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RAINFALL ESTIMATION USING A CLOUD 
PATCH CLASSIFICATION MAP 

Kuo-Lin Hsu, Yang Hong, and Soroosh Sorooshian 
Department of Civil and Environmental Engineering, University of California, Irvine, 
CA, USA 

1 INTRODUCTION 
The development of meteorological satellite systems has been innovating 
precipitation observations beyond traditional means and enabling frequent 
observation of precipitation distribution over the remote territories and the 
broad oceanic regions. In recent years, satellite rainfall estimates from 
algorithms using geostationary satellite (GOES) sensors and combined 
GOES and Polar Operational Environmental Satellites (POES) have been 
rapidly evolving to a certain degree that are suitable as a supplement of the 
ground in situ observations in providing precipitation information in the 
hydrological applications. Many precipitation algorithms developed using 
GOES satellites capable of providing high spatial (4 km) and temporal (15 

 

     Although the GOES images are frequently used to measure cloud motion 
at high resolution, the long-wave infrared image does not provide sufficient 
information to infer the actual rainfall at the ground surface. Experiments 
show that the corresponding pixel infrared cloud top brightness temperature 
and surface rainfall rate is not unique.  Therefore, from the local pixel based 
mapping, a fixed temperature and rainfall rate (Tb-R) function is not capable 

estimates, strategies have been developed using multiple GOES channels, 
and adjustment or merging rainfall estimates from multiples sources (Adler 
et al. 1994; Ba and Gruber 2001; Bellerby et al. 2000; Fulton et al. 1998; 
Hsu et al. 1997; 1999; Huffman et al. 1997; Huffman et al. 2001; Levizzani 
et al. 2002; Scofield 1987; Sorooshian et al. 2000; Tapiador et al. 2002; Turk 
et al. 1998; Vicente et al. 1998; Xie and Arkin 1997; Xu et al. 1999).  

EURAINSAT and the Future, 329–342. 

min) resolution images are considered a unique source for the observation 
short-term extreme precipitation event (Scofield and Kuligowski 2002). 

of fitting surface rainfall rates well at all times. To improve the quality of 
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     The cloud-top temperature and rainfall relationship is varied with respect to 
the cloud types and their environmental conditions. Patch-based approaches 
view the patch coverage as a unit; precipitation under the patch coverage is 
assigned based on the cloud types, where heavy rainfalls are assigned to the 
convective active regions and lighter or no rain is assigned to stratiform and 
cirrus cloud regions. Figure 1 shows the evolution stage of a convective storm. 
Higher rainfall intensities are usually found during the towering to mature 
stages, while lower or no-rain appears during the dissipating stage. From the 
towering stage to the mature stages, cloud top’s pixel temperatures near the 
convective core grew colder, while rainfalls intensified. In the dissipating 
stage, on the other hand, cloud top temperatures were cold, but had very mild 
or no corresponding rain. 

 
Figure 1. Evolution stages of a convective storm and its rainfall distribution curves. 

Figure 2. Single fitting curve models vs. a multiple fitting curve model. 

 
Figure 2a shows the scatterplot of Tb-R relationship from a set of GOES 
image and radar rainfall. The data points are widely spread, which cannot be 
fitted by a single function (see Fig. 2b). We propose a cloud patch-based 
rainfall allocation. Cloud patch is assigned a specific Tb-R curve according 
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to their coldness, size, and texture features. Figure 2c shows 400 Tb-R curves 
are assigned to the fitting of the scatter points in Fig. 2a. 
     In this study, a patch-based cloud classification and rainfall estimation 
algorithm is introduced. This algorithm processes raw satellite image data into 
the pixel rainfall by series of stages. Details of the algorithm development are 
described in the following sections. 

2 CLOUD PATCH CLASSIFICATION AND RAINFALL 
ESTIMATION 

Humans analyze the world surrounding them by observing and interpreting 
the patterns that occur in time sequence. Through the distinct features of the 
patterns shown, knowledge is extracted by classification information into a 
number of categories and subcategories. In the naming of the cloud system, 
for example, we classify cloud types as convective and stratus clouds based 
on their visual appearance in the atmosphere. Convective clouds are puffy 
and vertically piled up, whereas the stratus are flat and layered, sometimes 
in fibrous forms. Fine classification of cloud systems is mainly based on 
the cloud system in different altitude levels, as cumulus, altocumulus, and 
cumulonimbus for the convective clouds, and stratocumulus, altostratus, 
cirrostratus, and cirrus for the stratus clouds.  

 

Figure 3. A cloud patch classification and rainfall estimation system. 
 
