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ABSTRACT OF THE DISSERTATION

Learning-based Optimization for Signal and Image Processing

by

Jialin Liu

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2020

Professor Wotao Yin, Chair

Incorporating machine learning techniques into optimization problems and solvers attracts

increasing attention. Given a particular type of optimization problem that needs to be

solved repeatedly, machine learning techniques can find some features for this category of

optimization and develop algorithms with excellent performance. This thesis deals with

algorithms and convergence analysis in learning-based optimization in three aspects: learning

dictionaries, learning optimization solvers and learning regularizers.

Learning dictionaries for sparse coding is significant for signal processing. Convolutional

sparse coding is a form of sparse coding with a structured, translation invariant dictionary.

Most convolutional dictionary learning algorithms to date operate in the batch mode, requiring

simultaneous access to all training images during the learning process, which results in very

high memory usage, and severely limits the training data size that can be used. I proposed

two online convolutional dictionary learning algorithms that offered far better scaling of

memory and computational cost than batch methods and provided a rigorous theoretical

analysis of these methods.

Learning fast solvers for optimization is a rising research topic. In recent years, unfolding

iterative algorithms as neural networks has become an empirical success in solving sparse

recovery problems. However, its theoretical understanding is still immature, which prevents

us from fully utilizing the power of neural networks. I studied unfolded ISTA (Iterative

Shrinkage Thresholding Algorithm) for sparse signal recovery and established its convergence.
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Based on the properties of parameters required by convergence, the model can be significantly

simplified and, consequently, has much less training cost and better recovery performance.

Learning regularizers or priors improves the performance of optimization solvers, especially

for signal and image processing tasks. Plug-and-play (PnP) is a non-convex framework that

integrates modern priors, such as BM3D or deep learning-based denoisers, into ADMM or

other proximal algorithms. Although PnP has been recently studied extensively with great

empirical success, theoretical analysis addressing even the most basic question of convergence

has been insufficient. In this thesis, the theoretical convergence of PnP-FBS and PnP-ADMM

was established, without using diminishing stepsizes, under a certain Lipschitz condition

on the denoisers. Furthermore, real spectral normalization was proposed for training deep

learning-based denoisers to satisfy the proposed Lipschitz condition.
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2.7 Visualization of boundary artifacts. . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Effect of Technique III (stopping FISTA early) in Algorithm 2. . . . . . . . . . 32
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CHAPTER 1

Introduction

1.1 Background of learning-based optimization

Optimization is a field of studying and finding the minima or maxima of objective functions

over given sets. Optimization problems are usually mathematical abstractions of making the

optimal decisions from a set of candidates in the real world. In the area of signal processing

and image processing, many problems can be described as optimization problems, such as

signal restoration, image denoising, super-resolution, image recognization and classification,

etc. Consequently, designing and solving optimization problems have become significant to

signal and image processing.

The past decade has witnessed the extraordinary development of machine learning

techniques that provides computer systems the ability to automatically learn from data and

experience without being explicitly programmed for specific tasks. These learning-based

methods have become overwhelmingly successful in some research areas such as computer

vision and natural language processing. Meanwhile, learning-based methods also promote

the development of optimization in two folds:

• Learning better optimization formulations and input data. Machine learning techniques

can help us find patterns that human beings do not recognize, which helps us design

optimization problems that are closer to the real world than those manually designed.

Therefore, the mathematical solution will be closer to the optimal solution in the real

world.
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• Learning better optimization solvers.1 Many practical optimization problems do not have

a closed-form solution but are solvable by iterative algorithms. Thus, the convergence

of an algorithm is a critical factor that makes us determine whether to use it in practice.

Given a certain type of optimization problems that would be solved repeatedly, machine

learning techniques can find some features for this category of optimization and develop

new solvers with good performance that can be generalized to similar problems.

1.2 Motivation of this thesis

Plenty of works along the above two tracks have shown empirical success. However, theoretical

analysis and understanding of this topic are still not enough to provide models or algorithms

that are explainable and robust in practice. Specifically, the convergence theory, one of the core

theories in optimization, is built based on the mathematical properties of both optimization

problems and solvers. For example, for a convex minimization problem minx∈Rd f(x), the

convergence of gradient descent algorithm x(k+1) = x(k)−α∇f(x(k)) requires two assumptions:

the gradient of the objective function ∇f(x) is Lipschitz continuous and the step size of

gradient descent α is small enough. If the optimization problems and solvers are designed by

machine learning, the above assumptions may not be satisfied and the convergence may not be

guaranteed. This thesis focuses on several key open questions in learning-based optimization:

• To guarantee convergence, what assumptions should we make on learning-based opti-

mization problems and solvers?

• To meet the assumptions, what regularizations or limitations should we make on the

learning models?

• With everything above settled, what does the algorithm converge to?

• What’s the convergence rate compared with classical solvers on classical problems?

1By “solvers” in this thesis, we mean algorithms to solve a specific or a type of optimization problems.

2



• With the theories established and better understanding obtained, can we propose new

algorithms with better performance?

In this dissertation, we try to move forward towards understanding the above questions

on optimization problems of the following form:

minimize
x∈RM

f(x) + γg(x). (1.1)

where the optimization variable x ∈ RM represents a signal, f(x) measures data fidelity, g(x),

the regularizer, measures noisiness or complexity of the signal, and γ ≥ 0 is a parameter

representing the relative importance between f and g. Many modern signal and image

processing problems such as total variation denoising, inpainting, and compressed sensing fall

under this setup. A priori knowledge of the signal, such as that the signal should have small

noise, is encoded in g(x). So g(x) is small if x has small noise or complexity. For example,

g might be `1 norm ‖x‖1, or the total variation ‖∇x‖1, etc. A posteriori knowledge of the

signal, such as noisy or partial measurements of the signal, is encoded in f(x). So f(x) is

small if x agrees with the measurements.

1.3 Introduction to successive chapters

1.3.1 Learning dictionaries in linear measurements

In Chapter 2, we start with sparse coding, a special case of (1.1). Sparse signal representation

aims to represent a given signal by a linear combination of only a few elements of a fixed set

of signal components [MBP14]. For example, we can approximate an N -dimensional signal

b ∈ RN as

b ≈ Dx = d1x1 + . . .+ dMxM ,

where

D = [d1,d2, · · · ,dM ] ∈ RN×M

is the dictionary with M atoms and

x = [x1, x2, · · · , xM ]T ∈ RM

3



is the sparse representation. The problem of computing the sparse representation x given b

and D is referred to as sparse coding. Among a variety of formulations of this problem, we

focus on Basis Pursuit Denoising (BPDN) [CDS98]

min
x∈RM

(1/2)‖Dx− b‖2
2 + λ‖x‖1 . (1.2)

With f(x) = (1/2)‖b−Dx‖2 and g(x) = ‖x‖1, problem (1.1) reduces to (1.2).

Sparse codings have been used in a wide variety of applications, including denois-

ing [EA06, MBP14, KHL20], super-resolution [YWH10, ZXY15], classification [WYG09],

and face recognition [WMM10]. A key issue when solving sparse coding problems as in

(1.2) is how to choose the dictionary D. Early work on sparse codings used a fixed basis

[RBE10] such as wavelets [Mal99] or Discrete Cosine Transform (DCT) [HA07], but learned

dictionaries can provide better performance [AEB06, EA06].

Dictionary learning aims to learn a good dictionary D for a given distribution of signals.

If b is a random variable, the dictionary learning problem can be formulated as

min
D∈C

Eb

{
min
x

1

2
‖Dx− b‖2

2 + λ‖x‖1

}
, (1.3)

where C = {D | ‖dm‖2
2 ≤ 1,∀m} is the constraint set, which is necessary to resolve the scaling

ambiguity between D and x.

Given a batch of signal samples {b1,b2, . . . ,bK} for training, batch dictionary learning

methods (e.g. [ERK99, EAH99, AEB06, XY16]) minimize an objective function such as

min
D∈C,x

K∑
k=1

{
1

2
‖Dxk − bk‖2

2 + λ‖xk‖
}
.

These methods require simultaneous access to all the training samples during training.

In Chapter 2, we develop two effcient algorithms with convergence guarantee to solve the

dictionary learning problem (1.3) under the following settings:

• The dictionary D is a convolutional operator. With this special structure, we can

handle signal b with much larger size.
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• The training samples are given in the process of training in a streaming way:

b(1),b(2), · · ·

where (1), (2), · · · are training epoches. This online learning setting can significantly

reduce the memory and time usage.

1.3.2 Learning fast solvers

In Chapter 3, we study the sparse coding problem (1.2) with a given dictionary D and

develop fast solvers by learning to optimize (L2O), a recent proposed technique that gains

rising attention. It learns optimization solvers and usually obtains good performance in signal

(image) processing problems. In general, an iterative optimization solver for (1.1) can be

written as

x(k+1) = Tf,g(x(k)), k = 0, 1, 2, · · · (1.4)

where Tf,g is an operator designed manually based on the optimization objectives f and g in

problem (1.1). In L2O, the operator Tf,g is parameterized as T̃f,g:

x(k+1) = T̃f,g(x(k); θ(k)), k = 0, 1, 2, · · · (1.5)

where {θ(k)}k are parameters to determine. Recent machine learning techniques can help us

find the parameters that lead to faster convergence and better recovery performance. For

example, unfolding algorithms, one of the L2O techniques, unfolds the iterative algorithm

(1.5) and truncates it into K iterations (a typical value of K is 10 ∼ 20):

x(k+1) = T̃f,g(x(k); θ(k)), k = 0, 1, 2, · · · , K − 1.

The last iterate x(K) depends on x(0), {θ(k)}K−1
k=1 , f and g. In this thesis, we assume x(0) is

fixed. Thus, x(K) can be written as x(K)
(
{θ(k)}K−1

k=1 ; f, g
)
. Then the parameters {θ(k)}K−1

k=1 are

determined by solving

min
{θ(k)}K−1

k=1

E(f,g)∼D

∥∥∥x(K)
(
{θ(k)}K−1

k=1 ; f, g
)
− x∗(f, g)

∥∥∥2

(1.6)

where D is a set consisting of some known instances of optimization objectives f, g and x∗ is

the target that we want the algorithm to converge to.
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Problem (1.6) can be solved approximately by recent developed machine learning platforms

(TensorFlow [AAB15], PyTorch [PGM19], etc.). The process of solving (1.6) is called

training and the data set D is called the training set. With (1.6) solved, the obtained solver

x(k+1) = T̃f,g(x(k); θ(k)) is named as a learned solver in this thesis. A learned solver can

be generalized well to optimization problems similar with those in the training set. [GL10,

SBS15, WCZ16, WLH16, WLC16, WYC16, SLX16, BSR17, ZG18a, AO18, ZDD18, ITW18]

In Chapter 3, we develop algorithms that are a result of training the unfolded itera-

tions of Iterative Shrinkage-Thresholding Algorithm (ISTA). Some convergence theories are

first established for the learned solvers and, based on the theories, the learned solvers are

interpretable and capable of being simplified to reduce the training cost.

1.3.3 Learning regularizers

In Chapter 4, we consider the generic problem (1.1) and learn the regularizer g in the

framework of Plug-and-Play.

First we describe Plug-and-Play here. Plug-and-Play is built based on first-order iterative

methods, which are often used to solve optimization problem (1.1), and ADMM is one such

method:

x(k+1) = arg min
x∈RM

{
σ2g(x) + (1/2)‖x− (y(k) − u(k))‖2

}
y(k+1) = arg min

y∈RM

{
αf(y) + (1/2)‖y − (x(k+1) + u(k))‖2

}
u(k+1) = u(k) + x(k+1) − y(k+1)

with σ2 = αγ. Given a function h on RM and α > 0, define the proximal operator of h as

Proxαh(z) = arg min
x∈RM

{
αh(x) + (1/2)‖x− z‖2

}
,

which is well-defined if h is proper, closed, and convex. Now we can equivalently write ADMM
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as

x(k+1) = Proxσ2g(y
(k) − u(k))

y(k+1) = Proxαf (x
(k+1) + u(k))

u(k+1) = u(k) + x(k+1) − y(k+1).

We can interpret the subroutine Proxσ2g : RM → RM as a denoiser (regularizer)2, i.e.,

Proxσ2g : noisy image 7→ less noisy image

(For example, if σ is the noise level and g(x) is the total variation (TV) norm, then Proxσ2g is

the standard Rudin–Osher–Fatemi (ROF) model [ROF92].) We can think of Proxαf : RM →

RM as a mapping enforcing consistency with measured data, i.e.,

Proxαf : less consistent 7→ more consistent with data

More precisely speaking, for any x ∈ RM we have

g(Proxσ2g(x)) ≤ g(x), f(Proxαf (x)) ≤ f(x).

However, some state-of-the-art image denoisers with great empirical performance do

not originate from optimization problems. Such examples include non-local means (NLM)

[BCM05], Block-matching and 3D filtering (BM3D) [DFK07], and learning-based models like

convolutional neural networks (CNN) [ZZC17]. Nevertheless, such a denoiser Hσ : RM → RM

still has the interpretation

Hσ : noisy image 7→ less noisy image

where σ ≥ 0 is a noise parameter. Larger values of σ correspond to more aggressive denoising.

Is it possible to use such denoisers for a broader range of imaging problems, even though

we cannot directly set up an optimization problem? To address this question, [VBW13]

2In this thesis, we focus on regularizers of denoising and use “denoiser” to refer regularizer.
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proposed Plug-and-Play ADMM (PnP-ADMM), which simply replaces the proximal operator

Proxσ2g with the denoiser Hσ:

x(k+1) = Hσ(y(k) − u(k))

y(k+1) = Proxαf (x
(k+1) + u(k))

u(k+1) = u(k) + x(k+1) − y(k+1).

(1.7)

Surprisingly and remarkably, this ad-hoc method exhibited great empirical success, and

spurred much follow-up work. The empirical success of Plug-and-Play (PnP) naturally leads

us to ask theoretical questions: When does PnP converge and what denoisers can we use?

Past theoretical analysis has been insufficient.

In Chapter 4, we study the convergence of PnP. An assumption on the denoiser (or

regularizer) Hσ is proposed for convergence, and we develop a training method to enforce

learning-based denoisers meet the assumption.
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CHAPTER 2

Learning Dictionaries

In this chapter, we focus on dictionary learning (introduced in Chapter 1)

min
D∈C

Eb

{
min
x

1

2
‖Dx− b‖2

2 + λ‖x‖1

}
, (2.1)

with a convolutional structure in the settings of online learning. Section 2.1 describes convo-

lutional dictionary learning and its computational issues; Section 2.2 introduces notation and

necssary math tools; In Sections 2.3 and 2.4, we propose two online convolutional dictionary

learning algorithms with convergence guarantee; Section 2.5 provides some numerical results;

Section 2.6 concludes this chapter.

2.1 Convolutional Sparse Coding

Convolutional Sparse Coding (CSC) [LS99, ZKT10] [Woh16d, Sec. II], a highly structured

sparse representation model, has recently attracted increasing attention for a variety of

imaging inverse problems [GZX15, LCW16, ZP16, QJ16, Woh16c, ZP17]. CSC aims to

represent a given signal b ∈ RN as a sum of convolutions,

b ≈ d1 ∗ x1 + . . .+ dM ∗ xM , (2.2)

where dictionary atoms {dm}Mm=1 are linear filters and the representation {xm}Mm=1 is a set of

coefficient maps, each map xm having the same size N as the signal b. Since we implement

the convolutions in the frequency domain for computational efficiency, it is convenient to

adopt circular boundary conditions for the convolution operation.

Given {dm} and b, the maps {xm} can be obtained by solving the Convolutional Basis
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Pursuit DeNoising (CBPDN) `1-minimization problem

min
{xm}

1

2

∥∥∥ M∑
m=1

dm ∗ xm − b
∥∥∥2

2
+ λ

M∑
m=1

‖xm‖1 . (2.3)

The corresponding dictionary learning problem is called Convolutional Dictionary Learning

(CDL). Specifically, given a set of K training signals {bk}Kk=1, CDL is implemented via

minimization of the function

min
{dm},{xk,m}

1

2

K∑
k=1

∥∥∥ M∑
m=1

dm ∗ xk,m − bk

∥∥∥2

2
+ λ

K∑
k=1

M∑
m=1

‖xk,m‖1

subject to‖dm‖2 ≤ 1, ∀m ∈ {1, . . . ,M} , (2.4)

where the coefficient maps xk,m, k ∈ {1, . . . , K}, m ∈ {1, . . . ,M}, represent bk, and the

norm constraint avoids the scaling ambiguity between dm and xk,m.

Most current CDL algorithms [BEL13, HHW15, GZX15, Woh16d, vv16, Woh16a, GW17,

CF17] are batch learning methods that alternatively minimize over {xk,m} and {dm}, dealing

with the entire training set at each iteration. When K is large, the dm update subproblem

is computationally expensive, e.g. the single step complexity and memory usage are both

O(KMN log(N)) for one of the current state-of-the-art methods [vv16, GW17]. For example,

for a medium-sized problem with K = 40, N = 256× 256,M = 64, we have KMN log(N) ≈

109, which is computationally very expensive.

2.2 Preliminaries

Here we introduce our notation. The signal is denoted by b ∈ RN , and the dictionaries

by d = (d1 d2 . . . dM)T ∈ RMD, where the dictionary kernels (or filters) are dm ∈ RD.

The coefficient maps are denoted by x = (x1 x2 . . . xM)T ∈ RMN , where xm ∈ RN is the

coefficient map corresponding to dm. In addition to the vector form, x, of the coefficient

maps, we define an operator form X. First we define a linear operator Xm on dm such that

Xmdm = dm ∗ xm and let X ,
(
X1 X2 · · ·XM

)
. Then, we have

Xd ,
M∑
m=1

Xmdm =
M∑
m=1

dm ∗ xm ≈ b . (2.5)
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Hence, X : RMD → RN , a linear operator defined from the dictionary space to the signal

space, is the operator form of x.

2.2.1 Problem settings

To introduce online algorithms, we reformulate (2.4) into a more general form. Usually, the

signal is sampled from a large training set, but we consider the training signal b as a random

variable following the distribution b ∼ P (b). Our goal is to optimize the dictionary d. Given

b, the loss function l to evaluate d,x is defined as

l(d,x; b) = (1/2)‖Xd− b‖2
2 + λ‖x‖1 . (2.6)

Given b, the loss function f to evaluate d and the corresponding minimizer are respectively,

f(d; b) , min
x
l(d,x; b) and x∗(d; b) , arg min

x
l(d,x; b) . (2.7)

A general CDL problem can be formulated as

min
d∈C

Eb[f(d; b)] , (2.8)

where C is the constraint set of C = {d | ‖dm‖2 ≤ 1,∀m}.

2.2.2 Two online frameworks

Now we consider the CDL problem (2.8) when the training signals b(1),b(2), · · · ,b(t), · · ·

arrive in a streaming fashion. Inspired by online methods for standard dictionary learning

problems, we propose two online frameworks for CDL problem (2.8). One is a first order

method based on Projected Stochastic Gradient Descent (SGD) [WYY10, MBP12, AE08]:

d(t) = ProjC

(
d(t−1) − η(t)∇f

(
d(t−1); b(t)

))
. (2.9)

The other is a second order method, which is inspired by least squares estimator for

dictionary learning [MBP09, SE10, SPL11, ZJD12, SG14, ZKY15, KWB12]. A naive least

squares estimator can be written as

d(t) = arg min
d∈C

{
min
x
`(d,x,b(1)) + · · ·+ min

x
`(d,x,b(t))︸ ︷︷ ︸

Objective function on training samples F (t)(d)

}
.
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This is not practical because the inner minimizer of x depends on d, which is unknown. To

solve this problem, we can fix d when we minimize over x, i.e.

x(t) = arg min
x

`(d(t−1),x; b(t)). (2.10a)

d(t) = arg min
d∈C

{
`(d,x(1),b(1)) + · · ·+ `(d,x(t),b(t))︸ ︷︷ ︸

Surrogate function F(t)(d)

}
. (2.10b)

Direct application of these methods to the CDL problem is very computationally expensive,

but we propose a number of techniques to reduce the time and memory usage. The details

are discussed in Sections 2.3 and 2.4 respectively.

2.2.3 Techniques to calculate operator X

Before introducing our algorithms for (2.8), we consider a basic problem and two computational

techniques that are used in this section as well as in Sections 2.3 and 2.4.

With b and x fixed, the basic problem is

min
d∈RMD

l(d,x; b) + ιC(d) , (2.11)

where ιC(·) is the indicator function1 of set C. To solve this problem we can apply projected

gradient descent (GD) [Ber99]

d(t) = ProjC

(
d(t−1) − η(t)XT

(
Xd(t−1) − b

))
, (2.12)

where (t) is the iteration index and XT
(
Xd− b

)
is the gradient of l with respect to d. Since

X is a linear operator from RMD to RN , the cost of directly computing (2.12) is O(NMD).

However, we can exploit the sparsity or the structure of operator X to yield a more efficient

computation that greatly reduces the time complexity.

2.2.3.1 Computing with sparsity property

The first option is to utilize the sparsity of X. Specifically, X is saved as a triple array (i, j, v),

which records the indices (i, j) and values v of the non-zero elements of X, so that only the

1The indicator function is defined as: ιC(d) =

{
0, if d ∈ C
+∞, otherwise

.
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nonzero entries in X contribute to the computational time. This triple array is commonly

referred as a coordinate list and is a standard way of representing a sparse matrix.

Let us compute the non-zero entries of operator X. The operator form Xm of the

N -dimensional vectors xm = ((xm)1, · · · , (xm)N)T can be written as

Xm =



(xm)1 (xm)N (xm)N−1 . . . (xm)N−D+2

(xm)2 (xm)1 (xm)N . . . (xm)N−D+3

(xm)3 (xm)2 (xm)1 . . . (xm)N−D+4

...
...

...
. . .

...

(xm)N (xm)N−1 (xm)N−2 . . . (xm)N−D+1


,

where each column is a circular shift of xm and D is the dimension of each dictionary kernel.

Thus, the density of xm and Xm are the same. Assuming the density of vector x is ρ,

the number of nonzero entries of operator X is NMDρ, giving a single step complexity of

O(NMDρ) for computing (2.12).

2.2.3.2 Computing in the frequency domain

Another option is to utilize the structure of X. It is well known that convolving two signals of

the same size corresponds to the pointwise multiplication of their frequency representations.

Our method below takes advantage of this property. First, we zero-pad each dm from RD to

RN to match the size of b. Then the basic problem can be written as

min
d∈RMN

l(d,x; b) + ιCPN
(d) , (2.13)

where the set CPN is defined as

CPN , {dm ∈ RN : (I−P)dm = 0, ‖dm‖2 ≤ 1} . (2.14)

Operator P preserves the desired support of dm and masks the remaining part to zeros.

Projected GD (2.12) has an equivalent form:

d(t) = ProjCPN

(
d(t−1) − η(t) ∂l

∂d
(d(t−1),x; b)

)
. (2.15)
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Then, using the Plancherel formula, we can write the loss function2 l as

l(d,x; b) =
∥∥∥∑

m

dm ∗ xm − b
∥∥∥2

2︸ ︷︷ ︸
‖Xd−b‖2

=
∥∥∥∑

m

d̂m � x̂m − b̂
∥∥∥2

2︸ ︷︷ ︸
‖X̂d̂−b̂‖2

, (2.16)

where ·̂ denotes the corresponding quantity in the frequency domain and � means pointwise

multiplication. Therefore, we have d̂ ∈ CMN , and X̂ =
(
X̂1 X̂2 · · · X̂M

)
is a linear operator.

Define the loss function in the frequency domain

l̂(d̂, x̂; b̂) = (1/2)
∥∥X̂d̂− b̂

∥∥2
, (2.17)

which is a real valued function defined in the complex domain. The Cauchy-Riemann condition

[Ahl79] implies that (2.17) is not differentiable unless it is constant. However, the conjugate

cogradient3 [SBL12]

∂l̂

∂d̂
(d̂, x̂; b̂) , X̂H(X̂d̂− b̂) . (2.18)

exists and can be used for minimizing (2.17) by gradient descent.

Since each item X̂m in X̂ is diagonal, the gradient is easy to compute, with a complexity

of O(NM), instead of O(NMD). Based on (2.18), we have the following modified gradient

descent:

d(t) = ProjCPN

(
IFFT

(
d̂(t−1) − η(t) ∂l̂

∂d̂

(
d̂(t−1), x̂; b̂

)))
. (2.19)

To compute (2.19), we transform d(t) into its frequency domain counterpart d̂(t), perform

gradient descent in the frequency domain, return to the spatial domain, and project the

result onto the set CPN.

In our modified method (2.19), the iterate d(t) is transformed between the frequency and

spatial domains because the gradient is cheaper to compute in the frequency domain, but

projection is cheaper to compute in the spatial domain.

Equivalence of (2.15) and (2.19). We can prove

X̂H(X̂d̂− b̂) = FFT
(
XT (Xd− b)

)
, ∀x,d,b , (2.20)

2We ignore the term λ‖x‖1 in l here because x is fixed in this problem.

3The conjugate cogradient of function f(x) : Cn → R is defined as: ∂f
∂<(x) + i ∂f

∂=(x) , where <(x), I=(x) are

the real part and imaginary part of x. The derivation of (2.17) is given in Appendix 2.A.
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which means that the conjugate cogradient of l̂ is equivalent to the gradient of l. Thus,

modified GD (2.19) coincides with standard GD (2.15) using conjugate cogradient.

A proof of (2.20) given in Appendix 2.B. A similar result is also given in [RSA15] under

the name “conjugate symmetry”.

2.3 First-order method: Algorithm 1

Recall the Projected SGD step (2.9)

d(t) = ProjC

(
d(t−1) − η(t)∇f(d(t−1); b(t))

)
,

where parameter η(t) is the step size4. Given the definition of f in (2.7), ∇f(d(t−1); b(t)) is

the partial derivative with respect to d at the optimal x [MBP10, Dan66], i.e. ∇f(d; b) =

∂l
∂d

(d,x∗(d,b); b), where x∗ is defined by (2.7).

Thus, to compute the gradient ∇f(d(t−1); b(t)), we should first compute the coefficient

maps x(t) of the tth training signal b(t) with dictionary d(t−1), which is given by (2.10a). Then

we can compute the gradient as

∇f
(
d(t−1); b(t)

)
=

∂l

∂d

(
d(t−1),x(t); b(t)

)
=
(
X(t)

)T(
X(t)d(t−1) − b(t)

)
.

Based on the discussion in Section 2.2.3, we can perform gradient descent either in the

spatial-domain or the frequency-domain. In the frequency domain, the conjugate cogradient

of ∇f̂ is:

∇f̂(d̂(t−1); b̂(t)) =
∂l̂

∂d̂

(
d̂(t−1), x̂(t); b̂(t)

)
=
(
X̂(t)

)H(
X̂(t)d̂(t−1) − b̂(t)

)
.

The full algorithm is summarized in Algorithm 1.

Complexity analysis of Algorithm 1. We list the single-step complexity and memory

usage of different options in Table 2.1. Both the frequency-domain update and sparse matrix

technique reduce single-step complexities. The comparison between these two computational

techniques depends on the sparsity of X(t) and the dictionary kernel size D. In Section 2.5.1,

we will numerically compare these methods.

4Some authors refer to it as the learning rate.
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Algorithm 1: Online Convolutional Dictionary Learning (Modified SGD)

Initialize : Initialize d(0) with a random dictionary.

1 for t = 1, · · · , T do

2 Sample a signal b(t).

3 Solve convolutional sparse coding problem (2.10a) to obtain x(t).

4 if Option I then

5 Update dictionary in the spatial-domain with sparse matrix X(t):

d(t) = ProjC

(
d(t−1) − η(t)

(
X(t)

)T (
X(t)d(t−1) − b(t)

))
6 else if Option II then

7 Update dictionary in the frequency-domain:

x̂(t) = FFT(x(t))

d(t) = ProjCPN

(
IFFT

(
d̂(t−1) − η(t)

(
X̂(t)

)H(
X̂(t)d̂(t−1) − b̂(t)

)))
8 end

9 end

Output: d(T )

Convergence of Algorithm 1. Algorithm 1, by (2.20), is equivalent to the standard

projected SGD. Thus, by properly choosing step sizes η(t), Algorithm 1 converges to a

stationary point [GL13]. A diminishing step size rule η(t) = a/(b + t) is used in other

dictionary learning works [AE08, MBP09]. The convergence performance with different step

sizes are numerically tested in Section 2.5.1.

2.4 Second-order method: Algorithm 2

In this section, we first introduce some details of directly applying second order stochas-

tic approximation method (2.10) to CDL problems, then we discuss some issues and our

resolutions.

Aggregating the true loss function f(d; b(t)) on the tth sample b(t), the objective function
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Table 2.1: Single step complexity and memory usage of Algorithm 1. N : signal dimension;

M : number of dictionary kernels; D: size of each kernel; ρ: average density of the coefficient

maps.

Scheme Single step complexity Memory usage

Spatial (dense matrix) TCBPDN +O(NMD) O(NMD)

Spatial (sparse matrix) TCBPDN +O(NMDρ) O(NMDρ)

Frequency update TCBPDN +O(NM log(N)) +O(NM) O(MN)

on the first t training samples is

F (t)(d) =
1

t

( t∑
τ=1

f
(
d; b(τ)

))
≈ F (d) = Eb[f(d; b)] . (2.21)

The central limit theorem tells us that F (t) → F as t → ∞. However, as discussed in

Section 2.2.2, F (t) is not computationally tractable. To update d efficiently, we introduce the

surrogate function F (t) of F (t). Given b(t), x(t) is computed by CBPDN (2.7) using the latest

dictionary d(t−1), then a surrogate of f(d; b(t)) is given as

x(t) = arg min
x

`(d(t−1),x; b(t)), f (t)(d) , l
(
d,x(t); b(t)

)
, (2.22)

The surrogate function of F (t) is defined as

F (t)(d) =
1

t

(
f (1)(d) + · · ·+ f (t)(d)

)
. (2.23)

Then, at the tth step, the dictionary is updated as

d(t) = arg min
d∈RMD

F (t)(d) + ιC(d) . (2.24)

Solving subproblem (2.24). To solve (2.24), we apply Fast Iterative Shrinkage-

Thresholding (FISTA) [BT09], which needs to compute a gradient at each step. The gradient

for the surrogate function can be computed as

∇F (t)(d) =
1

t

( t∑
τ=1

(
X(τ)

)T
X(τ)

)
d− 1

t

( t∑
τ=1

(
X(τ)

)T
b(τ)

)
.
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We cannot follow this formula directly since the cost increases linearly in t. Instead we

perform the recursive updates

H(t) = H(t−1) + (X(t))TX(t) , c(t) = c(t−1) + (X(t))Tb(t) , (2.25)

where (X(t))TX(t) is the Hessian matrix of f (t). These updates, which have a constant cost

per step, yield ∇F (t)(d) = (H(t)d − c(t))/t. The matrix H(t)/t, the Hessian matrix of the

surrogate function F (t), accumulates the Hessian matrices of all the past loss functions. This

is why we call this method the second-order stochastic approximation method.

