W (0)∥ ≤ τ where τ =

O(N−9/2ϕ3/2ρ3/2λ̄3/2α3/2L−15/2 log−3/2(m)) and ϕ ≤ Õ(L−9/2 log−3(m)), with Assumption

6 satisfied, we have with probability at least 1 − O(ϕ) over the randomness of W (0), the

gradient of label-based data risk satisfies

∥∥∥▽W R̂I (W)
∥∥∥2
F
≥ Ω

(
αmϕρλ̄

dN2

)(
R̂I (W) − R̂eff − Õ(L5/2ϕ log1/2(m))

)
.

where R̂eff =
∑N

k=1 reff,k, and λ̄ is a parameter with lower bound Ω(min(1 − λ, λ)1(λ ∈

(0, 1)) + 1(λ ∈ {0, 1})).

Lemma 35. For any W , W ′ ∈ B
(
W (0), τ

)
where B

(
W (0), τ

)
is a ball with center W (0) and

radius τ ∈
[
Ω(d3/2m−3/2L−5/2 log−3/2(m)), O(L−9/2[log−3(m)])

]
and ϕ ≤ Õ(L−9/2 log−3(m)),

with probability at least 1 −O(ϕ) over the randomness of W (0), we have

R̂I

(
W ′) ≤ R̂I (W) +

〈
▽W R̂I (W) ,W ′ −W

〉
+ O(L2m/d)

∥∥∥Ŵ∥∥∥2 +(√(
R̂I (W) − R̂eff − Õ(L5/2ϕ log1/2(m))

))
O
(
N1/2τ1/3L5/2

√
m log(m)d−1/2

)∥∥∥Ŵ∥∥∥
116

Theorem 6.4.1. Assume the network width m ≥ Ω
(
ϕ−11b−4L15dρ−4λ̄−4α−4 log3(m)

)
, and

the step size is set as η = O(d
L2m

). With Assumptions 6 satisfied, for any ϵ > 0 and

ϕ ≤ Õ
(
ϵL−9/2 log−3(m)

)
, we have with probability at least 1 − O(ϕ), by gradient descent

after T = O
(

L2

ϕ1+2bρλ̄α
log(ϵ−1 log(ϕ−1))

)
steps, the informed risk in Eqn. (6.4) is bounded as:

R̂I(W
(T))− R̂eff ≤ O(ϵ), where R̂eff =

∑N
k=1 reff,k, λ̄ = Ω(min(1−λ, λ)1(λ ∈ (0, 1)) +1(λ ∈

{0, 1})). Also, the DNN outputs satisfy:

∑
Sz

⋃
Sg

(µi + λi)
∥∥hW (T) (xi) − yeff,k(xi)

∥∥2 ≤ O(ϵ),

where k(xi) is the index of the smooth set that includes xi, µi = 1−λ
nz

1(xi ∈ Sz) and

λi = λ
ng
1(xi ∈ Sg).

Remark 36. The convergence analysis in Theorem 6.4.1 addresses the limitations mentioned

at the beginning of this section. First, instead of fitting a unique label for each input, the

informed neural network with multiple supervisions converges to effective labels. Second, the

data separability assumption is enough for convergence analysis of informed neural networks.

Another observation is that with smaller ϕ and smaller α, Assumption 6 becomes milder,

but a larger network width and more training steps are needed to guarantee convergence.

Additionally, different from previous convergence analysis where the width m in-

creases directly with the sample size, the network width m in our analysis depends on the

smooth set size ϕ and is non-decreasing with sample size (i.e., m may not always increase

with the sample size). To see this, given a construction of smooth sets by size ϕ that meets

Assumption 6, if we continue to add (either labeled or knowledge-supervised) training samples

that lie in the existing smooth sets and satisfy Assumption 6, the width m remains the same,

and smaller ϕ (larger m) is needed to guarantee the convergence only when the added samples

117

violate Assumption 6 under the current ϕ. The large network width needed for analysis is

due to the limitation of over-parameterization techniques, while in practice a much smaller

network width is enough. Albeit beyond the scope of our study, addressing the gap between

theory and practice is clearly important and still active research in the community [44].

Remark 37. We can get more insights about the effects of labels and knowledge from the

conclusion that the network outputs converge to the corresponding effective labels in Definition

32. On the one hand, if knowledge is applied to the samples within the same smooth sets as

labeled samples, knowledge-based supervision and label-based supervision jointly determine

the network output together: knowledge serves as a regularization for labels in this case. On

the other hand, if a smooth set only contains knowledge-supervised samples, the network

output is determined solely by knowledge: knowledge supplements labeled samples (albeit

possibly imperfectly) to provide additional supervision.

6.4.2 Generalization

We now formally analyze how the domain knowledge affects the generalization

performance. From our convergence analysis, there are two different effects of knowledge

(Remark 37). We characterize the two effects by formally defining knowledge imperfectness

and knowledge-regularized label imperfectness. Before this, we list some notations for further

analysis. Given a ϕ−net Xϕ (Definition 31), Uϕ(Sz) = {k ∈ [N] | ∃x ∈ Sz, x ∈ Cϕ,k} is the

index collection of smooth sets that contain at least one labeled sample, and Xϕ(Sz) =⋃
k∈Uϕ

(Sz)Cϕ,k is the region covered by the smooth sets in Uϕ(Sz). S′
g = Sg

⋂
Xϕ(Sz) is the

knowledge supervised dataset with samples share the common smooth sets with labeled

118

samples in Sz while the samples in S′′
g = Sg \ S′

g lie in smooth sets without labeled samples.

Denote n′
g = |S′

g| and n′′
g = |S′′

g |.

Definition 38 (Knowledge imperfectness). Let h∗K = minh
1
n′′
g

∑
S′′
g

[rK(h(xi), g(xi))] be the

optimal hypothesis for the knowledge-based risk on the dataset S′′
g . The imperfectness of

domain knowledge K applied to the dataset S′′
g is defined as Q̂K,S′′

g
= 1

n′′
g

∑
xi∈S′′

g
r(h∗K(xi), yi)

where yi is the true label of xi. Correspondingly, let h̄∗K = minh E [rK(h(x), g(x))] be the

optimal hypothesis for the expected knowledge-based risk, and the expected imperfectness of

domain knowledge K is defined as QK = E
[
r(h̄∗K(x), y)

]
.

The (empirical or expected) knowledge imperfectness is defined as the risk under

the hypothesis optimally learned by knowledge-based supervision. Thus, it measures the

extent to which the domain knowledge is inconsistent with the true labels, measured in terms

of the risk over the hypothesis set H. Besides knowledge-based supervision, the network

outputs for some smooth sets that contain both samples for knowledge risks and labeled

samples are jointly determined by label-based and knowledge-based supervisions. Thus, we

define knowledge-regularized label imperfectness below.

Definition 39 (Knowledge-regularized label imperfectness). The optimal hypothesis for the

knowledge-regularized risk is h∗R,β = arg minh
1−β
nz

∑
Sz

r(h(xi), zi) + β
n′
g

∑
S′
g
rK(h(xi), g(xi))

with β ∈ [0, 1]. Q̂R,Sz ,S′
g
(β) = 1

nz

∑
Sz

r(h∗R,β(xi), yi), where yi is the true label regard-

ing xi, is the knowledge-regularized label imperfectness. Correspondingly, with h̄∗R,β =

arg minh E[1−β
nz

∑
Sz

r(h(xi), zi) + β
n′
g

∑
S′
g
rK(h(xi), g(xi))] being the optimal hypothesis for

the regularized risk, the expected knowledge regularized label imperfectness is QR(β) =

E
[
r(h̄∗R,β(x), y)

]
.

119

Like knowledge imperfectness, knowledge-regularized label imperfectness indicates

the risk of the hypothesis optimally learned by joint supervision from labels and knowledge.

We see that when β = 0, Q̂R(0) (or QR(0)) is the imperfectness of pure label-based supervision.

Thus, the gain due to knowledge is ∆Q̂R,β = Q̂R(0)−Q̂R(β) (or ∆QR,β = QR(0)−QR(β) for

the expected version). We show in the following theorem how the two types of imperfectness

affect the population risk trained on the informed risk in Eqn. (6.3).

Theorem 6.4.2. With W (T) trained on Eqn. (6.3), ϕ ≤ Õ
(
ϵ2L−9/2 log−3(m)

)
, ϕ ≤

(
√
ϵ/nz)

1/b, and other assumptions the same as Theorem 6.4.1, with probability at least

1 −O(ϕ) − δ, δ ∈ (0, 1), the population risk satisfies

R (hW (T))≤O(
√
ϵ) + (1 − λ)Q̂R,Sz ,S′

g
(βλ)

+ λQ̂K,S′′
g

+ O
(

Φ+
√

log(1/δ)
)(1 − λ

√
nz

+
λ

√
ng

)
,

where βλ =
λn′

g

(1−λ)ng+λn′
g
, Q̂R,Sz ,S′

g
(βλ) is the knowledge-regularized label imperfectness in

Definition 39 and Q̂K,S′′
g
is the knowledge imperfectness in Definition 38 applied to S′′

g , and

Φ = O
(
4LL3/2m1/2ϕ−b−1/2dρ−1/2λ̄−1/2α−1/2

)
.

Remark 40. Theorem 6.4.2 shows that by training on the informed risk (6.3), knowledge

affects the generation performance in the following two ways.

• Knowledge for regularization. When knowledge is applied to sample inputs inside the

same smooth sets as labeled samples, it serves as an explicit regularization for label-based

supervision, possibly reducing the label imperfectness from Q̂R,Sz ,S′
g
(0) to Q̂R,Sz ,S′

g
(βλ).

• Knowledge for supplementing labels. The generalization error is in the order of

O
(

1−λ√
nz

+ λ√
ng

)
. When no knowledge is used (λ = 0), the order is as large as O

(
1√
nz

)
. If

knowledge is applied (λ > 0), then the generalization error decreases with the increasing of

120

knowledge-supervised sample size ng. Thus, when knowledge is applied to smooth sets without

labeled samples, it serves as an (possibly imperfect) supplement for labels, while introducing

knowledge imperfectness Q̂K,S′′
g
.

The hyper-parameter λ can be used to balance the introduced imperfectness and generalization

error from label and knowledge supervision. However, by the risk bound, it is hard to use one

hyper-parameter λ to control the two effects of knowledge, which will be further discussed in

the next section.

6.5 A Generalized Training Objective

In the informed risk in Eqn. (6.3), only one hyper-weight λ is present, controlling

the two different effects of knowledge (Remark 40). To better reap the benefits of knowledge,

we consider a generalized informed risk in Eqn.(6.5) by introducing another hyper-weight β,

which introduces more flexibility to govern the roles of domain knowledge.

R̂I,G(W)=
(1 − λ)(1 − β)

nz

∑
Sz

r (hW ,i, zi)+

(1 − λ)β

n′
g

∑
S′
g

rK(hW ,i, gi)+
λ

n′′
g

∑
S′′
g

rK(hW ,i, gi) ,

(6.5)

where β, λ ∈ [0, 1], hW ,i = hW (xi), gi = g(xi).

In Eqn. (6.5), the two hyper-parameters λ and β can jointly control the knowledge

effects (and the introduced imperfectness) when knowledge is applied. The hyperparameter

β is used to controls the knowledge regularization strength. By Remark 40, knowledge-

supervised samples in S′
g serve as an explicit regularization for label-based supervision while

introducing knowledge-regularized label imperfectness QR(β). Thus, when β is larger, more

effects from S′
g are incorporated and the regularization effect from knowledge is stronger.

121

Also, we use λ to adjust the effect of supplementing labels and the introduction of QK.

By Remark 40, S′′
g serves as an supplement for labels while introducing the knowledge

imperfectness QK. Thus, with larger λ, more effects from S′′
g are incorporated, which

means we incorporate more effects of data supplement from knowledge and also knowledge

imperfectness QK but less effect of knowledge regularization and knowledge-regularized label

imperfectness QR. The benefit of the training objective in Eqn. (6.5) will be explained

formally in Theorem 6.5.1 and Corollary 41.

Compared with the objective in Eqn. (6.3) with only one hyper-parameter λ,

Eqn. (6.5) introduces another hyper-parameter β to independently adjust the degree of

the knowledge regularization, making Eqn. (6.5) more general and flexible. To train on

Eqn. (6.5), we need to separate dataset for knowledge supervision into two datasets S′
g and

S′′
g based on whether an input is close to a labeled input and assign different hyper-weights

to them. The knowledge-based dataset separation is determined by ϕ in Definition 31.

Specifically, when the network width goes to infinity (ϕ goes to zero), S′
g shares the same

inputs as Sz, but S′
g and Sz are supervised by knowledge and labels, respectively. We have

S′′
g = Sg \ S′

g = Sg \ Sz which supplements the labels as shown in Remark 40. Note that

when the knowledge is perfect and knowledge-supervised samples are sufficient, we do not

need labeled samples, i.e., Sz = ∅ and we set λ = 1, β = 1. Then, we have S′′
g = Sg and

Eqn. (6.5) becomes a purely knowledge-based risk. When no knowledge is applied, we set

λ = 0, β = 0, and Eqn. (6.5) becomes a purely lable-based risk. In general cases when labels

and knowledge are both used, hyper-parameters λ and β are used to control the effects of

knowledge.