There are some practical issues that prevents us from using the above algorithm directly

in our problem.

• Inaccurate loss function: The surrogate function F (t) involves old loss functions

f (1), f (2), · · · , which contain old information x(1),x(2), · · · . For example, x(1) is computed

using d(0) (cf. (2.22)).

• Large single step complexity and memory usage: handling a whole image b(t) at each

time is still a large-scale problem.

• FISTA is slow at solving subproblem (2.24): FISTA takes many steps to reach a

sufficient accuracy.

To address these points, four modifications are given in this section5.

2.4.1 Improvement I: forgetting factor

At time t, the dictionary is the result of an accumulation of past coefficient maps x
(τ)
m , τ < t,

which were computed with the then-available dictionaries. A way to balance accumulated

past contributions and the information provided by the new training samples is to compute a

weighted combination of these contributions [SE10, MBP10, SPL11, SG14]. This combination

5Improvements I and II have been addressed in our previous work [LGW17]. In the present article, we
include their theoretical analysis and introduce the new enhancement of the stopping criterion (Improvement
III).
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gives more weight to more recent updates since those are the result of a more extensively

trained dictionary. Specifically, we consider the following weighted (or modified) surrogate

function:

F (t)
mod(d) =

1

Λ(t)

t∑
τ=1

(τ/t)pf (τ)(d) , Λ(t) =
t∑

τ=1

(τ/t)p . (2.26)

This function can be written in recursive form as

Λ(t) =α(t)Λ(t−1) + 1 , (2.27)

Λ(t)F (t)
mod(d) =α(t)Λ(t−1)F (t−1)

mod (d) + f (t)(d) . (2.28)

Here α(t) ∈ (0, 1) is a forgetting factor, which has its own time evolution:

α(t) = (1− 1/t)p (2.29)

regulated by the forgetting exponent p > 0. As t increases, the factor α(t) increases (α(t) → 1

as t→∞), reflecting the increasing accuracy of the past information as the training progresses.

The dictionary update (2.24) is modified correspondingly to

d(t) = arg min
d∈RMD

F (t)
mod(d) + ιC(d) . (2.30)

This technique has been used in some previous dictionary learning works, as we mentioned

before, but was not theoretically analyzed. In this paper, we prove in Propositions 1 and 2

that F
(t)
mod → F as t→∞, where F

(t)
mod is a weighted approximation of F :

F
(t)
mod(d) =

1

Λ(t)

( t∑
τ=1

(τ/t)pf(d; b(τ))
)
. (2.31)

Moreover, in Theorem 1, F (t)
mod, the surrogate of F

(t)
mod, is also proved to be convergent on the

current dictionary, i.e. F (t)
mod(d(t))− F (t)

mod(d(t))→ 0.

Effect of the forgetting exponent p. A small p tends to lead to a stable algorithm since

all the training signals are given nearly equal weights and F
(t)
mod is a stochastic approximation of

F with small variance. Propositions 1 and 2 give theoretical explanations of this phenomenon.

However, a small p leads to an inaccurate surrogate loss function F (t)
mod since it gives large

weights to old information. In the extreme case, as p→ 0, the modified surrogate function

(2.26) reduces to the standard one (2.23). Section 2.5.2.1 reports the related numerical results.
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streaming

Figure 2.1: An example of image splitting: N = 256× 256→ Ñ = 128× 128.

2.4.2 Improvement II: image-splitting

Both the single-step complexity and memory usage are related to the signal dimension N .

For a typical imaging problem, N = 256 × 256 or greater, which is large. To reduce the

complexities, we use small regions 6 instead of the whole signal. Specifically, as illustrated

in Fig. 2.1, we split a signal b(t) ∈ N into small regions b
(t)
split,1,b

(t)
split,2, ... ∈ Ñ , with Ñ < N ,

and treat them as if they were distinct signals. In this way, the training signal sequence

becomes

{bsplit} , {b(1)
split,1, · · · ,b

(1)
split,n,b

(2)
split,1, · · · ,b

(2)
split,n, · · · } .

Boundary issues. The use of circular boundary conditions for signals that are not

periodic has the potential to introduce boundary artifacts in the representation, and therefore

also in the learned dictionary [ZKT10]. When the size of the training images is much larger

than the kernels, there is some evidence that the effect on the learned dictionary is negligible

[BEL13], but it is reasonable to expect that these effects will become more pronounced for

smaller training images, such as the regions we obtain when using a small splitting size Ñ .

The possibility of severe artifacts when the image size approaches the kernel size is illustrated

in Fig. 2.2. In Sec. 2.5.2.2, we study this effect and show that using a splitting size that is

twice the kernel size in each dimension is sufficient to avoid artifacts, as expected from the

6In our previous work [LGW17], we sample some small regions from the whole signals in the limited
memory algorithm, which performs worse than the algorithm training with the whole signals. We claimed
that the performance sacrifice is caused by the circular boundary condition. In fact, this is caused by the
sampling. In that paper, we sample small regions with random center position and fixed size. If we sample
small regions in this way, some parts of the image are not sampled, but some are sampled several times.
Consequently, in the present paper, we propose the “image-splitting” technique in Algorithm 2, which avoids
this issue. It only shows worse performance when the splitting size is smaller than a threshold, which is
actually caused by the boundary condition.
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b : 64× 64

dm
12× 12

s1 s2

(a) When the signal size 64×64 is

much larger than the kernel size

12×12, pixels s1, s2 in the same fil-

ter are far from each other. Thus,

they do not interact with each

other.

b : 24× 24

dm
12× 12s1 s2

(b) When the signal size 24 × 24

is twice the kernel size 12 × 12,

s1, s2 still do not interact. It is

the smallest signal size to avoid

boundary artifacts.

b : 16× 16

dm
12× 12s1 s2

(c) When the signal size 16 × 16

is less than twice the kernel size

12 × 12, s1, s2 interact with one

another. This leads to artifacts in

practice.

Figure 2.2: An illustration of the boundary artifacts.

argument illustrated in Fig. 2.2.

2.4.3 Improvement III: stopping FISTA early

Another issue in surrogate function method is the stopping condition of FISTA. A small fixed

tolerance will result in too many inner-loop iterations for the initial steps. Another strategy,

as used in SPAMS [MBP09, JMB10] is a fixed number of inner-loop iterations, but it does

not have any theoretical convergence guarantee.

In this article, we propose a “diminishing tolerance” scheme in which subproblem (2.30) is

solved inexactly, but the online learning algorithm is still theoretically guaranteed to converge.

The stopping accuracy is increasing as t increases. Specifically, the stopping tolerance is

decreased as t increases. Moreover, with a warm start (using d(t−1) as the initial solution

for the tth step), the number of inner-loop iterations stays moderate as t increases, which is

validated by the results in Fig. 2.8.
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Stopping metric. We use the Fixed Point Residual (FPR) [DY16]

R(t)(g) ,
∥∥∥g − ProjC

(
g − η∇F (t)

mod(g)
)∥∥∥ . (2.32)

for two reasons. One is its simplicity; if FISTA is used to solve (2.30), this metric can be

computed directly as R(t)(gjaux) = ‖gj+1 − gjaux‖. The other is that a small FPR implies a

small distance to the exact solution of the subproblem, as shown in Proposition 3 below.

Stopping condition. In this paper, we consider the following stopping condition:

R(t)(gjaux) ≤ τ (t) , τ0/(1 + αt) , (2.33)

where the tolerance τ (t) is large during the first several steps and reduces to zeros at the

rate of O(1/t) as t increases. In the tth step, once (2.33) is satisfied, we stop the D-update

(FISTA) and continue to the next step. The effect of this stopping condition is theoretically

analyzed in Propositions 3 and 4, and numerically demonstrated in Sec. 2.5.2.3 below.

2.4.4 Improvement IV: updating gradients

Based on the discussion in Section 2.2.3, we have two options to solve subproblem (2.30).

One is to solve in the spatial domain utilizing sparsity. The gradient of F (t)
mod(d) is

∇F (t)
mod(d) =

1

Λ(t)

t∑
τ=1

(τ/t)p
(

(X(t))TX(t)d− (X(τ))Tb(τ)
)

=
1

Λ(t)

(
H

(t)
modd− c

(t)
mod

)
,

where H
(t)
mod and c

(t)
mod are calculated in a recursive form in the line 5 of Algorithm 2. The

other option is to update in the frequency domain. The conjugate cogradient of F̂ (t)
mod(d̂) is

∇F̂ (t)
mod(d̂) =

1

Λ(t)

t∑
τ=1

(τ/t)p
(

(X̂(t))T X̂(t)d̂− (X̂(τ))T b̂(τ)
)

=
1

Λ(t)

(
Ĥ

(t)
modd̂− ĉ

(t)
mod

)
,

where Ĥ
(t)
mod and ĉ

(t)
mod are calculated in a recursive form in the line 7 of Algorithm 2. With

the gradients, we can apply FISTA or frequency-domain FISTA on the problem (2.30), as in

Algorithm 2.

Complexity analysis of Algorithm 2. If we solve (2.30) directly, the operator X(t) is

a linear operator from RDM to RN . Thus, the complexity of computing the Hessian matrix
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of f (t), (X(t))TX(t), is O(D2M2N) and the memory cost is O(D2M2). Otherwise, if we solve

(2.30) utilizing the sparsity of X, the computational cost of computing (X(t))TX(t) can be

reduced to O(D2M2Nρ), where ρ is the density of sparse matrix X(t), but the memory cost is

still O(D2M2) because (X(t))TX(t) is not sparse although X(t) is. In comparison, if we solve

(2.30) in the frequency domain, the frequency-domain operator X̂(t) = (X̂1, X̂2, · · · , X̂M ) is a

linear operator from CMN to CN , which seems to lead to a larger complexity to compute the

Hessian: O(M2N3) flops and O(M2N2) memory cost. However, since each component X̂m

is diagonal, the frequency-domain product (X̂(t))HX̂(t) has only O(M2N) non-zero values.

Both the number of flops and memory cost are O(M2N). The complexities are listed in

Table 2.2.

2.4.5 Convergence of Algorithm 2

First, we start with some assumptions7:

Assumption 1. All the signals are drawn from a distribution with a compact support.

Assumption 2. Each sparse coding step (2.7) has a unique solution.

Assumption 3. The surrogate functions are strongly convex.

Assumption 1 can easily be guaranteed by normalizing each training signal. Assumption

2 is a common assumption in dictionary learning and other linear regression papers [MBP09,

EHJ04]. Practically, it must be guaranteed by choosing a sufficiently large penalty parameter

λ in (2.7), because a larger penalty parameter leads to a sparser x. See Appendix 2.D for

details. Assumption 3 is a common assumption in RLS (see Definition (3.1) in [JJB82]) and

dictionary learning (see Assumption B in [MBP10]).

Proposition 1 (Weighted central limit theorem). Suppose Zi
i.i.d∼ PZ(z), with a compact

support, expectation µ, and variance σ2. Define the weighted approximation of Z: Ẑn
mod ,

1∑n
i=1(i/n)p

∑n
i=1(i/n)pZi. Then, we have

√
n(Ẑn

mod − µ)
d→ N

(
0,

p+ 1√
2p+ 1

σ
)
. (2.34)

7The specific formulas for Assumptions 2 and 3 are shown in Appendix 2.D.
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E
[√

n
∣∣Ẑn

mod − µ
∣∣] = O(1) . (2.35)

This proposition is an extension of the central limit theorem (CLT). As p→ 0, it reduces

to the standard CLT. The proof is given in Appendix 2.E.3.

Proposition 2 (Convergence of functions). With Assumptions 1-3, we have

E
[√

t
∥∥F − F (t)

∥∥
∞

]
≤M , (2.36)

E
[√

t
∥∥F − F (t)

mod

∥∥
∞

]
≤ p+ 1√

2p+ 1
M , (2.37)

where M > 0 is some constant unrelated with t, and ‖f‖∞ = supd∈C ‖f(d)‖.

This proposition is an extension of Donsker’s theorem (see Lemma 7 in [MBP10] and

Chapter 19 in [Vaa00]). The proof is given in Appendix 2.E.4.

Moreover, it shows that weighted approximation F
(t)
mod and standard approximation F (t)

have the same asymptotic convergence rate O(1/
√
t). However, the error bound factor

(p+ 1)/
√

2p+ 1 is a monotone increasing function in p ≥ 0. Thus, a larger p leads to a larger

variance and slower convergence of F
(t)
mod. This explains why we cannot choose p to be too

large.

Proposition 3 (Convergence of FPR implies convergence of iterates). Let (d∗)(t) be the

exact minimizer of the tth subproblem:

(d∗)(t) = arg min
d
F (t)

mod(d) + ιC(d) . (2.38)

Let d(t) be the solution obtained by the frequency-domain FISTA (Algorithm 3) with our

proposed stopping condition (2.33). Then, we have∥∥d(t) − (d∗)(t)
∥∥ ≤ O (t−1

)
. (2.39)

The proof is given in Appendix 2.E.1.

Proposition 4 (The convergence rate of Algorithm 2). Let d(t) be the sequence generated by

Algorithm 2. Then, we have ∥∥d(t+1) − d(t)
∥∥ = O

(
t−1
)
. (2.40)
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Compared with Lemma 1 in [MBP10], which shows the convergence rate of the surrogate

function method with exact D-update, our Proposition 4 shows that the inexact D-update

(2.33) shares the same rate. Since our inexact version stops FISTA earlier, it is faster. The

proof of this proposition is given in Appendix 2.E.2.

Theorem 1 (Almost sure convergence of Algorithm 2). Let F (t)
mod be the surrogate function

sequence, d(t) the iterate sequence, both generated by Algorithm 2. Then we have, with

probability 1:

1. F (t)
mod(d(t)) converges.

2. F (t)
mod(d(t))− F (d(t))→ 0.

3. F (d(t)) converges.

4. dist(d(t), V )→ 0, where V is the set of stationary points of the CDL problem (2.8).

The proof is given in Appendix 2.E.5.

2.5 Numerical results

All the experiments are computed using MATLAB R2016a running on a workstation with

2 Intel Xeon(R) X5650 CPUs clocked at 2.67GHz. Implementations of these algorithms

are available in the Matlab version of the SPORCO software library [Woh16f], and will be

included in a future release of the Python version of this library. The dictionary size is

12× 12× 64, and the signal size is 256× 256. Dictionaries are evaluated by comparing the

functional values obtained by computing CBPDN (2.7) on the test set. A smaller functional

value indicates a better dictionary. Similar methods to evaluate the dictionary are also used

in other dictionary learning works [MBP10, TYG12]. The regularization parameter is chosen

as λ = 0.1.

The training set consists of 40 images selected from the MIRFLICKR-1M dataset8 [HTL10],

and the test set consists of 20 different images from the same source. All of the images used

8The actual image data contained in this dataset is of very low resolution since the dataset is primarily
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were originally of size 512× 512. To accelerate the experiments, we crop the borders of both

the training images and testing images and preserve the central part to yield 256× 256. The

training and testing images are pre-processed by dividing by 255 to rescale the pixel values

to the range [0, 1] and highpass filtering9.

In this work we solve the convolutional sparse coding step using an ADMM algo-

rithm [Woh14] with an adaptive penalty parameter scheme [Woh17a]. The stopping condition

is that both primal and dual normalized residuals [Woh17a] be less than 10−3, and the

relaxation parameter is set to 1.8 [Woh16d].

2.5.1 Validation of Algorithm 1

First we test the effect of step size η(t) in Algorithm 1. We can choose either a fixed step size

or a diminishing step size:

η(t) = η0 or η(t) = a/(t+ b).

The results of experiments to determine the best choice of η are reported in Fig. 2.3. We test the

convergence performance of fixed step size scheme with values: η0 ∈ {1, 0.3, 0.1, 0.03, 0.01}.

We also test the convergence performance of the diminishing step size scheme with values:

a ∈ {5, 10, 20}; b ∈ {5, 10, 20} and report the best (a = 10, b = 5) in Fig. 2.3. When a large

fixed step size is used, the functional value decreases fast initially but becomes unstable later

on. A smaller step size causes the opposite. A diminishing step size balances accuracy and

convergence rate.

Second, we test the computational techniques (computing with sparsity / computing in

the frequency domain), as Table 2.3 shows. To get the table, we set λ = 0.1, and the average

density of X is 0.0037. Both techniques reduce the complexity of updating d(t). Option I has

targeted at image classification tasks. The original images from which those used here were derived were
obtained by downloading the original images from Flickr that were used to derive the MIRFLICKR-1M
images.

9The pre-processing is applied due to the inability of the standard CSC model to effectively represent
low-frequency/large-scale image components [Woh16c, Sec. 3]. In this case the highpass component is
computed as the difference between the input signal and a lowpass component computed by Tikhonov
regularization with a gradient term [Woh17b, pg. 3], with regularization parameter 5.0.
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Figure 2.3: Tuning the step size of Algorithm 1.

better memory cost while Option II has better calculation time. Fig. 2.4 shows the objective

values versus training time. Frequency-domain update (Option II) performs the best.

2.5.2 Validation of Algorithm 2

For Algorithm 2, we test the four techniques separately: the forgetting exponent p, image

splitting with size Ñ , and stopping tolerance of FISTA τ (t), and computational techniques

(sparsity or frequency-domain update).

2.5.2.1 Validation of Improvement I: forgetting exponent p

In this section, we fix Ñ = 256× 256 (no splitting) and τ (t) = 10−4, which is small enough

to give an accurate solution. Fig. 2.5 shows that, when p = 0, the curve is monotonic and

with small oscillation, but it converges to a higher functional value. When p is larger, the

algorithm converges to lower functional values. When p is too large, for instance, p ∈ {40, 80},

the curve oscillates severely, which indicates large variance. These results are consistent with

Propositions 1 and 2. In the remaining sections we fix p = 10 since it is shown to be a good

choice.
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Figure 2.4: Different options of Algorithm 1.

2.5.2.2 Validation of Improvement II: image splitting with size Ñ and boundary

artifacts

In this section, we again fix τ (t) = 10−4. Convergence comparisons are shown in Fig. 2.6, and

the dictionaries obtained with different Ñ are displayed Fig. 2.7. In our experiments, we only

consider square signals (Ñ = 12×12, 16×16, 32×32, 64×64, 256×256) and square dictionary

kernels (D = 12 × 12). When Ñ ≥ 22D, say Ñ = 32 × 32 or Ñ = 64 × 64, the algorithm

converges to a good functional value, which is the same as that without image-splitting.

However, when Ñ is smaller than the threshold 22D, say Ñ = 16 × 16 or 12 × 12, the

algorithm converges to a higher functional value, which implies worse dictionaries. Thus, we

can conclude that the splitting size should be at least twice the dictionary kernel size in each

dimension. Otherwise, it will lead to boundary artifacts. This phenomenon is consistent with

the discussion in Section 2.4.2. The artifacts are specifically displayed in Fig. 2.7. When Ñ

is smaller than the threshold, say 12× 12, the features learned are incomplete.

This section only studies the effect, due to boundary artifacts, of image-splitting on

objective functional values. As Table 2.2 shows, it also helps reducing computing time and

memory cost, which is numerically validated in Section 2.5.2.4.
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Figure 2.5: Effect of forgetting exponent p in Algorithm 2.

2.5.2.3 Validation of Improvement III: stopping tolerance of FISTA τ (t)

In this section, we fix p = 10, Ñ = 256 × 256 (no splitting). Fig. 2.8 shows the effect of

using different τ (t). Using a small stopping tolerance τ (t) = 10−4 leads to a good functional

value 101.1 but large number of FISTA iterations, while a large tolerance 10−2 leads to a

large functional value 104.4 and small number of FISTA iterations. Consider our proposed

diminishing tolerance rule (2.33) τ (t) = 0.01/t. When the algorithm starts, t = 1, we have

τ (1) = 10−2. At the end of the algorithm, t = 100, τ (100) = 10−4. Based on the results in

Fig. 2.8, our diminishing tolerance avoids large number of FISTA loops, especially at the

initial steps, while losing little accuracy, as the final objective, 101.3 is close to 101.1.

2.5.2.4 Validation of Improvement IV: computational techniques

In this section, we fix p = 10, τ (t) = 0.01/t and λ = 0.1, and compare the calculation time and

memory usage of spatial-domain update and frequency-domain update. Table 2.4 illustrates

that image-splitting helps reduce the single-step complexity and memory usage for both

Option I (spatial-domain update) and Option II (frequency-domain update). For option II,

the advantage of smaller splitting size Ñ is more significant than that of option I. When

Ñ = 256× 256, option I is much better than option II; but when Ñ = 64× 64, the single step
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Figure 2.6: Effect of the Technique II (image-splitting with size Ñ) in Algorithm 2.

time of option II is comparable with that of option I. The reason for this is that, for option I,

reducing Ñ only helps reduce the single-step time cost of CBPDN, updating Hessian matrix

H(t) and the loops of FISTA, but does not help reduce the time cost of single-step time cost

in FISTA. However, for option II, image-splitting not only reduces those three complexities,

but also reduces the single-step complexity of FISTA. Furthermore, option II uses much less

memory than option I when Ñ = 64× 64.

Fig. 2.9(a) and Fig. 2.9(b) compare the objective functional value versus time. Fig. 2.9(a)

indicates that reducing Ñ does not help a lot for Option I. Table 2.4 shows that smaller Ñ

reduces the single step complexity, but it also reduces the gain in each step because a smaller

splitting size leads to less information used for training. This is a trade-off. By Fig. 2.9(a),

Ñ = 128× 128 is a good choice.

Option II, in contrast, benefits more from smaller Ñ , as can be seen from Fig. 2.9(b) and

Table 2.4. Although splitting a training image reduces the gain in each step, the benefit

overwhelms the loss. Thus, for Option II, the smaller the splitting size the better, as long as

Ñ is larger than the threshold for boundary artifacts.
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(a)

Dictionaries learned by

Ñ = 12× 12: some in-

complete features.

(b)
Dictionaries learned by

Ñ = 64× 64. (c)

Dictionaries learned by

Ñ = 256×256 (no split-

ting).

Figure 2.7: Visualization of boundary artifacts.

2.5.3 Main result I: convergence speed

In this section, we study the convergence speeds of all the methods on the clean data set,

without a masking operator. We compare our methods with two leading batch learning

algorithms: the method of Papyan et al. [PRS17], which uses K-SVD and updates the

dictionary in the spatial domain, and an algorithm [GW17] that uses the ADMM consensus

dictionary update [vv16], which is computed in the frequency domain. For batch learning

algorithms, we test on subsets of 10, 20, and 40 images selected from the training set. For

online learning algorithms, since they are scalable in the size of the training set, we just test

our methods on the whole training set of 40 images. All the parameters are tuned as follows.

For batch learning algorithm (Papyan et al.), we use the software they released, and for batch

learning algorithm (ADMM consensus update), we use the “adaptive penalty parameter”

scheme in [Woh17a]. For modified SGD (Algorithm 1), we use the step size of 10/(5 + t). For

Surrogate-Splitting (Algorithm 2), we use p = 10, τ (t) = 0.01/t, Ñ = 128× 128 for spatial-

domain update, Ñ = 64 × 64 for frequency-domain update, as we tuned in the previous

sections. For our algorithm proposed in [LGW17], we use p = 10, τ (t) = 10−3, Ñ = 64× 64.

The performance comparison of batch and online methods is presented in Fig. 2.10. The

advantage of online learning is significant (note that the time axis is logarithmically scaled).
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Figure 2.8: Effect of Technique III (stopping FISTA early) in Algorithm 2.

To obtain the same functional value 101 on the test set, batch learning takes 15 hours, our

previous method [LGW17] takes around 1.5 hours, Algorithm 2 with option II takes around 1

hour, and Algorithm 1 and Algorithm 2 with option I takes less than 1 hour. We can conclude

that, both modified SGD (Algorithm 1) and Surrogate-Splitting (Algorithm 2) converge faster

than the batch learning algorithms and our previous online algorithm.

2.5.4 Main result II: memory usage

As Table 2.5 shows, both Algorithm 1 and 2 save a large amount of memory.

2.6 Conclusions

We have proposed two efficient online convolutional dictionary learning methods. Both of

them have a theoretical convergence guarantee and show good performance on both time and

memory usage. Compared to recent online CDL works [DKB17, WYK18], our second-order

method improves the framework by several practical techniques. Our first-order method, to

the best of our knowledge, is the first attempt to use first order methods in online CDL. It

shows better performance in time and memory usage, and requires fewer parameters to tune.
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(b) Algorithm 2 Option II.

Figure 2.9: Effect of splitting region size Ñ on different options.

Although only single-channel images are considered in this article, our online methods can

easily be extended to the multi-channel case [Woh16b].

Appendix 2.A Derivation of (2.18)

Consider a real-valued function defined on the complex domain f : Cn → R, which can be

viewed as a function defined on the 2n dimensional real domain: f(x) = f
(
<(x) + i=(x)

)
,

where <(x),=(x) ∈ Rn are the real part and imaginary part, respectively. By [SBL12],

“conjugate cogradient” is defined as

∇f(x) ,
∂f

∂<(x)
+ i

∂f

∂=(x)
. (2.41)

Based on (2.41), we give a derivation of (2.18).

Recall the definition l̂(d̂, x̂; b̂) = 1/2
∥∥X̂d̂ − b̂

∥∥2
. Substituting X̂ = <(X̂) + i=(X̂),

d̂ = <(d̂) + i=(d̂), and b̂ = <(b̂) + i=(b̂) into l̂, we have

l̂(d̂, x̂; b̂)

=
1

2

∥∥<(X̂)<(d̂)−=(X̂)=(d̂)−<(b̂) + i
(
=(X̂)<(d̂) + <(X̂)=(d̂)−=(b̂)

)∥∥2

=
1

2

∥∥<(X̂)<(d̂)−=(X̂)=(d̂)−<(b̂)
∥∥2

+
1

2

∥∥=(X̂)<(d̂) + <(X̂)=(d̂)−=(b̂)
∥∥2
.
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Figure 2.10: Main Result I: convergence speed comparison.

The partial derivatives on <(d̂) and =(d̂) are, respectively,

∂l̂

∂<(d̂)
=<(X̂)T

(
<(X̂)<(d̂)−=(X̂)=(d̂)−<(b̂)

)
+ =(X̂)T

(
=(X̂)<(d̂) + <(X̂)=(d̂)−=(b̂)

)
∂l̂

∂=(d̂)
==(X̂)T

(
−<(X̂)<(d̂) + =(X̂)=(d̂) + <(b̂)

)
+ <(X̂)T

(
=(X̂)<(d̂) + <(X̂)=(d̂)−=(b̂)

)
.

Therefore,

X̂H(X̂d̂− b̂)

=(<(X̂)− i=(X̂))T
(

(<(X̂)<(d̂)−=(X̂)=(d̂)−<(b̂))

+ i
(
=(X̂)<(d̂) + <(X̂)=(d̂)−=(b̂)

))
=

∂l̂

∂<(d̂)
+ i

∂l̂

∂=(d̂)
.

By the definition of conjugate cogradient (2.41), the right side of the above equation is the

conjugate cogradient of l̂, i.e.

∇l̂(d̂, x̂; b̂) = X̂H(X̂d̂− b̂) .
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Figure 2.11: Main Result I: convergence speed comparison.

Appendix 2.B Proof of (2.20)

Proof. Let F be the Fourier operator from CN to CN , so that F−1 = FH is the inverse

Fourier operator. x and X are the vector form and operator form of the coefficient map,

respectively. x̂ and X̂ are the corresponding vector and operator in the frequency domain.

By definition, we have that x̂ = Fx. We claim that

X̂ = FXFH . (2.42)

To prove this, notice that

X̂d̂ = F
(
x ∗ d

)
= F(Xd

)
= FXFHFd = FXFHd̂ , ∀d ∈ RN .

Thus we have X̂ = FXFH . With this equation, we have

X̂H(X̂d̂− b̂) = (FXFH)H(FXFHFd−Fb) = (FXTFH)(FXd−Fb)

= F
(
XT (Xd− b)

)
,

which is exactly (2.20).
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Appendix 2.C Frequency-domain FISTA

To solve (2.30), we propose frequency-domain FISTA, Algorithm 3. It calculates the gradient

in the frequency domain and do projection and extrapolation in the spatial domain. Mathe-

matically speaking, (2.20) illustrates that frequency-domain FISTA is actually equivalent

with standard FISTA. However, calculating convolutional operator in the frequency domain

reduces computing time. Thus, our algorithm is faster.

Appendix 2.D Details of the assumptions

2.D.1 Description of Assumption 2

To represent Assumption 2 in a concise way, we use the notation

Dx =
M∑
m=1

dm ∗ xm ≈ b ,

where x ∈ RMN , b ∈ RN , D : RMN → RN is the convolutional dictionary. Then CBPDN

problem (2.3) could be written as

min
x∈RMN

(1/2)‖Dx− b‖2
2 + λ‖x‖1 . (2.45)

The coefficient map x is usually sparse, and Λ is the set of indices of non-zero elements in

x. Then, we have Dx = DΛxΛ. By the results in [Fuc05], problem (2.45) has the unique

solution if DT
ΛDΛ is invertible10, and its unique solution satisfies

x∗Λ = (DT
ΛDΛ)−1(DT

Λb− λsign(x∗Λ)) . (2.46)

Specifically, Assumption 2 is: for all signals b and dictionaries d, the smallest singular value

of DT
ΛDΛ is lower bounded by a positive number, i.e.

σmin(DT
ΛDΛ) ≥ κ . (2.47)

10Although [Fuc05] only studies standard sparse coding, the uniqueness condition can be applied to the
convolutional case because the only condition in their proof is “for a convex function f(x) on Rn, x a minimum
if and only if 0 ∈ ∂f(x)”. The only assumption is the convexity of the function, with no assumptions on the
signals and dictionaries. Thus, large signals and convolutional dictionaries as in our case are consistent with
the condition in [Fuc05].
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Except for condition (2.47), other types of uniqueness conditions of CSC are studied in

recent works [PRE17, PSE17, SPR17].