122

6.5.1 Population Risk

Note that Eqn. (6.5) can also be written as the form of Eqn. (6.4) with hyper-

parameters chosen as µi = (1−λ)(1−β)
nz

1(xi ∈ Sz) and λi = (1−λ)β
n′
g

1(xi ∈ S′
g) + λ

n′′
g
1(xi ∈ S′′

g),

so Theorem 6.4.1 for convergence still holds. Next, we bound the population risk based on

the generalized informed risk.

Theorem 6.5.1. Assume that W (T) trained on Eqn. (6.5) and other assumptions are the

same with those of Theorem 6.4.1, setting ϕ : ϕ ≤ Õ
(
ϵ2L−9/2 log−3(m)

)
and ϕ ≤ (

√
ϵ/nz)1/b,

with probability at least 1 −O(ϕ) − δ, δ ∈ (0, 1), the population risk satisfies

R(hW (T)) ≤ O(
√
ϵ) + (1 − λ)Q̂R,Sz ,S′

g
(β) + λQ̂K,S′′

g
+

O
(

Φ +
√

log(1/δ)
)(1 − λ

√
nz

+
λ√
n′′
g

)
,

where β and λ are trade-off hyper-parameters in Eqn. (6.5)

Additionally, to obtain more insights for sampling complexity, we further bound

the population risk in terms of expected imperfectness, at the expense of some tightness.

Corollary 41. With the same assumptions as in Theorem 6.5.1, with probability at least

1 −O(ϕ) − δ, δ ∈ (0, 1), the population risk satisfies

R(hW (T)) ≤ O(
√
ϵ) + (1 − λ)QR(β) + λQK+

O
(

Φ + log1/4(1/δ)
)√1 − λ

√
nz

+
λ√
n′′
g

,

where QR(β) is the expected knowledge-regularized label imperfectness in Definition 39, QK

is the expected knowledge imperfectness in Definition 38.

Remark 42. Theorem 6.5.1 and Corollary 41 show that by training on the generalized

informed risk in Eqn. (6.5), label and knowledge supervision jointly affect the population

123

risk while introducing a combination of knowledge-regularized label imperfectness QR(β) and

knowledge imperfectness QK. The effect of knowledge regularization is controlled by β and the

trade-off between the two imperfectness terms and the trade-off between the two generalization

errors 1−λ√
nz

and λ√
n′′
g
are both controlled by λ. Thus, this gives us more flexibility to adjust

how much domain knowledge is incorporated when it plays different roles in informed learning

as discussed in Remark 40. Also, as shown by the population risk bounds, we can tune the

two hyper-parameters separately — we can first tune β to minimize QR(β), and then tune λ

to balance QR(β) and QK, and also balance the generalization errors due to sizes of datasets.

6.5.2 Sampling Complexity

We discuss the choices of hyper-parameters β and λ in different cases to guarantee

a small population risk, and give the sampling complexity in each case.

Corollary 43 (Sampling Complexity). With the same set of assumptions as in Corollary 41

and setting β∗ = arg minβ∈[0,1]QR(β), with probability at least 1 − O(ϕ) − δ, δ ∈ (0, 1), to

guarantee a population risk no larger than
√
ϵ, we have the following cases:

(a) If QK ≤
√
ϵ, set λ = 1, the sampling complexity for labels is nz = 0 and the sampling

complexity for knowledge-supervision is ng ∼ O(1/(ϵ2 − ϵ3)).

(b) If QK >
√
ϵ and

√
ϵ

QK
+

√
ϵ

QR(β∗) ≥ 1, set λ =
√
ϵ

QK
, the sampling complexity for labels is

nz ∼ O
(

(1/ϵ− 1/ (
√
ϵQK))

2
)
and the sampling complexity for knowledge-supervision

is ng ∼ O(1/
(
(ϵ− ϵ2)Q2

K

)
).

(c) If
√
ϵ

QK
+

√
ϵ

QR(β∗) < 1, a population risk as low as
√
ϵ cannot be achieved no matter what

λ is and how many samples are used.

124

Remark 44. In practice, unlabeled samples are typically cheaper to obtain than labeled

samples. If QK ≤
√
ϵ, the domain knowledge is good enough for supervision, and thus we

can perform purely knowledge-based training without any labeled samples and guarantee

a population risk no larger than
√
ϵ with n′′

g ∼ O(1/ϵ2), and hence ng ∼ O(1/(ϵ2 − ϵ3)).

When the knowledge imperfectness QK >
√
ϵ, we discuss the following two cases. First, if

√
ϵ

QK
+

√
ϵ

QR(β∗) ≥ 1, we can choose λ from
[
1 −

√
ϵ

QR(β∗) ,
√
ϵ

QK

]
to control the risk from knowledge

and label imperfectness as low as
√
ϵ. We thus choose the largest λ =

√
ϵ

QK
to reduce the label

sampling complexity. In this case, knowledge is not good enough, but label imperfectness is not

too large. Thus, we can guarantee a population risk no larger than
√
ϵ with labeled samples

nz ∼ O
(

(1/ϵ− 1/ (
√
ϵQK))

2
)
and knowledge supervised samples ng ∼ O(1/

(
(ϵ− ϵ2)Q2

K

)
).

Finally, if
√
ϵ

QK
+

√
ϵ

QR,β∗
< 1, we cannot guarantee a population risk less than

√
ϵ no matter

what λ is and how many samples are used since the neither knowledge nor labels are of high

enough quality.

In summary, the extreme cases are: Case (a) where the knowledge supervision alone

is nearly perfect, and Case (c) where the knowledge and labels are both of low quality. Usually,

we are in Case (b) where knowledge is imperfect but labels (after knowledge regularization)

are good enough. In contrast, DNNs without using domain knowledge requires the label

imperfectness QR,0 not to exceed
√
ϵ; otherwise, the population risk cannot be guaranteed to be

no greater than
√
ϵ. The informed DNNs relaxes this requirement by requiring

√
ϵ

QK
+

√
ϵ

QR(β∗) ≥ 1.

In addition, the incorporation of domain knowledge reduces the labeled sampling complexity

from nz ∼ O(1
ϵ2

) in the traditional no-knowledge setting to nz ∼ O
(

(1/ϵ− 1/ (
√
ϵQK))

2
)
.

In other words, the incorporation of knowledge is equivalent to O(2
ϵ3/2QK

− 1
ϵQ2

K
) labeled

125

0.0 0.2 0.4 0.6 0.8 1.0
Weight

0

5

10

Te
st

 M
SE

(×
0.

01
)

2
z = 0,#labels:200
2
z = 0,#labels:400
2
z = 0.1,#labels:200
2
z = 0.1,#labels:400

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Weight

0

5

10

Te
st

 M
SE

(×
0.

01
)

2
z = 0,#labels:200
2
z = 0,#labels:400
2
z = 0.1,#labels:200
2
z = 0.1,#labels:400

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Weight

0

5

10

Te
st

 M
SE

(×
0.

01
)

2
z = 0.1, = 0.0
2
z = 0.1, = 0.9
2
z = 0.1, = 0.99

2
z = 0.1, = 1
2
z = 0, = 0

(c)

Figure 6.1: Test MSE under different hyper-parameters.

samples, establishing a quantitative comparison between knowledge supervision and labeled

samples.

6.6 Further Discussions

Summary of Analysis. The convergence analysis in Theorem 6.4.1 introduces

the concept of smooth sets and explains how the neural network output behaves by training

on an informed risk. The generalization analysis in Theorem 6.4.2 explicitly shows the two

different effects the domain knowledge has on the population risk (i.e., regularizing labels

and supplementing labels). Based on this observation, we propose a generalized informed risk

in Eqn. 6.5 to get more flexibility to control the two effects of knowledge, which is validated

by Theorem 6.5.1 and its Corollary 41. Finally, the sampling complexity in Corollary 43

shows the effects of joint knowledge and label supervision in a quantitative way.

Understanding Knowledge Distillation From the Perspective of Informed

Learning. Knowledge distillation is extremely useful in practice (e.g., for model compression

[194]). Here, we show how our analysis complement the existing understanding of knowledge

distillation [194, 319, 327, 119, 207] from the perspective of hard label and teacher’s knowledge

126

imperfectness. In our formulation, hard labels are {zi} in the labeled dataset, whose

imperfectness (non-softness) is measured by QR(0). In Theorems 6.4.2, 6.5.1, and Corollary

41, by viewing the teacher model g(x) as domain knowledge, we show the teacher benefits

the student training by providing a regularization gain ∆QR,β, and reducing the sampling

complexity of hard labels by Corollary 43. The knowledge-regularized label imperfectness

QR,β can be less than pure lable imperfectness QR(0) because the soft label can smooth the

network output within each smooth set. But, given the teacher (knowledge) imperfectness

QK, there exists a trade-off between hard label and teacher supervision.

Importantly, our results are in line with the observations and also complement the

analysis in [207]. Specifically, [207] uses NTK to show that the soft labels provided by a

teacher model (knowledge) are easier to learn than hard labels while hard labels can correct

imperfect teachers pointwise, exhibiting a trade-off between hard labels and the imperfect

teacher. We define the hard label and teacher (knowledge) imperfectness, and show that

for a neural network with finite width, hard labels and teacher’s knowledge compensate

for each other within each smooth set. In consistency with our results, [327] based on

NTK also presents a trade-off between labels and the imperfect teacher. The teacher model

imperfectness is also observed by [119] which measures the teacher imperfectness by the

squared norm of the difference of the soft label and the true Bayesian class probability. Note,

however, that our analysis cannot adequately explain the benefit of knowledge distillation for

the perspective of feature learning due to the inherent limitations of over-parameterization

techniques, which are further discussed in [13].

127

6.7 Numerical Results

6.7.1 Problem Setup

We consider an informed DNN with domain knowledge in the form of constraints to

learn a Bohachevsky function. The learning task is to learn a relationship y(x). The learner

is provided with a dataset with labeled samples Sz = {(xi, zi), i ∈ [nz]}, having possibly

noisy labels zi = y(xi) + ni, ni ∼ N (0, σ2
z), and an unlabeled dataset Sg = {(xi), i ∈ [ng]}.

Additionally, the learner is informed with the constraint knowledge, which includes an

upper bound gub(x) and an lower bound glb(x) on the true label corresponding to input

x, i.e. glb(x) ≤ y(x) ≤ gub(x). A neural network hW (x) is used for learning and the

metric of interest is the mean square error (MSE) of the network output hW (x) with

respect to the true label y(x) on a test dataset St, which is expressed as R̂St(hW) =

1
2|St|

∑
(xi,yi)∈St

(hW (xi) − yi)
2 . Assume that the relationship to be learned is governed

by a multi-dimensional Bohachevsky function y(x) = xAA⊤x⊤ − c cos
(
a⊤x

)
+ c, where

A is a b × b matrix, a is a b-dimensional vector and c is a constant. The constraint

knowledge includes an upper bound model gub(x) = xAA⊤x⊤ + ub with ub ≥ 2c, and an

lower bound model glb(x) = xAA⊤x⊤ + lb. with lb ≤ 0. While it is not strongly convex

and hence deviates from the assumptions in our theoretical analysis, we use ReLU as the

knowledge-based risk function, i.e., the knowledge-based risk is written as rK(hW (x)) =

relu (hW (x) − gub(x)) + relu (glb(x) − hW (x)) . If ub − lb is larger, the uncertainty of the

label given the knowledge is larger — the knowledge imperfectness is higher. We choose

(lb, ub) as (0, 0.6) and (0, 0.8) respectively to show the performances under low and high

knowledge imperfectness.

128

6.8 Conclusion

In this chapter, we consider knowledge informed DNN. We quantitatively demon-

strate that domain knowledge can improve the generalization performance and reduce the

sampling complexity, while also impacting the point to which the network output converges.

Our analysis also reveals that knowledge affects the generalization performance in two ways:

regularizing the label supervision, and supplementing the labeled samples. Finally, we

discuss how an informed DNN relates to other learning frameworks.

129

Chapter 7

Conclusions

The dissertation studies algorithms and theory of learning-augmented algorithms

exploting domain expert knowledge. We design provable learning-augmented algorithms

that can be used for a wide range online decision making problems. Specifically, we propose

robust bandit algorithms for bandit decision making with imperfect context. Then, we

consider online optimization and control problems with known dynamic model and design

learning-augmented algorithms with guaranteed competitiveness. In addition, for MDP

without the knowledge dynamic model, we propose learning-augmented algorithms which

optimize the average reward under anytime cost constraints. Moreover, we consider online

decision making with budget constraints and design a learning assisted unrolling algorithm to

solve it. Last by not least, we provide a theoretical analysis for domain knowledge informed

learning, demonstrating the benefits of domain knowledge in machine learning.

130

Bibliography

[1] The cifar-10 dataset (https://www.cs.toronto.edu/~kriz/cifar.html).

[2] Downlink and uplink transmission. https://www.sciencedirect.com/topics/

engineering/downlink-and-uplink-transmission.

[3] The mnist database of handwritten digits (http://yann.lecun.com/exdb/mnist/).

[4] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for
linear stochastic bandits. NeurIPS, 2011.

[5] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy
optimization. In International conference on machine learning, pages 22–31. PMLR,
2017.

[6] Jonas Adler and Ozan Öktem. Learned primal-dual reconstruction. IEEE transactions
on medical imaging, 37(6):1322–1332, 2018.