2.D.2 Description of Assumption 3

Specifically, Assumption 3 is, the surrogate functions F (t)
mod(d) are uniformly strongly convex,

i.e.

〈∇F (t)
mod(d)−∇F (t)

mod(d̃),d− d̃〉 ≥ µ
∥∥d− d̃

∥∥2
, (2.48)

for all t,d, d̃, for some µ > 0.

Appendix 2.E Proofs of propositions and the theorem

Before proving propositions, we introduce a useful lemma.

Lemma 1 (Uniform smoothness of surrogate functions). Under Assumptions 1 and 2, we

have f (t) (2.22) and F (t)
mod(2.31) are uniformly L-smooth, i.e.∥∥∇f (t)(d)−∇f (t)(d̃)

∥∥ ≤ Lf
∥∥d− d̃

∥∥∥∥∇F (t)
mod(d)−∇F (t)

mod(d̃)
∥∥ ≤ LF

∥∥d− d̃
∥∥ , (2.49)

for all t,d, d̃, for some constants Lf > 0, LF > 0.

Proof. First, we consider a single surrogate function:

∥∥∇f (t)(d)−∇f (t)(d̃)
∥∥ =

∥∥(X(t))T (X(t))(d− d̃)
∥∥ .

By d ∈ C (the compact support of d), Assumption 1 (the compact support of b), and

equation (2.46) (regularity of convolutional sparse coding), we have x(t) is uniformly bounded.

Therefore, X(t), the operator form of x(t), is also uniformly bounded:

∥∥X(t)
∥∥ ≤M, (2.50)

for all t, for some M > 0, which is independent of t.
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By (2.26), we have

∥∥∥∇F (t)
mod(d)−∇F (t)

mod(d̃)
∥∥∥ =

∥∥∥∥ 1

Λ(t)

t∑
τ=1

(τ/t)p(X(τ))T (X(τ))(d− d̃)

∥∥∥∥
≤ 1

Λ(t)

t∑
τ=1

(τ/t)p
∥∥∥(X(τ))T (X(τ))(d− d̃)

∥∥∥ ,
which, together with (2.50), implies (2.49).

2.E.1 Proof of Proposition 3

Given the strong-convexity (2.48) and smoothness (2.49) of the surrogate function, we start

to prove Proposition 3.

Proof. To prove (2.39), we consider a more general case. Let g∗ be the minimizer of the

following subproblem:

g∗ = arg min
d
F(d) + ιC(d) ,

where F is µ-strongly convex and L-smooth. Moreover, gj and gjaux are the iterates generated

in Algorithm 3, and j is the loop index. Then, we want to show that

‖gj+1 − g∗‖ ≤ CR(t)(gjaux) , ∀j ≥ 0 . (2.51)

By (2.20), it is enough to prove the above for the spatial-domain FISTA. By strong

convexity and smoothness of F , we obtain

‖gj+1 − g∗‖2

=
∥∥∥Proj(gjaux − η∇F(gjaux))− Proj(g∗ − η∇F(g∗))

∥∥∥2

≤
∥∥∥gjaux − η∇F(gjaux)− g∗ − η∇F(g∗)

∥∥∥2

=
∥∥∥gjaux − g∗ − η

(
∇F(gjaux)−∇F(g∗)

)∥∥∥2

=‖gjaux − g∗‖2 − 2η
〈
gjaux − g∗,∇F(gjaux)−∇F(g∗)

〉
+ η2

∥∥∇F(gjaux)−∇F(g∗)
∥∥2

≤(1− 2µη + η2L2)‖gjaux − g∗‖2 .
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Combining the above inequality and the definition of FPR (2.32), we have

R(gjaux) =
∥∥∥gjaux − Proj

(
gjaux − η∇F(gjaux)

)∥∥∥
=‖gjaux − g(j+1)‖

=‖gjaux − g∗ − (g(j+1) − g∗)‖

≥‖gjaux − g∗‖ − ‖g(j+1) − g∗‖

≥
(

1−
√

1− 2µη + η2L2
)
‖gjaux − g∗‖

≥1−
√

1− 2µη + η2L2√
1− 2µη + η2L2

‖gj+1 − g∗‖ .

Let the step size be small enough η ≤ min (µ/L2, 1/µ), we have 0 ≤ 1 − 2µη + η2L2 ≤ 1,

which implies (2.51). Combining (2.51) and (2.33), we get (2.39).

2.E.2 Proof of Proposition 4

Proof. Recall (d∗)(t) (2.38) is the “exact solution” of the tth iterate, and d(t) is the “inexact

solution” of the tth iterate (i.e. the approximated solution obtained by stopping condition

(2.33)). Then, by the strong convexity of F (t)
mod, we have

F (t)
mod(d(t+1))−F (t)

mod(d(t))

=F (t)
mod(d(t+1))−F (t)

mod((d∗)(t))−
(
F (t)

mod(d(t))−F (t)
mod((d∗)(t))

)
≥µ‖d(t+1) − (d∗)(t)‖2 − L‖d(t) − (d∗)(t)‖2

≥µ
(
‖d(t+1) − d(t)‖ − ‖d(t) − (d∗)(t)‖

)2

− L‖d(t) − (d∗)(t)‖2 .

Let r(t) = ‖d(t+1) − d(t)‖. If r(t) ≤ C/t, Proposition 4 is directly proved. Otherwise,

Proposition 3 (2.39) implies r(t) − ‖d(t) − (d∗)(t)‖ ≥ r(t) − C/t ≥ 0 and

F (t)
mod(d(t+1))−F (t)

mod(d(t)) ≥ µ
(
r(t) − C

t

)2

− LC2

t2
. (2.52)

On the other hand,

F (t)
mod(d(t+1))−F (t)

mod(d(t)) =F (t)
mod(d(t+1))−F (t+1)

mod (d(t+1))︸ ︷︷ ︸
T1

+F (t+1)
mod (d(t+1))−F (t+1)

mod (d(t))︸ ︷︷ ︸
T2

+ F (t+1)
mod (d(t))−F (t)

mod(d(t))︸ ︷︷ ︸
T3

,
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Now we will give the upper bounds of T1,T2,T3. Given the smoothness of F (t)
mod(2.49) and

(d∗)(t+1) being the minimizer of F (t)
mod, we have an upper bound of T2:

T2 =F (t+1)
mod (d(t+1))−F (t+1)

mod (d(t))

=F (t+1)
mod (d(t+1))−F (t+1)

mod ((d∗)(t+1))−
(
F (t+1)

mod (d(t))−F (t+1)
mod ((d∗)(t+1))

)
≤L‖d(t+1) − (d∗)(t+1)‖2 − 0 ≤ LC2

t2
.

(2.53)

Based on (2.26), the gradient of F (t)
mod −F

(t+1)
mod is bounded by

‖∇F (t)
mod(d)−∇F (t+1)

mod (d)‖

=‖∇F (t)
mod(d)− α(t+1)Λ(t)

Λ(t+1)
∇F (t)

mod(d)− 1

Λ(t+1)
∇f (t+1)(d)‖

≤ 1

Λ(t+1)
‖∇F (t)

mod(d)‖+
1

Λ(t+1)
‖∇f (t+1)(d)‖ ≤ C0/(Λ

(t+1)) ≤ C1/t ,

for some constant C1 > 0. The second inequality follows from d ∈ C (the compact support of

d), Assumption 1 (the compact support of b), and equation (2.50) (boundedness of X). The

last inequality is derived by the follows:

1

Λ(t+1)
=

(t+ 1)p∑(t+1)
τ=1 τ p

≤ (t+ 1)p∫ (t+1)

0
τ pdτ

=
p

t+ 1
.

Then, F (t)
mod −F

(t+1)
mod is a Lipschitz continuous function with L = C1/t, which implies

T1 + T3 ≤
C1

t
r(t) .

Therefore,

F (t)
mod(d(t+1))−F (t)

mod(d(t)) ≤ C1

t
r(t) +

LC2

t2
. (2.54)

Combining (2.52) and (2.54), we have

µ
(
r(t) − C

t

)2

− LC2

t2
≤ C1

t
r(t) +

LC2

t2
,

which implies

(r(t))2 − 2C + C1

t
r(t) ≤ 2LC2

µt2
.

This can be written more neatly as

(r(t))2 − 2
C2

t
r(t) ≤ C3

t2
, for some C2 > 0, C3 > 0 .

Finally, r(t) is bounded by r(t) ≤ (C2 +
√
C2

2 + C3)/t. (2.40) is proved.
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2.E.3 Proof of Proposition 1

Proof. Define a sequence of random variables Yi = ipZi. Their expectations and variances

are µi = ipµ and σ2
i = i2pσ2, respectively. Now we apply the Lyapunov central limit theorem

on the stochastic sequence {Yi}. First, we check the Lyapunov condition [Bil08]. Let

s2
n =

n∑
i=1

σ2
i =

n∑
i=1

i2pσ2 = Θ(n2p+1) ,

then we have

1

s2+δ
n

n∑
i=1

E
[
|Yi − µi|2+δ

]
≤ 1

s2+δ
n

n∑
i=1

(ipσ)2+δ = O
(

n2p+1+δp

n2p+1+δp+δ/2

)
= O(n−δ/2) . (2.55)

The Lyapunov condition is satisfied, so, by the Lyapunov central limit theorem, we have

1
sn

∑n
i=1(Yi − µi)

d→ N(0, 1). Furthermore, the definition of Ẑn
mod indicates

1

sn

n∑
i=1

(Yi − µi) =
1

sn

n∑
i=1

ip(Zi − µ) =

∑n
i=1 i

p√∑n
i=1 i

2pσ

(
1∑n
i=1 i

p

n∑
i=1

ip(Zi − µ)

)
=

∑n
i=1 i

p√∑n
i=1 i

2pσ
(Ẑn

mod − µ) .

Given the following inequalities:

n∑
i=1

ip <

∫ n+1

1

spds <
1

p+ 1
(n+ 1)p+1 ,

n∑
i=1

ip >

∫ n

0

spds =
1

p+ 1
(n)p+1 ,

we have
1

sn

n∑
i=1

(Yi − µi) ≤
(

1 +
1

n

)p+1 1

σ

√
2p+ 1

p+ 1

√
n(Ẑn

mod − µ) ,

1

sn

n∑
i=1

(Yi − µi) ≥
(

1 +
1

n

)−(p+1) 1

σ

√
2p+ 1

p+ 1

√
n(Ẑn

mod − µ) .

Then (2.34) is obtained by 1
sn

∑n
i=1(Yi − µi)

d→ N(0, 1) and (1 + 1/n)→ 1.

The formula Var(X) = EX2 − (EX)2 ≥ 0 implies(
E
[√

n
∣∣Ẑn

mod − µ
∣∣])2

≤ E
[
n
∣∣Ẑn

mod − µ
∣∣2] .

By the independence of different Zi, we have

E
[
n
∣∣Ẑn

mod − µ
∣∣2] =

n

(
∑n

i=1 i
p)2

n∑
i=1

E
[
i2p
∣∣Zi − µ∣∣2] ≤ (p+ 1)2

2p+ 1
B2 ,

where B is the upper bound of Zi as Zi is compact supported. (2.35) is proved.

41



2.E.4 Proof of Proposition 2

Proof. First, we fix d ∈ C. Let i→ τ, n→ t, Zi → f(d; b(τ)), then, by Proposition 1, we have

E
[√

t
∣∣F (d)− F (t)

mod(d)
∣∣] ≤ p+ 1√

2p+ 1
B , ∀t ∈ {1, 2, · · · }

for some B > 0, for fixed d. Since F and F
(t)
mod are continuously differentiable and have

uniformly bounded derivatives (2.50), we have E
[√

t
∣∣F (d)−F (t)

mod(d)
∣∣] is uniformly continuous

w.r.t d on a compact set C. Thus, the boundedness of E
[√

t
∣∣F (d) − F (t)

mod(d)
∣∣] on each d

implies the boundedness for all d ∈ C. Inequality (2.37) is proved. Taking p→ 0, we have

(2.36).

2.E.5 Proof of Theorem 1

Proof. Let u(t) = F (t)
mod(d(t)). Inspired by the proof of Proposition 3 in [MBP10], we will show

that u(t) is a “quasi-martingale” [Fis65].

u(t+1) − u(t)

=F (t+1)
mod (d(t+1))−F (t)

mod(d(t))

=F (t+1)
mod (d(t+1))−F (t+1)

mod (d(t))︸ ︷︷ ︸
T2

+F (t+1)
mod (d(t))−F (t)

mod(d(t))︸ ︷︷ ︸
T4

.

The bound of T2 is given by (2.53). Furthermore, definition (2.22) tells us f (t+1)(d(t)) =

f(d(t); b(t+1)), which implies

T4 =F (t+1)
mod (d(t))−F (t)

mod(d(t))

=

(
1

Λ(t+1)
f(d(t); b(t+1)) +

α(t+1)Λ(t)

Λ(t+1)
F (t)

mod(d(t))

)
−F (t)

mod(d(t))

=
f(d(t); b(t+1))− F (t)

mod(d(t))

Λ(t+1)
+
F

(t)
mod(d(t))−F (t)

mod(d(t))

Λ(t+1)
.

By the definitions of f (2.7) and F (2.31), we have F
(t)
mod(d(t)) ≤ F (t)

mod(d(t)). Define Gt as all

the previous information: Gt , {x(τ),b(τ),d(τ)}tτ=1. Thus, taking conditional expectation, we

obtain

E[T4|Gt] ≤
1

Λ(t+1)

(
E[f(d(t); b(t+1))|Gt]− F (t)

mod(d(t))
)

=
1

Λ(t+1)

(
F (d(t))− F (t)

mod(d(t))
)
.
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Therefore, the positive part of E[T4|Gt] is bounded by

E[T4|Gt]+ ≤
1

Λ(t+1)
‖F − F (t)

mod‖∞ = O
(

1

t3/2

)
,

where the second inequality follows from (2.37). Given the bound of T2 (2.53) and T4, we

have
∞∑
t=1

E
[
E[u(t+1) − u(t)|Gt]+

]
≤

∞∑
t=1

(
O
(

1

t3/2

)
+O

(
1

t2

))
< +∞ ,

which implies that u(t+1) generated by Algorithm 2 is a quasi-martingale. Thus, by results in

[Bot99, Sec. 4.4] or [MBP10, Theorem 6], we have u(t) converges almost surely.

For the proofs of 2, 3 and 4, using the results in Proposition 4, 2 in this paper, following the

same proof line of Proposition 3 and 4 in [MBP10], we can obtain the results in 2, 3 and

4.
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Algorithm 2: Online Convolutional Dictionary Learning (Surrogate-Splitting)

Initialize : Initialize d(0), let H
(0)
mod ← 0, c

(0)
mod ← 0 or Ĥ

(0)
mod ← 0, ĉ

(0)
mod ← 0.

1 for t = 1, · · · , T do

2 Sample a signal b(t) from {ssplit}.

3 Solve convolutional sparse coding problem (2.10a) to obtain x(t).

4 if Option I then

5 Update H
(t)
mod, c

(t)
mod in the spatial-domain with sparse matrix X(t):

H
(t)
mod = α(t)H

(t−1)
mod + (X(t))TX(t), c

(t)
mod = α(t)c

(t−1)
mod + (X(t))Tb(t)

6 Solve the following subproblem with FISTA (stopping condition (2.33)):

d(t) = arg min
d∈RMD

F (t)
mod(d) + ιC(d) .

7 else if Option II then

8 Update Ĥ
(t)
mod, ĉ

(t)
mod in the frequency-domain:

Ĥ
(t)
mod = α(t)Ĥ

(t−1)
mod + (X̂(t))HX̂(t), ĉ

(t)
mod = α(t)ĉ

(t−1)
mod + (X̂(t))Hb̂(t)

9 Solve the following subproblem with frequency-domain FISTA (stopping

condition (2.33), see Appendix 2.C):

d(t) = arg min
d∈RMN

F̂ (t)
mod(d̂) + ιCPN

(d) .

10 end

11 end

Output: d(T )
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Table 2.2: Single step complexity and memory usage of Algorithm 2. N : signal dimension;

M : number of dictionary kernels; D: size of each kernel; ρ: average density of the coefficient

maps; J : average loops of FISTA in each step.

Scheme Single step complexity Memory usage

Spatial (dense) TCBPDN +O(D2M2N) +O(JD2M2) O(D2M2) +O(DMN)

Spatial (sparse) TCBPDN +O(D2M2Nρ) +O(JD2M2) O(D2M2) +O(DMNρ)

Frequency update TCBPDN +O(JM2N) +O(JMN log(N)) O(M2N)

Table 2.3: Comparison between different options of Algorithm 1.

Schemes
Average single-step complexity (seconds) Memory

Usage (MB)CBPDN FFT/IFFT Update d(t) Total

Spatial (dense matrix) 14.8 0 1.978 16.8 2346.44

Spatial (sparse matrix) 14.8 0 0.241 15.1 111.38

Frequency domain 14.8 0.047 0.025 14.9 154.84
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Table 2.4: Comparison of two options in Algorithm 2 with different splitting size Ñ .

Ñ
Average single-step complexity (seconds) Memory

Usage (MB)
CBPDN Update H(t)

FISTA

(Loops × Single step)
Total

Update in the spatial domain with dense matrix

256× 256 14.8 25.1 57 × 0.017 40.9 3058.56

128× 128 3.42 6.80 37 × 0.017 10.8 1258.37

64× 64 1.05 2.25 24 × 0.017 3.71 808.32

(Option I) Update in the spatial domain with sparse matrix

256× 256 14.8 4.47 57 × 0.017 20.3 486.91

128× 128 3.42 1.77 37 × 0.017 5.82 366.51

64× 64 1.05 0.84 24 × 0.017 2.30 342.90

(Option II) Update in the frequency domain (including extra time caused by FFT)

256× 256 14.8 0.89 57 × 1.068 76.6 2458.84

128× 128 3.42 0.22 37 × 0.244 12.7 622.28

64× 64 1.05 0.06 24 × 0.072 2.84 158.11

46



Table 2.5: Main Result II: memory usage comparison.

Scheme Memory (MB)

Batch learning (consensus update, batch K = 10) 1959.58

Batch learning (consensus update, batch K = 20) 3887.08

Batch learning (consensus update, batch K = 40) 7742.08

Batch learning (Papyan et al. [PRS17], batch K = 10) 1802.29

Batch learning (Papyan et al. [PRS17], batch K = 20) 3390.24

Batch learning (Papyan et al. [PRS17], batch K = 40) 6566.15

Our algorithm “Online-Samp” in [LGW17] 158.11

Algorithm 1 Option I (sgd-spatial) 111.38

Algorithm 1 Option II (sgd-frequency) 154.84

Algorithm 2 Option I (surro-spatial) 342.90

Algorithm 2 Option II (surro-frequency) 158.11

Algorithm 3: Frequency-domain FISTA for solving subproblem (2.30)

Input: Hessian matrix Ĥ
(t)
mod and vector ĉ

(t)
mod.

Dictionary of last iterate: d(t−1).

Initialize : Let g0 = d(t−1) (warm start), g0
aux = g0, γ0 = 1.

1 for j = 0, 1, 2, . . . until condition (2.33) is satisfied do

2 Compute DFT: ĝjaux = FFT(gjaux).

3 Compute conjugate cogradient: ∇F̂ (t)
mod(ĝjaux) = 1

Λ(t)

(
Ĥ

(t)
modĝ

j
aux − ĉ

(t)
mod

)
.

4 Compute the next iterate:

gj+1 = ProjCPN

(
IFFT

(
ĝjaux − η∇F̂

(t)
mod(ĝjaux)

))
. (2.43)

Let γj+1 =
(
1 +

√
1 + 4(γj)2

)
/2, then compute the auxiliary variable:

gj+1
aux = gj+1 +

γj − 1

γj+1
(gj+1 − gj) . (2.44)

5 end

Output: d(t) ← gJ , where J is the last iterate.
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CHAPTER 3

Learning Solvers

This chapter deals with the sparse coding problem (1.2) with a fixed and known dictionary D.

We develop fast sparse coding solvers by learning to optimize (L2O). Section 3.1 describes

learned ISTA (LISTA), a successful example of L2O for sparse coding; Section 3.2 introduces

some theories on the convergence of LISTA and simplifies the model based on the theory;

In Section 3.3, we propose “support selection”, a technique based on prior knowledge that

further improves the performance of LISTA; In Section 3.4, we study the structure of the

parameters and further simplify the model; Section 3.5 extends the algorithms and theories

to the convolutional sparse coding; Section 3.6 provides the numerical results; Section 3.7

concludes this chapter.

3.1 Model 0: Learned ISTA

3.1.1 Background

We consider sparse vector recovery, or sparse coding introduced in Chapter 2:

b =
M∑
m=1

dmx
∗
m + ε = Dx∗ + ε, (3.1)

where b ∈ RN is the observation, x∗ = [x∗1, · · · , x∗M ]T ∈ RM is the unknown vector we want

to recover, D = [d1, · · · ,dM ] ∈ RN×M is the dictionary which is known in this chapter, and

ε ∈ RN is additive Gaussian white noise. For simplicity, each column of D, named as a

dictionary kernel, is normalized, that is, ‖dm‖2 = ‖D:,m‖2 = 1, m = 1, 2, · · · ,M . Typically,

we have N �M , so Equation (3.1) is an under-determined system.

However, when x∗ is sufficiently sparse, it can be recovered faithfully. A popular approach
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is to solve the LASSO problem below (where λ is a scalar):

minimize
x

1

2
‖b−Dx‖2

2 + λ‖x‖1 (3.2)

using iterative algorithms such as the iterative shrinkage thresholding algorithm (ISTA):

x(k+1) = ηλ/L

(
x(k) +

1

L
DT (b−Dx(k))

)
, k = 0, 1, 2, . . . (3.3)

where ηθ is the soft-thresholding function1 and L is usually taken as the largest eigenvalue of

DTD.

3.1.2 Learned ISTA

In [GL10], inspired by ISTA, the authors proposed a learning-based model named Learned

ISTA (LISTA). They view ISTA as a recurrent neural network (RNN) that is illustrated

in Figure 3.1(a), where W
(k)
1 ≡ 1

L
DT , W

(k)
2 ≡ I− 1

L
DTD, θ(k) ≡ 1

L
λ. LISTA, illustrated in

Figure 3.1(b), unrolls the RNN and truncates it into K iterations:

x(k+1) = ηθ(k)(W
(k)
1 b + W

(k)
2 x(k)), k = 0, 1, · · · , K − 1. (3.4)

leading to a K-layer feed-forward neural network. Learning the parameters {W(k)
1 ,W

(k)
2 , θ(k)}k

in the network can be viewed as learning a new “solver” parameterized by ISTA.

Given each pair of sparse vector and its noisy measurements (x∗,b), applying (3.4) from

some initial point x(0) and using b as the input yields x(k). Our goal is to choose the

parameters Θ such that x(k) is close to x∗ for all sparse x∗ following some distribution P.

Therefore, given the distribution P , all parameters in Θ = {W(k)
1 ,W

(k)
2 , θ(k)}K−1

k=0 are subject

to learning:

minimize
Θ

Ex∗,b∼P

∥∥∥x(K)
(

Θ,b,x(0)
)
− x∗

∥∥∥2

2
. (3.5)

This problem is approximately solved over a training dataset {(x∗i ,bi)}Ni=1 sampled from

P. Since x(K) is actually a neural network, (3.5) is solvable with recent machine learning

platforms (TensorFlow [AAB15], PyTorch [PGM19], etc.).

1Soft- thresholding function is defined in a component-wise way: ηθ(x) = sign(x) max(0, |x| − θ)
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(a) RNN structure of ISTA.

(b) Unfolded learned ISTA Network.

Figure 3.1: Diagrams of ISTA and LISTA.

Many empirical results, e.g., [GL10, SBS15, WLH16], show that a trained K-layer LISTA

(with K usually set to 10 ∼ 20) or its variants can generalize more than well to unseen

samples (x′,b′) from the same distribution and recover x′ from b′ to the same accuracy

within one or two order-of-magnitude fewer iterations than the original ISTA. Additionally,

the accuracies of the outputs {x(k)} of the layers k = 1, .., K gradually improve.

Despite the empirical success in constructing fast trainable regressors for approximating

iterative solvers [GL10, SBS15, WCZ16, WLH16, WLC16, WYC16, SLX16, BSR17, ZG18a,

AO18, ZDD18, ITW18], the theoretical understanding of such approximations remains limited.

In this chapter, we target on the following problems:

• Is there a theoretical guarantee to ensure that the learned solver LISTA (3.4) converges

faster and/or produces a better solution than ISTA (3.3)? If the answer is affirmative,

can we quantize the amount of acceleration?

• When the parameters {W(k)
1 ,W

(k)
2 , θ(k)}K−1

k=0 are ideal? Are there any explanations on

the learned parameters?

• Rather than training (3.4) as a conventional “black-box”, can we benefit from exploiting

the structure of its parameters to simplify the model and improve the recovery results?
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3.1.3 Related Works

Some related works on analyzing and understanding LISTA are presented here. [MB17]

re-factorized the Gram matrix of dictionary, by trying to nearly diagonalize the Gram matrix

with a basis, subject to a small `1 perturbation. They thus re-parameterized LISTA a new

factorized architecture that achieved similar acceleration gain to LISTA, hence ending up

with an “indirect” proof. They concluded that LISTA can converge faster than ISTA, but

still sublinearly. [GEB18] interpreted LISTA as a projected gradient descent descent (PGD)

where the projection step was inaccurate, which enables a trade-off between approximation

error and convergence speed.

Several other works examined the theoretical properties of some sibling architectures

to LISTA. [XWG16] studied the model proposed by [WLH16], which unfolded/truncated

the iterative hard thresholding (IHT) algorithm instead of ISTA, for approximating the

solution to `0-minimization. They showed that the learnable fast regressor can be obtained by

using a transformed dictionary with improved restricted isometry property (RIP). However,

their discussions are not applicable to LISTA directly, although IHT is linearly convergent

[BD09] under rather strong assumptions. Their discussions were also limited to linear sparse

coding and resulting fully-connected networks only. [BSR17, MMB17] studied a similar

learning-based model inspired from another LASSO solver, called approximated message

passing (AMP). [BSR17] showed the MMSE-optimality of an AMP-inspired model, but not

accompanied with any convergence rate result. Also, the popular assumption in analyzing

AMP algorithms (called “state evolution”) does not hold when analyzing ISTA.

3.2 Model 1: LISTA-CP

In this section, we study the necessary condition that LISTA converges to x∗. Based on that

condition, LISTA can be simplified. Then we establish the convergence guarantee for LISTA

and the simplified LISTA. Before that, we consider some mild assumptions.

Assumption 4 (Basic assumptions). The signal x∗ and the observation noise ε are sampled
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from the following set:

(x∗, ε) ∈ X (B, s, σ) ,
{

(x∗, ε)
∣∣∣|x∗i | ≤ B, ∀i, ‖x∗‖0 ≤ s, ‖ε‖1 ≤ σ

}
. (3.6)

In other words, x∗ is bounded and s-sparse2 (s ≥ 2), and ε is bounded.

3.2.1 Partial Weight Coupling

Now we focus on the convergence of LISTA (3.4) and suggest a minimal set of parameters

that are really necessary to learn.

Theorem 2 (Necessary Condition). Given {W(k)
1 ,W

(k)
2 , θ(k)}∞k=0 and x(0) = 0, let b be

observed by (3.1) and {x(k)}∞k=1 be generated layer-wise by LISTA (3.4). If the following holds

uniformly for any (x∗, ε) ∈ X (B, s, 0) (no observation noise):

x(k)
(
{W(τ)

1 ,W
(τ)
2 , θ(τ)}k−1

τ=0,b,x
(0)
)
→ x∗, as k →∞

and {W(k)
2 }∞k=1 are bounded

‖W(k)
2 ‖2 ≤ BW , ∀k = 0, 1, 2, · · · ,

then {W(k)
1 ,W

(k)
2 , θ(k)}∞k=0 must satisfy

W
(k)
2 −

(
I−W

(k)
1 D

)
→ 0, as k →∞ (3.7)

θ(k) → 0, as k →∞. (3.8)

Proofs of the results throughout this chapter can be found in the appendix. The conclusion

(3.7) demonstrates that the weights {W(k)
1 ,W

(k)
2 }∞k=0 in LISTA asymptotically satisfies the

following partial weight coupling structure:

W
(k)
2 = I−W

(k)
1 D. (3.9)

We adopt the above partial weight coupling for all layers, letting W(k) = (W
(k)
1 )T ∈ RN×M ,

thus simplifying LISTA (3.4) to LISTA-CP (LISTA with weights CouPled):

x(k+1) = ηθ(k)

(
x(k) + (W(k))>(b−Dx(k))

)
, k = 0, 1, · · · , K − 1, (3.10)

2A signal is s-sparse if it has no more than s non-zero entries.

52



where {W(k), θ(k)}(K−1)
k=0 remain as free parameters to train.

The coupled structure (3.9) for soft-thresholding based algorithms was empirically studied

in [BSR17]. The similar structure was also theoretically studied in Proposition 1 of [XWG16]

for IHT algorithms using the fixed-point theory, but they let all layers share the same weights,

i.e. W
(k)
2 = W2,W

(k)
1 = W1,∀k.

3.2.2 Convergence

In this section, we formally establish the linear convergence of LISTA. The output of the kth

layer x(k) depends on the parameters {W(τ), θ(τ)}k−1
τ=0, the observed measurement b and the

initial point x(0). Strictly speaking, x(k) should be written as x(k)
(
{W(τ), θ(τ)}k−1

τ=0,b,x
(0)
)

.

By the observation model b = Dx∗ + ε, since D is given and x(0) can be taken as 0, x(k)

therefore depends on {(W(τ), θ(τ))}(k)
τ=0, x∗ and ε. So, we can write x(k)

(
{W(τ), θ(τ)}k−1

τ=0,x
∗, ε
)

.

For simplicity, we instead just write x(k)(x∗, ε).

Theorem 3 (Convergence of LISTA-CP). Given {W(k), θ(k)}∞k=0 and x(0) = 0, let {x(k)}∞k=1

be generated by (3.10). If Assumption 4 holds and s is sufficiently small, then there exists a

sequence of parameters {W(k), θ(k)} such that, for all (x∗, ε) ∈ X (B, s, σ), we have the error

bound:

‖x(k)(x∗, ε)− x∗‖2 ≤ sB exp(−ck) + Cσ, ∀k = 1, 2, · · · , (3.11)

where c > 0, C > 0 are constants that depend only on D and s. Recall s (sparsity of the

signals) and σ (noise-level) are defined in (3.6).

If σ = 0 (noiseless case), (3.11) reduces to

‖x(k)(x∗, 0)− x∗‖2 ≤ sB exp(−ck). (3.12)

The recovery error converges to 0 at a linear rate as the number of layers goes to infinity.

Combined with Theorem 2, we see that the partial weight coupling structure (3.10) is both

necessary and sufficient to guarantee convergence in the noiseless case.

Discussion: The bound (3.12) also explains why LISTA (or its variants) can converge

faster than ISTA and fast ISTA (FISTA) [BT09]. With a proper λ (see (3.2)), ISTA converges
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at an O(1/k) rate and FISTA converges at an O(1/k2) rate [BT09]. With a large enough λ,

ISTA achieves a linear rate [BL08, ZHL17]. With x̄(λ) being the solution of LASSO (noiseless

case), these results can be summarized as: before the iterates x(k) settle on a support3,

x(k) → x̄(λ) sublinearly, ‖x̄(λ)− x∗‖ = O(λ), λ > 0

x(k) → x̄(λ) linearly, ‖x̄(λ)− x∗‖ = O(λ), λ large enough.

Based on the choice of λ in LASSO, the above observation reflects an inherent trade-off

between convergence rate and approximation accuracy in solving the problem (3.1), see a

similar conclusion in [GEB18]: a larger λ leads to faster convergence but a less accurate

solution, and vice versa.

However, if λ is not constant throughout all iterations/layers, but instead chosen adaptively

for each step, more promising trade-off can arise4. LISTA and LISTA-CP, with the thresholds

{θ(k)}(K−1)
k=0 free to train, actually adopt this idea because {θ(k)}(K−1)

k=0 corresponds to a path of

LASSO parameters {λ(k)}(K−1)
k=0 . With extra free trainable parameters, {W(k)}(K−1)

k=0 (LISTA-

CP) or {W(k)
1 ,W

(k)
2 }

(K−1)
k=0 (LISTA), learning based solvers are able to converge to an accurate

solution at a fast convergence rate. Theorem 3 demonstrates the existence of such sequence

{W(k), θ(k)}k in LISTA-CP (3.10). The experiment results in Fig. 3.4 show that such

{W(k), θ(k)}k can be obtained by training.

3.3 Model 2: LISTA-CPSS

3.3.1 Support Selection

We introduce a special thresholding scheme to LISTA, called support selection (SS), which

is inspired by “kicking” [OMD10] in linearized Bregman iteration. This technique shows

advantages on recoverability and convergence. Its impact on improving LISTA convergence

rate and reducing recovery errors will be analyzed in Section 3.3.2. With support selection,

3After x(k) settles on a support, i.e. as k large enough such that support(x(k)) is fixed, even with small λ,
ISTA reduces to a linear iteration, which has a linear convergence rate [TBZ16].

4This point was studied in [HYZ08, XZ13] with classical compressive sensing settings, while our learning
settings can learn a good path of parameters without a complicated thresholding rule or any manual tuning.
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at each LISTA layer before applying soft thresholding, we will select a certain percentage

of entries with largest magnitudes, and trust them as “true support” and won’t pass them

through thresholding. Those entries that do not go through thresholding will be directly fed

into next layer, together with other thresholded entires.

Assume we select p(k)% of entries as the trusted support at layer k. LISTA with support

selection (LISTA-SS) can be generally formulated as

x(k+1) = ηss
p(k)

θ(k)

(
W

(k)
1 b + W

(k)
2 x(k)

)
, k = 0, 1, · · · , K − 1, (3.13)

where ηss is the thresholding operator with support selection, formally defined as:

(ηss
p(k)

θ(k)(v))i =



vi : vi > θ(k), i ∈ Sp(k)
(v),

vi − θ(k) : vi > θ(k), i /∈ Sp(k)
(v),

0 : −θ(k) ≤ vi ≤ θ(k)

vi + θ(k) : vi < −θ(k), i /∈ Sp(k)
(v),

vi : vi < −θ(k), i ∈ Sp(k)
(v),

where Sp
(k)

(v) includes the elements with the largest p(k)% magnitudes in vector v:

Sp
(k)

(v) =
{
i1, i2, · · · , ip(k)

∣∣∣|vi1| ≥ |vi2| ≥ · · · |vip(k)
| · · · ≥ |vin|

}
. (3.14)

To clarify, in (3.13), p(k) is a hyperparameter to be manually tuned, and θ(k) is a parameter to

train. We use an empirical formula to select p(k) for layer k: p(k) = min(p · k, pmax), where p

is a positive constant and pmax is an upper bound of the percentage of the support cardinality.

Here p and pmax are both hyperparameters to be manually tuned.

If we adopt the partial weight coupling in (3.9), then (3.13) is modified as

x(k+1) = ηss
p(k)

θ(k)

(
x(k) + (W(k))T (b−Dx(k))

)
, k = 0, 1, · · · , K − 1. (3.15)

Algorithm abbreviations For simplicity, hereinafter we will use the abbreviation “CP”

for the partial weight coupling in (3.9), and “SS” for the support selection technique. LISTA-

CP denotes the LISTA model with weights coupling (3.10). LISTA-SS denotes the LISTA

model with support selection (3.13). Similarly, LISTA-CPSS stands for a model using both

techniques (3.15), which has the best performance. Unless otherwise specified, LISTA refers

to the baseline LISTA (3.4).
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3.3.2 Convergence

In this subsection, we study the convergence of LISTA-CPSS and compare it with LISTA-CP.

To measure the advantage of support selection, we consider a mildly stronger assumption

than Assumption 4.

Assumption 5. Signal x∗ and observation noise ε are sampled from the following set:

(x∗, ε) ∈ X̄ (B,B, s, σ) ,
{

(x∗, ε)
∣∣∣|x∗i | ≤ B, ∀i, ‖x∗‖1 ≥ B, ‖x∗‖0 ≤ s, ‖ε‖1 ≤ σ

}
. (3.16)

The only difference between Assumptions 4 and 5 is that ‖x∗‖1 ≥ B is required in

Assumption 5.

Theorem 4 (Convergence of LISTA-CPSS). Given {W(k), θ(k)}∞k=0 and x(0) = 0, let {x(k)}∞k=1

be generated by (3.15). With Assumption 4 and the same parameters as in Theorem 3, the

approximation error can be bounded for all (x∗, ε) ∈ X (B, s, σ):

‖x(k)(x∗, ε)− x∗‖2 ≤ sB exp
(
−

k−1∑
t=0

c(t)
ss

)
+ Cssσ, ∀k = 1, 2, · · · , (3.17)

where c
(k)
ss ≥ c for all k and Css ≤ C.

If Assumption 5 holds, s is small enough, and B ≥ 2Cσ (SNR is not too small), then

there exists another sequence of parameters {W̃(k), θ̃(k)} that yields the following improved

error bound: for all (x∗, ε) ∈ X̄ (B,B, s, σ),

‖x(k)(x∗, ε)− x∗‖2 ≤ sB exp
(
−

k−1∑
t=0

c̃(t)
ss

)
+ C̃ssσ, ∀k = 1, 2, · · · , (3.18)

where c̃
(k)
ss ≥ c for all k, c̃

(k)
ss > c for large enough k, and C̃ss < C.

The bound in (3.17) ensures that, with the same assumptions and parameters, LISTA-

CPSS is at least no worse than LISTA-CP. The bound in (3.18) shows that, under stronger

assumptions, LISTA-CPSS can be strictly better than LISTA-CP in both folds: c̃
(k)
ss > c is the

better convergence rate of LISTA-CPSS; C̃ss < C means that the LISTA-CPSS can achieve

smaller approximation error than the minimum error that LISTA can achieve.
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3.4 Model 3: Analytic LISTA

In LISTA-CP (3.10) and LISTA-CPSS (3.15), a sequence of matrices {W(k)}k and a sequence

of scalars {θ(k)}k have to be trained to obtain good performance. In this section, We will

further study properties of “good” parameters in LISTA-CP5, and then discuss how to

analytically compute the sequence of matrices {W(k)}k rather than relying solely on black-

box training. In this way, the model could be further significantly simplified, with little

performance loss.

3.4.1 Structure of the parameters

Theorem 3 only shows the existence of parameters {W(k), θ(k)}(k)
k=1 that make LISTA converges

linearly. In this section, we go deeper on the structure of such parameters.

The mutual coherence of the dictionary D is a significant concept in compressive sensing

[DE03, Ela07, LLL18]. A dictionary with small coherence possesses better sparse recovery

performance. Motivated by this point, we introduce the following definition.

Definition 1. Given D ∈ RN×M with each of its column normalized, we define the generalized

mutual coherence:

µ̃(D) = inf
W∈RN×M

(W:,i)
TD:,i=1,1≤i≤M

{
max
i 6=j

1≤i,j≤M

(W:,i)
TD:,j

}
. (3.19)

Additionally, We define W(D) =
{
W ∈ RN×M : W attains the infimum given (3.19)

}
. A

weight matrix W is “good” if W ∈ W(D).

In the above definition, problem (3.19) is feasible and attainable, i.e., W(D) 6= ∅, which

was proven in Lemma 2.

Theorem 5 (Structure of the parameters). Take any (x∗, ε) ∈ X (B, s, 0), any W ∈ W(D),

and any sequence γ(k) ∈ (0, 2
2µ̃s−µ̃+1

). Using them, construct the parameters {W(k), θ(k)}:

W(k) = γ(k)W, θ(k) = γ(k)µ̃(D) sup
x∗∈X (B,s)

{
‖x(k)(x∗, ε)− x∗‖1

}
, (3.20)

5For simplicity of the proofs, we analyze LISTA-CP rather than LISTA-CPSS, and All the analysis in this
section can be generalized to models with support selection.
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while the sequence {x(k)(x∗, ε)}∞k=1 is generated by (3.10) using the above parameters and

x(0) = 0 (Note that each x(k)(x∗, ε) depends only on θ(k−1), θ(k−2), . . . and defines θ(k)). Let

Assumption 4 hold with any B > 0 and s < (1 + 1/µ̃)/2. Then, for k = 1, 2, . . ., it holds that

support
(
x(k)(x∗, ε)

)
⊂ S,

‖x(k)(x∗, ε)− x∗‖2 ≤ sB exp
(
−

k−1∑
τ=0

c(τ)
)
,

(3.21)

where S is the support of x∗ and c(k) = − log
(
(2µ̃s− µ̃)γ(k) + |1− γ(k)|

)
is a positive constant.

In Theorem 5, Eqn. (3.20) defines the properties of “good” parameters:

• The weights W(k) can be separated as the product of a scalar γ(k) and a matrix W

independent of layer index k, where W has small coherence with D.

• γ(k) is bounded in an interval.

• θ(k)/γ(k) is proportional to the `1 error of the output of the kth layer.

The factor c(k) takes the maximum at γ(k) = 1. If γ(k) ≡ 1, the recovery error converges

to zero in the same rate with (3.12). Although γ(k) ≡ 1 gives the optimal theoretical upper

bound if there are infinitely many layers k = 0, 1, 2, · · · , it is not the optimal choice for finite

k. Practically, there are finitely many layers and γ(k) obtained by learning is bounded in an

interval.

3.4.2 Optimality of the parameters

In this subsection, we introduce a lower bound of the recovery error of LISTA, which illustrates

that the parameters analytically given by (3.20) in Theorem 5 are optimal in the convergence

order (linear).

Assumption 6. The signal x∗ is a random variable following the distribution PX . Let

S = support(x∗). PX satisfies: 2 ≤ | S | ≤ s; S uniformly distributes on the whole index set;

non-zero part x∗S satisfies the uniform distribution with bound B: |x∗i | ≤ B, ∀i ∈ S. Moreover,

the observation noise ε = 0.

58



Theorem 5 tells that an ideal weight W ∈ W(D) satisfies I−WTD ≈ 0. But this cannot

be met exactly in the overcomplete D case, i.e., N < M . Definition 2 defines the set of

matrices W such that WTD is bounded away from the identity I.

Definition 2. Given D ∈ RN×M , s ≥ 2, σ̄min > 0, we define a set that W(k) are chosen from:

W̄(D, s, σ̄min) =
{

W ∈ RN×M
∣∣∣σmin

(
I− (W:,S)

TD:,S

)
≥ σ̄min,∀S with 2 ≤ |S | ≤ s

}
.

(3.22)

Based on Definition 2, we define a set that Θ = {W(k), θ(k)}∞k=0 are chosen from:

Definition 3. Let {x(k)(x∗, ε)}∞k=1 be generated by (3.10) with {W(k), θ(k)}∞k=0 and x(0) = 0.

Then we define T as the set of parameters that guarantee there is no false positive in x(k):

T =
{
{W(k) ∈ W̄(D, s, σ̄min), θ(k)}∞k=0

∣∣∣
support(x(k)(x∗, ε)) ⊂ S, ∀(x∗, ε) ∈ X (B, s, 0), ∀k

} (3.23)

The conclusion (3.21) demonstrates that T is nonempty because “support(x(k)(x∗, ε)) ⊂ S”

is satisfied as long as θ(k−1) large enough. Actually, T contains almost all “good” parameters

because considerable false positives lead to large recovery errors. With T defined, we have:

Theorem 6 (Optimality of the parameters). Let the sequence {x(k)(x∗, ε)}∞k=1 be generated

by (3.10) with {W(k), θ(k)}∞k=0 and x(0) = 0. Under Assumption 6, for all parameters

{W(k), θ(k)}∞k=0 ∈ T and any sufficient small ε > 0, we have

‖x(k)(x∗, ε)− x∗‖2 ≥ ε‖x∗‖2 exp(−c̄k), (3.24)

with probability at least (1− εs3/2 − ε2), where c̄ = s log(3)− log(σ̄min).

This theorem illustrates that, with high probability, the convergence rate of LISTA cannot

be faster than a linear rate. Thus, the parameters given in (3.20), that leads to the linear

convergence if γ(k) is bounded within an interval near 1, are optimal with respect to the order

of convergence of LISTA.
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3.4.3 Analytic LISTA: calculating weights without training

Following Theorem 5 and Theorem 6, we set W(k) = γ(k)W, where γ(k) is a scalar, and

propose Tied LISTA (TiLISTA):

x(k+1) = ηθ(k)

(
x(k) − γ(k)WT (Dx(k) − b)

)
, (3.25)

where Θ =
{
{γ(k)}k, {θ(k)}k,W

}
are parameters to train. The matrix W is tied over all the

layers. Further, we notice that the selection of W from W(D) depends on D only. Hence we

propose the analytic LISTA (ALISTA) that decomposes tied-LISTA into two stages:

x(k+1) = ηθ(k)

(
x(k) − γ(k)W̃T (Dx(k) − b)

)
, (3.26)

where W̃ is pre-computed by solving the following problem (Stage 1)6:

W̃ ∈ arg min
W∈RN×M

∥∥WTD
∥∥2

F
, s.t. (W:,m)TD:,m = 1, ∀m = 1, 2, · · · ,M, (3.27)

Then with W̃ fixed, {γ(k), θ(k)}k in (3.26) are learned from end to end (Stage 2). (3.27)

reformulates (3.19) to minimizing the Frobenius norm of WTD (a quadratic objective), over

linear constraints. This is a standard convex quadratic program, which is easier to solve than

to solve (3.19) directly.

Table 3.1: Summary: variants of LISTA and the number of parameters to learn.

Vanilla LISTA (3.4) LISTA-CPSS (3.15) TiLISTA (3.25) ALISTA (3.26)

O(KM2 +K +MN) O(KNM +K) O(NM +K) O(K)

3.5 Convolutional Analytic LISTA

As we introduced in Chapter 2, convolutional sparse coding (CSC) is an extension of the sparse

coding (3.1) that gains increasingly attention in the machine learning area. [SG18] showed

that the CSC could be similarly approximated and accelerated by a LISTA-type feed-forward

6Some details and a complexity analysis of Stage 1 are discussed in Appendix 3.H.1
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network. [TDB18] designed a structure of sparse auto-encoder inspired by multi-layer CSC.

[PRE16, SPR17] also revealed CSC as a potentially useful tool for understanding general

convolutional neural networks (CNNs). In this section, we will study how to apply ALISTA

in the convolutional case.

3.5.1 Convolutional sparse coding

We extend the analytic LISTA to the convolutional case in this section, starting from discussing

the convolutional sparse coding (CSC) where the general linear transform is replaced by

convolutions in order to learn spatially invariant features:

b =
M∑
m=1

dm ∗ x∗m + ε. (3.28)

Each dm is a dictionary kernel (or filter) and {dm}Mm=1 is the dictionary of filters, M denotes

the number of filters. {x∗m}Mm=1 is the set of coefficient maps that are assumed to have sparse

structure, and ∗ is the convolution operator.

Now we consider 2D convolution and take7 b ∈ RN2
,dm ∈ RD2

,xm ∈ R(N+D−1)2
. Equation

(3.28) is pointwisely defined as8:

b(i, j) =
D−1∑
k=0

D−1∑
l=0

M∑
m=1

dm(k, l)xm(i+ k, j + l) + ε(i, j), 0 ≤ i, j ≤ N − 1. (3.29)

We concatenate dms and xms: d = [d1, · · · ,dM ]T , x = [x1, · · · ,xM ]T , and rewrite (3.29) as:

b =
M∑
m=1

DN
conv,m(dm)xm + ε = DN

conv(d)x + ε, (3.30)

where the matrix DN
conv(d) = [DN

conv,1(d1), · · · ,DN
conv,M(dM)] ∈ RN2×(N+D−1)2M , depending

on the signal size N and the dictionary d, is defined in detail in (3.68) in Appendix 3.F.2.

7Here, b,dm,xm are vectors. The notion b(i, j) means the (iN + j)th entry of b. Additionally, dm,xm
are defined in the same way for all m = 1, · · · ,M .

8Strictly speaking, (3.29) is the cross-correlation rather than convolution. However in TensorFlow, that
operation is named as convolution, and we follow that convention to be consistent with the learning community.
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3.5.2 Convolutional ALISTA

From (3.28), the convolutional LISTA becomes a natural extension of the fully-connected

LISTA-CP (3.10):

x(k+1)
m = ηθ(k)

(
x(k)
m −

(
w(k)
m

)′ ∗ ( M∑
m̄=1

dm̄ ∗ x
(k)
m̄ − b

))
, m = 1, 2, · · · ,M, (3.31)

where {w(k)
m }Mm=1 share the same sizes with {dm}Mm=1 and (·)′ means a 180 rotation of the filter

[CPR13]. We concatenate the filters together: w(k) = [w
(k)
1 , · · · ,w(k)

M ]T ∈ RD2M . Parameters

to train are Θ = {w(k), θ(k)}k.

Let WN
conv(w(k)) be the matrix induced by dictionary w(k) with the same dimensionality

as DN
conv(d). Since convolution can be written as a matrix form (3.30), (3.31) is equivalent to

x(k+1) = ηθ(k)

(
x(k) − (WN

conv(w(k)))T (DN
conv(d)x(k) − b)

)
. (3.32)

Then by just substituting D,W(k) with DN
conv(d),WN

conv(w(k)) respectively, Theorem 5 and

Theorem 6 can be applied to the convolutional LISTA.

Proposition 5. Let D = DN
conv(d) and W(k) = WN

conv(w(k)). With Assumption 4 and other

settings the same with those in Theorem 5, (3.21) holds. With Assumption 6 and other

settings the same with those in Theorem 6, (3.24) holds.

Similar to the fully connected case (3.26), based on the results in Proposition 5, we should

set w
(k)
m = γ

(k)
m w̃m, m = 1, 2, · · · ,M , where w̃ = [w̃1, · · · , w̃M ]T is chosen from

w̃ ∈ WN
conv = arg min

w∈RD2M

wm·dm=1, 1≤m≤M

∥∥∥(WN
conv(w)

)T
DN

conv(d)
∥∥∥2

F
. (3.33)

However, (3.33) is not as efficient to solve as (3.27). To see that, matrices DN
conv(d) and

WN
conv(w) are both of size N2× (N +D− 1)2M , the coherence matrix

(
WN

conv(w)
)T

DN
conv(d)

is thus of size (N +D − 1)2M × (N +D − 1)2M . In the typical application setting of CSC,

b is usually an image rather than a small patch. For example, if the image size is 100× 100,

dictionary size is 7×7×64, N = 100, D = 7,M = 64, then (N+D−1)2M×(N+D−1)2M ≈

5× 1011.
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3.5.3 Calculating convolutional weights analytically and efficiently

To overcome the computational challenge of solving (3.33), we exploit the following circular

convolution as an efficient approximation:

b(i, j) =
D−1∑
k=0

D−1∑
l=0

M∑
m=1

dm(k, l)xm
(
(i+k)modN , (j+l)modN

)
+ε(i, j), 0 ≤ i, j ≤ N−1, (3.34)

where b ∈ RN2
,dm ∈ RD2

,xm ∈ RN2
. Similar to (3.29), we rewrite (3.34) in a compact way:

b =
M∑
m=1

DN
cir,m(dm)xm + ε = DN

cir(d)x + ε,

where DN
cir(d) : RN2M → RN2

is a matrix depending on the signal size N and the dictionary

d. Then the coherence minimization with the circular convolution is given by

WN
cir = arg min

w∈RD2M

wm·dm=1, 1≤m≤M

∥∥∥(WN
cir(w)

)T
DN

cir(d)
∥∥∥2

F
. (3.35)

The following theorem motivates us to use the solution to (3.35) to approximate that of

(3.33).

Theorem 7. The solution sets of (3.33) and (3.35) satisfy the following properties:

1. WN
cir =W2D−1

cir , ∀N ≥ 2D − 1.

2. If at least one of the matrices {D2D−1
cir,1 , · · · ,D2D−1

cir,M } is non-singular, W2D−1
cir involves

only a unique element. Furthermore,

lim
N→∞

WN
conv =W2D−1

cir . (3.36)

The solution set WN
cir is not related with the image size N as long as N ≥ 2D − 1, thus

one can deal with a much smaller-size problem (let N = 2D − 1). Further, (3.36) indicates

that as N gets (much) larger than D, the boundary condition becomes less important. Thus,

one can use W2D−1
cir to approximate WN

conv. In Appendix 3.H.2, we introduce the algorithm

details of solving (3.35).
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Based on Proposition 5 and Theorem 7, we obtain the convolutional ALISTA:

x(k+1)
m = ηθ(k)

(
x(k)
m − γ(k)

m

(
w̃m

)′ ∗ ( M∑
m̄=1

dm̄ ∗ x
(k)
m̄ − b

))
, m = 1, 2, · · · ,M, (3.37)

where w̃ = [w̃1, · · · , w̃M ]T ∈ W2D−1
cir and Θ = {{γ(k)

m }m,k, {θ(k)}k} are the parameters to

train. (3.37) is a simplified form, compared to the empirically unfolded CSC model recently

proposed in [SG18]

3.6 Numerical Results

3.6.1 Training Strategy

In this section we have a detailed discussion on the stage-wise training strategy in empirical

experiments. Denote Θ = {(W(k)
1 ,W

(k)
2 , θ(k))}(K−1)

k=0 as all the weights in the network. Note

that (W
(k)
1 ,W

(k)
2 ) can be coupled as in (3.7). Denote Θ(τ) = {(W(k)

1 ,W
(k)
2 , θ(k))}τk=0 all the

weights in the τ -th and all the previous layers. Define an initial learning rate α0 and two

decayed learning rates α1, α2. In real training, we have α1 = 0.2α0, α2 = 0.02α0. Our training

strategy is described as below:

• Train the network layer by layer. Training in each layer consists of 3 stages.

• In layer τ , Θ(τ−1) is pre-trained.

– Train (W
(τ)
1 ,W

(τ)
2 , θ(τ)) the initial learning rate α0.

– Train Θ(τ) = Θτ−1 ∪ (W
(τ)
1 ,W

(τ)
2 , θ(τ)) with the learning rates α1 and α2.

• Proceed training to the next layer.

The layer-wise training is widely adopted in previous LISTA-type networks. We add the

learning rate decaying that is able to stabilize the training process. It will make the previous

layers change very slowly when the training proceeds to deeper layers because learning rates

of first several layers will exponentially decay and quickly go to near zero when the training

process progresses to deeper layers, which can prevent them varying too far from pre-trained
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positions. It works well especially when the unfolding goes deep to K > 10. All models

trained and reported in experiments section are trained using the above strategy.

Remark While adopting the above stage-wise training strategy, we first finish a complete

training pass, calculate the intermediate results and final outputs, and then draw curves and

evaluate the performance based on these results, instead of logging how the best performance

changes when the training process goes deeper. This manner possibly accounts for the reason

why some curves plotted in Section 3.6.2 display some unexpected fluctuations.

3.6.2 Simulation Experiments

Experiments Setting. We choose N = 250,M = 500. We sample the entries of D i.i.d.

from the standard Gaussian distribution, Dij ∼ N(0, 1/N) and then normalize its columns

to have the unit `2 norm. We fix a matrix D in each setting where different networks are

compared. To generate sparse vectors x∗, we decide each of its entry to be non-zero following

the Bernoulli distribution with pb = 0.1. The values of the non-zero entries are sampled

from the standard Gaussian distribution. A test set of 1000 samples generated in the above

manner is fixed for all tests in our simulations.

All the networks have K = 16 layers. In LISTA models with support selection, we add

p% of entries into support and maximally select pmax% in each layer. We manually tune the

value of p and pmax for the best final performance. With pb = 0.1 and K = 16, we choose

p = 1.2 for all models in simulation experiments and pmax = 12 for LISTA-SS but pmax = 13

for LISTA-CPSS. The recovery performance is evaluated by NMSE (in dB):

NMSE(x̂,x∗) = 10 log10

(
E‖x̂− x∗‖2

E‖x∗‖2

)
,

where x∗ is the ground truth and x̂ is the estimate obtained by the recovery algorithms

(ISTA, FISTA, LISTA, etc.).

Validation of Theorem 2. In Fig 3.2, we report two values, ‖W(k)
2 − (I−W

(k)
1 D)‖2 and

θ(k), obtained by the baseline LISTA model (3.4) trained under the noiseless setting. The

plot clearly demonstrates that W
(k)
2 → I−W

(k)
1 D, and θ(k) → 0, as k →∞. Theorem 2 is
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directly validated.
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Figure 3.2: Validation of Theorem 2.

Validation of Theorem 3. We report the test-set NMSE of LISTA-CP (3.10) in Fig. 3.3.

Although (3.10) fixes the structure between W
(k)
1 and W

(k)
2 , the final performance remains

the same with the baseline LISTA (3.4), and outperforms AMP, in both noiseless and noisy

cases. Moreover, the output of interior layers in LISTA-CP are even better than the baseline

LISTA. In the noiseless case, NMSE converges exponentially to 0; in the noisy case, NMSE

converges to a stationary level related with the noise-level. This supports Theorem 3: there

indeed exist a sequence of parameters {W(k), θ(k)}(K−1)
k=0 leading to linear convergence for

LISTA-CP, and they can be obtained by data-driven learning.

Validation of Discussion after Theorem 3. In Fig 3.4, We compare LISTA-CP and

ISTA with different λs (see the LASSO problem (3.2)) as well as an adaptive threshold rule

similar to one in [HYZ08], which is described in Algorithm 4.

As we have discussed after Theorem 3, LASSO has an inherent tradeoff based on the

choice of λ. A smaller λ leads to a more accurate solution but slower convergence. The
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Figure 3.3: Validation of Theorem 3.

adaptive thresholding rule fixes this issue: it uses large λ(k) for small k, and gradually reduces

it as k increases to improve the accuracy [HYZ08]. Except for adaptive thresholds {θ(k)}k

(θ(k) corresponds to λ(k) in LASSO), LISTA-CP has adaptive weights {W(k)}k, which further

greatly accelerate the convergence. Note that we only ran ISTA and FISTA for 16 iterations,

just enough and fair to compare them with the learned models. The number of iterations is

so small that the difference between ISTA and FISTA is not quite observable.

Validation of Theorem 4. We compare the recovery NMSEs of LISTA-CP (3.10) and

LISTA-CPSS (3.15) in Fig. 3.5. The result of the noiseless case (Fig. 3.5(a)) shows that
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Algorithm 4: A thresholding rule for LASSO (Similar to that in [HYZ08])

Input : Maximum iteration K, initial λ(0) = 0.2, ε(0) = 0.05.

Initialization : Let x(0) = 0, λ(1) = λ(0), ε(1) = ε(0).

1 for k = 1, 2, · · · , K do

2 Conduct ISTA: x(k) = ηλ(k)/L

(
x(k−1) − 1

L
DT (Dx(k−1) − b)

)
.

3 if ‖x(k) − x(k−1)‖ < ε(k) then

4 Let λ(k+1) ← 0.5λ(k), ε(k+1) ← 0.5ε(k).

5 else

6 Let λ(k+1) ← λ(k), ε(k+1) ← ε(k).

7 end

8 end

Output: x(K)

the recovery error of LISTA-SS converges to 0 at a faster rate than that of LISTA-CP. The

difference is significant with the number of layers k ≥ 10, which supports our theoretical

result: “c̃
(k)
ss > c as k large enough” in Theorem 4. The result of the noisy case (Fig. 3.5(b))

shows that LISTA-CPSS has better recovery error than LISTA-CP. This point supports

C̃ss < C in Theorem 4. Notably, LISTA-CPSS also outperforms LAMP [BSR17], when k > 10

in the noiseless case, and even earlier as SNR becomes lower.

Validation of Theorems 5 and 6 In Figure 3.6 (a) noise-less case, all four learned models

apparently converge much faster than two iterative solvers (ISTA/FISTA curves almost overlap

in this y-scale, at the small number of iterations). Among the four networks, classical-LISTA

is inferior to the other three by an obvious margin. LISTA-CPSS, TiLISTA and ALISTA

perform comparably: ALISTA is observed to eventually achieve the lowest NMSE. Figure

3.6(a) also supports Theorem 6, that all networks have at most linear convergence, regardless

of how freely their parameters can be end-to-end learned.

Figure 3.6 (b) - (d) further show that even in the presence of noise, ALISTA can empirically

perform comparably with LISTA-CPSS and TiLISTA, and stay clearly better than LISTA
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Figure 3.4: Validating Discussion after Theorem 3 (SNR = ∞).

and ISTA/FISTA. Always note that ALISTA the smallest amount of parameters to learn

from the end-to-end training (Stage 2). The above results endorse that:

• The optimal LISTA layer-wise weights could be structured as W(k) = γ(k)W.