[7] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond,
and J Zico Kolter. Differentiable convex optimization layers. Advances in neural
information processing systems, 32, 2019.

[8] S. Agrawal and N. Goyal. Analysis of thompson sampling for the multi-armed bandit
problem. COLT, 2012.

[9] S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear
payoffs. ICML, 2013.

[10] Shipra Agrawal and Nikhil R Devanur. Fast algorithms for online stochastic convex
programming. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on
Discrete algorithms, pages 1405–1424, 2014.

[11] Irfan Ahmed, Hedi Khammari, Adnan Shahid, Ahmed Musa, Kwang Soon Kim, Eli
De Poorter, and Ingrid Moerman. A survey on hybrid beamforming techniques in
5g: Architecture and system model perspectives. IEEE Communications Surveys &
Tutorials, 20(4):3060–3097, 2018.

131

[12] Sina Alemohammad, Zichao Wang, Randall Balestriero, and Richard Baraniuk. The
recurrent neural tangent kernel. arXiv preprint arXiv:2006.10246, 2020.

[13] Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge
distillation and self-distillation in deep learning. arXiv preprint arXiv:2012.09816,
2020.

[14] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization
in overparameterized neural networks, going beyond two layers. arXiv preprint
arXiv:1811.04918, 2018.

[15] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training
recurrent neural networks. arXiv preprint arXiv:1810.12065, 2018.

[16] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning
via over-parameterization. In International Conference on Machine Learning, pages
242–252. PMLR, 2019.

[17] Mohammad Ali Alomrani, Reza Moravej, and Elias B Khalil. Deep policies for online bi-
partite matching: A reinforcement learning approach. arXiv preprint arXiv:2109.10380,
2021.

[18] Jason Altschuler, Victor-Emmanuel Brunel, and Alan Malek. Best arm identification
for contaminated bandits. Journal of Machine Learning Research, 20(91):1–39, 2019.

[19] David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with
self-explaining neural networks. Advances in Neural Information Processing Systems,
31:7775–7784, 2018.

[20] Sanae Amani, Christos Thrampoulidis, and Lin Yang. Safe reinforcement learning
with linear function approximation. In International Conference on Machine Learning,
pages 243–253. PMLR, 2021.

[21] Amazon. Amazon aws auto scaling documentation. https://docs.aws.amazon.com/
autoscaling/, 2021.

[22] Ron Amit and Ron Meir. Meta-learning by adjusting priors based on extended
pac-bayes theory. In ICML, pages 205–214, 2018.

[23] Brandon Amos and J. Zico Kolter. OptNet: Differentiable optimization as a layer
in neural networks. In Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 136–145.
PMLR, 2017.

[24] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in
neural networks. In International Conference on Machine Learning, pages 136–145.
PMLR, 2017.

132

[25] Marco Ancona, Cengiz Oztireli, and Markus Gross. Explaining deep neural networks
with a polynomial time algorithm for shapley value approximation. In International
Conference on Machine Learning, pages 272–281, 2019.

[26] Lachlan Andrew, Siddharth Barman, Katrina Ligett, Minghong Lin, Adam Meyerson,
Alan Roytman, and Adam Wierman. A tale of two metrics: Simultaneous bounds on
competitiveness and regret. In Conference on Learning Theory, pages 741–763. PMLR,
2013.

[27] Matthew Andrews, Krishnan Kumaran, Kavita Ramanan, Alexander Stolyar, Phil
Whiting, and Rajiv Vijayakumar. Providing quality of service over a shared wireless
link. IEEE Communications magazine, 39(2):150–154, 2001.

[28] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau,
Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient
descent by gradient descent. In Advances in neural information processing systems,
pages 3981–3989, 2016.

[29] Anonymous. Decentralized learning for overparameterized problems: A multi-agent
kernel approximation approach. In Submitted to The Tenth International Conference
on Learning Representations, 2022. under review.

[30] Anonymous. A global convergence theory for deep reLU implicit networks via over-
parameterization. In Submitted to The Tenth International Conference on Learning
Representations, 2022. under review.

[31] Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak, and Bertrand
Simon. Online metric algorithms with untrusted predictions. In ICML, 2020.

[32] Antonios Antoniadis and Kevin Schewior. A tight lower bound for online convex
optimization with switching costs. In International Workshop on Approximation and
Online Algorithms, pages 164–175. Springer, 2017.

[33] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained
analysis of optimization and generalization for overparameterized two-layer neural
networks. In ICML, 2019.

[34] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong
Wang. On exact computation with an infinitely wide neural net. arXiv preprint
arXiv:1904.11955, 2019.

[35] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update
method: a meta-algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

[36] Kavosh Asadi, Dipendra Misra, and Michael Littman. Lipschitz continuity in model-
based reinforcement learning. In International Conference on Machine Learning, pages
264–273. PMLR, 2018.

133

[37] Idan Attias, Aryeh Kontorovich, and Yishay Mansour. Improved generalization bounds
for robust learning. In Algorithmic Learning Theory, pages 162–183, 2019.

[38] J. Audibert and S. Bubeck. Minimax policies for adversarial and stochastic bandits.
COLT, 2009.

[39] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47:235–256, 2002.

[40] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32:48–77, 2002.

[41] Peter Auer and Chao-Kai Chiang. An algorithm with nearly optimal pseudo-regret
for both stochastic and adversarial bandits. In COLT, 2016.

[42] Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-based
reinforcement learning with value-targeted regression. In International Conference on
Machine Learning, pages 463–474. PMLR, 2020.

[43] Yossi Azar, Niv Buchbinder, TH Hubert Chan, Shahar Chen, Ilan Reuven Cohen,
Anupam Gupta, Zhiyi Huang, Ning Kang, Viswanath Nagarajan, Joseph Naor, et al.
Online algorithms for covering and packing problems with convex objectives. In 2016
IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages
148–157. IEEE, 2016.

[44] Yasaman Bahri, Quanquan Gu, Amin Karbasi, and Hanie Sedghi. Over-
parameterization: Pitfalls and opportunities. In ICML Workshop, 2021.

[45] Nathan Baker, Frank Alexander, Timo Bremer, Aric Hagberg, Yannis Kevrekidis,
Habib Najm, Manish Parashar, Abani Patra, James Sethian, Stefan Wild, et al. Work-
shop report on basic research needs for scientific machine learning: Core technologies
for artificial intelligence. Technical report, USDOE Office of Science (SC), Washington,
DC (United States), 2019.

[46] Maria-Florina Balcan. Rademacher complexity. http://www.cs.cmu.edu/~ninamf/
ML11/lect1117.pdf, 2011.

[47] Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm,
and Ellen Vitercik. How much data is sufficient to learn high-performing algorithms?
generalization guarantees for data-driven algorithm design. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, pages 919–932, 2021.

[48] Santiago Balseiro, Haihao Lu, and Vahab Mirrokni. Dual mirror descent for online
allocation problems. In International Conference on Machine Learning, pages 613–628.
PMLR, 2020.

[49] Santiago R Balseiro, Haihao Lu, and Vahab Mirrokni. The best of many worlds: Dual
mirror descent for online allocation problems. Operations Research, 2022.

134

[50] Robert Bamler, Farnood Salehi, and Stephan Mandt. Augmenting and tuning knowl-
edge graph embeddings. In Uncertainty in Artificial Intelligence, pages 508–518.
PMLR, 2020.

[51] Nikhil Bansal, Anupam Gupta, Ravishankar Krishnaswamy, Kirk Pruhs, Kevin
Schewior, and Cliff Stein. A 2-competitive algorithm for online convex optimization with
switching costs. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2015). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2015.

[52] Rémi Bardenet, Mátyás Brendel, Balázs Kégl, and Michele Sebag. Collaborative
hyperparameter tuning. In ICML, 2013.

[53] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin
bounds for neural networks. Advances in neural information processing systems, 30,
2017.

[54] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 3(Nov):463–482,
2002.

[55] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al.
Interaction networks for learning about objects, relations and physics. In Advances in
neural information processing systems, pages 4502–4510, 2016.

[56] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro,
Ryan Faulkner, et al. Relational inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

[57] Christian Beck, E Weinan, and Arnulf Jentzen. Machine learning approximation
algorithms for high-dimensional fully nonlinear partial differential equations and
second-order backward stochastic differential equations. Journal of Nonlinear Science,
29(4):1563–1619, 2019.

[58] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern ma-
chine learning practice and the bias-variance trade-off. arXiv preprint arXiv:1812.11118,
2018.

[59] Sagie Benaim and Lior Wolf. One-shot unsupervised cross domain translation. In
Advances in Neural Information Processing Systems, pages 2104–2114, 2018.

[60] Arka A Bhattacharya, David Culler, Eric Friedman, Ali Ghodsi, Scott Shenker, and
Ion Stoica. Hierarchical scheduling for diverse datacenter workloads. In Proceedings of
the 4th annual Symposium on Cloud Computing, pages 1–15, 2013.

[61] Wei Bi and James Kwok. Efficient multi-label classification with many labels. In
International Conference on Machine Learning, pages 405–413, 2013.

135

[62] Ioana Bica, Ahmed M Alaa, James Jordon, and Mihaela van der Schaar. Estimating
counterfactual treatment outcomes over time through adversarially balanced represen-
tations. In ICLR, 2020.

[63] Guy Blanc, Neha Gupta, Gregory Valiant, and Paul Valiant. Implicit regularization
for deep neural networks driven by an ornstein-uhlenbeck like process. In Conference
on learning theory, pages 483–513. PMLR, 2020.

[64] Avrim Blum and Carl Burch. On-line learning and the metrical task system problem.
Machine Learning, 39(1):35–58, 2000.

[65] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth.
Learnability and the vapnik-chervonenkis dimension. Journal of the ACM (JACM),
36(4):929–965, 1989.

[66] Ilija Bogunovic, Jonathan Scarlett, Stefanie Jegelka, and Volkan Cevher. Adversarially
robust optimization with gaussian processes. In NIPS, 2018.

[67] Andrea Borghesi, Federico Baldo, and Michela Milano. Improving deep learning
models via constraint-based domain knowledge: a brief survey. arXiv preprint
arXiv:2005.10691, 2020.

[68] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. Siam Review, 60(2):223–311, 2018.

[69] Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to statistical
learning theory. Advanced Lectures on Machine Learning: ML Summer Schools 2003,
Canberra, Australia, February 2-14, 2003, Tübingen, Germany, August 4-16, 2003,
Revised Lectures, pages 169–207, 2004.

[70] Joan Boyar, Lene M. Favrholdt, Christian Kudahl, Kim S. Larsen, and Jesper W.
Mikkelsen. Online algorithms with advice: A survey. SIGACT News, 47(3):93–129,
August 2016.

[71] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[72] Peter J Brockwell, Peter J Brockwell, Richard A Davis, and Richard A Davis. Intro-
duction to time series and forecasting. Springer, 2016.

[73] S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends® in Machine Learning, 5:1–122,
2012.

[74] Niv Buchbinder and Joseph Naor. Online primal-dual algorithms for covering and
packing. Mathematics of Operations Research, 34(2):270–286, 2009.

[75] Lucian Buşoniu, Tim de Bruin, Domagoj Tolić, Jens Kober, and Ivana Palunko.
Reinforcement learning for control: Performance, stability, and deep approximators.
Annual Reviews in Control, 46:8–28, 2018.

136

[76] Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration
in policy optimization. In International Conference on Machine Learning, pages
1283–1294. PMLR, 2020.

[77] Duncan S Callaway, Meredith Fowlie, and Gavin McCormick. Location, location,
location: The variable value of renewable energy and demand-side efficiency resources.
Journal of the Association of Environmental and Resource Economists, 5(1):39–75,
2018.

[78] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer
science & business media, 2013.

[79] Oana-Maria Camburu. Explaining deep neural networks. arXiv preprint
arXiv:2010.01496, 2020.

[80] Timothy I Cannings, Yingying Fan, and Richard J Samworth. Classification with
imperfect training labels. Biometrika, 107(2):311–330, 2020.

[81] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent
for wide and deep neural networks. arXiv preprint arXiv:1905.13210, 2019.

[82] Yuan Cao and Quanquan Gu. Generalization error bounds of gradient descent for
learning over-parameterized deep relu networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2020.

[83] Constantine Caramanis and Sujay Sanghavi. Projection onto a con-
vex set. https://users.ece.utexas.edu/~cmcaram/EE381V_2012F/Lecture_3_

Scribe_Notes.final.pdf, 2012.

[84] Agustin Castellano, Hancheng Min, Juan Bazerque, and Enrique Mallada. Reinforce-
ment learning with almost sure constraints. In Learning for Dynamics and Control,
2022.

[85] Javier Castro, Daniel Gómez, and Juan Tejada. Polynomial calculation of the shapley
value based on sampling. Computers & Operations Research, 36(5):1726–1730, 2009.

[86] Semih Cayci, Niao He, and R Srikant. Finite-time analysis of entropy-regularized
neural natural actor-critic algorithm. arXiv preprint arXiv:2206.00833, 2022.

[87] Bingqing Chen, Priya L Donti, Kyri Baker, J Zico Kolter, and Mario Bergés. Enforcing
policy feasibility constraints through differentiable projection for energy optimization.
In Proceedings of the Twelfth ACM International Conference on Future Energy Systems,
pages 199–210, 2021.