• W could be analytically solved rather than learned from data, without incurring

performance loss.

We also observe the significant reduction of training time for ALISTA: while LISTA-CPSS of

the same depth took ∼1.5 hours to train, ALISTA was trained within only 6 minutes (0.1

hours) to achieve comparable performance, on the same hardware (one 1080 Ti on server).

We further supply Figures 3.7 and 3.8 to justify Theorem 5 from different perspectives.

Figure 3.7 plots the learned parameters {γ(k), θ(k)} in ALISTA (Stage 2), showing that they

satisfy the properties proposed in Theorem 5: γ(k) bounded; θ(k) and γ(k) is proportional to

supx∗ ‖x(k)(x∗) − x∗‖1 (“supx∗” is taken over the test set). Figure 3.8 reports the average

magnitude of the false positives and the true positives in x(k)(x∗) of ALISTA: the “true

positives” curve draws the values of E{‖x(k)
S (x∗)‖2

2/‖x(k)(x∗)‖2
2} w.r.t. k (the expectation is

taken over the test set), while “false positives” for E{‖x(k)
Sc (x∗)‖2

2/‖x(k)(x∗)‖2
2}. False positives

take up small proportion over the positives, which supports the Theorem 5 conclusion that

support(x(k)(x∗)) ⊂ S.

69



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-70

-60

-50

-40

-30

-20

-10

0

ISTA

FISTA

AMP

LISTA

LAMP

LISTA-CP

LISTA-SS

LISTA-CPSS

(a) Noiseless Case

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-50

-40

-30

-20

-10

0

ISTA

FISTA

AMP

LISTA

LAMP

LISTA-CP

LISTA-SS

LISTA-CPSS

(b) Noisy Case: SNR=40dB
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Figure 3.5: Validation of Theorem 4.

The number and proportion of false alarms are a more straightforward performance

metric. However, they are sensitive to the threshold. We found that, although using a smaller

threshold leads to more false alarms, the final recovery quality is better and those false alarms

have small magnitudes and are easy to remove by thresholding during post-processing. That’s

why we chose to show their magnitudes, implying that we get easy-to-remove false alarms.

3.6.3 Convolutional Analytic LISTA

Validation of Theorem 7 For convolutional cases, we use real image data to verify

Theorem 7. We train a convolutional dictionary d with D = 7,M = 64 on the BSD500

training set (400 images), using the Algorithm 1 in [LGW18]. We then use it for problems

(3.33) and (3.35) and solve them with different Ns.

In Table 3.2, we take wN
cir ∈ WN

cir, w∗ ∈ W50
cir (consider 50 as large enough) For this

example, WN
cir has only one element. Table 3.2 shows that wN

cir = w∗ for N ≥ 13, i.e.,

the solution of the problem (3.35) is independent of N if N ≥ 2D − 1, justifying the first

conclusion in Theorem 7. In Table 3.3, we take wN
conv ∈ WN

conv and w∗ ∈ w13
cir, where WN

conv
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Figure 3.6: Justification of Theorems 5 and 6: comparision among LISTA variants.

also has only one element. Table 3.3 shows wN
conv → w∗, i.e., the solution of the problem

(3.33) converges to that of (3.35) as N increases, validating the second conclusion of Theorem

7. Visualized w∗ ∈ w13
cir is displayed in Appendix 3.6.3.

Table 3.2: Validation of Conclusion 1 in Theorem 7

‖wN
cir −w∗‖2/‖w∗‖2 (We take wN

cir ∈ WN
cir and w∗ ∈ W50

cir)

N = 10 N = 11 N = 12 N = 13 N = 15 N = 20

2.0× 10−2 9.3× 10−3 3.9× 10−3 1.4× 10−12 8.8× 10−13 5.9× 10−13

Visualization of the analytic convolutional weights Besides validating Theorem 7,

we also present a real image denoising experiment to verify the effectiveness of Conv ALISTA.

Fig. 3.9 visualizes the dictionary d (7 × 7 × 64) and the weights w̃ ∈ W13
cir, used in the

convolutional A-LISTA simulation of Section 3.6.3. It is obtained by Algorithm 6 in Appendix

3.H.2. Kernel w̃ keeps the high-frequency texture in d. The support of w̃ is small, most of

the pixels in w̃ are zeros. Then the coherence between shifted d and w̃ is nearly 0.
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Figure 3.7: Justification of Theorem 5 (noiseless case)

Table 3.3: Validation of Conclusion 2 in Theorem 7

‖wN
conv −w∗‖2/‖w∗‖2 (We take wN

conv ∈ WN
conv and w∗ ∈ w13

cir)

N = 3 N = 5 N = 10 N = 15 N = 20

0.1892 0.0850 0.0284 0.0161 0.0113

3.7 Conclusions

Based on the recent theoretical advances of LISTA, we have made further steps to reduce the

training complexity and improve the robustness of LISTA. Specifically, we no longer train any

matrix for LISTA but directly use the solution to an analytic minimization problem to solve

for its layer-wise weights. Therefore, only two scalar sequences (stepsizes and thresholds) still

need to be trained. Excluding the matrix from training is backed by our theoretical upper

and lower bounds. The resulting method, Analytic LISTA or ALISTA, is not only faster to
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(a) The dictionary d. (b) The w̃ obtained by solving (3.35).

Figure 3.9: A visualization of convolutional kernels d and w̃.

train but performs as well as the state-of-the-art.

Appendix 3.A Proof of Theorem 2

Proof. By LISTA model (3.4), the output of the k-th layer x(k) depends on parameters,

observed signal b and initial point x(0): x(k)
(
{W(τ)

1 ,W
(τ)
2 , θ(τ)}k−1

τ=0,b,x
(0)
)

. Since we assume

(x∗, ε) ∈ X (B, s, 0), the noise ε = 0. Moreover, D is fixed and x(0) is taken as 0. Thus, x(k)

therefore depends on parameters and x∗: x(k)
(
{W(τ)

1 ,W
(τ)
2 , θ(τ)}k−1

τ=0,x
∗
)

In this proof, for

simplicity, we use x(k) denote x(k)
(
{W(τ)

1 ,W
(τ)
2 , θ(τ)}k−1

τ=0,x
∗
)

.

Step 1 Firstly, we prove θ(k) → 0 as k →∞.
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We define a subset of X (B, s, 0) given 0 < B̃ ≤ B:

X̃ (B, B̃, s, 0) ,
{

(x∗, ε)
∣∣∣B̃ ≤ |x∗i | ≤ B, ∀i, ‖x∗‖0 ≤ s, ε = 0

}
⊂ X (B, s, 0).

Since x(k) → x∗ uniformly for all (x∗, 0) ∈ X (B, s, 0), so does for all (x∗, 0) ∈ X̃ (B,B/10, s, 0).

Then there exists a uniform K1 > 0 for all (x∗, 0) ∈ X̃ (B,B/10, s, 0), such that |x(k)
i − x∗i | <

B/10 for all i = 1, 2, · · · , n and k ≥ K1, which implies

sign(x(k)) = sign(x∗), ∀k ≥ K1. (3.38)

The relationship between x(k) and x(k+1) is

x(k+1) = ηθ(k)

(
W

(k)
2 x(k) + W

(k)
1 b

)
.

Let S = support(x∗). Then, (3.38) implies that, for any k ≥ K1 and (x∗, 0) ∈ X̃ (B,B/10, s, 0),

we have

x
(k+1)
S = ηθ(k)

(
W

(k)
2 (S,S)x

(k)
S + W

(k)
1 (S, :)b

)
.

The fact (3.38) means x
(k+1)
i 6= 0,∀i ∈ S. By the definition of ηθ(x):

ηθ(x) = sign(x) max(0, |x| − θ),

as long as ηθ(x)i 6= 0, we have ηθ(x)i = xi − θ sign(xi). Thus,

x
(k+1)
S = W

(k)
2 (S,S)x

(k)
S + W

(k)
1 (S, :)b− θ(k) sign(x∗S).

Furthermore, the uniform convergence of x(k) tells us, for any ε > 0 and

(x∗, 0) ∈ X̃ (B,B/10, s, 0),

there exists a large enough constant K2 > 0 and ξ1, ξ2 ∈ R| S | such that x
(k)
S = x∗S+ξ1,x

(k+1)
S =

x∗S + ξ2 and ‖ξ1‖2 ≤ ε, ‖ξ2‖2 ≤ ε. Then

x∗S + ξ2 = W
(k)
2 (S,S)(x∗S + ξ1) + W

(k)
1 (S, :)b− θ(k) sign(x∗S).

Since the noise is supposed to be zero ε = 0, b = Dx∗. Substituting b with Dx∗ in the above

equality, we obtain

x∗S = W
(k)
2 (S,S)x∗S + W

(k)
1 (S, :)D(:,S)x∗S − θ(k) sign(x∗S) + ξ,
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where ‖ξ‖2 = ‖W(k)
2 (S,S)ξ1 − ξ2‖2 ≤ (1 +BW )ε, BW is defined in Theorem 2. Equivalently,(
I −W

(k)
2 (S,S)−W

(k)
1 D(S,S)

)
x∗S = θ(k) sign(x∗S)− ξ. (3.39)

For any (x∗, 0) ∈ X̃ (B/2, B/10, s, 0), (2x∗, 0) ∈ X̃ (B,B/10, s, 0) holds. Thus, the above

argument holds for all 2x∗ if (x∗, 0) ∈ X̃ (B/2, B/10, s, 0). Substituting x∗ with 2x∗ in (3.39),

we get(
I −W

(k)
2 (S,S)−W

(k)
1 D(S,S)

)
2x∗S = θ(k) sign(2x∗S)− ξ′ = θ(k) sign(x∗S)− ξ′, (3.40)

where ‖ξ′‖2 ≤ (1 +BW )ε. Taking the difference between (3.39) and (3.40), we have(
I −W

(k)
2 (S, S)−W

(k)
1 D(S,S)

)
x∗S = −ξ′ + ξ. (3.41)

Equations (3.39) and (3.41) imply

θ(k) sign(x∗S)− ξ = −ξ′ + ξ.

Then θ(k) can be bounded with

θ(k) ≤ 3(1 +BW )√
|S |

ε, ∀k ≥ max(K1, K2). (3.42)

The above conclusion holds for all |S | ≥ 1. Moreover, as a threshold in ηθ, θ
(k) ≥ 0. Thus,

0 ≤ θ(k) ≤ 3(1 +BW )ε for any ε > 0 as long as k large enough. In another word, θ(k) → 0 as

k →∞.

Step 2 We prove that I−W
(k)
2 −W

(k)
1 D→ 0 as k →∞.

LISTA model (3.4) and b = Dx∗ gives

x
(k+1)
S =ηθ(k)

(
W

(k)
2 (S, :)x(k) + W

(k)
1 (S, :)b

)
=ηθ(k)

(
W

(k)
2 (S, :)x(k) + W

(k)
1 (S, :)D(:,S)x∗S

)
∈W

(k)
2 (S, :)x(k) + W

(k)
1 (S, :)D(:,S)x∗S − θ(k)∂`1(x

(k+1)
S ),

where ∂`1(x) is the sub-gradient of ‖x‖1. It is a set defined component-wisely:

∂`1(x)i =


{sign(xi)} if xi 6= 0,

[−1, 1] if xi = 0.

(3.43)
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The uniform convergence of x(k) implies, for any ε > 0 and (x∗, 0) ∈ X (B, s, 0), there exists a

large enough constant K3 > 0 and ξ1, ξ2 ∈ RM such that x(k) = x∗ + ξ3,x
(k+1) = x∗ + ξ4 and

‖ξ3‖2 ≤ ε, ‖ξ4‖2 ≤ ε. Thus,

x∗S + (ξ4)S ∈W
(k)
2 (S,S)x∗S + W

(k)
2 (S, :)ξ3 + W

(k)
1 D(S, S)x∗S − θ(k)∂`1(x

(k+1)
S )(

I−W
(k)
2 (S, S)−W

(k)
1 D(S,S)

)
x∗S ∈W

(k)
2 (S, :)ξ3 − (ξ4)S − θ(k)∂`1(x

(k+1)
S )

By the definition (3.43) of ∂`1, every element in ∂`1(x),∀x ∈ R has a magnitude less than or

equal to 1. Thus, for any ξ ∈ `1(x
(k+1)
S ), we have ‖ξ‖2 ≤

√
|S |, which implies∥∥∥(I−W

(k)
2 (S,S)−W

(k)
1 D(S,S)

)
x∗S

∥∥∥
2
≤ ‖W(k)

2 ‖2ε+ ε+ θ(k)
√
| S |.

Combined with (3.42), we obtain the following inequality for all k ≥ max(K1, K2, K3):∥∥∥(I−W
(k)
2 (S, S)−W

(k)
1 D(S,S)

)
x∗S

∥∥∥
2
≤ ‖W(k)

2 ‖2ε+ ε+ 3(1 +BW )ε = 4(1 +BW )ε.

The above inequality holds for all (x∗, 0) ∈ X (B, s, 0), which implies,

σmax

(
I−W

(k)
2 (S,S)−W

(k)
1 D(S,S)

)
= sup

support(x∗)=S
‖x∗i ‖2=B

{‖(I−W
(k)
2 (S, S)−W

(k)
1 D(S,S))x∗S‖2

B

}

≤ sup
(x∗,0)∈X (B,s,0)

{‖(I−W
(k)
2 (S,S)−W

(k)
1 D(S,S))x∗S‖2

B

}
≤4(1 +BW )

B
ε.

for all k ≥ max(K1, K2, K3). Since s ≥ 2, I−W
(k)
2 (S, S)−W

(k)
1 D(S, S)→ 0 uniformly for

all S with 2 ≤ |S | ≤ s. Then, I−W
(k)
2 −W

(k)
1 D→ 0 as k →∞.

Appendix 3.B Proof of Theorem 3

Before proving Theorem 3, we introduce a lemma that tells us the generalized mutual

coherence is attached at some W̃ ∈ RN×M .

Lemma 2. There exists a matrix W̃ ∈ RN×M that attaches the infimum given in (3.19).
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Proof. Optimization problem given in (3.19) is a linear programming because it minimizing

a piece-wise linear function with linear constraints. Since each column of D is normalized,

there is at least one matrix in the feasible set:

D ∈ {W ∈ RN×M : (W:,i)
TD:,i = 1, 1 ≤ i ≤M}.

In another word, optimization problem (3.19) is feasible. Moreover, by the definition of

infimum bound (3.19), we have

0 ≤ µ̃(D) ≤ max
i 6=j

1≤i,j≤M

|(D:,i)
>D:,j| = µ(D).

Thus, µ̃ is bounded. According to Corollary 2.3 in [BT97], a feasible and bounded linear

programming problem has an optimal solution. Thus W(D) is nonempty.

With definition (3.19), we propose a choice of parameters:

W(k) ∈ W(D), θ(k) = sup
(x∗,ε)∈X (B,s,σ)

{µ̃‖x(k)(x∗, ε)− x∗‖1}+ CWσ, (3.44)

which are uniform for all (x∗, ε) ∈ X (B, s, σ). In the following proof line, we prove that (3.44)

leads to the conclusion (3.11) in Theorem 3.

Proof of Theorem 3

Proof. In this proof, we use the notation x(k) to replace x(k)(x∗, ε) for simplicity.

Step 1: no false positives. Firstly, we take (x∗, ε) ∈ X (B, s, σ). Let S = support(x∗).

We want to prove by induction that, as long as (3.44) holds, x
(k)
i = 0,∀i /∈ S,∀k (no false

positives). When k = 0, it is satisfied since x(0) = 0. Fixing k, and assuming x
(k)
i = 0,∀i /∈ S,

we have

x
(k+1)
i =ηθ(k)

(
x

(k)
i −

∑
j∈S

(W
(k)
:,i )T (Dx(k) − b)

)
=ηθ(k)

(
−
∑
j∈S

(W
(k)
:,i )TD:,j(x

(k)
j − x∗j) + (W

(k)
i )T ε

)
, ∀i /∈ S.
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Since θ(k) = µ̃ supx∗,ε{‖x(k) − x∗‖1}+ CWσ and W(k) ∈ W(D),

θ(k) ≥ µ̃‖x(k) − x∗‖1 + CW‖ε‖1 ≥
∣∣∣−∑

j∈S

(W
(k)
:,i )TD:,j(x

(k)
j − x∗j) + (W

(k)
:,i )T ε

∣∣∣,∀i /∈ S,
which implies x

(k+1)
i = 0, ∀i /∈ S by the definition of ηθ(k) . By induction, we have

x
(k)
i = 0,∀i /∈ S, ∀k. (3.45)

In another word, threshold rule in (3.44) ensures no false positives9 for all x(k), k = 1, 2, · · ·

Step 2: error bound for one (x∗, ε). Next, let’s consider the components on S. For all

i ∈ S,

x
(k+1)
i = ηθ(k)

(
x

(k)
i − (W

(k)
:,i )TD:,S(x

(k)
S − x∗S) + (W

(k)
:,i )T ε

)
∈ x(k)

i − (W
(k)
:,i )TD:,S(x

(k)
S − x∗S) + (W

(k)
:,i )T ε− θ(k)∂`1(x

(k+1)
i ),

where ∂`1(x) is defined in (3.43). Since (W
(k)
:,i )TD:,i = 1, we have

x
(k)
i − (W

(k)
:,i )TD:,S(x

(k)
S − x∗S) =x

(k)
i −

∑
j∈S,j 6=i

(W
(k)
:,i )TD:,j(x

(k)
j − x∗j)− (x

(k)
i − x∗i )

=x∗i −
∑

j∈S,j 6=i

(W
(k)
:,i )TD:,j(x

(k)
j − x∗j).

Then,

x
(k+1)
i − x∗i ∈ −

∑
j∈S,j 6=i

(W
(k)
:,i )TD:,j(x

(k)
j − x∗j) + (W

(k)
:,i )T ε− θ(k)∂`1(x

(k+1)
i ), ∀i ∈ S .

By the definition (3.43) of ∂`1, every element in ∂`1(x),∀x ∈ R has a magnitude less than or

equal to 1. Thus, for all i ∈ S,

|x(k+1)
i − x∗i | ≤

∑
j∈S,j 6=i

∣∣∣(W(k)
:,i )TD:,j

∣∣∣|x(k)
j − x∗j |+ θ(k) + |(W(k)

:,i )T ε|

≤µ̃
∑

j∈S,j 6=i

|x(k)
j − x∗j |+ θ(k) + CW‖ε‖1

9In practice, if we obtain θ(k) by training, but not (3.44), the learned θ(k) may not guarantee no false
positives for all layers. However, the magnitudes on the false positives are actually small compared to those
on true positives. Our proof sketch are qualitatively describing the learning-based ISTA.
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Equation (3.45) implies ‖x(k) − x∗‖1 = ‖x(k)
S − x∗S‖1 for all k. Then

‖x(k+1) − x∗‖1 =
∑
i∈S

|x(k+1)
i − x∗i | ≤

∑
i∈S

(
µ̃
∑

j∈S,j 6=i

|x(k)
j − x∗j |+ θ(k) + CWσ

)
=µ̃(|S | − 1)

∑
i∈S

|x(k)
i − x∗i |+ θ(k)|S |+ |S |CWσ

≤µ̃(|S | − 1)‖x(k) − x∗‖1 + θ(k)|S |+ | S |CWσ

Step 3: error bound for the whole data set. Finally, we take supremum over (x∗, ε) ∈

X (B, x, σ), by |S | ≤ s,

sup
x∗,ε
{‖x(k+1) − x∗‖1} ≤ µ̃(s− 1) sup

x∗,ε
{‖x(k) − x∗‖1}+ sθ(k) + sCWσ.

By θ(k) = supx∗,ε{µ̃‖x(k) − x∗‖1}+ CWσ, we have

sup
x∗,ε
{‖x(k+1) − x∗‖1} ≤ (2µ̃s− µ̃) sup

x∗,ε
{‖x(k) − x∗‖1}+ 2sCWσ.

By induction, with c = − log(2µ̃s− µ̃), C = 2sCW

1+µ̃−2µ̃s
, we obtain

sup
x∗,ε
{‖x(k+1) − x∗‖1} ≤(2µ̃s− µ̃)k+1 sup

x∗,ε
{‖x(0) − x∗‖1}+ 2sCWσ

( k+1∑
τ=0

(2µ̃s− µ̃)(τ)
)

≤(2µ̃s− µ̃)ksB + Cσ = sB exp(−ck) + Cσ.

Since ‖x‖2 ≤ ‖x‖1 for any x ∈ RM , we can get the upper bound for `2 norm:

sup
x∗,ε
{‖x(k+1) − x∗‖2} ≤ sup

x∗,ε
{‖x(k+1) − x∗‖1} ≤ sB exp(−ck) + Cσ.

As long as s < (1 + 1/µ̃)/2, c = − log(2µ̃s − µ̃) > 0, then the error bound (3.11) holds

uniformly for all (x∗, ε) ∈ X (B, s, σ).

Appendix 3.C Proof of Theorem 4

Proof. In this proof, we use the notation x(k) to replace x(k)(x∗, ε) for simplicity.

Step 1: proving (3.17). Firstly, we assume Assumption 1 holds. Take (x∗, ε) ∈ X (B, s, σ).

Let S = support(x∗). By the definition of selecting-support operator ηss
pk

θ(k) , using the same
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argument with the proof of Theorem 3, we have LISTA-CPSS also satisfies x
(k)
i = 0,∀i /∈ S,∀k

(no false positive) with the same parameters as (3.44).

For all i ∈ S, by the definition of ηss
pk

θ(k) , there exists ξk ∈ RM such that

x
(k+1)
i =ηss

pk

θ(k)

(
x

(k)
i − (W

(k)
:,i )TD:,S(x

(k)
S − x∗S) + (W

(k)
:,i )T ε

)
=x

(k)
i − (W

(k)
:,i )TD:,S(x

(k)
S − x∗S) + (W

(k)
:,i )T ε− θ(k)ξki ,

where

ξki



= 0 if i /∈ S

∈ [−1, 1] if i ∈ S, x(k+1)
i = 0

= sign(x
(k+1)
i ) if i ∈ S, x(k+1)

i 6= 0, i /∈ Spk(x(k+1)),

= 0 if i ∈ S, x(k+1)
i 6= 0, i ∈ Spk(x(k+1)).

The set Spk is defined in (3.14). Let

Sk(x∗, ε) = {i|i ∈ S, x(k+1)
i 6= 0, i ∈ Spk(x(k+1))},

where Sk depends on x∗ and ε because x(k+1) depends on x∗ and ε. Then, using the same

argument with that of LISTA-CP (Theorem 3), we have

‖x(k+1)
S − x∗S‖1 ≤ µ̃(| S | − 1)‖x(k)

S − x∗S‖1 + θ(k)
(
| S | − | Sk(x∗, ε)|

)
+ |S |CW‖ε‖1.

Since x
(k)
i = 0,∀i /∈ S, ‖x(k) − x∗‖2 = ‖x(k)

S − x∗S‖2 for all k. Taking supremum over

(x∗, ε) ∈ X (B, s, σ), we have

sup
x∗,ε
‖x(k+1) − x∗‖1 ≤ (µ̃s− 1) sup

x∗,ε
‖x(k) − x∗‖1 + θ(k)(s− inf

x∗,ε
|Sk(x∗, ε)|) + sCWσ.

By θ(k) = supx∗,ε{µ̃‖x(k) − x∗‖1}+ CWσ, we have

sup
x∗,ε
{‖x(k+1) − x∗‖1} ≤

(
2µ̃s− µ̃− µ̃ inf

x∗,ε
| Sk(x∗, ε)|

)
sup
x∗,ε
{‖x(k) − x∗‖1}+ 2sCWσ.

Let

ckss =− log
(

2µ̃s− µ̃− µ̃ inf
x∗,ε
|Sk(x∗, ε)|

)
Css =2sCW

∞∑
k=0

k∏
t=0

exp(−ctss)).
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Then,

sup
x∗,ε
{‖x(k) − x∗‖1}

≤
( k−1∏
t=0

exp(−ctss)
)

sup
x∗,ε
{‖x(0) − x∗‖1}+ 2sCW

( 0∏
t=0

exp(−ctss)) + · · ·+
k−1∏
t=0

exp(−ctss))
)
σ

≤sB
( k−1∏
t=0

exp(−ctss)
)

+ Cssσ ≤ B exp
(
−

k−1∑
t=0

ctss

)
+ Cssσ.

With ‖x‖2 ≤ ‖x‖1, we have

sup
x∗,ε
{‖x(k) − x∗‖2} ≤ sup

x∗,ε
{‖x(k) − x∗‖1} ≤ sB

( k−1∏
t=0

exp(−ctss)
)

+ Cssσ.

Since |Sk | means the number of elements in Sk, | Sk | ≥ 0. Thus, ckss ≥ c for all k. Conse-

quently,

Css ≤ 2sCW

( ∞∑
k=0

exp(−ck))
)

= 2sCW

( ∞∑
k=0

(2µ̃s− µ̃)k
)

=
2sCW

1 + µ̃− 2µ̃s
= C.

Step 2: proving (3.18). Secondly, we assume Assumption 2 holds. Take (x∗, ε) ∈

X̄ (B,B, s, σ). The parameters are taken as

W(k) ∈ W(D), θ(k) = sup
(x∗,ε)∈X̄ (B,B,s,σ)

{µ̃‖x(k)(x∗, ε)− x∗‖1}+ CWσ.

With the same argument as before, we get

sup
(x∗,ε)∈X̄ (B,B,s,σ)

{‖x(k) − x∗‖2} ≤ sB exp
(
−

k−1∑
t=0

c̃tss

)
+ C̃ssσ,

where

c̃kss =− log
(

2µ̃s− µ̃− µ̃ inf
(x∗,ε)∈X̄ (B,B,s,σ)

|Sk(x∗, ε)|
)
≥ c

C̃ss =2sCW

( ∞∑
k=0

k∏
t=0

exp(−c̃tss))
)
≤ C.

Now we consider Sk in a more precise way. The definition of Sk implies

|Sk(x∗, ε)| = min
(
pk,# of non-zero elements of x(k+1)

)
. (3.46)
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By Assumption 5, it holds that ‖x∗‖1 ≥ B ≥ 2Cσ. Consequently, if k > 1/c(log(sB/Cσ)),

then

sB exp(−ck) + Cσ < 2Cσ ≤ ‖x∗‖1,

which implies

‖x(k+1) − x∗‖1 ≤ sB(
k∏
t=0

exp(−c̃tss)) + C̃ssσ ≤ sB exp(−ck) + Cσ < ‖x∗‖1.

Then # of non-zero elements of x(k+1) ≥ 1. (Otherwise, ‖x(k+1) − x∗‖1 = ‖0− x∗‖1, which

contradicts.) Moreover, pk = min(pk, s) for some constant p > 0. Thus, as long as k ≥ 1/p,

we have pk ≥ 1. By (3.46), we obtain

|Sk(x∗, ε)| > 0, ∀k > max
(1

p
,
1

c
log
( sB
Cσ

))
, ∀(x∗, ε) ∈ X̄ (B,B, s, σ).

Then, we have c̃kss > c for large enough k, consequently, C̃ss < C.

Appendix 3.D Proof of Theorem 5

In this proof, we use the notion x(k) to replace x(k)(x∗) for simplicity. We fix D in the proof,

µ̃(D) can be simply written as µ̃.

Before proving Theorem 5, we present and prove a lemma.

Lemma 3. With all the settings the same with those in Theorem 5, we have

support(x(k)) ⊂ S, ∀k. (3.47)

In another word, there are no false positives in x(k): x
(k)
i = 0,∀i /∈ S,∀k.

Proof. Take arbitrary x∗ ∈ X (B, s). We prove Lemma 3 by induction. As k = 0, (3.47) is

satisfied since x(0) = 0. Fixing k, and assuming support(x(k)) ⊂ S, we have

x
(k+1)
i =ηθ(k)

(
x

(k)
i − γ(k)(W:,i)

T (Dx(k) − b)
)

=ηθ(k)

(
− γ(k)

∑
j∈S

(W:,i)
TD:,j(x

(k)
j − x∗j)

)
, ∀i /∈ S .
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By (3.20), the thresholds are taken as θ(k) = µ̃γ(k) supx∗{‖x(k)−x∗‖1}. Also, since W ∈ W(D),

we have |(W:,i)
TD:,j| ≤ µ̃ for all j 6= i. Thus, for all i /∈ S,

θ(k) ≥µ̃γ(k)
∥∥x(k) − x∗

∥∥
1

=
∑

j∈support(x(k))

µ̃γ(k)
∣∣x(k)
j − x∗j

∣∣ =
∑
j∈S

µ̃γ(k)
∣∣x(k)
j − x∗j

∣∣
≥
∣∣∣− γ(k)

∑
j∈S

(W:,i)
TD:,j(x

(k)
j − x∗j)

∣∣∣,
which implies x

(k+1)
i = 0,∀i /∈ S by the definition of ηθ(k) , i.e.,

support(x(k+1)) ⊂ S

By induction, (3.47) is proved.

With Lemma 3, we are able to prove Theorem 5 now.

Proof of Theorem 5. Take arbitrary x∗ ∈ X (B, s). For all i ∈ S, by (3.47), we obtain

x
(k+1)
i = ηθ(k)

(
x

(k)
i − γ(k)(W:,i)

TD:,S(x
(k)
S − x∗S)

)
∈ x(k)

i − γ(k)(W:,i)
TD:,S(x

(k)
S − x∗S)− θ(k)∂`1(x

(k+1)
i ),

where ∂`1(x) is the sub-gradient of |x|, x ∈ R:

∂`1(x) =


{sign(x)} if x 6= 0,

[−1, 1] if x = 0.

The choice of W ∈ W(D) gives (W:,i)
TD:,i = 1. Thus,

x
(k)
i − γ(k)(W:,i)

TD:,S(x
(k)
S − x∗S)

=x
(k)
i − γ(k)

∑
j∈S,j 6=i

(W:,i)
TD:,j(x

(k)
j − x∗j)− γ(k)(x

(k)
i − x∗i )

=x∗i − γ(k)
∑

j∈S,j 6=i

(W:,i)
TD:,j(x

(k)
j − x∗j) + (1− γ(k))(x

(k)
i − x∗i ).