[88] Bokan Chen, Jianhui Wang, Lizhi Wang, Yanyi He, and Zhaoyu Wang. Robust
optimization for transmission expansion planning: Minimax cost vs. minimax regret.
IEEE Transactions on Power Systems, 29(6):3069–3077, 2014.

137

[89] Lixing Chen and Jie Xu. Budget-constrained edge service provisioning with demand
estimation via bandit learning. IEEE Journal on Selected Areas in Communications,
37(10):2364–2376, 2019.

[90] Lixing Chen, Jie Xu, Shaolei Ren, and Pan Zhou. Spatio–temporal edge service place-
ment: A bandit learning approach. IEEE Transactions on Wireless Communications,
17(12):8388–8401, 2018.

[91] Niangjun Chen, Anish Agarwal, Adam Wierman, Siddharth Barman, and Lachlan LH
Andrew. Online convex optimization using predictions. In Proceedings of the 2015 ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems, pages 191–204, 2015.

[92] Niangjun Chen, Joshua Comden, Zhenhua Liu, Anshul Gandhi, and Adam Wierman.
Using predictions in online optimization: Looking forward with an eye on the past.
ACM SIGMETRICS, 2016.

[93] Niangjun Chen, Gautam Goel, and Adam Wierman. Smoothed online convex opti-
mization in high dimensions via online balanced descent. In Conference On Learning
Theory, pages 1574–1594, 2018.

[94] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural
ordinary differential equations. NeurIPS, 2018.

[95] Shuang Chen, Christina Delimitrou, and José F Mart́ınez. Parties: Qos-aware resource
partitioning for multiple interactive services. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 107–120, 2019.

[96] Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang
Wang, and Wotao Yin. Learning to optimize: A primer and a benchmark. arXiv
preprint arXiv:2103.12828, 2021.

[97] Weiqin Chen, Dharmashankar Subramanian, and Santiago Paternain. Policy gradients
for probabilistic constrained reinforcement learning, 2022.

[98] Xin Chen, Guannan Qu, Yujie Tang, Steven Low, and Na Li. Reinforcement learning
for decision-making and control in power systems: Tutorial, review, and vision. arXiv,
2021.

[99] Yaran Chen, Ruiyuan Gao, Fenggang Liu, and Dongbin Zhao. Modulenet: Knowledge-
inherited neural architecture search. arXiv preprint arXiv:2004.05020, 2020.

[100] Yize Chen, Yushi Tan, and Baosen Zhang. Exploiting vulnerabilities of load forecasting
through adversarial attacks. In e-Energy, 2019.

[101] Zixiang Chen, Yuan Cao, Difan Zou, and Quanquan Gu. How much over-
parameterization is sufficient to learn deep relu networks? ICLR, 2021.

138

[102] Zixiang Chen, Chris Junchi Li, Angela Yuan, Quanquan Gu, and Michael I Jordan.
A general framework for sample-efficient function approximation in reinforcement
learning. arXiv preprint arXiv:2209.15634, 2022.

[103] Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, and
Joel Burdick. Control regularization for reduced variance reinforcement learning.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 1141–1150. PMLR, 09–15 Jun 2019.

[104] Yuri Chervonyi, Praneet Dutta, Piotr Trochim, Octavian Voicu, Cosmin Paduraru,
Crystal Qian, Emre Karagozler, Jared Quincy Davis, Richard Chippendale, Gautam
Bajaj, et al. Semi-analytical industrial cooling system model for reinforcement learning.
arXiv preprint arXiv:2207.13131, 2022.

[105] Mung Chiang, Prashanth Hande, and Tian Lan. Power control in wireless cellular
networks. Now Publishers Inc, 2008.

[106] Jakub Ch ledowski, Adam Polak, Bartosz Szabucki, and Konrad Tomasz Żo lna. Robust
learning-augmented caching: An experimental study. In ICML, 2021.

[107] Jang Hyun Cho and Bharath Hariharan. On the efficacy of knowledge distillation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
4794–4802, 2019.

[108] Edward Choi, Mohammad Taha Bahadori, Le Song, Walter F Stewart, and Jimeng Sun.
Gram: graph-based attention model for healthcare representation learning. In ACM
International Conference on Knowledge Discovery and Data Mining, pages 787–795,
2017.

[109] S. R. Chowdhury and A. Gopalan. On kernelized multi-armed bandits. ICML, 2017.

[110] Nicolas Christianson, Tinashe Handina, and Adam Wierman. Chasing convex bodies
and functions with black-box advice. In COLT, 2022.

[111] Nicolas Christianson, Junxuan Shen, and Adam Wierman. Optimal robustness-
consistency tradeoffs for learning-augmented metrical task systems. In AISTATS,
2023.

[112] W. Chu, L. Li, L. Reyzin, and R. Schapire. Contextual bandits with linear payoff
functions. NeurIPS, 2011.

[113] Kenneth L Clarkson. Building triangulations using ε-nets. In STOC, 2006.

[114] Joshua Comden, Sijie Yao, Niangjun Chen, Haipeng Xing, and Zhenhua Liu. Online
optimization in cloud resource provisioning: Predictions, regrets, and algorithms. ACM
SIGMETRICS, 2019.

139

[115] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. Resource central: Understanding and predicting workloads for
improved resource management in large cloud platforms. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 153–167, 2017.

[116] Wei Cui, Kaiming Shen, and Wei Yu. Spatial deep learning for wireless scheduling.
IEEE Journal on Selected Areas in Communications, 37(6):1248–1261, 2019.

[117] Hanjun Dai, Elias B Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning
combinatorial optimization algorithms over graphs. In NIPS, 2017.

[118] V. Dani, T. Hayes, P. Thomas, and S. Kakade. Stochastic linear optimization under
bandit feedback. COLT, 2008.

[119] Tri Dao, Govinda M Kamath, Vasilis Syrgkanis, and Lester Mackey. Knowledge
distillation as semiparametric inference. arXiv preprint arXiv:2104.09732, 2021.

[120] Google DeepMind. Safety-first ai for autonomous data centre
cooling and industrial control. https://www.deepmind.com/blog/

safety-first-ai-for-autonomous-data-centre-cooling-and-industrial-control,
2018.

[121] Timo M Deist, Andrew Patti, Zhaoqi Wang, David Krane, Taylor Sorenson, and David
Craft. Simulation-assisted machine learning. Bioinformatics, 35(20):4072–4080, 2019.

[122] Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware scheduling for
heterogeneous datacenters. ACM SIGPLAN Notices, 48(4):77–88, 2013.

[123] Changyu Deng, Xunbi Ji, Colton Rainey, Jianyu Zhang, and Wei Lu. Integrating
machine learning with human knowledge. iScience, 23(11):101656, 2020.

[124] A. A. Deshmukh, U. Dogan, and C. Scott. Multi-task learning for contextual bandits.
NeurIPS, 2017.

[125] Nikhil R Devanur and Thomas P Hayes. The adwords problem: online keyword
matching with budgeted bidders under random permutations. In Proceedings of the
10th ACM conference on Electronic commerce, pages 71–78, 2009.

[126] Nikhil R Devanur, Kamal Jain, Balasubramanian Sivan, and Christopher A Wilkens.
Near optimal online algorithms and fast approximation algorithms for resource alloca-
tion problems. Journal of the ACM (JACM), 66(1):1–41, 2019.

[127] Boya Di, Lingyang Song, and Yonghui Li. Sub-channel assignment, power allocation,
and user scheduling for non-orthogonal multiple access networks. IEEE Transactions
on Wireless Communications, 15(11):7686–7698, 2016.

[128] Michelangelo Diligenti, Marco Gori, and Claudio Sacca. Semantic-based regularization
for learning and inference. Artificial Intelligence, 244:143–165, 2017.

140

[129] Michelangelo Diligenti, Soumali Roychowdhury, and Marco Gori. Integrating prior
knowledge into deep learning. In ICMLA, pages 920–923, 2017.

[130] Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, and Mihailo Jovanovic.
Provably efficient safe exploration via primal-dual policy optimization. In International
Conference on Artificial Intelligence and Statistics, pages 3304–3312. PMLR, 2021.

[131] Dongsheng Ding, Kaiqing Zhang, Tamer Basar, and Mihailo Jovanovic. Natural policy
gradient primal-dual method for constrained markov decision processes. Advances in
Neural Information Processing Systems, 33:8378–8390, 2020.

[132] Jesse Dodge, Taylor Prewitt, Remi Tachet des Combes, Erika Odmark, Roy Schwartz,
Emma Strubell, Alexandra Sasha Luccioni, Noah A Smith, Nicole DeCario, and Will
Buchanan. Measuring the carbon intensity of ai in cloud instances. In 2022 ACM
Conference on Fairness, Accountability, and Transparency, pages 1877–1894, 2022.

[133] Priya L Donti, David Rolnick, and J Zico Kolter. Dc3: A learning method for
optimization with hard constraints. arXiv preprint arXiv:2104.12225, 2021.

[134] Bingqian Du, Chuan Wu, and Zhiyi Huang. Learning resource allocation and pricing
for cloud profit maximization. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 7570–7577, 2019.

[135] Mengnan Du, Ninghao Liu, and Xia Hu. Techniques for interpretable machine learning.
Communications of the ACM, 63(1):68–77, 2019.

[136] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent
finds global minima of deep neural networks. In International Conference on Machine
Learning, pages 1675–1685, 2019.

[137] Yihan Du, Siwei Wang, and Longbo Huang. A one-size-fits-all solution to conservative
bandit problems. In AAAI, 2021.

[138] Miroslav Dud́ık, John Langford, and Lihong Li. Doubly robust policy evaluation and
learning. arXiv preprint arXiv:1103.4601, 2011.

[139] Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in
constrained mdps. arXiv preprint arXiv:2003.02189, 2020.

[140] Ran El-Yaniv, Amos Fiat, Richard M Karp, and Gordon Turpin. Optimal search and
one-way trading online algorithms. Algorithmica, 30(1):101–139, 2001.

[141] Birhanu Eshete. Making machine learning trustworthy. Science, 373(6556):743–744,
2021.

[142] Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis
of deep q-learning. In Learning for Dynamics and Control, pages 486–489. PMLR,
2020.

141

[143] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provisioning for a
warehouse-sized computer. In ISCA, 2007.

[144] Jun Fang, Yanning Shen, Fuwei Li, and Hongbin Li. Prior support knowledge-aided
sparse bayesian learning with partly erroneous support information. arXiv preprint
arXiv:1410.5055, 2014.

[145] Yuan Fang, Kingsley Kuan, Jie Lin, Cheston Tan, and Vijay Chandrasekhar. Object
detection meets knowledge graphs.(2017). In Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence: Melbourne, Australia, August 19,
volume 25, pages 1661–1667, 2017.

[146] Jon Feldman, Monika Henzinger, Nitish Korula, Vahab S Mirrokni, and Cliff Stein.
Online stochastic packing applied to display ad allocation. In European Symposium
on Algorithms, pages 182–194, 2010.

[147] Ana Lùcia D Franco, Henri Bourlès, Edson R De Pieri, and Herve Guillard. Robust
nonlinear control associating robust feedback linearization and h/sub/spl infin//control.
IEEE transactions on automatic control, 51(7):1200–1207, 2006.

[148] Randy Freeman and Petar V Kokotovic. Robust nonlinear control design: state-space
and Lyapunov techniques. Springer Science & Business Media, 2008.

[149] Spencer Frei, Yuan Cao, and Quanquan Gu. Algorithm-dependent generalization
bounds for overparameterized deep residual networks. arXiv preprint arXiv:1910.02934,
2019.

[150] Eric Friedman, Ali Ghodsi, and Christos-Alexandros Psomas. Strategyproof allocation
of discrete jobs on multiple machines. In Proceedings of the fifteenth ACM conference
on Economics and computation, pages 529–546, 2014.

[151] Joel Friedman and Nathan Linial. On convex body chasing. Discrete & Computational
Geometry, 9(3):293–321, 1993.

[152] Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima
Anandkumar. Born again neural networks. In ICML, pages 1607–1616, 2018.

[153] Lingwen Gan, Adam Wierman, Ufuk Topcu, Niangjun Chen, and Steven H Low.
Real-time deferrable load control: handling the uncertainties of renewable generation.
In Proceedings of the fourth international conference on Future energy systems, pages
113–124, 2013.

[154] Hang Gao, Zheng Shou, Alireza Zareian, Hanwang Zhang, and Shih-Fu Chang. Low-
shot learning via covariance-preserving adversarial augmentation networks. In Advances
in Neural Information Processing Systems, pages 975–985, 2018.

[155] Ruiqi Gao, Tianle Cai, Haochuan Li, Cho-Jui Hsieh, Liwei Wang, and Jason D Lee.
Convergence of adversarial training in overparametrized neural networks. Advances in
Neural Information Processing Systems, 32, 2019.

142

[156] Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. Rein-
forcement learning from imperfect demonstrations. arXiv preprint arXiv:1802.05313,
2018.

[157] Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric, and Matteo Pirotta.
Conservative exploration in reinforcement learning. In International Conference on
Artificial Intelligence and Statistics, pages 1431–1441. PMLR, 2020.

[158] Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control:
Theory and practice—a survey. Automatica, 25(3):335–348, 1989.

[159] Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement
learning. Journal of Machine Learning Research, 16(1):1437–1480, 2015.

[160] Victor Garcia and Joan Bruna. Few-shot learning with graph neural networks. arXiv
preprint arXiv:1711.04043, 2017.

[161] Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare.
Deepmdp: Learning continuous latent space models for representation learning. In
International Conference on Machine Learning, pages 2170–2179. PMLR, 2019.

[162] S. Gerchinovitz and T. Lattimore. Refined lower bounds for adversarial bandits.
NeurIPS, 2016.

[163] Pascal Germain, Francis Bach, Alexandre Lacoste, and Simon Lacoste-Julien. Pac-
bayesian theory meets bayesian inference. NeurIPS, 2016.

[164] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual
prediction with lstm. Neural Computation, 12(10):2451–2471, 2000.

[165] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and
Ion Stoica. Dominant resource fairness: Fair allocation of multiple resource types. In
Nsdi, volume 11, pages 24–24, 2011.

[166] Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for
machine learning. arXiv preprint arXiv:1904.02868, 2019.

[167] Amirata Ghorbani and James Zou. Neuron shapley: Discovering the responsible
neurons. arXiv preprint arXiv:2002.09815, 2020.

[168] Arnob Ghosh, Xingyu Zhou, and Ness Shroff. Provably efficient model-free constrained
rl with linear function approximation. arXiv preprint arXiv:2206.11889, 2022.

[169] Gautam Goel, Naman Agarwal, Karan Singh, and Elad Hazan. Best of both worlds in
online control: Competitive ratio and policy regret. arXiv preprint arXiv:2211.11219,
2022.

[170] Gautam Goel and Babak Hassibi. Competitive control, 2021.

143

[171] Gautam Goel, Yiheng Lin, Haoyuan Sun, and Adam Wierman. Beyond online
balanced descent: An optimal algorithm for smoothed online optimization. In NeurIPS,
volume 32, 2019.

[172] Gautam Goel and Adam Wierman. An online algorithm for smoothed online convex
optimization. SIGMETRICS Perform. Eval. Rev., 47(2):6–8, December 2019.

[173] Gautam Goel and Adam Wierman. An online algorithm for smoothed regression
and lqr control. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 2504–2513, 2019.

[174] Íñigo Goiri, Kien Le, Md E Haque, Ryan Beauchea, Thu D Nguyen, Jordi Guitart, Jordi
Torres, and Ricardo Bianchini. Greenslot: scheduling energy consumption in green
datacenters. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–11, 2011.

[175] Andrea Goldsmith. Wireless communications. Cambridge university press, 2005.

[176] Andrea J Goldsmith and Soon-Ghee Chua. Variable-rate variable-power mqam for
fading channels. IEEE transactions on communications, 45(10):1218–1230, 1997.

[177] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

[178] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[179] Bryce Goodman and Seth Flaxman. European union regulations on algorithmic
decision-making and a “right to explanation”. AI Magazine, 38(3):50–57, Oct. 2017.

[180] Ashutosh Deepak Gore and Abhay Karandikar. Link scheduling algorithms for wireless
mesh networks. IEEE Communications Surveys & Tutorials, 13(2):258–273, 2010.

[181] Jianping Gou, Baosheng Yu, Stephen John Maybank, and Dacheng Tao. Knowledge
distillation: A survey. arXiv preprint arXiv:2006.05525, 2020.

[182] Brandon M Greenwell, Bradley C Boehmke, and Andrew J McCarthy. A simple and
effective model-based variable importance measure. arXiv preprint arXiv:1805.04755,
2018.

[183] Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In
Proceedings of the 27th international conference on international conference on machine
learning, pages 399–406, 2010.

[184] Ziwei Guan, Kaiyi Ji, Donald J Bucci Jr, Timothy Y Hu, Joseph Palombo, Michael
Liston, and Yingbin Liang. Robust stochastic bandit algorithms under probabilistic
unbounded adversarial attack. In AAAI, 2020.

144

[185] Benjamin Guedj. A primer on pac-bayesian learning. Proceedings of the 2nd congress
of the Société Mathématique de France, pages 391–414, 2019.

[186] Benjamin Guedj and John Shawe-Taylor. A primer on pac-bayesian learning. Interna-
tional Conference on Machine Learning, 2019.

[187] Vincent Le Guen, Yuan Yin, Jérémie Dona, Ibrahim Ayed, Emmanuel de Bézenac,
Nicolas Thome, and Patrick Gallinari. Augmenting physical models with deep networks
for complex dynamics forecasting. arXiv preprint arXiv:2010.04456, 2020.

[188] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern
neural networks. pages 1321–1330, 2017.

[189] Yanjun Han, Zhengqing Zhou, Zhengyuan Zhou, Jose Blanchet, Peter W Glynn, and
Yinyu Ye. Sequential batch learning in finite-action linear contextual bandits. arXiv
preprint arXiv:2004.06321, 2020.

[190] Moritz Hardt and Max Simchowitz. Convex optimization and approximation. https:
//ee227c.github.io/notes/ee227c-notes.pdf, 2018.

[191] Jian He, Zheng Xue, Di Wu, Dapeng Oliver Wu, and Yonggang Wen. Cbm: On-
line strategies on cost-aware buffer management for mobile video streaming. IEEE
Transactions on Multimedia, 16(1):242–252, 2013.

[192] Jay Heo, Hae Beom Lee, Saehoon Kim, Juho Lee, Kwang Joon Kim, Eunho Yang, and
Sung Ju Hwang. Uncertainty-aware attention for reliable interpretation and prediction.
In Advances in Neural Information Processing Systems, pages 909–918, 2018.

[193] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,
Dan Horgan, John Quan, Andrew Sendonaris, Gabriel Dulac-Arnold, et al. Deep
q-learning from demonstrations. arXiv preprint arXiv:1704.03732, 2017.

[194] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[195] Mingyi Hong and Zhi-Quan Luo. Signal processing and optimal resource allocation for
the interference channel. In Academic Press Library in Signal Processing, volume 2,
pages 409–469. 2014.

[196] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. Harnessing deep
neural networks with logic rules. Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2410–2420, 2016.

[197] Longbo Huang, Xin Liu, and Xiaohong Hao. The power of online learning in stochastic
network optimization. SIGMETRICS Perform. Eval. Rev., 42(1):153–165, June 2014.

[198] Kelli D Humbird, J Luc Peterson, and Ryan G McClarren. Deep neural network
initialization with decision trees. IEEE transactions on neural networks and learning
systems, 30(5):1286–1295, 2018.

145

[199] Michael Husken and Christian Goerick. Fast learning for problem classes using
knowledge based network initialization. In IEEE IJCNN, 2000.

[200] Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to
positions. Journal of Political economy, 87(2):293–314, 1979.

[201] Rob J Hyndman, David M Bashtannyk, and Gary K Grunwald. Estimating and
visualizing conditional densities. Journal of Computational and Graphical Statistics,
5(4):315–336, 1996.

[202] Sungjin Im, Benjamin Moseley, Kamesh Munagala, and Kirk Pruhs. Dynamic weighted
fairness with minimal disruptions. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 4(1):1–18, 2020.

[203] The Alan Turing Institute. Physics-informed machine learning, 2020. https:

//www.turing.ac.uk/research/theory-and-method-challenge-fortnights/

physics-informed-machine-learning.

[204] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Con-
vergence and generalization in neural networks. arXiv preprint arXiv:1806.07572,
2018.

[205] Ali Jadbabaie, Alexander Rakhlin, Shahin Shahrampour, and Karthik Sridharan.
Online optimization: Competing with dynamic comparators. In AISTATS, 2015.

[206] Stefanus Jasin and Sunil Kumar. A re-solving heuristic with bounded revenue loss
for network revenue management with customer choice. Mathematics of Operations
Research, 37(2):313–345, 2012.

[207] Guangda Ji and Zhanxing Zhu. Knowledge distillation in wide neural networks: Risk
bound, data efficiency and imperfect teacher. arXiv preprint arXiv:2010.10090, 2020.

[208] Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent
to achieve arbitrarily small test error with shallow relu networks. arXiv preprint
arXiv:1909.12292, 2019.

[209] Chenhan Jiang, Hang Xu, Xiaodan Liang, and Liang Lin. Hybrid knowledge routed
modules for large-scale object detection. In Advances in Neural Information Processing
Systems, pages 1552–1563, 2018.

[210] Jiashuo Jiang, Xiaocheng Li, and Jiawei Zhang. Online stochastic optimization with
wasserstein based non-stationarity. arXiv preprint arXiv:2012.06961, 2020.

[211] Ruiwei Jiang, Jianhui Wang, Muhong Zhang, and Yongpei Guan. Two-stage minimax
regret robust unit commitment. IEEE Transactions on Power Systems, 28(3):2271–
2282, 2013.

[212] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning
provably efficient? Advances in neural information processing systems, 31, 2018.

146

[213] Carlee Joe-Wong, Soumya Sen, Tian Lan, and Mung Chiang. Multi-resource allocation:
Fairness-efficiency tradeoffs in a unifying framework. IEEE/ACM Trans. Netw.,
21(6):1785–1798, December 2013.

[214] Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Xiaojin Zhu. Adversarial attacks on
stochastic bandits. In NIPS, 2018.

[215] Leonid Vasilevich Kantorovich and SG Rubinshtein. On a space of totally additive
functions. Vestnik of the St. Petersburg University: Mathematics, 13(7):52–59, 1958.

[216] Anuj Karpatne, William Watkins, Jordan Read, and Vipin Kumar. Physics-guided
neural networks (pgnn): An application in lake temperature modeling. arXiv preprint
arXiv:1710.11431, 2017.

[217] Sumeet Katariya, Branislav Kveton, Zheng Wen, and Vamsi K Potluru. Conservative
exploration using interleaving. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 954–963. PMLR, 2019.

[218] IS Khalil, JC Doyle, and K Glover. Robust and optimal control. Prentice hall, 1996.

[219] Imran Khan. Temporal carbon intensity analysis: renewable versus fossil fuel dominated
electricity systems. Energy Sources, Part A: Recovery, Utilization, and Environmental
Effects, 41(3):309–323, 2019.

[220] Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric pde problems with
artificial neural networks. arXiv preprint arXiv:1707.03351, 2017.

[221] Hyunjik Kim, George Papamakarios, and Andriy Mnih. The lipschitz constant of
self-attention. In International Conference on Machine Learning, pages 5562–5571.
PMLR, 2021.

[222] Johannes Kirschner, Ilija Bogunovic, Stefanie Jegelka, and Andreas Krause. Distribu-
tionally robust bayesian optimization. In AISTATS, 2020.

[223] Johannes Kirschner and Andreas Krause. Stochastic bandits with context distributions.
In NeurIPS, 2019.

[224] Bahare Kiumarsi, Kyriakos G Vamvoudakis, Hamidreza Modares, and Frank L Lewis.
Optimal and autonomous control using reinforcement learning: A survey. IEEE
transactions on neural networks and learning systems, 29(6):2042–2062, 2017.

[225] Aldebaro Klautau, Pedro Batista, Nuria González-Prelcic, Yuyang Wang, and
Robert W Heath. 5g mimo data for machine learning: Application to beam-selection
using deep learning. In ITA, pages 1–9, 2018.

[226] Erich Kobler, Alexander Effland, Karl Kunisch, and Thomas Pock. Total deep variation:
A stable regularizer for inverse problems. arXiv preprint arXiv:2006.08789, 2020.

[227] Zico Kolter, David Duvenaud, and Matt Johnson. Deep implicit layers, http://

implicit-layers-tutorial.org/.

147

[228] Weiwei Kong, Christopher Liaw, Aranyak Mehta, and D. Sivakumar. A new dog learns
old tricks: RL finds classic optimization algorithms. In ICLR, 2019.

[229] Daniel Kuhn, Peyman Mohajerin Esfahani, Viet Anh Nguyen, and Soroosh
Shafieezadeh-Abadeh. Wasserstein distributionally robust optimization: Theory and
applications in machine learning. In Operations Research & Management Science in
the Age of Analytics, pages 130–166. 2019.

[230] Gakuto Kurata, Bing Xiang, and Bowen Zhou. Improved neural network-based
multi-label classification with better initialization leveraging label co-occurrence. In
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 521–526, 2016.

[231] Tian Lan, David Kao, Mung Chiang, and Ashutosh Sabharwal. An axiomatic theory
of fairness in network resource allocation. In INFOCOM, 2010.

[232] Hoang Le, Andrew Kang, Yisong Yue, and Peter Carr. Smooth imitation learning for
online sequence prediction. In International Conference on Machine Learning, pages
680–688. PMLR, 2016.

[233] Hoang M. Le, Andrew Kang, Yisong Yue, and Peter Carr. Smooth imitation learning
for online sequence prediction. In ICML, 2016.

[234] Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman Novak,
Jascha Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth
evolve as linear models under gradient descent. arXiv preprint arXiv:1902.06720, 2019.

[235] Zachary J Lee, Tongxin Li, and Steven H Low. Acn-data: Analysis and applications
of an open ev charging dataset. In Proceedings of the Tenth ACM International
Conference on Future Energy Systems, pages 139–149, 2019.

[236] H. Lei, A. Tewari, and S. Murphy. An actor-critic contextual bandit algorithm for
personalized interventions using mobile devices. NeurIPS, 2014.