Then the following inclusion formula holds for all i ∈ S,

x
(k+1)
i − x∗i ∈ −γ(k)

∑
j∈S,j 6=i

(W:,i)
TD:,j(x

(k)
j − x∗j)− θ(k)∂`1(x

(k+1)
i ) + (1− γ(k))(x

(k)
i − x∗i ).
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By the definition of ∂`1, every element in ∂`1(x),∀x ∈ R has a magnitude less than or equal

to 1. Thus, for all i ∈ S,

|x(k+1)
i − x∗i | ≤

∑
j∈S,j 6=i

γ(k)
∣∣∣(W:,i)

TD:,j

∣∣∣|x(k)
j − x∗j |+ θ(k) + |1− γ(k)|

∣∣x(k)
i − x∗i

∣∣
≤µ̃γ(k)

∑
j∈S,j 6=i

|x(k)
j − x∗j |+ θ(k) + |1− γ(k)|

∣∣x(k)
i − x∗i

∣∣.
Equation (3.47) implies ‖x(k) − x∗‖1 = ‖x(k)

S − x∗S‖1 for all k. Then

‖x(k+1) − x∗‖1 =
∑
i∈S

|x(k+1)
i − x∗i |

≤
∑
i∈S

(
µ̃γ(k)

∑
j∈S,j 6=i

|x(k)
j − x∗j |+ θ(k) + |1− γ(k)||x(k)

i − x∗i |
)

=µ̃γ(k)(|S| − 1)
∑
i∈S

|x(k)
i − x∗i |+ θ(k)|S|+ |1− γ(k)|‖x(k) − x∗‖1

=µ̃γ(k)(|S| − 1)‖x(k) − x∗‖1 + θ(k)|S|+ |1− γ(k)|‖x(k) − x∗‖1.

Taking supremum of the above inequality over x∗ ∈ X (B, s), by |S| ≤ s,

sup
x∗
{‖x(k+1) − x∗‖1} ≤

(
µ̃γ(k)(s− 1) + |1− γ(k)|

)
sup
x∗
{‖x(k) − x∗‖1}+ θ(k)s.

By the value of θ(k) given in (3.20), we have

sup
x∗
{‖x(k+1) − x∗‖1} ≤

(
γ(k)(2µ̃s− µ̃) + |1− γ(k)|

)
sup
x∗
{‖x(k) − x∗‖1}.

Let c(τ) = − log
(
(2µ̃s− µ̃)γ(τ) + |1− γ(τ)|

)
. Then, by induction,

sup
x∗
{‖x(k+1) − x∗‖1} ≤ exp

(
−

(k)∑
τ=0

c(τ)
)

sup
x∗
{‖x(0) − x∗‖1} ≤ exp

(
−

(k)∑
τ=0

c(τ)
)
sB.

Since ‖x‖2 ≤ ‖x‖1 for any x ∈ Rn, we can get the upper bound for `2 norm:

sup
x∗
{‖x(k+1) − x∗‖2} ≤ sup

x∗
{‖x(k+1) − x∗‖1} ≤ sB exp

(
−

(k)∑
τ=0

c(τ)
)
.

The assumption s < (1 + 1/µ̃)/2 gives 2µ̃s − µ̃ < 1. If 0 < γ(k) ≤ 1, we have c(k) > 0. If

1 < γ(k) < 2/(1 + 2µ̃s− µ̃), we have

(2µ̃s− µ̃)γ(k) + |1− γ(k)| = (2µ̃s− µ̃)γ(k) + γ(k) − 1 < 1,

which implies c(k) > 0. Theorem 5 is proved.
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Appendix 3.E Proof of Theorem 6

Proof of Theorem 6. We fix D and sample a x∗ ∼ PX .

If we can prove

P
(

(3.24) does not hold
∣∣∣support(x∗) = S

)
≤ ε|S|+ ε|S|, (3.48)

then the lower bound (3.24) in Theorem 6 is proved by

P
(

(3.24) holds
)

=
∑

S,2≤|S|≤s

P
(

(3.24) holds
∣∣∣support(x∗) = S

)
P
(

support(x∗) = S
)

≥(1− εs3/2 − ε2)
∑

2≤|S|≤s

P
(

support(x∗) = S
)

=1− εs3/2 − ε2.

Now we fix k and prove inequality (3.48) by three steps:

Step 1: If (3.24) does not hold, then what condition x∗ should satisfy?

Fixing k, we define a set X (k)(ε), which involves all the x∗ that does not satisfy (3.24):

X (k)(ε) = {(3.24) does not hold} =
{

x∗
∣∣∣‖x(k)(x∗)− x∗‖2 < ε‖x∗‖2

( σ̄min

3s

)(k)}
.

Let S = support(x∗). For x∗ ∈ X (k)(ε), we consider two cases:

1. |x∗i | > ε‖x∗‖2(σ̄min/3
s)(k), ∀i ∈ S.

2. |x∗i | ≤ ε‖x∗‖2(σ̄min/3
s)(k), for some i ∈ S.

If case 1 holds, we obtain that the support of x(k) is exactly the same with that of x∗:

support(x(k)(x∗)) = S .

Then the relationship between x(k) and x(k−1) can be reduced to an affine transform:

x
(k)
S =ηθ(k)

(
x

(k−1)
S − (W

(k−1)
:,S )T (Dx(k−1) − b)

)
=x

(k−1)
S − (W

(k−1)
:,S )TD:,S(x

(k−1)
S − x∗S)− θ(k−1)sign(x

(k)
S ).

(3.49)
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Subtracting x∗ from the two sides of (3.49), we obtain∥∥∥(I− (W
(k−1)
:,S )TD:,S

)
(x

(k−1)
S − x∗S)− θ(k−1)sign(x

(k)
S )
∥∥∥

2
= ‖x(k)

S − x∗S‖2 = ‖x(k) − x∗‖2,

where the last equality is due to Definition 3. Thus, for all x∗ ∈ X (k)(ε), if case 1 holds, we

have ∥∥∥(I− (W
(k−1)
:,S )TD:,S

)
(x

(k−1)
S − x∗S)− θ(k−1)sign(x

(k)
S )
∥∥∥

2
≤ ε‖x∗‖2(σ̄min/3

s)(k). (3.50)

Multiplying both sides of (3.50) by (I− (W
(k−1)
:,S )TD:,S)

−1, we have

‖x(k−1)
S − x∗S − θ(k−1)(I− (W

(k−1)
:,S )TD:,S)

−1sign(x
(k)
S )‖2

≤‖(I− (W
(k−1)
:,S )TD:,S)

−1‖2 · ε‖x∗‖2(σ̄min/3
s)(k) ≤ ε‖x∗‖2(σ̄min)k−13−ks,

where the last inequality is due to (3.22). Let x̃(k−1) denote the bias of x(k−1):

x̃(k−1) , θ(k−1)(I− (W
(k−1)
:,S )TD:,S)

−1sign(x
(k)
S ),

then we get a condition that x∗ satisfies if case 1 holds:

X (k−1)(ε) =
{

x∗
∣∣∣∥∥x(k−1)

S (x∗)− x∗S − x̃(k−1)(x∗)
∥∥

2
≤ ε‖x∗‖2(σ̄min)k−13−ks

}
.

If case 2 holds, x∗ belongs to the following set:

X̃ (k)
(ε) =

{
x∗
∣∣∣|x∗i | ≤ ε‖x∗‖2

(
σ̄min/3

s
)(k)

, for some i ∈ S
}
.

Then for any x∗ ∈ X (k)(ε), either x∗ ∈ X (k−1)(ε) or x∗ ∈ X̃ (k)
(ε) holds. In another word,

X (k)(ε) ⊂ X̃ (k)
(ε) ∪ X (k−1)(ε).

Step 2: By imitating the construction of X (k)(ε), we construct

X (k−2)(ε),X (k−3)(ε), · · · .

Similar to Step 1, we divide X (k−1)(ε) into two sets: X̃ (k−1)
(ε) and X (k−2)(ε), then we divide

X (k−2)(ε) into X̃ (k−2)
(ε) and X (k−3)(ε). Repeating the process, until dividing X (1)(ε) into

X̃ (1)
(ε) and X (0)(ε).
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By induction, we have

X (k)(ε) ⊂ X̃ (k)
(ε) ∪ X̃ (k−1)

(ε) ∪ X̃ (k−2)
(ε) ∪ · · · ∪ X̃ (1)

(ε) ∪ X (0)(ε), (3.51)

where the sets are defined as follows for all j = 0, 1, 2, · · · , k:

X̃ (k−j)
(ε) =

{
x∗
∣∣∣|x∗i + x̃

(k−j)
i (x∗)| < ε‖x∗‖2

(
σ̄min

)k−j
3−ks, for some i ∈ S.

}
, (3.52)

X (k−j)(ε) =
{

x∗
∣∣∣‖x(k−j)

S (x∗)− x∗S − x̃(k−j)(x∗)‖2 ≤ ε‖x∗‖2

(
σ̄min

)k−j
3−ks

}
(3.53)

and the bias is defined as following for all j = 0, 1, 2, · · · , k:

x̃(k−j)(x∗) =

j∑
t=1

(
I−

(
W

(k−j+t−1)
:,S

)T
D:,S

)−t
θ(k−j+t−1)sign

(
x

(k−j+t)
S (x∗)

)
. (3.54)

Step 3: Estimating the probabilities of all the sets in (3.51).

By (3.51), we have

P
(
x∗ ∈ X (k)(ε)

∣∣∣support(x∗) = S
)

≤
k−1∑
j=1

P
(
x∗ ∈ X̃ (k−j)

(ε)
∣∣∣support(x∗) = S

)
+ P

(
x∗ ∈ X (0)(ε)

∣∣∣support(x∗) = S
)
.

Now we have to prove that each of the above terms is small, then P (x∗ ∈ X (k)(ε)|support(x∗) =

S) is small and (3.48) will be proved.

Define a set of n-dimensional sign numbers

Si(n) =
{

(s1, s2, · · · , sn)
∣∣∣si ∈ {0,−1, 1},∀i = 1, · · · , n

}
.

Since sign
(
x

(k−j+t)
S

)
∈ Si(|S|) for all t = 1, 2, · · · , j, {sign(x

(k−j+t)
S )}jt=1 has finitely possible

values. Let sign(x
(k−j+t)
S ) = s(t) for t = 1, 2, · · · , j. Then x̃

(k−j)
i (x∗) is independent of x∗ and
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can be written as x̃
(k−j)
i (s(1), s(2), · · · , s(j)). Thus, we have

P (x∗ ∈ X̃ (k−j)
(ε)|support(x∗) = S)

=
∑
i∈S

∑
s(1)∈Si(|S|)

∑
s(2)∈Si(|S|)

· · ·
∑

s(j)∈Si(|S|)

P
(
|x∗i + x̃

(k−j)
i (x∗)| < ε‖x∗‖2(σ̄min)k−j3−ks, sign(x

(k)
S ) = s(1), · · · ,

sign(x
(k−j+1)
S ) = s(j)

∣∣∣support(x∗) = S
)

≤
∑
i∈S

∑
s(1)∈Si(|S|)

∑
s(2)∈Si(|S|)

· · ·
∑

s(j)∈Si(|S|)

P
(
|x∗i + x̃

(k−j)
i (s(1), s(2), · · · , s(j))| < ε

√
|S|B(σ̄min)k−j3−ks

∣∣∣support(x∗) = S
)

≤
∑
i∈S

∑
s(1)∈Si(|S|)

∑
s(2)∈Si(|S|)

· · ·
∑

s(j)∈Si(|S|)

ε
√
|S|B(σ̄min)k−j3−ks

B

=|S|3j|S|(ε
√
|S|
(

(σ̄min)k−j3−ks
)
≤ ε|S|3/2(σ̄min)k−j3(j−k)|S|

where the second inequality comes from the uniform distribution of x∗S (Assumption 6), the

last inequality comes from |S| ≤ s.

The last term, due to the uniform distribution of x∗S and x(0) = 0, can be bounded by

P (x∗ ∈ X (0)(ε)|support(x∗) = S)

=P
(
‖x∗ + x̃(0)(x∗)‖2 ≤ ε‖x∗‖23−ks

∣∣∣support(x∗) = S
)

=
∑

s(1)∈Si(|S|)

∑
s(2)∈Si(|S|)

· · ·
∑

s(k)∈Si(|S|)

P
(
‖x∗ + x̃(0)(x∗)‖2 ≤ ε‖x∗‖23−ks, sign(x

(1)
S ) = s(1), · · · , sign(x

(k)
S ) = s(k)

∣∣∣support(x∗) = S
)

≤3k|S|
(

(ε3−ks)|S|
)
≤ ε|S|.

Then we obtain

P (x∗ ∈ X (k)(ε)|support(x∗) = S)

≤
k−1∑
j=0

ε|S|3/2(σ̄min)k−j3(j−k)|S| + ε|S| =

(k)∑
j=1

ε|S|3/2(σ̄min)j3−j|S| + ε|S|

=ε|S|3/2 σ̄min3−|S|

1− σ̄min3−|S|

(
1− (σ̄min3−|S|)(k)

)
+ ε|S| ≤ ε|S|3/2 + ε|S|.

Then (3.48) is proved.

88



Appendix 3.F Proof of Theorem 7

There are two conclusions in Theorem 7. We prove the two conclusions in the following two

subsections respectively.

3.F.1 Proof of Conclusion 1.

Before proving Conclusion 1, we analyze the operator DN
cir in detail.

The circular convolution (3.34) is equivalent with:

b(i, j) =
N−1∑
k=0

N−1∑
l=0

M∑
m=1

DN
cir(i, j; k, l,m)xm(k, l), 0 ≤ i, j ≤ N − 1,

where the circulant matrix is element-wise defined as:

DN
cir(i, j; k, l,m) =


dm
(
(k − i)modN , (l − j)modN

)
, 0 ≤ (k − i)modN , (l − j)modN ≤ D − 1

0, others

(3.55)

Similarly, the corresponding circulant matrix WN
cir(i, j; k, l,m) of dictionary w is:

WN
cir(i, j; k, l,m) =


wm

(
(k − i)modN , (l − j)modN

)
, 0 ≤ (k − i)modN , (l − j)modN ≤ D − 1

0, others

(3.56)

As we defined in Section 3.5, b is a vector. With x = [x1, · · · ,xM ]T , x is a vector. Then

the operator DN
cir is a matrix, where (i, j) is its row index and (k, l,m) is its column index.

Define a function measuring the difference between i and k:

I(i, k) , (k − i)modN , 0 ≤ i, k ≤ N − 1.

The coherence between DN
cir(i, j; k, l,m) and WN

cir(i, j; k, l,m): Bcoh = (DN
cir)

TWN
cir is element-

wise defined by:

Bcoh(k1, l1,m1; k2, l2,m2) =
N−1∑
i=0

N−1∑
j=0

DN
cir(i, j; k1, l1,m1)WN

cir(i, j; k2, l2,m2)

=
∑

i∈I(k1,k2)

∑
j∈J (l1,l2)

dm1

(
I(i, k1), I(j, l1)

)
wm2

(
I(i, k2), I(j, l2)

)
.
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where

I(k1, k2) = {i|0 ≤ i ≤ N − 1, 0 ≤ I(i, k1) ≤ D − 1, 0 ≤ I(i, k2) ≤ D − 1},

J (l1, l2) = {j|0 ≤ j ≤ N − 1, 0 ≤ I(j, l1) ≤ D − 1, 0 ≤ I(j, l2) ≤ D − 1}.

Lemma 4. Given N ≥ 2D − 1, it holds that:

(a) I(k1, k2) 6= ∅ if and only if “ 0 ≤ (k1−k2)modN ≤ D−1” or “ 0 < (k2−k1)modN ≤ D−1”

holds.

(b) J (l1, l2) 6= ∅ if and only if “ 0 ≤ (l1− l2)modN ≤ D− 1” or “ 0 < (l2− l1)modN ≤ D− 1”

holds.

Proof. Now we prove Conclusion (a). Firstly, we prove “if.” If 0 ≤ (k1 − k2)modN ≤ D − 1

and N ≥ 2D − 1, we have

I(k1, k2) =
{

(k1 − δ)modN

∣∣δ ∈ Z, (k1 − k2)modN ≤ δ ≤ D − 1
}
6= ∅. (3.57)

If 0 < (k2 − k1)modN ≤ D − 1 and N ≥ 2D − 1, we have

I(k1, k2) =
{

(k2 − δ)modN

∣∣δ ∈ Z, (k2 − k1)modN ≤ δ ≤ D − 1
}
6= ∅. (3.58)

Secondly, we prove “only if.” If I(k1, k2) 6= ∅, we can select an i ∈ I(k1, k2). Let r1 =

(k1− i)modN and r2 = (k2− i)modN . By the definition of I(k1, k2), we have 0 ≤ r1, r2 ≤ D− 1.

Two cases should be considered here. Case 1: r1 ≥ r2. Since 0 ≤ r1− r2 ≤ D− 1 ≤ N − 1, it

holds that r1 − r2 = (r1 − r2)modN . Thus,

r1 − r2 = (r1 − r2)modN =
(
(k1 − i)modN − (k2 − i)modN

)
modN

=
(
(k1 − i)− (k2 − i)

)
modN

=(k1 − k2)modN .

The equality “0 ≤ r1 − r2 ≤ D− 1” leads to the conclusion “0 ≤ (k1 − k2)modN ≤ D− 1”. In

case 2 where r1 < r2, we can obtain 0 < (k2 − k1)modN ≤ D − 1 with the similar arguments.

Conclusion (b) can be proved by the same argument with the proof of (a). Lemma 4 is

proved.
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Now we fix k1, l1 and consider what values of k2, l2 give I(k1, k2) 6= ∅ and J (l1, l2) 6= ∅.

Define four index sets given 0 ≤ k1, l1 ≤ N − 1:

K(k1) ={k|0 ≤ (k1 − k)modN ≤ D − 1}

K̄(k1) ={k|0 < (k − k1)modN ≤ D − 1}

L(l1) ={l|0 ≤ (l1 − l)modN ≤ D − 1}

L̄(l1) ={l|0 < (l − l1)modN ≤ D − 1}

Lemma 5. If N ≥ 2D − 1, we have:

(a) The cardinality of K(k1), K̄(k1): | K(k1)| = D, | K̄(k1)| = D − 1.

(b) K(k1) ∩ K̄(k1) = ∅.

(c) The cardinality of L(l1), L̄(l1): | L(l1)| = D, | L̄(l1)| = D − 1.

(d) L(l1) ∩ L̄(l1) = ∅.

Proof. Now we prove Conclusion (a). The set K(k1) can be equivalently written as

K(k1) = {(k1 − rk)modN |rk = 0, 1, · · · , D − 1} (3.59)

Let k(rk) = (k1 − rk)modN . We want to show that k(r1
k) 6= k(r2

k) as long as r1
k 6= r2

k. Without

loss of generality, we assume 0 ≤ r1
k < r2

k ≤ D − 1. By the definition of modulo operation,

There exist two integers q, q′ such that

k(r1
k) = qN + k1 − r1

k, k(r2
k) = q′N + k1 − r2

k.

Suppose k(r1
k) = k(r2

k). Taking the difference between the above two equations, we obtain

r2
k − r1

k = (q′ − q)N , i.e, N divides r2
k − r1

k. However, 0 ≤ r1
k < r2

k ≤ D − 1 implies

1 ≤ r2
k − r1

k ≤ D − 1 ≤ N − 1, which contradicts with “N dividing r2
k − r1

k.” Thus, it holds

that k(r1
k) 6= k(r2

k). Then we have | K(k1)| = D.

In the same way, we have

K̄(k1) = {(k1 + rk)modN |rk = 1, 2, · · · , D − 1} (3.60)
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and | K̄(k1)| = D − 1. Conclusion (a) is proved.

Now we prove Conclusion (b). Suppose K(k1)∩K̄(k1) 6= ∅. Pick a k2 ∈ K(k1)∩K̄(k1). Let

r3 = (k1−k2)modN and r4 = (k2−k1)modN . Then we have 0 ≤ r3 ≤ D−1 and 0 < r4 ≤ D−1.

By the definition of modulo operation, There exist two integers q, q′ such that

k1 − k2 = qN + r3, k2 − k1 = q′N + r4

which imply

r3 + r4 + (q + q′)N = 0.

However, 0 < r3 + r4 ≤ 2D − 2 contradicts with “q ∈ Z, q′ ∈ Z, N ∈ Z, N ≥ 2D − 1.”

Conclusion (b) is proved.

Conclusions (c) and (d) are actually the same with Conclusions (a) and (b) respectively.

Thus, it holds that

L(l1) ={(l1 − rl)modN |rl = 0, 1, · · · , D − 1} (3.61)

L̄(l1) ={(l1 + rl)modN |rl = 1, 2, · · · , D − 1} (3.62)

and | L(l1)| = D, | L̄(l1)| = D − 1. Lemma 5 is proved.

With the preparations, we can prove Conclusion 1 of Theorem 7 now.

Proof of Theorem 7, Conclusion 1. Firstly we fix k1 ∈ {0, 1, · · · , N − 1} and consider k2 ∈

K(k1). Let rk = (k1− k2)modN . Then equation (3.57) implies that, for any i ∈ I(k1, k2), there

exists a δ (rk ≤ δ ≤ D − 1) such that

I(i, k1) =
(
k1 − (k1 − δ)modN

)
modN

= (δ)modN = δ,

I(i, k2) =
(
k2 − (k1 − δ)modN

)
modN

= (δ − rk)modN = δ − rk.
(3.63)

Now we consider another case for k2: k2 ∈ K̄(k1), rk = (k2−k1)modN . Equation (3.58) implies

that, for any i ∈ I(k1, k2), there exists a δ (rk ≤ δ ≤ D − 1) such that

I(i, k1) =
(
k1 − (k2 − δ)modN

)
modN

= (δ − rk)modN = δ − rk,

I(i, k2) =
(
k2 − (k2 − δ)modN

)
modN

= (δ)modN = δ.
(3.64)
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Similarly, for any l1 ∈ {0, 1, · · · , N − 1} and l2 ∈ L(l1), we denote rl = (l1 − l2)modN . For

any j ∈ J (l1, l2), there exists a δ (rl ≤ δ ≤ D − 1) such that

I(j, l1) =
(
l1 − (l1 − δ)modN

)
modN

= (δ)modN = δ,

I(j, l2) =
(
l2 − (l1 − δ)modN

)
modN

= (δ − rl)modN = δ − rl.
(3.65)

Another case for l2: l2 ∈ L̄(l1), rl = (l2 − l1)modN . For any j ∈ J (l1, l2), there exists a δ

(rl ≤ δ ≤ D − 1) such that

I(j, l1) =
(
l1 − (l2 − δ)modN

)
modN

= (δ − rl)modN = δ − rl,

I(j, l2) =
(
l2 − (l2 − δ)modN

)
modN

= (δ)modN = δ.
(3.66)

Now let us consider the following function. By results in Lemmas 4 and 5, we have

f(k1, l1,m1,m2) =
N−1∑
k2=0

N−1∑
l2=0

(
Bcoh(k1, l1,m1; k2, l2,m2)

)2

=f1 + f2 + f3 + f4,

where

f1 =
∑

k2∈K(k1)

∑
l2∈L(l1)

(
Bcoh(k1, l1,m1; k2, l2,m2)

)2

f2 =
∑

k2∈K̄(k1)

∑
l2∈L(l1)

(
Bcoh(k1, l1,m1; k2, l2,m2)

)2

f3 =
∑

k2∈K(k1)

∑
l2∈L̄(l1)

(
Bcoh(k1, l1,m1; k2, l2,m2)

)2

f4 =
∑

k2∈K̄(k1)

∑
l2∈L̄(l1)

(
Bcoh(k1, l1,m1; k2, l2,m2)

)2

.

Combining equations (3.59), (3.61), (3.63) and (3.65), we obtain

f1 =
D−1∑
rk=0

D−1∑
rl=0

D−1∑
δk=rk

D−1∑
δl=rl

(
dm1(δk, δl)wm2(δk − rk, δl − rl)

)2

.

Combining (3.60), (3.61), (3.64) and (3.65), we obtain

f2 =
D−1∑
rk=1

D−1∑
rl=0

D−1∑
δk=rk

D−1∑
δl=rl

(
dm1(δk − rk, δl)wm2(δk, δl − rl)

)2

.

Combining (3.59), (3.62), (3.63) and (3.66), we obtain

f3 =
D−1∑
rk=0

D−1∑
rl=1

D−1∑
δk=rk

D−1∑
δl=rl

(
dm1(δk, δl − rl)wm2(δk − rk, δl)

)2

.
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Combining (3.60), (3.62), (3.64) and (3.66), we obtain

f4 =
D−1∑
rk=1

D−1∑
rl=1

D−1∑
δk=rk

D−1∑
δl=rl

(
dm1(δk − rk, δl − rl)wm2(δk, δl)

)2

.

By the above explicit formulas of fi, 1 ≤ i ≤ 4, we have f1, f2, f3, f4 are all independent

of k1, l1 and N . They are only related with m1,m2 for fixed d and m. Thus, we are able to

denote f(k1, l1,m1,m2) as f(m1,m2) for simplicity. Consequently,

1

N2
‖(DN

cir)
TWN

cir‖2
F =

1

N2

N−1∑
k1=0

N−1∑
l1=0

N−1∑
k2=0

N−1∑
l2=0

M∑
m1=1

M∑
m2=1

(
Bcoh(k1, l1,m1; k2, l2,m2)

)2

=
1

N2

N−1∑
k1=0

N−1∑
l1=0

M∑
m1=1

M∑
m2=1

f(k1, l1,m1,m2)

=
1

N2

N−1∑
k1=0

N−1∑
l1=0

M∑
m1=1

M∑
m2=1

f(m1,m2)

=
1

N2
·N2 ·

M∑
m1=1

M∑
m2=1

f(m1,m2) =
M∑

m1=1

M∑
m2=1

f(m1,m2)

Thus, 1
N2‖(DN

cir)
TWN

cir‖2
F is dependent of N :

1

N2
‖(DN

cir)
TWN

cir‖2
F =

1

(2D − 1)2
‖(D2D−1

cir )TW2D−1
cir ‖2

F , ∀N ≥ 2D − 1, (3.67)

which implies WN
cir =W2D−1

cir , ∀N ≥ 2D − 1.

3.F.2 Proof of Conclusion 2.

Before proving Conclusion 2, let us analyze the relationship between DN
conv and DN+D−1

cir .

Similar to Dcir, we use (i, j) as the row index and (k, l,m) as the column index of Dconv.

For 0 ≤ i, j ≤ N − 1, 1 ≤ m ≤M ,

DN+D−1
cir (i, j; k, l,m) = DN

conv(i, j; k, l,m) =


dm(k − i, l − j), 0 ≤ k − i, l − j ≤ D − 1

0, k, l taken as others

(3.68)

Matrix DN+D−1
cir is of dimension (N +D− 1)2× (N +D− 1)2M , where 0 ≤ i, j ≤ N +D− 2;

matrix DN
conv is of dimension (N)2 × (N +D− 1)2M , where 0 ≤ i, j ≤ N − 1. Thus, DN

conv is
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a block in DN+D−1
cir , i.e.,

DN+D−1
cir =

DN
conv

∆N
D

 .
The matrix ∆N

D is of dimension ((N +D − 1)2 −N2)× (N +D − 1)2M :

∆N
D =

[
DN+D−1

cir (i, j; :, :, :)
]
, (i, j) ∈ I∆

where

I∆ =I1 ∪ I2 ∪ I3

I1 ={(i, j)|N ≤ i ≤ N +D − 2, 0 ≤ j ≤ N − 1}

I2 ={(i, j)|0 ≤ i ≤ N − 1, N ≤ j ≤ N +D − 2}

I3 ={(i, j)|N ≤ i ≤ N +D − 2, N ≤ j ≤ N +D − 2}.

Similarly,

WN+D−1
cir =

WN
conv

∆N
W

 , ∆N
W =

[
WN+D−1

cir (i, j; :, :, :)
]
, (i, j) ∈ I∆.

Then,

(DN+D−1
cir )TWN+D−1

cir = (DN
conv)TWN

conv + (∆N
D)T∆N

W. (3.69)

Lemma 6. For any (i, j) ∈ I∆, one has

‖DN+D−1
cir (i, j; :, :, :)‖2

2 =‖d‖2
2, (3.70)

‖WN+D−1
cir (i, j; :, :, :)‖2

2 =‖w‖2
2. (3.71)

Proof. Equation (3.55) implies that, for (i, j) ∈ I1, 1 ≤ m ≤M ,

DN+D−1
cir (i, j; k, l,m) =



dm(k − i, l − j), i ≤ k ≤ N +D − 2, and

j ≤ l ≤ j +D − 1

dm(k − i+N +D − 1, l − j), 0 ≤ k ≤ i−N, j ≤ l ≤ j +D − 1

0, k, l taken as others

Thus, for any (i, j) ∈ I1,

‖DN+D−1
cir (i, j; :, :, :)‖2

2 =
N+D−2∑
k=0

N+D−2∑
l=0

M∑
m=1

∣∣DN+D−1
cir (i, j; k, l,m)

∣∣2 = ‖d‖2
2
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Similarly,

‖DN+D−1
cir (i, j; :, :, :)‖2

2 = ‖d‖2
2, (i, j) ∈ I2 ∪ I3.

Equation (3.70) is proved. With the same argument, equation (3.71) is also proved.

Lemma 7. If N ≥ 2D − 1, we have

‖(∆N
D)T∆N

W‖2
F ≤

(
2N(D − 1) + (D − 1)2

)
(2D − 1)2‖d‖2

2‖w‖2
2. (3.72)

Proof. For simplicity, we denote two row vectors:

di,j , DN+D−1
cir (i, j; :, :, :) ∈ R1×(N+D−1)2M

wi,j , WN+D−1
cir (i, j; :, :, :) ∈ R1×(N+D−1)2M

Then,

‖(∆N
D)T∆N

W‖2
F =

∥∥∥∥ ∑
(i,j)∈I∆

dTi,jwi,j

∥∥∥∥2

F

=
∑

(i1,j1)∈I∆

∑
(i2,j2)∈I∆

〈
dTi1,j1wi1,j1 ,d

T
i2,j2

wi2,j2

〉
F
,

where〈
dTi1,j1wi1,j1 ,d

T
i2,j2

wi2,j2

〉
F

= trace
(
wT
i1,j1

di1,j1d
T
i2,j2

wi2,j2

)
= (di1,j1d

T
i2,j2

) · (wi1,j1w
T
i2,j2

).