[237] Jianxiong Li, Xianyuan Zhan, Haoran Xu, Xiangyu Zhu, Jingjing Liu, and Ya-
Qin Zhang. Distance-sensitive offline reinforcement learning. arXiv preprint
arXiv:2205.11027, 2022.

[238] Ke Li and Jitendra Malik. Learning to optimize. In ICLR, 2017.

[239] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit
approach to personalized news article recommendation. In WWW, 2010.

[240] Mo Li, Timothy M Smith, Yi Yang, and Elizabeth J Wilson. Marginal emission factors
considering renewables: A case study of the us midcontinent independent system
operator (miso) system. Environmental science & technology, 51(19):11215–11223,
2017.

148

[241] Pengfei Li, Jianyi Yang, and Shaolei Ren. Expert-calibrated learning for online
optimization with switching costs. Proc. ACM Meas. Anal. Comput. Syst., 6(2), Jun
2022.

[242] Pengfei Li, Jianyi Yang, and Shaolei Ren. Expert-calibrated learning for online
optimization with switching costs. In SIGMETRICS, 2022.

[243] Pengfei Li, Jianyi Yang, and Shaolei Ren. Learning for edge-weighted online bipartite
matching with robustness guarantees. ICML, 2023.

[244] Pengfei Li, Jianyi Yang, and Shaolei Ren. Robustified learning for online optimization
with memory costs. INDOCOM, 2023.

[245] Tongxin Li. Learning-Augmented Control and Decision-Making: Theory and Applica-
tions in Smart Grids. PhD thesis, California Institute of Technology, 2023.

[246] Tongxin Li, Bo Sun, Yue Chen, Zixin Ye, Steven H Low, and Adam Wierman. Learning-
based predictive control via real-time aggregate flexibility. IEEE Transactions on
Smart Grid, 12(6):4897–4913, 2021.

[247] Tongxin Li, Ruixiao Yang, Guannan Qu, Yiheng Lin, Steven Low, and Adam Wierman.
Equipping black-box policies with model-based advice for stable nonlinear control. In
https: // arxiv. org/ abs/ 2206. 01341 , 2022.

[248] Tongxin Li, Ruixiao Yang, Guannan Qu, Guanya Shi, Chenkai Yu, Adam Wierman,
and Steven Low. Robustness and consistency in linear quadratic control with untrusted
predictions. Proc. ACM Meas. Anal. Comput. Syst., 6(1), feb 2022.

[249] Yingying Li, Xin Chen, and Na Li. Online optimal control with linear dynamics
and predictions: Algorithms and regret analysis. Advances in Neural Information
Processing Systems, 32, 2019.

[250] Yingying Li, Subhro Das, Jeff Shamma, and Na Li. Safe adaptive learning-based
control for constrained linear quadratic regulators with regret guarantees. arXiv
preprint arXiv:2111.00411, 2021.

[251] Yingying Li and Na Li. Leveraging predictions in smoothed online convex optimization
via gradient-based algorithms. In NeurIPS, volume 33, 2020.

[252] Yingying Li and Na Li. Leveraging predictions in smoothed online convex optimization
via gradient-based algorithms. arXiv preprint arXiv:2011.12539, 2020.

[253] Yingying Li, James A Preiss, Na Li, Yiheng Lin, Adam Wierman, and Jeff Shamma.
Online switching control with stability and regret guarantees. arXiv preprint
arXiv:2301.08445, 2023.

[254] Yingying Li, Guannan Qu, and Na Li. Online optimization with predictions and
switching costs: Fast algorithms and the fundamental limit. IEEE Transactions on
Automatic Control, 2020.

149

[255] Yuelong Li, Mohammad Tofighi, Vishal Monga, and Yonina C Eldar. An algorithm
unrolling approach to deep image deblurring. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7675–7679.
IEEE, 2019.

[256] Enming Liang, Minghua Chen, and Steven H. Low. Low complexity homeomorphic
projection to ensure neural-network solution feasibility for optimization over (non-
)convex set. In ICML, 2023.

[257] F. Liang, C. Shen, W. Yu, and F. Wu. Towards optimal power control via ensembling
deep neural networks. IEEE Transactions on Communications, 68(3):1760–1776, 2020.

[258] Fei Liang, Cong Shen, Wei Yu, and Feng Wu. Towards optimal power control via
ensembling deep neural networks. IEEE Transactions on Communications, 68(3):1760–
1776, 2019.

[259] Xiaodan Liang, Zhiting Hu, Hao Zhang, Liang Lin, and Eric P Xing. Symbolic graph
reasoning meets convolutions. In Advances in Neural Information Processing Systems,
pages 1853–1863, 2018.

[260] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971, 2015.

[261] M. Lin, Z. Liu, A. Wierman, and L. L. H. Andrew. Online algorithms for geographical
load balancing. In IGCC, 2012.

[262] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska. Dynamic right-sizing for
power-proportional data centers. In INFOCOM, 2011.

[263] Minghong Lin, Zhenhua Liu, Adam Wierman, and Lachlan LH Andrew. Online
algorithms for geographical load balancing. In 2012 international green computing
conference (IGCC), pages 1–10, 2012.

[264] Minghong Lin, Adam Wierman, Lachlan LH Andrew, and Eno Thereska. Dynamic
right-sizing for power-proportional data centers. IEEE/ACM Transactions on Net-
working, 21(5):1378–1391, 2012.

[265] Qiulin Lin, Yanfang Mo, Junyan Su, and Minghua Chen. Competitive online opti-
mization with multiple inventories: A divide-and-conquer approach. Proceedings of
the ACM on Measurement and Analysis of Computing Systems, 6(2):1–28, 2022.

[266] Qiulin Lin, Hanling Yi, John Pang, Minghua Chen, Adam Wierman, Michael Honig,
and Yuanzhang Xiao. Competitive online optimization under inventory constraints.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 3(1):1–
28, 2019.

[267] Yiheng Lin, Judy Gan, Guannan Qu, Yash Kanoria, and Adam Wierman. Decentralized
online convex optimization in networked systems. In International Conference on
Machine Learning, pages 13356–13393. PMLR, 2022.

150

[268] Yiheng Lin, Yang Hu, Guannan Qu, Tongxin Li, and Adam Wierman. Bounded-regret
mpc via perturbation analysis: Prediction error, constraints, and nonlinearity. arXiv
preprint arXiv:2210.12312, 2022.

[269] Yiheng Lin, Yang Hu, Guanya Shi, Haoyuan Sun, Guannan Qu, and Adam Wierman.
Perturbation-based regret analysis of predictive control in linear time varying systems.
Advances in Neural Information Processing Systems, 34:5174–5185, 2021.

[270] Zachary C Lipton. The mythos of model interpretability. Queue, 16(3):31–57, 2018.

[271] Fang Liu and Ness Shroff. Data poisoning attacks on stochastic bandits. In ICML,
2019.

[272] Risheng Liu, Shichao Cheng, Long Ma, Xin Fan, and Zhongxuan Luo. Deep proximal
unrolling: Algorithmic framework, convergence analysis and applications. IEEE
Transactions on Image Processing, 28(10):5013–5026, 2019.

[273] Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and
Pramod K Varshney. A primer on zeroth-order optimization in signal processing
and machine learning: Principals, recent advances, and applications. IEEE Signal
Processing Magazine, 37(5):43–54, 2020.

[274] Xin Liu, Bin Li, Pengyi Shi, and Lei Ying. An efficient pessimistic-optimistic algorithm
for stochastic linear bandits with general constraints. Advances in Neural Information
Processing Systems, 34:24075–24086, 2021.

[275] Zhenhua Liu, Iris Liu, Steven Low, and Adam Wierman. Pricing data center demand
response. In SIGMETRICS, 2014.

[276] Zhenhua Liu, Adam Wierman, Yuan Chen, Benjamin Razon, and Niangjun Chen.
Data center demand response: Avoiding the coincident peak via workload shifting and
local generation. Performance Evaluation, 70(10):770–791, 2013.

[277] Alfonso Lobos, Paul Grigas, and Zheng Wen. Joint online learning and decision-making
via dual mirror descent. arXiv preprint arXiv:2104.09750, 2021.

[278] Jihao Long, Jiequn Han, et al. An l2 analysis of reinforcement learning in high dimen-
sions with kernel and neural network approximation. arXiv preprint arXiv:2104.07794,
2021.

[279] Lu Lu, Xuhui Meng, Zhiping Mao, and George E Karniadakis. Deepxde: A deep
learning library for solving differential equations. arXiv preprint arXiv:1907.04502,
2019.

[280] T. Lu, D. Pál, and M. Pál. Contextual multi-armed bandits. AISTATS, 2010.

[281] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
In Advances in neural information processing systems, pages 4765–4774, 2017.

151

[282] Jerry Luo, Cosmin Paduraru, Octavian Voicu, Yuri Chervonyi, Scott Munns, Jerry Li,
Crystal Qian, Praneet Dutta, Jared Quincy Davis, Ningjia Wu, et al. Controlling com-
mercial cooling systems using reinforcement learning. arXiv preprint arXiv:2211.07357,
2022.

[283] Thodoris Lykouris, Max Simchowitz, Alex Slivkins, and Wen Sun. Corruption-robust
exploration in episodic reinforcement learning. In Conference on Learning Theory,
pages 3242–3245. PMLR, 2021.

[284] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned
advice. J. ACM, 68(4), July 2021.

[285] Mohamed Maher and Sherif Sakr. Smartml: A meta learning-based framework for
automated selection and hyperparameter tuning for machine learning algorithms. In
EDBT: 22nd International Conference on Extending Database Technology, 2019.

[286] Sasan Maleki, Long Tran-Thanh, Greg Hines, Talal Rahwan, and Alex Rogers. Bound-
ing the estimation error of sampling-based shapley value approximation. arXiv preprint
arXiv:1306.4265, 2013.

[287] Jayanta Mandi, Vıctor Bucarey, Maxime Mulamba Ke Tchomba, and Tias Guns.
Decision-focused learning: Through the lens of learning to rank. In International
Conference on Machine Learning, pages 14935–14947. PMLR, 2022.

[288] Joseph Marino, Alexandre Piché, Alessandro Davide Ialongo, and Yisong Yue. Iterative
amortized policy optimization. arXiv preprint arXiv:2010.10670, 2020.

[289] Kenneth Marino, Ruslan Salakhutdinov, and Abhinav Gupta. The more you know:
Using knowledge graphs for image classification. arXiv preprint arXiv:1612.04844,
2016.

[290] Pascal Massart, Élodie Nédélec, et al. Risk bounds for statistical learning. The Annals
of Statistics, 34(5):2326–2366, 2006.

[291] Andreas Maurer. A vector-contraction inequality for rademacher complexities. In
International Conference on Algorithmic Learning Theory, pages 3–17, 2016.

[292] Aranyak Mehta et al. Online matching and ad allocation. Foundations and Trends®
in Theoretical Computer Science, 8(4):265–368, 2013.

[293] Shahar Mendelson and Roman Vershynin. Entropy and the combinatorial dimension.
Inventiones mathematicae, 152(1):37–55, 2003.

[294] Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, and Frank
Hutter. Towards automatically-tuned neural networks. In Workshop on Automatic
Machine Learning, pages 58–65, 2016.

[295] Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha
Sohl-Dickstein. Understanding and correcting pathologies in the training of learned
optimizers. In International Conference on Machine Learning, pages 4556–4565, 2019.

152

[296] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral
normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957,
2018.

[297] Moein Moeini-Aghtaie, Payman Dehghanian, Mahmud Fotuhi-Firuzabad, and Ali
Abbaspour. Multiagent genetic algorithm: an online probabilistic view on economic
dispatch of energy hubs constrained by wind availability. IEEE Transactions on
sustainable energy, 5(2):699–708, 2013.

[298] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine
learning. MIT press, 2018.

[299] Christoph Molnar. Interpretable Machine Learning. Lulu. com, 2020.

[300] Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable,
efficient deep learning for signal and image processing. IEEE Signal Processing
Magazine, 38(2):18–44, 2021.

[301] Saeid Motiian, Marco Piccirilli, Donald A. Adjeroh, and Gianfranco Doretto. Infor-
mation bottleneck learning using privileged information for visual recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

[302] Nikhil Muralidhar, Mohammad Raihanul Islam, Manish Marwah, Anuj Karpatne,
and Naren Ramakrishnan. Incorporating prior domain knowledge into deep neural
networks. In IEEE Big Data, pages 36–45, 2018.

[303] Harikrishna Narasimhan, Andrew Cotter, Yichen Zhou, Serena Wang, and Wenshuo
Guo. Approximate heavily-constrained learning with lagrange multiplier models.
Advances in Neural Information Processing Systems, 33:8693–8703, 2020.

[304] M. J. Neely. Stochastic Network Optimization with Application to Communication and
Queueing Systems. Morgan & Claypool, 2010.

[305] Gergely Neu and Julia Olkhovskaya. Efficient and robust algorithms for adversarial
linear contextual bandits. In COLT, 2020.

[306] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan
Srebro. The role of over-parametrization in generalization of neural networks. In ICLR,
2018.

[307] Thanh Nguyen, Sunil Gupta, Huong Ha, Santu Rana, and Svetha Venkatesh. Distri-
butionally robust bayesian quadrature optimization. In AISTATS, 2020.

[308] Atsushi Nitanda, Geoffrey Chinot, and Taiji Suzuki. Gradient descent can learn
less over-parameterized two-layer neural networks on classification problems. arXiv
preprint arXiv:1905.09870, 2019.

153

[309] Di Niu, Hong Xu, Baochun Li, and Shuqiao Zhao. Quality-assured cloud bandwidth
auto-scaling for video-on-demand applications. In 2012 Proceedings IEEE INFOCOM,
pages 460–468. IEEE, 2012.

[310] California Independent System Operator. Calfornia renewable datasets. https:

//www.caiso.com/Pages/default.aspx, 2023.

[311] Francesco Orabona. A modern introduction to online learning. arXiv preprint
arXiv:1912.13213, 2019.

[312] Ian Osband and Benjamin Van Roy. Model-based reinforcement learning and the
eluder dimension. Advances in Neural Information Processing Systems, 27, 2014.

[313] Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization:
Global convergence guarantees for training shallow neural networks. IEEE Journal on
Selected Areas in Information Theory, 1(1):84–105, 2020.

[314] Aldo Pacchiano, Mohammad Ghavamzadeh, Peter Bartlett, and Heinrich Jiang.
Stochastic bandits with linear constraints. In International conference on artificial
intelligence and statistics, pages 2827–2835. PMLR, 2021.

[315] D. P. Palomar and M. Chiang. Alternative distributed algorithms for network util-
ity maximization: Framework and applications. IEEE Trans. Automatic Control,
52(12):2254–2269, Dec. 2007.

[316] Weici Pan, Guanya Shi, Yiheng Lin, and Adam Wierman. Online optimization with
feedback delay and nonlinear switching cost. Proc. ACM Meas. Anal. Comput. Syst.,
6(1), feb 2022.

[317] Daniel Paulin. Concentration inequalities for markov chains by marton couplings and
spectral methods. Electronic Journal of Probability, 20:1–32, 2015.

[318] Julius Pfrommer, Clemens Zimmerling, Jinzhao Liu, Luise Kärger, Frank Henning,
and Jürgen Beyerer. Optimisation of manufacturing process parameters using deep
neural networks as surrogate models. Procedia CiRP, 72:426–431, 2018.

[319] Mary Phuong and Christoph Lampert. Towards understanding knowledge distillation.
In International Conference on Machine Learning, pages 5142–5151. PMLR, 2019.

[320] Nikolaos Pitelis, Chris Russell, and Lourdes Agapito. Semi-supervised learning using an
unsupervised atlas. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 565–580, 2014.

[321] Marios M Polycarpou and Petros A Ioannou. A robust adaptive nonlinear control
design. In 1993 American control conference, pages 1365–1369. IEEE, 1993.

[322] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml
predictions. Neurips, 2018.

154

[323] Hang Qi, Matthew Brown, and David G Lowe. Low-shot learning with imprinted
weights. In IEEE conference on computer vision and pattern recognition, pages 5822–
5830, 2018.

[324] Chengrun Qiu, Yang Hu, Yan Chen, and Bing Zeng. Lyapunov optimization for
energy harvesting wireless sensor communications. IEEE Internet of Things Journal,
5(3):1947–1956, 2018.

[325] Guannan Qu, Yuanyuan Shi, Sahin Lale, Anima Anandkumar, and Adam Wierman.
Stable online control of linear time-varying systems. In Learning for Dynamics and
Control, pages 742–753. PMLR, 2021.

[326] Ana Radovanović, Ross Koningstein, Ian Schneider, Bokan Chen, Alexandre Duarte,
Binz Roy, Diyue Xiao, Maya Haridasan, Patrick Hung, Nick Care, et al. Carbon-aware
computing for datacenters. IEEE Transactions on Power Systems, 38(2):1270–1280,
2022.

[327] Arman Rahbar, Ashkan Panahi, Chiranjib Bhattacharyya, Devdatt Dubhashi, and
Morteza Haghir Chehreghani. On the unreasonable effectiveness of knowledge distilla-
tion: Analysis in the kernel regime. arXiv preprint arXiv:2003.13438, 2020.

[328] Akshara Rai, Rika Antonova, Franziska Meier, and Christopher G Atkeson. Using
simulation to improve sample-efficiency of bayesian optimization for bipedal robots.
Journal of Machine Learning Research, 20:49–1, 2019.

[329] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computational Physics, 378:686–707,
2019.

[330] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep
learning (part i): Data-driven solutions of nonlinear partial differential equations.
arXiv preprint arXiv:1711.10561, 2017.

[331] Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences.
In COLT, 2013.

[332] Connie Loggia Ramsey and John J Grefenstette. Case-based initialization of genetic
algorithms. In ICGA, pages 84–91, 1993.

[333] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Model-agnostic interpretabil-
ity of machine learning. ICML Workshop on Human Interpretability in Machine
Learning, 2016.

[334] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision
model-agnostic explanations. In AAAI Conference on Artificial Intelligence, volume 18,
pages 1527–1535, 2018.

155

[335] Laura Rieger, Chandan Singh, William Murdoch, and Bin Yu. Interpretations are
useful: penalizing explanations to align neural networks with prior knowledge. In
International Conference on Machine Learning, pages 8116–8126, 2020.

[336] Joshua Robinson, Stefanie Jegelka, and Suvrit Sra. Strength from weakness: Fast
learning using weak supervision. In International Conference on Machine Learning,
pages 8127–8136, 2020.

[337] E Ruffio, D Saury, D Petit, and M Girault. Tutorial 2: Zero-order optimization
algorithms. Eurotherm School METTI, 2011.

[338] Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling.
Mathematics of Operations Research, 39(4):1221–1243, 2014.

[339] Daan Rutten, Nico Christianson, Debankur Mukherjee, and Adam Wierman. Online
optimization with untrusted predictions. CoRR, abs/2202.03519, 2022.

[340] Daan Rutten, Nico Christianson, Debankur Mukherjee, and Adam Wierman. Online
optimization with untrusted predictions. arXiv preprint arXiv:2202.03519, 2022.

[341] Omid Sadeghi and Maryam Fazel. Online continuous dr-submodular maximization with
long-term budget constraints. In International Conference on Artificial Intelligence
and Statistics, pages 4410–4419. PMLR, 2020.

[342] Mohammad A Salahuddin, Ala Al-Fuqaha, and Mohsen Guizani. Reinforcement learn-
ing for resource provisioning in the vehicular cloud. IEEE Wireless Communications,
23(4):128–135, 2016.

[343] Shahab Sanayei and Aria Nosratinia. Antenna selection in mimo systems. IEEE
Communications magazine, 42(10):68–73, 2004.

[344] Vidit Saxena, Joakim Jaldén, Joseph E. Gonzalez, Mats Bengtsson, Hugo Tullberg, and
Ion Stoica. Contextual multi-armed bandits for link adaptation in cellular networks.
In Workshop on Network Meets AI & ML (NetAI), 2019.

[345] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. Communica-
tions of the ACM, 63(12):54–63, 2020.

[346] Luciano Serafini and Artur d’Avila Garcez. Logic tensor networks: Deep learning and
logical reasoning from data and knowledge. arXiv preprint arXiv:1606.04422, 2016.

[347] Sanket Shah, Kai Wang, Bryan Wilder, Andrew Perrault, and Milind Tambe. Decision-
focused learning without decision-making: Learning locally optimized decision losses.
In Advances in Neural Information Processing Systems, 2022.

[348] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and optimizing the serverless work-
load at a large cloud provider. In 2020 {USENIX} Annual Technical Conference
({USENIX}{ATC} 20), pages 205–218, 2020.

156

[349] Mohammad Shahrad, Cristian Klein, Liang Zheng, Mung Chiang, Erik Elmroth, and
David Wentzlaff. Incentivizing self-capping to increase cloud utilization. In Proceedings
of the 2017 Symposium on Cloud Computing, pages 52–65, 2017.

[350] Claude E Shannon. A mathematical theory of communication. The Bell system
technical journal, 27(3):379–423, 1948.

[351] Lloyd S Shapley. A value for n-person games. Contributions to the Theory of Games,
2(28):307–317, 1953.

[352] Viktoriia Sharmanska, Novi Quadrianto, and Christoph H. Lampert. Learning to rank
using privileged information. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2013.

[353] Qianli Shen, Yan Li, Haoming Jiang, Zhaoran Wang, and Tuo Zhao. Deep reinforcement
learning with robust and smooth policy. In International Conference on Machine
Learning, pages 8707–8718. PMLR, 2020.

[354] Shiwen Shen, Simon X Han, Denise R Aberle, Alex A Bui, and William Hsu. An
interpretable deep hierarchical semantic convolutional neural network for lung nodule
malignancy classification. Expert systems with applications, 128:84–95, 2019.

[355] Guanya Shi. Competitive control via online optimization with memory, delayed
feedback, and inexact predictions. In 2021 55th Annual Conference on Information
Sciences and Systems (CISS), 2021.

[356] Guanya Shi, Yiheng Lin, Soon-Jo Chung, Yisong Yue, and Adam Wierman. Online
optimization with memory and competitive control. Advances in Neural Information
Processing Systems, 33:20636–20647, 2020.

[357] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges.
IEEE Internet of Things Journal, 3(5):637–646, 2016.

[358] Yuanyuan Shi, Guannan Qu, Steven Low, Anima Anandkumar, and Adam Wierman.
Stability constrained reinforcement learning for real-time voltage control. In 2022
American Control Conference (ACC), pages 2715–2721. IEEE, 2022.

[359] Yeonjong Shin, Jerome Darbon, and George Em Karniadakis. On the convergence and
generalization of physics informed neural networks. arXiv preprint arXiv:2004.01806,
2020.

[360] Pranav Shyam, Shubham Gupta, and Ambedkar Dukkipati. Attentive recurrent
comparators. In International Conference on Machine Learning, pages 3173–3181,
2017.

[361] Nian Si, Fan Zhang, Zhengyuan Zhou, and Jose Blanchet. Distributional robust batch
contextual bandits. arXiv preprint arXiv:2006.05630, 2020.

[362] Nian Si, Fan Zhang, Zhengyuan Zhou, and Jose Blanchet. Distributionally robust
policy evaluation and learning in offline contextual bandits. In ICML, 2020.

157

[363] Mattia Silvestri, Michele Lombardi, and Michela Milano. Injecting domain knowledge
in neural networks: a controlled experiment on a constrained problem. arXiv preprint
arXiv:2002.10742, 2020.

[364] Sayanan Sivaraman and Mohan Manubhai Trivedi. A general active-learning frame-
work for on-road vehicle recognition and tracking. IEEE Transactions on Intelligent
Transportation Systems, 11(2):267–276, 2010.

[365] Aleksandrs Slivkins. Introduction to multi-armed bandits. Foundations and Trends in
Machine Learning, 12(1-2):1–286, 2019.

[366] Chaehwan Song, Ali Ramezani-Kebrya, Thomas Pethick, Armin Eftekhari, and Volkan
Cevher. Subquadratic overparameterization for shallow neural networks. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021.

[367] Pablo Sprechmann, Alexander M Bronstein, and Guillermo Sapiro. Learning efficient
sparse and low rank models. IEEE transactions on pattern analysis and machine
intelligence, 37(9):1821–1833, 2015.

[368] Suhas Sreehari, S Venkat Venkatakrishnan, Brendt Wohlberg, Gregery T Buzzard,
Lawrence F Drummy, Jeffrey P Simmons, and Charles A Bouman. Plug-and-play
priors for bright field electron tomography and sparse interpolation. IEEE Transactions
on Computational Imaging, 2(4):408–423, 2016.

[369] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in
the bandit setting: no regret and experimental design. ICML, 2010.

[370] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian
process optimization in the bandit setting: No regret and experimental design. arXiv
preprint arXiv:0912.3995, 2009.

[371] Russell Stewart and Stefano Ermon. Label-free supervision of neural networks with
physics and domain knowledge. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31, 2017.

[372] Erik Štrumbelj and Igor Kononenko. Explaining prediction models and individual
predictions with feature contributions. Knowledge and information systems, 41(3):647–
665, 2014.

[373] Bo Sun, Ali Zeynali, Tongxin Li, Mohammad Hajiesmaili, Adam Wierman, and
Danny HK Tsang. Competitive algorithms for the online multiple knapsack problem
with application to electric vehicle charging. ACM on Measurement and Analysis of
Computing Systems (POMACS), 4(3), 2021.

[374] Chenxi Sun, Tongxin Li, and Xiaoying Tang. Data-driven electric vehicle charging
station placement for incentivizing potential demand. In 2021 IEEE International
Conference on Communications, Control, and Computing Technologies for Smart Grids
(SmartGridComm), pages 27–32. IEEE, 2021.

158

[375] Haoran Sun, Xiangyi Chen, Qingjiang Shi, Mingyi Hong, Xiao Fu, and Nicholas D
Sidiropoulos. Learning to optimize: Training deep neural networks for interference
management. IEEE Transactions on Signal Processing, 66(20):5438–5453, 2018.

[376] Qihang Sun, Shaolei Ren, Chuan Wu, and Zongpeng Li. An online incentive mechanism
for emergency demand response in geo-distributed colocation data centers. In eEnergy,
2016.