Since

di1,j1d
T
i2,j2

=
N−1∑
k=0

N−1∑
l=0

M∑
m=1

= DN+D−1
cir (i1, j1; k, l,m)DN+D−1

cir (i2, j2; k, l,m),

with the same argument in Lemma 4, we have: di1,j1d
T
i2,j2
6= 0 implies

i2 ∈ I ′∆ , {i|0 ≤ (i1 − i)mod(N+D−1) ≤ D − 1 or 0 ≤ (i− i1)mod(N+D−1) ≤ D − 1}

j2 ∈ J ′∆ , {j|0 ≤ (j1 − j)mod(N+D−1) ≤ D − 1 or 0 ≤ (j − j1)mod(N+D−1) ≤ D − 1}

Then

‖(∆N
D)T∆N

W‖2
F =

∑
(i1,j1)∈I∆

∑
i2∈I′∆

∑
j2∈J ′∆

(di1,j1d
T
i2,j2

) · (wi1,j1w
T
i2,j2

)

≤
∑

(i1,j1)∈I∆

∑
i2∈I′∆

∑
j2∈J ′∆

‖d‖2
2‖w‖2

2

=|I∆| · |I ′∆| · | J ′∆ | · ‖d‖2
2‖w‖2

2

=
(
2N(D − 1) + (D − 1)2

)
(2D − 1)2‖d‖2

2‖w‖2
2,

where the inequality in the second line follows from (3.70) and (3.71). Inequality (3.72) is

proved.
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With these preparations, we can prove Theorem 7, Conclusion 2 now.

Proof of Theorem 7, Conclusion 2. Define set

Wnormal =
{

w ∈ RD2M
∣∣∣wm · dm = 1, ∀m = 1, · · · ,M

}
. (3.73)

Since d ∈ Wnormal, the set is nonempty:

Wnormal 6= ∅. (3.74)

Define functions FN
conv : RD2M → R, FN

cir : RD2M → R.

FN
conv(w) =

1

N +D − 1

∥∥∥(DN
conv(d)

)T
WN

conv(w)
∥∥∥
F

+ ιWnormal
(w)

FN
cir(w) =

1

N

∥∥∥(DN
cir(d))TWN

cir(w)
∥∥∥
F

+ ιWnormal
(w)

By the definitions of WN
conv,WN

cir, we have

WN
conv = arg min

w
FN

conv(w), WN
cir = arg min

w
FN

cir(w)

Step 1: Proving FN
conv(w) uniformly converges to F 2D−1

cir (w) on X∩Wnormal for any compact

set X ⊂ RD2M .

We arbitrarily choose such a compact set X. Based on (3.67), (3.69) and (3.72), one has,

for all w ∈ X ∩Wnormal,

|FN
conv(w)− F 2D−1

cir (w)| =|FN
conv(w)− FN+D−1

cir (w)|

=
1

N +D − 1

∣∣∣∣∥∥∥(DN+D−1
cir )TWN+D−1

cir

∥∥∥
F
−
∥∥∥(DN

conv)TWN
conv

∥∥∥
F

∣∣∣∣
≤ 1

N +D − 1

∥∥(∆N
D)T∆N

W

∥∥
F

≤

√(
2N(D − 1) + (D − 1)2

)
(2D − 1)

N +D − 1
‖d‖2‖w‖2

≤
(2D − 1)

√
2(D − 1)√

N +D − 1
‖d‖2‖w‖2.

Thus, there exists a constant B > 0, which is independent of N , such that

|FN
conv(w)− F 2D−1

cir (w)| ≤ B√
N

sup
w∈X∩Wnormal

‖w‖, ∀ w ∈ X ∩Wnormal . (3.75)
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Step 2: Proving FN
conv(w) epigraphically converges10 to F 2D−1

cir (w).

We want to show, at each point w it holds that

lim inf
N→∞

FN
conv(wN) ≥ F 2D−1

cir (w) for every sequence wN → w (3.76)

lim sup
N→∞

FN
conv(wN) ≤ F 2D−1

cir (w) for some sequence wN → w (3.77)

Firstly, we prove (3.76). We arbitrarily pick a sequence {wN}∞N=0 such that wN → w.

If w /∈ Wnormal, F
2D−1
cir (w) = +∞. Since Wnormal is a closed set, there exists a N+ such

that wN /∈ Wnormal for all N ≥ N+. Thus, one has FN
conv(wN) = +∞ for all N ≥ N+, i.e.,

lim inf
N→∞

FN
conv(wN) = F 2D−1

cir (w) = +∞.

If w ∈ Wnormal, two cases should be considered. The first case is that any subsequences

of {wN}∞N=0 are not kept within Wnormal, i.e., there exists a N+ such that wN /∈ Wnormal for

all N ≥ N+. Then we have

lim inf
N→∞

FN
conv(wN) = +∞ > F 2D−1

cir (w).

The second case is that there exists a subsequence {wNk}∞k=0 ⊂ {wN}∞N=0 such that

wNk ∈ Wnormal, ∀k = 0, 1, 2, · · · .

Since wN converges to w, any subsequences should be Cauchy. Given any Cauchy sequence

{wNk}∞k=0 in finite dimensional Euclidean space, there exists a compact set X such that

wNk ∈ X, ∀k = 0, 1, 2, · · ·

Let B′ = supw∈X∩Wnormal
‖w‖. By (3.75), we obtain

|FNk
conv(wNk)− F 2D−1

cir (w)| ≤|FNk
conv(wNk)− F 2D−1

cir (wNk)|+ |F 2D−1
cir (wNk)− F 2D−1

cir (w)|

≤BB
′

√
Nk

+ |F 2D−1
cir (wNk)− F 2D−1

cir (w)|.

10Epigraphic convergence is a standard tool to prove the convergence of a sequence of minimization problems.
The definition of epigraphic convergence refers to Definition 7.1 and Proposition 7.2 in [RW09].
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For any ε > 0, by the continuity of F 2D−1
cir , we are able to find a K > 0 such that |F 2D−1

cir (wNk)−

F 2D−1
cir (w)| < ε for all k ≥ K. Pick a K ′ such that NK′ ≥ (BB′/ε)2. Then, for all

k ≥ max(K,K ′), we have |FNk
conv(wNk)− F 2D−1

cir (w)| < 2ε, i.e.,

lim
k→∞

FNk
conv(wNk) = F 2D−1

cir (w).

The above conclusion holds for all subsequences {wNk}∞k=0 ⊂ Wnormal. F 2D−1
cir (w) is an

accumulation point of {FN
conv(wN )}∞N=0. All the other accumulation points of {FN

conv(wN )}∞N=0

must be +∞ because FN
conv(w) = F 2D−1

cir (w) = +∞ for all w /∈ Wnormal. Thus,

lim inf
N→∞

FN
conv(wN) = F 2D−1

cir (w) < +∞.

Secondly, we prove (3.77). We set wN = w for all N = 0, 1, 2, · · · . Then (3.77) is a direct

result of (3.75).

Step 3: proving (3.36). Define

G(w) =
∥∥(D2D−1

cir )TW2D−1
cir

∥∥2

F
.

We want to show that G(w) is strongly convex.

Let w̃i ∈ R(2D−1)2
be the ith column of W2D−1

cir , i.e.,

W2D−1
cir =

[
w̃1, w̃2, · · · , w̃(2D−1)2M

]
Then

G(w) =

(2D−1)2M∑
i=1

(w̃i)
T
(
D2D−1

cir (D2D−1
cir )T

)
w̃i.

Let w̃ ∈ R(2D−1)4M vectorize W2D−1
cir , i.e.,

w̃ =
[
(w̃1)T , (w̃2)T , · · · , (w̃(2D−1)2M)T

]T
.

Then G(w) can be written as a quadratic form of w̃:

G(w) = w̃TQw̃,
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where

Q =


(
D2D−1

cir (D2D−1
cir )T

)
· · · (

D2D−1
cir (D2D−1

cir )T
)


︸ ︷︷ ︸
totally (2D−1)2M diagonal blocks

.

As long as at least one of the matrices {D2D−1
cir,0 , · · · ,D2D−1

cir,M−1} is non-singular, D2D−1
cir is full

row rank, which implies that D2D−1
cir (D2D−1

cir )T is non-singular. Then Q is positive definite.

The transform between w and w̃ is linear. We denote the transform as T , i.e.,

w̃ = Tw.

It’s trivial that ‖w̃‖2
2 = 0 implies ‖W2D−1

cir ‖2
F = 0. By the definition of W2D−1

cir , ‖W2D−1
cir ‖2

F = 0

implies ‖w‖2
2 = 0. Thus, linear operator T is full column rank. Thus, T TQT is positive

definite, and

G(w) = wT (T TQT )w

is strongly convex. Then F 2D−1
cir (w) =

√
G(w) + ιWnormal

(w) has only one minimizer, i.e.,

W2D−1
cir involves only a unique element.

Now we check the conditions of Propositions 7.32(c) and 7.33 in [RW09] to apply them.

1. FN
conv

e−→ F 2D−1
cir . This is proved in Step 2.

2. F 2D−1
cir is level bounded. Since G(w) is strongly convex, F 2D−1

cir (w) =
√
G(w) +

ιWnormal
(w) must be level bounded.

3. F 2D−1
cir 6≡ +∞. Since Wnormal is nonempty (3.74), dom F 2D−1

cir 6= ∅, F 2D−1
cir is not

constantly +∞.

4. All the level set of FN
conv are connected. This can be derived from the convexity of FN

conv.

5. F 2D−1
cir and FN

conv are all lower semi-continuous and proper. This condition follows from

the fact that the functions F 2D−1
cir and FN

conv are all continuous functions defined on a

nonempty closed convex domain Wnormal.
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Applying Proposition 7.32(c), we have {FN
conv} is eventually level bounded. If we arbitrarily

pick a wN ∈ WN
conv and let wcir be the unique point in W2D−1

cir . Applying Proposition 7.33,

we have wN → wcir. By Definition 4.1 in [RW09], we obtain the convergence of the sequence

of sets {WN
conv}: limN→∞WN

conv =W2D−1
cir .

Appendix 3.G Discussion of Definition 2 (3.22)

In this section, we want to numerically show that, given typical D and s, there is a σ̄min > 0

such that a random generated matrix W ∈ W̄(D, s, σ̄min). However, given D and W, it’s

intractable to completely check (3.22):

σmin

(
I− (W:,S)

TD:,S

)
≥ σ̄min,∀S with 2 ≤ |S | ≤ s.

The reason is that there are extremely large amount of possible S s. For example, we take

M = 250, N = 500, s = 50. There are totally(
500

50

)
+

(
500

49

)
+ · · ·+

(
500

2

)
possible Ss satisfying 2 ≤ |S | ≤ s. It’s impossible to check (3.22) on all possible Ss.

Instead of checking all possible Ss, we sample 5000 Ss from the whole set:

S ′ ⊂ S = {S : S ⊂ {1, 2, · · · , 500}|2 ≤ |S| ≤ s},

where S ′ is the set of all the samples. Then we estimate σ̄min with the following quantity:

σ̄′(D,W) = min
S∈S′

{
σmin

(
I− (W:,S)

TD:,S

)}
Furthermore, we use the same D as that in Section 3.6 and generate 1000 Ws with each

entry i.i.d sampled from the normal distribution. Then we normalize each column of the

generated Ws. This technique is commonly used in sparse coding. Finally, we report the

distribution of σ̄′(D,W) with the fixed D and the 1000 sampled Ws in Figure 3.10.

Figure 3.10 demonstrates that, with the fixed D, most of the random generated Ws have

a σ̄′(D,W) within the interval [0.25, 0.35]. Thus, the numerical results support our claim:
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Figure 3.10: Discussion of Definition 2: distribution of σ̄′(D,W) on random generated Ws.

with high probability, a random generated W satisfies

min
S∈S

{
σmin

(
I− (W:,S)

TD:,S

)}
≥ σ̄min > 0,

that is, W ∈ W̄(D, s, σ̄min).

Appendix 3.H An efficient algorithm to calculate analytic weights

3.H.1 An efficient algorithm to solve (3.27)

In this section, we introduce an algorithm to solve (3.27) (we copy (3.27) below to facilitate

reading):

min
W∈RN×M

∥∥WTD
∥∥2

F
, s.t. (W:,m)TD:,m = 1, ∀m = 1, 2, · · · ,M,

By the definition of the Frobenius norm, it holds that

‖WTD‖2
F = ‖(WTD)T‖2

F = ‖DTW‖2
F . (3.78)

Thus, the above problem is equivalent with

min
W∈RN×M

∥∥DTW
∥∥2

F
, s.t. (D:,m)TW:,m = 1, ∀m = 1, 2, · · · ,M.

We apply projected gradient descent (PGD) to solve the above problem. The gradient of

‖DTW‖2
F is ∇‖DTW‖2

F = DDTW. Denote the set by

W = {W ∈ RN×M |(D:,m)TW:,m = 1, ∀m = 1, 2, · · · ,M.}
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Then the projection onto W can be calculated by

ProjW(W) = W + ∆W, ∆W =
[
(1− (D:,1)TW:,1)W:,1, · · · , (1− (D:,M)TW:,M)W:,M

]
With these formulas, we are able to write down the PGD, which is listed in Algorithm 5.

Algorithm 5: Projected gradient descent for solving (3.27)

Input: Dictionary D ∈ RN×M .

Initialize : Let W(0) = D.

1 for j = 0, 1, 2, . . . until convergence do

2 Update W by Wj+1 = ProjW

(
Wj − ηD(D)TWj

)
.

3 end

Output: WJ , where J is the last iterate.

In each step, calculating the gradient has the complexity of O(N2M) because DDT can

be pre-computed. Calculating the projection takes O(NM) time consumptions. Due to the

objective function to minimize in (3.27) is restricted strongly convex, Algorithm 5 is linear

convergent [ZC15]. To get an ε-accurate solution, PGD takes O(log(1/ε)) steps. Thus, the

complexity of Algorithm 5 is O(log(1/ε)N2M). We should note that the bounds given in

Table 3.1 are the number of parameters to train, not the training complexity. The training

complexity can be estimated by “Number of iterations × complexity of back-propagation”,

i.e., O(IBKNM),where I is the number of iterations for training, B is the batch size , and

K is the number of layers. Actually, Algorithm 5 (Stage 1) only takes a few seconds on an

example of D : 250 × 500, while the training process (Stage 2) of, for example, ALISTA,

takes around 0.1 hours.

3.H.2 An efficient algorithm to solve (3.35)

In this section, we introduce an algorithm to solve (3.35) (we copy (3.35) below to facilitate

reading):

min
w∈RD2M

wm·dm=1, 1≤m≤M

∥∥∥(WN
cir(w)

)T
DN

cir(d)
∥∥∥2

F
.
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Similarly, by (3.78), the above problem is equivalent with

min
w∈RD2M

dm·wm=1, 1≤m≤M

∥∥∥(DN
cir(d)

)T
WN

cir(w)
∥∥∥2

F
. (3.79)

Since the circular convolution is very efficient to calculate in the frequency domain, we

consider solving (3.79) utilizing the fast Fourier transform (FFT).

Firstly, we introduce the operators DN
cir(d),WN

cir(w) in the frequency domain. To simplify

the notation, we denote the operators as DN
cir and WN

cir respectively. Let F be the FFT

operator. Thus, b = DN
cirx is equivalent with

Fb = FDN
cirFHFx.

Let b̂ = Fb, x̂ = Fx be the frequency domain signals, let D̂N
cir = FDN

cirFH be the frequency

domain operator. The above equation is:

b̂ = D̂N
cirx̂.

The frequency domain operator D̂N
cir is much cheaper to calculate than the operator DN

cir

in the spacial domain because it is block diagonal [Woh16e]. Specifically, we zero pad d

to N ×N and do FFT: d̂m = FFT
(
zeropad(dm, N −D)

)
, then the above operator can be

explicitly written as:

b̂ =
M∑
m=1

d̂m � x̂m,

where ·̄ means complex conjugate. This is due to DN
cir is actually cross-correlation, not

convolution (see (3.29)). Cross-correlation is equal to the transpose of convolution. Thus,

there should be complex conjugate in the frequency domain.

Further, since∥∥∥(D̂N
cir

)H
ŴN

cir

∥∥∥2

F
=
∥∥∥(FDN

cirFH
)HFWN

cirFH
∥∥∥2

F
=
∥∥∥F(DN

cir

)T
WN

cirFH
∥∥∥2

F

=
∥∥∥(DN

cir

)T
WN

cir

∥∥∥2

F
,

problem (3.79) is equivalent with

min
w∈RD2M

dm·wm=1, 1≤m≤M

∥∥∥(D̂N
cir

)H
ŴN

cir

∥∥∥2

F
,
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which can be efficiently solved by the frequency domain ISTA in [LGW17]. The details are

outlined in Algorithm 6.

Algorithm 6: Frequency-domain ISTA for solving (3.35)

Input: Dictionary d = [d1, · · · ,dM ]T , dm ∈ RD2
, m = 1, 2, · · · ,M .

Initialize : Let w(0) = d.

1 for j = 0, 1, 2, . . . until convergence do

2 Zeropad and FFT:

ŵj
m = FFT

(
zeropad

(
wj
m, N −D

))
, m = 1, · · · ,M.

3 Compute frequency domain gradient:

(∇f)m =
( M∑
m=1

d̂m � ¯̂
dm

)
� ŵj

m, m = 1, · · · ,M,

where ·̄ represents the conjugate of a complex number.

4 Compute the next iterate:

wj+1
m = ProjWnormal

(
IFFT

(
ŵj
m − η(∇f)m

))
, m = 1, · · · ,M,

where the set Wnormal is defined in (3.73).

5 end

Output: wJ , where J is the last iterate.
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CHAPTER 4

Learning Regularizers

Many modern image processing algorithms recover or denoise an image through the optimiza-

tion problem (introduced in Chapter 1)

minimize
x∈RM

f(x) + γg(x), (4.1)

where x ∈ RM represents the image, f(x) measures data fidelity, g(x) regularizes the signal

or image to be less noisy or less complex and γ ≥ 0 is a parameter controls the balance

between f and g.

The regularizer g(x) plays a significant role in such problems. In the literature, plenty

of manually designed regularizers have been developed, such as Total Variation [ROF92],

Tikhonov regularization [Tik63, GHO99], Markov random field model-based priors [KS80],

patch based prior [KB06, ZWZ18], etc. Recent developed learning based regularizers [SCH17,

AMJ18, QSC18, KHS19] show better empirical results although the interpretability is still

limited.

In this chapter, we study learning-based regularizers g in the framework of Plug-and-Play

(introduced in Chapter 1) and target on the following problems:

• Is plug-and-play convergent? If the answer is positive, what assumptions should we

make on the regularizers?

• Do commonly-used regularizers satisfy the assumptions required by convergence?

• How to guarantee the assumptions met by a learning-based regularizer?

The remainder of the chapter is organized as follows: Section 4.1 introduces the plug-and-play

methods used in this chapter and the concept of fixed point; Section 4.2 describes related
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works; In Section 4.3, we establish linear convergence theories of plug-and-play methods and

propose an assumption required by convergence; Section 4.4 provides a learning method

to enforce the learned regularizers satisfy the assumption; empirical results in Section 4.5

support our theories and more applications can be found in Section 4.6; Section 4.7 concludes

this chapter.

4.1 PNP-FBS/ADMM and their fixed points

We now present the two PnP methods we investigate in this work. We quickly note that

although PNP-FBS and PNP-ADMM are distinct methods, they share the same fixed points

by Remark 3.1 of [MMH17] and Proposition 3 of [SWK19].

We call the method

x(k+1) = Hσ(I − α∇f)(x(k)) (PNP-FBS)

for any α > 0, plug-and-play forward-backward splitting (PNP-FBS) or plug-and-play

proximal gradient method. Hσ is a learning-based denoiser (regularizer). We interpret

PNP-FBS as a fixed-point iteration, and we say x? is a fixed point of PNP-FBS if

x? = Hσ(I − α∇f)(x?).

Fixed points of PNP-FBS have a simple, albeit non-rigorous, interpretation. An image

denoising algorithm must trade off the two goals of making the image agree with measurements

and making the image less noisy. PNP-FBS applies I − α∇f and Hσ, each promoting such

objectives, repeatedly in an alternating fashion. If PNP-FBS converges to a fixed point, we

can expect the limit to represent a compromise. We call the method

x(k+1) = Hσ(y(k) − u(k))

y(k+1) = Proxαf (x
(k+1) + u(k)) (PNP-ADMM)

u(k+1) = u(k) + x(k+1) − y(k+1)

for any α > 0, plug-and-play alternating directions method of multipliers (PNP-ADMM).

We interpret PNP-ADMM as a fixed-point iteration, and we say (x?,u?) is a fixed point of
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PNP-ADMM if

x? = Hσ(x? − u?)

x? = Proxαf (x
? + u?).

If we let y(k) = x? and u(k) = u? in (PNP-ADMM), then we get x(k+1) = y(k+1) = x? and

u(k+1) = u(k) = u?. We call the method

x(k+1/2) = Proxαf (z
(k))

x(k+1) = Hσ(2x(k+1/2) − z(k)) (PNP-DRS)

z(k+1) = z(k) + x(k+1) − x(k+1/2)

plug-and-play Douglas–Rachford splitting (PNP-DRS). We interpret PNP-DRS as a fixed-

point iteration, and we say z? is a fixed point of PNP-DRS if

x? = Proxαf (z
?)

x? = Hσ(2x? − z?).

PNP-ADMM and PNP-DRS are equivalent. Although this is not surprising as the equivalence

between convex ADMM and DRS is well known, we show the steps establishing equivalence

in the appendix.

We introduce PNP-DRS as an analytical tool for analyzing PNP-ADMM. It is straight-

forward to verify that PNP-DRS can be written as z(k+1) = T (z(k)), where

T =
1

2
I +

1

2
(2Hσ − I)(2Proxαf − I).

We use this form to analyze the convergence of PNP-DRS and translate the result to

PNP-ADMM.

4.2 Related works

Plug-and-play: Practice. The first PnP method was the Plug-and-play ADMM pro-

posed in [VBW13]. Since then, other schemes such as the primal-dual method [HST14,
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MMH17, Ono17], ADMM with increasing penalty parameter [BRE16, CWE17], gener-

alized approximate message passing [MMB16], Newton iteration [BCS18], Fast Iterative

Shrinkage-Thresholding Algorithm [KMW17, SXL18], (stochastic) forward-backward split-

ting [SWK19, SWK18, SXL18], and alternating minimization [DWY18] have been combined

with the PnP technique.

PnP method reported empirical success on a large variety of imaging applications: bright

field electron tomography [SVW16], camera image processing [HST14], compression-artifact

reduction [DBE16], compressive imaging [TBF16], deblurring [TBF16, RGE16, WC17], elec-

tron microscopy [SVB17], Gaussian denoising [BCS18, DWY18], nonlinear inverse scattering

[KMW17], Poisson denoising [RGE16], single-photon imaging [CWE17], super-resolution

[BRE16, SVW16, CWE17], diffraction tomography [SWK19], Fourier ptychographic mi-

croscopy [SXL18], low-dose CT imaging [VBW13, HYW18, YST18, LRH19], hyperspectral

sharpening [TBF17, TBF19], inpainting [Cha19, TG19], and superresolution [DWY18].

A wide range of denoisers have been used for the PnP framework. BM3D has been

used the most [HST14, DBE16, RGE16, SVW16, CWE17, KMW17, Ono17, WC17], but

other denoisers such as sparse representation [BRE16], non-local means [VBW13, HST14,

SVW16, SVB17, Cha19], Gaussian mixture model [TBF16, TBF17, SF18, TBF19], Patch-

based Wiener filtering [VBW13], nuclear norm minimization [KMW17], deep learning-based

denoisers [MMH17, HYW18, YST18, TG19] and deep projection model based on generative

adversarial networks [CLP17] have also been considered.

Plug-and-play: Theory. Compared to the empirical success, much less progress was

made on the theoretical aspects of PnP optimization. [CWE17] analyzed convergence

with a bounded denoiser assumption, establishing convergence using an increasing penalty

parameter. [BCS18] provided an interpretation of fixed points via “consensus equilibrium”.

[SVW16, SWK19, TBF17, Cha19, TBF19] proved convergence of PNP-ADMM and PNP-FBS

with the assumption that the denoiser is (averaged) nonexpansive by viewing the methods to

be fixed-point iterations. The nonexpansiveness assumption is not met with most denoisers

as is, but [Cha19] proposed modifications to the non-local means and Gaussian mixture
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model denoisers, which make them into linear filters, to enforce nonexpansiveness. [DWY18]

presented a proof that relies on the existence of a certain Lyapunov function that is monotonic

under Hσ, which holds only for simple Hσ. [TG19] analyzed a variant of PnP, but did not

establish local convergence since their key assumption is only expected to be satisfied “in

early iterations”.

Other PnP-type methods. There are other lines of works that incorporate modern

denoisers into model-based optimization methods. The plug-in idea with half quadratic

splitting, as opposed to ADMM, was discussed [ZW11] and this approach was carried out with

deep learning-based denoisers in [ZZG17]. [DKE12, EK15] use the notion of Nash equilibrium

to propose a scheme similar to PnP. [DKE10] proposed an augmented Lagrangian method

similar to PnP. [REM17, RS19] presented Regularization by Denoising (RED), which uses the

(nonconvex) regularizer xT (x−Hσ(x)) given a denoiser Hσ, and use denoiser evaluations in

its iterations. [FPR18] applies the plug-in approach to vector approximate message passing.

[SLX16, FWW19] replaced both the proximal operator enforcing data fidelity and the denoiser

with two neural networks and performed end-to-end training. Broadly, there are more works

that incorporate model-based optimization with deep learning [CLW18, LCW19].

Image denoising using deep learning. Deep learning-based denoising methods have

become state-of-the-art. [ZZC17] proposed an effective denoising network called DnCNN,

which adopted batch normalization [IS15] and ReLU [KSH12] into the residual learning

[HZR16]. Other represenative deep denoising models include the deep convolutional encoder-

decoder with symmetric skip connection [MSY16], N3Net [PR18], and MWCNN [LZZ18].

The recent FFDNet [ZZZ18] handles spatially varying Gaussian noise.

Regularizing Lipschitz continuity. Lipschitz continuity and its variants have started

to receive attention as a means for regularizing deep classifiers [BFT17, BCW18, OC18]

and GANs [MKK18, BDS19]. Regularizing Lipschitz continuity stabilizes training, improves

the final performance, and enhances robustness to adversarial attacks [WZC18, QW19].
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Specifically, [MKK18] proposed to normalize all weights to be of unit spectral norms to

thereby constrain the Lipschitz constant of the overall network to be no more than one.

4.3 Convergence via contraction

We now present conditions that ensure the PnP methods are contractive and thereby conver-

gent.

If we assume 2Hσ − I is nonexpansive, standard tools of monotone operator theory tell us

that PnP-ADMM converges. However, this assumption is too strong. Chan et al. presented

a counter example demonstrating that 2Hσ − I is not nonexpansive for the NLM denoiser

[CWE17].

Rather, we assume Hσ : RM → RM satisfies

‖(Hσ − I)(x)− (Hσ − I)(y)‖2 ≤ ε2‖x− y‖2 (A)

for all x,y ∈ RM for some ε ≥ 0. Since σ controls the strength of the denoising, we can

expect Hσ to be close to identity for small σ. If so , Assumption (A) is reasonable.

Under this assumption, we show that the PNP-FBS and PNP-DRS iterations are contrac-

tive in the sense that we can express the iterations as x(k+1) = T (x(k)), where T : RM → RM

satisfies

‖T (x)− T (y)‖ ≤ δ‖x− y‖

for all x,y ∈ RM for some δ < 1. We call δ the contraction factor. If x? satisfies T (x?) = x?,

i.e., x? is a fixed point, then x(k) → x? geometrically by the classical Banach contraction

principle.

Theorem 8 (Convergence of PNP-FBS). Assume Hσ satisfies assumption (A) for some

ε ≥ 0. Assume f is µ-strongly convex, f is differentiable, and ∇f is L-Lipschitz. Then

T = Hσ(I − α∇f)

satisfies

‖T (x)− T (y)‖ ≤ max{|1− αµ|, |1− αL|}(1 + ε)‖x− y‖
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for all x,y ∈ RM . The coefficient is less than 1 if

1

µ(1 + 1/ε)
< α <

2

L
− 1

L(1 + 1/ε)
.

Such an α exists if ε < 2µ/(L− µ).

Theorem 9 (Convergence of PNP-DRS). Assume Hσ satisfies assumption (A) for some

ε ≥ 0. Assume f is µ-strongly convex and differentiable. Then

T =
1

2
I +

1

2
(2Hσ − I)(2Proxαf − I)

satisfies

‖T (x)− T (y)‖ ≤ 1 + ε+ εαµ+ 2ε2αµ

1 + αµ+ 2εαµ
‖x− y‖

for all x,y ∈ RM . The coefficient is less than 1 if

ε

(1 + ε− 2ε2)µ
< α, ε < 1.

The proofs of Theorems 8 and 9 are provided in the appendix and can also be found in

[RLW19].

Corollary 1 (Convergence of PNP-ADMM). Assume Hσ satisfies assumption (A) for some

ε ∈ [0, 1). Assume f is µ-strongly convex. Then PNP-ADMM converges for

ε

(1 + ε− 2ε2)µ
< α.

Proof. This follows from Theorem 9 and the equivalence of PNP-DRS and PNP-ADMM.

For PNP-FBS, we assume f is µ-strongly convex and ∇f is L-Lipschitz. For PNP-DRS

and PNP-ADMM, we assume f is µ-strongly convex. These are standard assumptions that

are satisfied in application such as image denoising/deblurring and single photon imaging.

Strong convexity, however, does exclude a few applications such as compressed sensing, sparse

interpolation, and super-resolution.

PNP-FBS and PNP-ADMM are distinct methods for finding the same set of fixed points.

Sometimes, PNP-FBS is easier to implement since it only requires the computation of ∇f

rather than Proxαf . On the other hand, PNP-ADMM has better convergence properties as

demonstrated theoretically by Theorems 8 and 9 and empirically by our experiments.
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The proof of Theorem 9 relies on the notion of “negatively averaged” operators of [Gis17].

It is straightforward to modify Theorems 8 and 9 to establish local convergence when

Assumption (A) holds locally. Theorem 9 can be generalized to the case when f is strongly

convex but non-differentiable using the notion of subgradients.

Recently, [FPR18] proved convergence of “plug-and-play” vector approximate message

passing, a method similar to ADMM, assuming Lipschitz continuity of the denoiser. Although

the method, the proof technique, and the notion of convergence are different from ours, the

similarities are noteworthy.