[377] Ruoyu Sun. Optimization for deep learning: theory and algorithms. arXiv preprint
arXiv:1912.08957, 2019.

[378] Wen Sun, Debadeepta Dey, and Ashish Kapoor. Safety-aware algorithms for adversarial
contextual bandit. In ICML, 2017.

[379] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M
Hospedales. Learning to compare: Relation network for few-shot learning. In CVPR,
pages 1199–1208, 2018.

[380] V. Syrgkanis, A. Krishnamurthy, and R. Schapire. Efficient algorithms for adversarial
contextual learning. ICML, 2016.

[381] Kalyan T Talluri, Garrett Van Ryzin, and Garrett Van Ryzin. The theory and practice
of revenue management, volume 1. Springer, 2004.

[382] W. Tang, S. Bi, and Y. Zhang. Online coordinated charging decision algorithm for
electric vehicles without future information. IEEE Trans. Smart Grid, 5:2810–2824,
May 2014.

[383] Garrett Thomas. Markov decision processes. 2007.

[384] Ryan Tibshirani. Projected gradient descent. https://www.stat.cmu.edu/

~ryantibs/convexopt-F18/scribes/Lecture_23.pdf, 2018.

[385] Geoffrey G Towell and Jude W Shavlik. Knowledge-based artificial neural networks.
Artificial intelligence, 70(1-2):119–165, 1994.

[386] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Alek-
sander Madry. Robustness may be at odds with accuracy. In International Conference
on Learning Representations, 2018.

[387] Hiroyasu Tsukamoto, Soon-Jo Chung, and Jean-Jaques E Slotine. Contraction theory
for nonlinear stability analysis and learning-based control: A tutorial overview. Annual
Reviews in Control, 52:135–169, 2021.

[388] M. Valko, N. Korda, R. Munos, I. Flaounas, and N. Cristianini. Finite-time analysis
of kernelised contextual bandits. UAI, 2013.

[389] Jan N Van Rijn and Frank Hutter. Hyperparameter importance across datasets. In
ACM SIGKDD, pages 2367–2376, 2018.

159

[390] Vladimir Vapnik and Rauf Izmailov. Learning using privileged information: similarity
control and knowledge transfer. J. Mach. Learn. Res., 16(1):2023–2049, 2015.

[391] Vladimir Vapnik and Akshay Vashist. A new learning paradigm: Learning using
privileged information. Neural networks, 22(5-6):544–557, 2009.

[392] Sharan Vaswani, Lin Yang, and Csaba Szepesvári. Near-optimal sample complexity
bounds for constrained mdps. Advances in Neural Information Processing Systems,
35:3110–3122, 2022.

[393] Abhinav Verma, Hoang Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected
programmatic reinforcement learning. Advances in Neural Information Processing
Systems, 32, 2019.

[394] Marin Vlastelica, Anselm Paulus, Vı́t Musil, Georg Martius, and Michal Roĺınek.
Differentiation of blackbox combinatorial solvers. arXiv preprint arXiv:1912.02175,
2019.

[395] VMware. Distributed power management concepts and use, http://www.vmware.com/
files/pdf/Distributed-Power-Management-vSphere.pdf.

[396] Laura von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven
Giesselbach, Raoul Heese, Birgit Kirsch, Julius Pfrommer, Annika Pick, Rajkumar
Ramamurthy, et al. Informed machine learning–a taxonomy and survey of integrating
knowledge into learning systems. arXiv preprint arXiv:1903.12394, 2019.

[397] Martin Wainwright. Lecture of dudley’s entropy integral. https://people.eecs.

berkeley.edu/~wainwrig/stat241b/lec20.pdf.

[398] H. Wang, Q. Wu, and H. Wang. Learning hidden features for contextual bandits.
CIKM, 2016.

[399] Kai Wang, Sanket Shah, Haipeng Chen, Andrew Perrault, Finale Doshi-Velez, and
Milind Tambe. Learning MDPs from features: Predict-then-optimize for sequential
decision making by reinforcement learning. In A. Beygelzimer, Y. Dauphin, P. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
2021.

[400] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a
few examples: A survey on few-shot learning. ACM Computing Surveys, 53(3):1–34,
2020.

[401] Larry Wasserman. Density estimation. https://www.stat.cmu.edu/~larry/=sml/

densityestimation.pdf.

[402] Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-
augmented online algorithms. In NeurIPS, 2020.

[403] Colin Wei, Sham Kakade, and Tengyu Ma. The implicit and explicit regularization
effects of dropout. In International Conference on Machine Learning, 2020.

160

[404] Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: General-
ization and optimization of neural nets vs their induced kernel. In Advances in Neural
Information Processing Systems, pages 9712–9724, 2019.

[405] Xiaohan Wei, Hao Yu, and Michael J Neely. Online primal-dual mirror descent under
stochastic constraints. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 4(2):1–36, 2020.

[406] Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Col-
menarejo, Misha Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers
that scale and generalize. In International Conference on Machine Learning, pages
3751–3760, 2017.

[407] Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline:
Decision-focused learning for combinatorial optimization. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 1658–1665, 2019.

[408] Jared Willard, Xiaowei Jia, Shaoming Xu, Michael S. Steinbach, and Vipin Kumar.
Integrating physics-based modeling with machine learning: A survey. 2020.

[409] William Wong, Praneet Dutta, Octavian Voicu, Yuri Chervonyi, Cosmin Paduraru,
and Jerry Luo. Optimizing industrial hvac systems with hierarchical reinforcement
learning. arXiv preprint arXiv:2209.08112, 2022.

[410] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani,
Kiwan Maeng, Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustainable
ai: Environmental implications, challenges and opportunities. Proceedings of Machine
Learning and Systems, 4:795–813, 2022.

[411] Yifan Wu, Roshan Shariff, Tor Lattimore, and Csaba Szepesvári. Conservative bandits.
In ICML, 2016.

[412] Yihong Wu. Packing, covering, and consequences on minimax risk. http://www.stat.
yale.edu/~yw562/teaching/598/lec14.pdf, 2016.

[413] Yiyan Wu and William Y Zou. Orthogonal frequency division multiplexing: A multi-
carrier modulation scheme. IEEE Transactions on Consumer Electronics, 41(3):392–
399, 1995.

[414] Jiaqi Xiang, Qingdong Li, Xiwang Dong, and Zhang Ren. Continuous control with
deep reinforcement learning for mobile robot navigation. In 2019 Chinese Automation
Congress (CAC), pages 1501–1506. IEEE, 2019.

[415] Chenjun Xiao, Bo Dai, Jincheng Mei, Oscar A Ramirez, Ramki Gummadi, Chris
Harris, and Dale Schuurmans. Understanding and leveraging overparameterization in
recursive value estimation. In International Conference on Learning Representations,
2021.

161

[416] Jie Xu, Lixing Chen, and Shaolei Ren. Online learning for offloading and autoscal-
ing in energy harvesting mobile edge computing. IEEE Transactions on Cognitive
Communications and Networking, 3(3):361–373, 2017.

[417] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Broeck. A semantic loss
function for deep learning with symbolic knowledge. In International Conference on
Machine Learning, pages 5502–5511, 2018.

[418] Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian
process behavior, gradient independence, and neural tangent kernel derivation. arXiv
preprint arXiv:1902.04760, 2019.

[419] Jianyi Yang and Shaolei Ren. Robust bandit learning with imperfect context. arXiv
preprint arXiv:2102.05018, 2021.

[420] Jianyi Yang and Shaolei Ren. Informed learning by wide neural networks: Convergence,
generalization and sampling complexity. In International Conference on Machine
Learning, pages 25198–25240. PMLR, 2022.

[421] Jianyi Yang and Shaolei Ren. Learning-assisted algorithm unrolling for online opti-
mization with budget constraints. AAAI, 2022.

[422] Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J. Ramadge.
Projection-based constrained policy optimization. In International Conference on
Learning Representations, 2020.

[423] Yunchang Yang, Tianhao Wu, Han Zhong, Evrard Garcelon, Matteo Pirotta, Alessan-
dro Lazaric, Liwei Wang, and Simon Shaolei Du. A reduction-based framework for
conservative bandits and reinforcement learning. In International Conference on
Learning Representations, 2022.

[424] Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael I Jordan. On
function approximation in reinforcement learning: optimism in the face of large state
spaces. In Proceedings of the 34th International Conference on Neural Information
Processing Systems, pages 13903–13916, 2020.

[425] Gal Yona, Amirata Ghorbani, and James Zou. Who’s responsible? jointly quanti-
fying the contribution of the learning algorithm and training data. arXiv preprint
arXiv:1910.04214, 2019.

[426] Chenkai Yu, Guanya Shi, Soon-Jo Chung, Yisong Yue, and Adam Wierman. The power
of predictions in online control. In Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran
Associates Inc.

[427] Chenkai Yu, Guanya Shi, Soon-Jo Chung, Yisong Yue, and Adam Wierman. Competi-
tive control with delayed imperfect information. In 2022 American Control Conference
(ACC), pages 2604–2610. IEEE, 2022.

162

[428] Hao Yu and Michael J Neely. Learning-aided optimization for energy-harvesting
devices with outdated state information. IEEE/ACM Transactions on Networking,
27(4):1501–1514, 2019.

[429] Hao Yu and Michael J. Neely. A low complexity algorithm with O(
√
T) regret and

O(1) constraint violations for online convex optimization with long term constraints.
Journal of Machine Learning Research, 21(1):1–24, 2020.

[430] Francesco Zanini, David Atienza, Giovanni De Micheli, and Stephen P Boyd. Online
convex optimization-based algorithm for thermal management of mpsocs. In Proceedings
of the 20th symposium on Great lakes symposium on VLSI, pages 203–208, 2010.

[431] Ali Zeynali, Bo Sun, Mohammad Hajiesmaili, and Adam Wierman. Data-driven
competitive algorithms for online knapsack and set cover. In AAAI, 2021.

[432] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning (still) requires rethinking generalization. Communications
of the ACM, 64(3):107–115, 2021.

[433] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and
Michael Jordan. Theoretically principled trade-off between robustness and accuracy.
In International Conference on Machine Learning, pages 7472–7482. PMLR, 2019.

[434] Quanshi Zhang, Yu Yang, Haotian Ma, and Ying Nian Wu. Interpreting cnns via
decision trees. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 6261–6270, 2019.

[435] Runyu Zhang, Yingying Li, and Na Li. On the regret analysis of online lqr control
with predictions. In 2021 American Control Conference (ACC), pages 697–703. IEEE,
2021.

[436] Yabin Zhang, Hui Tang, and Kui Jia. Fine-grained visual categorization using meta-
learning optimization with sample selection of auxiliary data. In European conference
on computer vision, pages 233–248, 2018.

[437] Zijun Zhang, Zongpeng Li, and Chuan Wu. Optimal posted prices for online cloud re-
source allocation. Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 1(1):1–26, 2017.

[438] Hengyu Zhao, Yubo Zhang, Pingfan Meng, Hui Shi, Li Erran Li, Tiancheng Lou, and
Jishen Zhao. Safety score: A quantitative approach to guiding safety-aware autonomous
vehicle computing system design. In IEEE Intelligent Vehicles Symposium, 2020.

[439] Tianyu Zhao, Xiang Pan, Minghua Chen, and Steven Low. Ensuring dnn solution feasi-
bility for optimization problems with linear constraints. In The Eleventh International
Conference on Learning Representations.

[440] Dongruo Zhou, Jiafan He, and Quanquan Gu. Provably efficient reinforcement learning
for discounted mdps with feature mapping. In International Conference on Machine
Learning, pages 12793–12802. PMLR, 2021.

163

[441] Xingyu Zhou, Ness Shroff, and Adam Wierman. Asymptotically optimal load balancing
in large-scale heterogeneous systems with multiple dispatchers. ACM SIGMETRICS
Performance Evaluation Review, 48(3):57–58, 2021.

[442] Xingyu Zhou, Jian Tan, and Ness Shroff. Flexible load balancing with multi-dimensional
state-space collapse: Throughput and heavy-traffic delay optimality. ACM SIGMET-
RICS Performance Evaluation Review, 46(3):10–11, 2019.

[443] Xinyang Zhou, Masoud Farivar, Zhiyuan Liu, Lijun Chen, and Steven H Low. Reverse
and forward engineering of local voltage control in distribution networks. IEEE
Transactions on Automatic Control, 66(3):1116–1128, 2020.

[444] Yunhong Zhou, Deeparnab Chakrabarty, and Rajan Lukose. Budget constrained
bidding in keyword auctions and online knapsack problems. In International Workshop
on Internet and Network Economics, pages 566–576, 2008.

[445] Zhi-Hua Zhou. A brief introduction to weakly supervised learning. National science
review, 5(1):44–53, 2018.

[446] Feiyun Zhu, Jun Guo, Ruoyu Li, and Junzhou Huang. Robust actor-critic contex-
tual bandit for mobile health (mhealth) interventions. In Proceedings of the 2018
ACM International Conference on Bioinformatics, Computational Biology, and Health
Informatics, pages 492–501, 2018.

[447] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In Proceedings of the 20th international conference on machine learning
(icml-03), pages 928–936, 2003.

[448] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes
over-parameterized deep relu networks. Machine Learning, 109(3):467–492, 2020.

[449] Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized
deep neural networks. In NeurIPS, 2019.

164