4.4 Real spectral normalization: enforcing Assumption (A)

We now present real spectral normalization, a technique for training denoisers to satisfy

Assumption (A) and connect the practical implementations to the theory of Section 4.3.

4.4.1 Deep learning denoisers: SimpleCNN and DnCNN

We use a deep denoising model called DnCNN [ZZC17], which learns the residual mapping

with a 17-layer CNN and reports state-of-the-art results on natural image denoising. Given a

noisy observation y = x+e, where x is the clean image and e is noise, the residual mapping R

outputs the noise, i.e., R(y) = e so that y−R(y) is the clean recovery. Learning the residual

mapping is a popular approach in deep learning-based image restoration. The structure of

DnCNN is shown in Figure 4.1.

We also construct a simple convolutional encoder-decoder model for denoising and call it

SimpleCNN. SimpleCNN consists of 4 convolutional layers, with ReLU and mean-square-

error (MSE) loss and does not utilize any pooling or (batch) normalization. The structure of

SimpleCNN is shown in Figure 4.2.

We remark that realSN and the theory of this work is applicable to other deep denoisers.

We use SimpleCNN to show that realSN is applicable to any CNN denoiser.
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Figure 4.1: DnCNN Network Architecture
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Figure 4.2: SimpleCNN Network Architecture

4.4.2 Lipschitz constrained deep denoising

Denote the denoiser (SimpleCNN or DnCNN) as H(y) = y − R(y), where y is the noisy

input and R is the residual mapping, i.e., R(y) = y − H(y) = (I − H)(y). Enforcing

Assumption (A) is equivalent to constraining the Lipschitz constant of R(y). We propose a

variant of the spectral normalization (SN) [MKK18] for this.

Spectral normalization. [MKK18] proposed to normalize the spectral norm of each layer-

wise weight (with ReLU non-linearity) to one. Provided that we use 1-Lipschitz nonlinearities

(such as ReLU), the Lipschitz constant of a layer is upper-bounded by the spectral norm of its

weight, and the Lipschitz constant of the full network is bounded by the product of spectral

norms of all layers [GFP18]. To avoid the prohibitive cost of singular value decomposition

(SVD) every iteration, SN approximately computes the largest singular values of weights

using a small number of power iterations.
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Given the weight matrix Wl ∈ Rm×n of the l-th layer, vectors ul ∈ Rm,vl ∈ Rm are

initialized randomly and maintained in the memory to estimate the leading first left and

right singular vector of Wl respectively. During each forward pass of the network, SN is

applied to all layers 1 ≤ l ≤ L following the two-step routine:

1. Apply one step of the power method to update ul,vl:

vl ←WT
l ul / ‖WT

l ul‖2, ul ←Wlvl / ‖Wlvl‖2

2. Normalize Wl with the estimated spectral norm:

Wl ←Wl/σ(Wl), where σ(Wl) = uTl Wlvl

While the basic methodology of SN suits our goal, the SN in [MKK18] uses a convenient

but inexact implementation for convolutional layers. A convolutional layer is represented

by a four-dimensional kernel Kl of shape (Cout, Cin, h, w), where h,w are kernel’s height and

width. SN reshapes Kl into a two-dimensional matrix K̃l of shape (Cout, Cin × h× w) and

regards K̃l as the matrix Wl above. This relaxation underestimates the true spectral norm

of the convolutional operator (Corollary 1 of [TSS18]) given by

σ(Kl) = max
x 6=0
‖Kl ∗ x‖2/‖x‖2,

where x is the input to the convolutional layer and ∗ is the convolutional operator. This

issue is not hypothetical. When we trained SimpleCNN with SN, the spectral norms of the

layers were 3.01, 2.96, 2.82, and 1.31, i.e., SN failed to control the Lipschitz constant below 1.

Real spectral normalization. We propose an improvement to SN for convolutional1

layers, called the real spectral normalization (realSN), to more accurately constrain the

network’s Lipschitz constant and thereby enforce Assumption (A).

In realSN, we directly consider the convolutional linear operator Kl : RCin×h×w →

RCout×h×w, where h,w are input’s height and width, instead of reshaping the convolution

1We use stride 1 and zero-pad with width 1 for convolutions.
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kernel Kl into a matrix. The power iteration also requires the conjugate (transpose) operator

K∗l . It can be shown that K∗l is another convolutional operator with a kernel that is a rotated

version of the forward convolutional kernel; the first two dimensions are permuted and the

last two dimensions are rotated by 180 degrees [LCW19]. Instead of two vectors ul,vl as in

SN, realSN maintains Ul ∈ RCout×h×w and Vl ∈ RCin×h×w to estimate the leading left and

right singular vectors respectively. During each forward pass of the neural network, realSN

conducts:

1. Apply one step of the power method with operator Kl:

Vl ← K∗l (Ul) / ‖K∗l (Ul)‖2,

Ul ← Kl(Vl) / ‖Kl(Vl)‖2.

2. Normalize the convolutional kernel Kl with estimated spectral norm:

Kl ← Kl/σ(Kl), where σ(Kl) = 〈Ul,Kl(Vl)〉

By replacing σ(Kl) with σ(Kl)/cl, realSN can constrain the Lipschitz constant to any

upper bound C =
∏L

l=1 cl. Using the highly efficient convolution computation in modern deep

learning frameworks, realSN can be implemented simply and efficiently. Specifically, realSN

introduces three additional one-sample convolution operations for each layer in each training

step. When we used a batch size of 128, the extra computational cost of the additional

operations is mild.

4.4.3 Implementation details

We refer to SimpleCNN and DnCNN regularized by realSN as RealSN-SimpleCNN and

RealSN-DnCNN, respectively. We train them in the setting of Gaussian denoising with

known fixed noise levels σ = 5, 15, 40. We used σ = 5, 15 for CS-MRI and single photon

imaging, and σ = 40 for Poisson denoising. The regularized denoisers are trained to have

Lipschitz constant (no more than) 1. The training data consists of images from the BSD500

dataset, divided into 40× 40 patches. The CNN weights were initialized in the same way as
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[ZZC17]. We train all networks using the ADAM optimizer for 50 epochs, with a mini-batch

size of 128. The learning rate was 10−3 in the first 25 epochs, then decreased to 10−4. On an

Nvidia GTX 1080 Ti, DnCNN took 4.08 hours and realSN-DnCNN took 5.17 hours to train,

so the added cost of realSN is mild.

4.5 Poisson denoising: validating the theory

Consider the Poisson denoising problem, where given a true image xtrue ∈ RM , we observe

independent Poisson random variables yi ∼ Poisson((xtrue)i), so yi ∈ N, for i = 1, . . . ,M . For

details and motivation for this problem setup, see [RGE16].

For the objective function f(x), we use the negative log-likelihood given by f(x) =∑M
i=1 `(xi; yi), where

`(x; y) =


−y log(x) + x for y > 0, x > 0

0 for y = 0, x ≥ 0

∞ otherwise.

We can compute Proxαf elementwise with

Proxαf (x) = (1/2)
(
x− α +

√
(x− α)2 + 4αy

)
.

The gradient of f is given by ∂f/∂xi = −yi/xi + 1 for xi > 0 for i = 1, . . . ,M . We set

∂f/∂xi = 0 when xi = 0, although, strictly speaking, ∂f/∂xi is undefined when yi > 0 and

xi = 0. This does not seem to cause any problems in the experiments. Since we force the

denoisers to output nonnegative pixel values, PNP-FBS never needs to evaluate ∂f/∂xi for

negative xi.

For Hσ, we choose BM3D, SimpleCNN with and without realSN, and DnCNN with

and without realSN. Note that these denoisers are designed or trained for the purpose of

Gaussian denoising, and here we integrate them into the PnP frameworks for Poisson

denoising. We scale the image so that the peak value of the image, the maximum mean of

the Poisson random variables, is 1. The y-variable was initialized to the noisy image for
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Figure 4.3: Histograms for experimentally verifying Assumption (A). The x-axis represents

values of ‖(I −Hσ)(x)− (I −Hσ)(y)‖/‖x− y‖ and the y-axis represents the frequency. The

vertical red bar corresponds to the maximum value.

PnP-FBS and PnP-ADMM, and the u-variable was initialized to 0 for PnP-ADMM. We use

the test set of 13 images in [CWE17].

Convergence. We first examine which denoisers satisfy Assumption (A) with small ε. In

Figure 4.3, we run PnP iterations of Poisson denoising on a single image (flag of [RGE16])

with different models, calculate ‖(I −Hσ)(x)− (I −Hσ)(y)‖/‖x− y‖ between the iterates

and the limit, and plot the histogram. The maximum value of a histogram, marked by a

vertical red bar, lower-bounds the ε of Assumption (A). Remember that Corollary 1 requires

ε < 1 to ensure convergence of PnP-ADMM. Figure 4.3(a) proves that BM3D violates this

assumption. Figures 4.3(b) and 4.3(c) and Figures 4.3(d) and 4.3(e) respectively illustrate

that RealSN indeed improves (reduces) ε for SimpleCNN and DnCNN.

Figure 4.4 experimentally validates Theorems 8 and 9, by examining the average (geometric

mean) contraction factor (defined in Section 4.3) of PnP-FBS and ADMM2 iterations over a

2We compute the contraction factor of the equivalent PnP-DRS.
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range of step sizes. Figure 4.4 qualitatively shows that PnP-ADMM exhibits more stable

convergence than PnP-FBS. Theorem 8 ensures PnP-FBS is a contraction when α is within

an interval and Theorem 9 ensures PnP-ADMM is a contraction when α is large enough. We

roughly observe this behavior for the denoisers trained with RealSN.

(a) PnP-FBS

(b) PNP-ADMM

Figure 4.4: Average contraction factor of 500 iterations for the Poisson denoising experiment.

The x-axis represents the value of α and y-axis represents the contraction factor. Although

lower means faster convergence, a smoother curve means the method is easier to tune and

has more stable convergence.

Empirical performance. Our theory only concerns convergence and says nothing about

the recovery performance of the output the methods converge to. We empirically verify
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that the PnP methods with RealSN, for which we analyzed convergence, yield competitive

denoising results. We fix α = 0.1 for all denoisers in PNP-ADMM, and α = 0.0125 in

PNP-FBS. For deep learning-based denoisers, we choose σ = 40/255. For BM3D, we choose

σ =
√
γα as suggested in [RGE16] and use γ = 1. Table 4.1 compares the PnP methods

with BM3D, RealSN-DnCNN, and RealSN-SimpleCNN plugged in. In both PnP methods,

one of the two denoisers using RealSN, for which we have theory, outperforms BM3D. It is

interesting to obverse that the PnP performance does not necessarily hinge on the strength

of the plugged in denoiser and that different PnP methods favor different denoisers. For

example, RealSN-SimpleCNN surpasses the much more sophisticated RealSN-DnCNN under

PnP-FBS. However, RealSN-DnCNN leads to better, and overall best, denoising performance

when plugged into PnP-ADMM.

Table 4.1: Average PSNR performance (in dB) on Poisson denoising (peak = 1) on the

testing set in [CWE17].

BM3D RealSN-DnCNN RealSN-SimpleCNN

PNP-ADMM 23.4617 23.5873 18.7890

PNP-FBS 18.5835 22.2154 22.7280

4.6 More applications

We now apply PnP on two imaging problems and show that RealSN improves the reconstruc-

tion of PnP.

Single photon imaging. Consider single photon imaging with quanta image sensors (QIS)

[Fos11, CL14, EC16] with the model

z = 1(y ≥ 1), y ∼ Poisson(αsgGxtrue)

where xtrue ∈ RM is the underlying image, G : RM → RMK duplicates each pixel to K pixels,

αsg ∈ R is sensor gain, K is the oversampling rate, z ∈ {0, 1}MK is the observed binary
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photons. We want to recover xtrue from z. The likelihood function is

f(x) =
n∑
j=1

−K0
j log(e−αsgxj/K)−K1

j log(1− e−αsgxj/K),

where K1
j =

∑K
i=1 z(j−1)K+i is the number of ones in the j-th unit pixel, K0

j =
∑K

i=1 1 −

z(j−1)K+i is the number of zeros in the j-th unit pixel. The gradient of f(x) is given by

∂f/∂xj = (αsg/K)(K0
j −K1

j /(e
αsgxj/K−1)) and the proximal operator of f is given in [CL14].

We compare PnP-ADMM and PnP-FBS respectively with the denoisers BM3D, RealSN-

DnCNN, and RealSN-SimpleCNN. We take αsg = K = 8. The y-variable was initialized to

K1 for PnP-FBS and PnP-ADMM, and the u-variable was initialized to 0 for PnP-ADMM.

All deep denoisers used in this experiment were trained with fixed noise level σ = 15. We

report the PSNRs achieved at the 50th iteration, the 100th iteration, and the best PSNR

values achieved within the first 100 iterations.

Table 4.2 reports the average PSNR results on the 13 images used in [CWE17]. Experi-

ments indicate that PnP-ADMM methods constantly yields higher PNSR than the PnP-FBS

counterparts using the same denoiser. The best overall PSNR is achieved using PnP-ADMM

with RealSN-DnCNN, which shows nearly 1dB improvement over the result obtained with

BM3D. We also observe that deep denoisers with RealSN make PnP converges more stably.

Compressed sensing MRI. Magnetic resonance imaging (MRI) is a widely-used imaging

technique with a slow data acquisition. Compressed sensing MRI (CS-MRI) accelerates MRI

by acquiring less data through downsampling. PnP is useful in medical imaging as we do not

have a large amount of data for end-to-end training: we train the denoiser Hσ on natural

images, and then “plug” it into the PnP framework to be applied to medical images. CS-MRI

is described mathematically as

y = Fpxtrue + εe,

where xtrue ∈ CM is the underlying image, Fp : CM → Ck is the linear measurement model,

y ∈ Ck is the measured data, and εe ∼ N(0, σeIk) is measurement noise. We want to recover

xtrue from y. The objective function is

f(x) = (1/2)‖y −Fpx‖2.
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Table 4.2: Average PSNR (in dB) of single photon imaging task on the test set of [CWE17].

PnP-FBS, α = 0.005

Average PSNR BM3D RealSN-DnCNN RealSN-SimpleCNN

Iteration 50 28.7933 27.9617 29.0062

Iteration 100 29.0510 27.9887 29.0517

Best Overall 29.5327 28.4065 29.3563

PnP-ADMM, α = 0.01

Average PSNR BM3D RealSN-DnCNN RealSN-SimpleCNN

Iteration 50 30.0034 31.0032 29.2154

Iteration 100 30.0014 31.0032 29.2151

Best Overall 30.0474 31.0431 29.2155

The gradient of f(x) is given in [LZC16] and the proximal operator of f(x) is given in [Eks16].

We use BM3D, SimpleCNN and DnCNN, and their variants by RealSN for the PnP denoiser

Hσ.

We take Fp as the Fourier k-domain subsampling (partial Fourier operator). We tested

random, radial, and Cartesian sampling [Eks16] with a sampling rate of 30%. The noise level

σe is taken as 15/255.

We compare PnP frameworks with zero-filling, total-variation (TV) [LSL05], RecRF

[YZY10], and BM3D-MRI [Eks16] 3. The parameters are taken as follows. For TV,

the regularization parameter λ is taken as the best one from {a × 10b, a ∈ {1, 2, 5}, b ∈

{−5,−4,−3,−2,−1, 0, 1}}. For RecRF, the two parameters λ, µ are both taken from the

above sets and the best results are reported. For BM3D-MRI, we set the “final noise level

(the noise level in the last iteration)” as 2σe, which is suggested in their MATLAB library. For

PnP methods with Hσ as BM3D, we set σ = 2σe, take α ∈ {0.1, 0.2, 0.5, 1, 2, 5} and report

the best results. For PNP-ADMM with Hσ as deep denoisers, we take σ = σe = 15/255

3Some recent deep-learning based methods [SLX16, KLT16, MMB17, ZG18b] are not compared here
because we assume we do not have enough medical images for training.
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Table 4.3: CS-MRI results (30% sample with additive Gaussian noise σe = 15) in PSNR (dB).

Sampling approach Random Radial Cartesian

Image Brain Bust Brain Bust Brain Bust

Zero-filling 9.58 7.00 9.29 6.19 8.65 6.01

TV [LSL05] 16.92 15.31 15.61 14.22 12.77 11.72

RecRF [YZY10] 16.98 15.37 16.04 14.65 12.78 11.75

BM3D-MRI [Eks16] 17.31 13.90 16.95 13.72 14.43 12.35

PnP-FBS

BM3D 19.09 16.36 18.10 15.67 14.37 12.99

DnCNN 19.59 16.49 18.92 15.99 14.76 14.09

RealSN-DnCNN 19.82 16.60 18.96 16.09 14.82 14.25

SimpleCNN 15.58 12.19 15.06 12.02 12.78 10.80

RealSN-SimpleCNN 17.65 14.98 16.52 14.26 13.02 11.49

PnP-ADMM

BM3D 19.61 17.23 18.94 16.70 14.91 13.98

DnCNN 19.86 17.05 19.00 16.64 14.86 14.14

RealSN-DnCNN 19.91 17.09 19.08 16.68 15.11 14.16

SimpleCNN 16.68 12.56 16.83 13.47 13.03 11.17

RealSN-SimpleCNN 17.77 14.89 17.00 14.47 12.73 11.88

and α = 2.0 uniformly for all the cases. For PNP-FBS with Hσ as deep denoisers, we take

σ = σe/3 = 5/255 and α = 0.4 uniformly. All deep denoisers are trained on BSD500 [MFT01],

a natural image data set; no medical image is used in training. The y-variable was initialized

to the zero-filled solution for PnP-FBS and PnP-ADMM, and the u-variable was initialized

to 0 for PnP-ADMM. Table 4.3 reports our results on CS-MRI, from which we can confirm

the effectiveness of PnP frameworks. Moreover, using RealSN-DnCNN seems to the clear

winner over all. We also observe that PnP-ADMM generally outperforms PnP-FBS when

using the same denoiser, which supports Theorems 8 and 9.
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4.7 Conclusion

In this work, we analyzed the convergence of PnP-FBS and PnP-ADMM under a Lipschitz

assumption on the denoiser. We then presented real spectral normalization a technique to

enforce the proposed Lipschitz condition in training deep learning-based denoisers. Finally,

we validate the theory with experiments.

Appendix 4.A Preliminaries

For any x,y ∈ RM , write 〈x,y〉 = xTy for the inner product. We say a function f : RM →

R ∪ {∞} is convex if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for any x,y ∈ RM and θ ∈ [0, 1]. A convex function is closed if it is lower semi-continuous and

proper if it is finite somwhere. We say f is µ-strongly convex for µ > 0 if f(x)− (µ/2)‖x‖2

is a convex function. Given a convex function f : RM → R ∪ {∞} and α > 0, define its

proximal operator Proxf : RM → RM as

Proxαf (z) = arg min
x∈RM

{
αf(x) + (1/2)‖x− z‖2

}
.

When f is convex, closed, and proper, the arg min uniquely exists, and therefore Proxf is

well-defined. An mapping T : RM → RM is L-Lipschitz if

‖T (x)− T (y)‖ ≤ L‖x− y‖

for all x,y,∈ RM . If T is L-Lipschitz with L ≤ 1, we say T is nonexpansive. If T is

L-Lipschitz with L < 1, we say T is a contraction. A mapping T : RM → RM is θ-averaged

for θ ∈ (0, 1), if it is nonexpansive and if

T = θR + (1− θ)I,

where R : RM → RM is another nonexpansive mapping.

Lemma 8 (Proposition 4.35 of [BC17]). T : RM → RM is θ-averaged if and only if

‖T (x)− T (y)‖2 + (1− 2θ)‖x− y‖2 ≤ 2(1− θ)〈T (x)− T (y),x− y〉
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for all x,y ∈ RM .

Lemma 9 ([OY02, CY15]). Assume T1 : RM → RM and T2 : RM → RM are θ1 and

θ2-averaged, respectively. Then T1T2 is θ1+θ2−2θ1θ2
1−θ1θ2 -averaged.

Lemma 10. Let T : RM → RM . −T is θ-averaged if and only if T ◦ (−I) is θ-averaged.

Proof. The lemma follows from the fact that

T ◦ (−I) = θR + (1− θ)I ⇔ −T = θ(−R) ◦ (−I) + (1− θ)I

for some nonexpansive R and that nonexpansiveness of R and implies nonexpansivenes of

−R ◦ (−I).

Lemma 11 ([THG18]). Assume f is µ-strongly convex and ∇f is L-Lipschitz. Then for

any x,y ∈ RM , we have

‖(I − α∇f)(x)− (I − α∇f)(y)‖ ≤ max{|1− αµ|, |1− αL|}‖x− y‖.

Lemma 12 (Proposition 5.4 of [Gis17]). Assume f is µ-strongly convex, closed, and proper.

Then

−(2Proxαf − I)

is 1
1+αµ

-averaged.

References. The notion of proximal operator and its well-definedness were first presented

in [Mor65]. The notion of averaged mappings were first introduced in [BBR78]. The idea of

Lemma 10 relates to “negatively averaged” operators from [Gis17]. Lemma 11 is proved in a

weaker form as Theorem 3 of [Pol87] and in Section 5.1 of [RB16]. Lemma 11 as stated is

proved as Theorem 2.1 in [THG18].
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Appendix 4.B Proofs of main results

4.B.1 Equivalence of PNP-DRS and PNP-ADMM

We show the standard steps that establish equivalence of PNP-DRS and PNP-ADMM.

Starting from PNP-DRS, we substitute z(k) = x(k) + u(k) to get

x(k+1/2) = Proxαf (x
(k) + u(k))

x(k+1) = Hσ(x(k+1/2) − (u(k) + x(k) − x(k+1/2)))

u(k+1) = u(k) + x(k) − x(k+1/2).

We reorder the iterations to get the correct dependency

x(k+1/2) = Proxαf (x
(k) + u(k))

u(k+1) = u(k) + x(k) − x(k+1/2)

x(k+1) = Hσ(x(k+1/2) − u(k+1)).

We label ỹ(k+1) = x(k+1/2) and x̃(k+1) = x(k)

x̃(k+1) = Hσ(ỹ(k) − u(k))

ỹ(k+1) = Proxαf (x̃
(k+1) + u(k))

u(k+1) = u(k) + x̃(k+1) − ỹ(k+1),

and we get PNP-ADMM.

4.B.2 Convergence analysis

Lemma 13. Hσ : RM → RM satisfies Assumption (A) if and only if

1

1 + ε
Hσ

is nonexpansive and ε
1+ε

-averaged.

Proof. Define θ = ε
1+ε

, which means ε = θ
1−θ . Clearly, θ ∈ [0, 1). Define G = 1

1+ε
Hσ, which
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means Hσ = 1
1+θ

G. Then

‖(Hσ − I)(x)− (Hσ − I)(y)‖2 − θ2

(1− θ)2
‖x− y‖2︸ ︷︷ ︸

(TERM A)

=
1

(1− θ)2
‖G(x)−G(y)‖2 +

(
1− θ2

(1− θ)2

)
‖x− y‖2 − 2

1− θ
〈G(x)−G(y),x− y〉

=
1

(1− θ)2

(
‖G(x)−G(y)‖2 + (1− 2θ)‖x− y‖2 − 2(1− θ)〈G(x)−G(y),x− y〉︸ ︷︷ ︸

(TERM B)

)
.

Remember that Assumption (A) corresponds to (TERM A) ≤ 0 for all x,y ∈ RM . This is

equivalent to (TERM B) ≤ 0 for all x,y ∈ RM , which corresponds to G being θ-averaged by

Lemma 8.

Lemma 14. Hσ : RM → RM satisfies Assumption (A) if and only if

1

1 + 2ε
(2Hσ − I)

is nonexpansive and 2ε
1+2ε

-averaged.

Proof. Define θ = 2ε
1+2ε

, which means ε = θ
2(1−θ) . Clearly, θ ∈ [0, 1). Define G = 1

1+2ε
(2Hσ−I),

which means Hσ = 1
2(1−θ)G+ 1

2
I. Then

‖(Hσ − I)(x)− (Hσ − I)(y)‖2 − θ2

4(1− θ)2
‖x− y‖2︸ ︷︷ ︸

(TERM A)

=
1

4(1− θ)2
‖G(x)−G(y)‖2 +

(
1

4
− θ2

4(1− θ)2

)
‖x− y‖2

− 1

2(1− θ)
〈G(x)−G(y),x− y〉

=
1

4(1− θ)2

(
‖G(x)−G(y)‖2 + (1− 2θ)‖x− y‖2 − 2(1− θ)〈G(x)−G(y),x− y〉︸ ︷︷ ︸

(TERM B)

)
.

Remember that Assumption (A) corresponds to (TERM A) ≤ 0 for all x,y ∈ RM . This is

equivalent to (TERM B) ≤ 0 for all x,y ∈ RM , which corresponds to G being θ-averaged by

Lemma 8.
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Proof of Theorem 8. In general, if operators T1 and T2 are L1 and L2-Lipschitz, then the

composition T1T2 is (L1L2)-Lipschitz. By Lemma 11, I − α∇f is max{|1− αµ|, |1− αL|}-

Lipschitz. By Lemma 13, Hσ is (1 + ε)-Lipschitz. The first part of the theorem following from

composing the Lipschitz constants. The restrictions on α and ε follow from basic algebra.

Proof of Theorem 9. By Lemma 12,

−(2Proxαf − I)

is 1
1+αµ

-averaged, and this implies

(2Proxαf − I) ◦ (−I)

is also 1
1+αµ

-averaged, by Lemma 10. By Lemma 14,

1

1 + 2ε
(2Hσ − I)

is 2ε
1+2ε

-averaged. Therefore,

1

1 + 2ε
(2Hσ − I)(2Proxαf − I) ◦ (−I)

is 1+2εαµ
1+αµ+2εαµ

-averaged by Lemma 9, and this implies

− 1

1 + 2ε
(2Hσ − I)(2Proxαf − I)

is also 1+2εαµ
1+αµ+2εαµ

-averaged, by Lemma 10.

Using the definition of averagedness, we can write

(2Hσ − I)(2Proxαf − I) = −(1 + 2ε)

(
αµ

1 + αµ+ 2εαµ
I +

1 + 2εαµ

1 + αµ+ 2εαµ
R

)
where R is a nonexpansive operator. Plugging this into the PNP-DRS operator, we get

T =
1

2
I − 1

2
(1 + 2ε)

(
αµ

1 + αµ+ 2εαµ
I +

1 + 2εαµ

1 + αµ+ 2εαµ
R

)
=

1

2(1 + αµ+ 2εαµ)︸ ︷︷ ︸
=A

I − (1 + 2εαµ)(1 + 2ε)

2(1 + αµ+ 2εαµ)︸ ︷︷ ︸
=B

R, (4.2)
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where define the coefficients A and B for simplicity. Clearly, A > 0 and B > 0. Then we have

‖Tx− Ty‖2 = A2‖x− y‖2 +B2‖R(x)−R(y)‖2 − 2〈A(x− y), B(R(x)−R(y))〉

≤ A2

(
1 +

1

δ

)
‖x− y‖2 +B2 (1 + δ) ‖R(x)−R(y)‖2

≤
(
A2

(
1 +

1

δ

)
+B2 (1 + δ)

)
‖x− y‖2

for any δ > 0. The first line follows from plugging in equation 4.2. The second line

follows from applying Young’s inequality to the inner product. The third line follows from

nonexpansiveness of R.

Finally, we optimize the bound. It is a matter of simple calculus to see

min
δ>0

{
A2

(
1 +

1

δ

)
+B2 (1 + δ)

}
= (A+B)2.

Plugging this in, we get

‖Tx− Ty‖2 ≤ (A+B)2‖x− y‖2 =

(
1 + ε+ εαµ+ 2ε2αµ

1 + αµ+ 2εαµ

)2

‖x− y‖2,

which is the first part of the theorem.

The restrictions on α and ε follow from basic algebra.

129



CHAPTER 5

Conclusions

In this final chapter, we summarize the main results in this dissertation.

In Chapter 2, we have proposed two efficient online convolutional dictionary learning

methods: Modified SGD and Surrogate-Splitting. Both of them have a theoretical convergence

guarantee and show better performance on both time and memory usage than the state-of-

the-arts.

Chapter 3 presents multi-fold contributions in advancing the theoretical understanding of

LISTA, a fast sparse coding solver learned from data.

• We give a result on asymptotic coupling between the two weight matrices in LISTA.

This result leads us to eliminating one of them, thus reducing the number of trainable

parameters. This elimination still retains the theoretical and experimental performance

of LISTA.

• Furthermore, we introduce a thresholding scheme for support selection, which is ex-

tremely simple to implement and significantly boosts the practical convergence.

• ISTA is generally sublinearly convergent before its iterates settle on a support. We

prove that, however, there exists a sequence of parameters that makes LISTA (and

its variants) converge linearly since its first iteration. The learned parameters are

interpretable.

• Based on the above theoretical results, we show that the layer-wise weights in LISTA

need not being learned from data. That is based on decoupling LISTA training into a

data-free analytic optimization stage (coherence minimization) followed by a lighter-

weight data-driven learning stage without compromising the linear convergence rate.
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The new scheme, called Analytic LISTA, provides important insights into the working

mechanism of LISTA. Experiments shows ALISTA to perform comparably with previous

LISTA models with much lighter-weight training.

• We extend the above discussions and conclusions to convolutional sparse coding, and

introduce an efficient algorithm to solve the convolutional version of coherence mini-

mization.

To our best knowledge, this is the first attempt to establish a theoretical convergence rate

(upper bound) of LISTA directly. Our proofs do not rely on any indirect resemblance,

e.g., to AMP [BS16] or PGD [GEB18]. The theories are supported by extensive simulation

experiments, and substantial performance improvements are observed.

Chapter 4 presents the convergence analysis of two Plug-and-play methods, Plug-and-play

forward-backward splitting (PNP-FBS) and PNP-ADMM. For the analysis, we assume the

denoiser (regularizer) satisfies a certain Lipschitz condition that corresponds to the denoiser

being close to the identity map, which is reasonable when the estimated noise level is small.

In particular, we do not assume that the denoiser is nonexpansive or differentiable since most

denoisers do not have such properties. Under the assumption, we show that the PnP methods

are contractive iterations. We then propose real spectral normalization (realSN), a technique

based on [MKK18] for more accurately constraining deep learning-based denoisers in their

training to satisfy the proposed Lipschitz condition. Finally, we present experimental results

validating our theory.
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[Mor65] J. J. Moreau. “Proximité et dualité dans un espace Hilbertien.” Bulletin de la
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