Observation of the mechanisms of the cloud systems suggests that different 
types of clouds contain different kinds of thermal ascending and cooling 
structures and form various distributions of water content. Layer clouds have 
relatively uniform distribution of water content, while convective clouds have 
highly variable distribution of water content. Based on their thermal structure, 
water contents and distribution, different clouds types give diversified 
precipitation distributions over the ground surface. Although cloud systems 
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are different in nature, such as high and low, layer or convective clouds, they 

procedure to detect the cloud types and their associated precipitation from a 
computer model is not an easy task. It requires great effort to process a huge 
amount of satellite cloud images and build a cloud patch pattern recognition 
system which eventually can be used as a tool in providing estimation of 
precipitation amount and distribution of a rain cloud.  
     Using computer image processing and pattern recognition techniques, we 
developed a patch-based cloud classification and rainfall estimation system 
based on the satellite infrared images. Illustration of the classification system 
is depicted in Fig. 3 and further descriptions of each stage are as follows. 

2.1 Cloud patch segmentation 

remote sensing, and image analysis. It can be considered a preprocess step 
before description and recognition of objects. Cloud segmentation is operated 
through a process that may eventually divide the image into separable 
patches which are strongly related with cloud systems of the real world 
contained in the image.  
     A simple approach to separate patch objects from the background image is 
by applying a constant brightness threshold. The approach separates the gray 
image into two levels, high and low. It is simple and makes computation easy. 
Although a single threshold, 253 K for example, seems to work well in the 
separation of cloud patch from clear sky or no-precipitating regions, within the 
patch coverage, it still contains several cloud systems existing at different 
altitudes with various thermal structures and sizes. Without further separation 
of those cloud systems from a warm threshold, those distinctive cloud systems 
are mixed together. As a result the precipitation distribution inside the cloud 
patch cannot be estimated accurately.  
     For a better separation of local cloud systems, a watershed-based 
(topography) segmentation approach is proposed (Vincent and Soille 1991; 
Dobrin et al. 1994). The algorithm starts from finding the altitude local 
minima (Fig. 4a), and then follows to fill the basins from the bottom (see Fig. 
4b). The water continues to fill all basins. When two basins would merge from 
the rising the water level, a reservoir is set to separate them (Fig. 4c). While 
water level continues to rise, individual basins are formed. The process stops 
when a designed water table is reached (Fig. 4d).  
     Figure 5 shows the cloud image segmentation using a constant (253 K) 
threshold and watershed-based separation by gradually increasing threshold 
temperature from 210 K to 253 K. The source infrared image is listed in Fig. 
5a. The constant threshold T253K used to separate pixels under the cloud 
coverage is listed in Fig. 5b. It shows that several cloud systems are presented 
in the patch (see Fig. 5a), but a single threshold is not capable of dividing them 

are discernible with the human eye. However, the implementation of an automatic 

Segmentation of image data is an important problem for the computer vision, 
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into separated patch objects. By applying watershed-based segmentation (Fig. 

patches under the threshold temperature of 253 K are identified (see Fig. 5f). 
 

Figure 4. Watershed-based segmentation approach. 

Figure 5. Cloud image separation using watershed-based segmentation approach. 

2.2 Patch feature extraction 
After the cloud image is separated into a number of objects (patches), it is 
required to represent the object scenes with a series of attributes or features. 
Features that are related to the status of cloud patches in the atmosphere, 
such as the cloud height (lowest temperature), cloud size and shape, surface 
textures, surface gradients are extracted for the later patch classification. 

coldness, geometry, and texture (see Table 1). In addition, all the features 
listed in Table 1 are extracted from three temperature threshold levels     
(220 K, 235 K, 253 K). 

appearance. Cloud patch features extracted from three separated temperature 
levels, at 220 K, 235 K, and 253 K demonstrate the existence of the cloud 
patches at different altitudes in the atmosphere. Figure 6 shows two sets of 

j and k. After image segmentation, clouds are separated into distinguishable 

vertical growth and overshooting top, while convective cloud patch k is in the 
towering stage, where cloud top brightness temperature is higher than 220 K 
and therefore the feature vectors at KV220 are not available (void). Those three 

     Convective clouds, for example, tend to show puffy and piled up features, 

patch features as extracted from two adjacent cloud patches, denoted as index 

Basically, those selected patch features are separated into three categories: 

patches. The convective cloud patch j is the mature stage with extensive 

whereas stratiform clouds are flat and layered and sometime fibrous in their

5c–f), “basins” are filled and separated gradually. Eventually five cloud 
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temperature thresholds give a broad classification of cloud patches existing in 
different altitudes. In addition to the size and texture features, fine 

 
Table 1. Input features extracted from cloud patches. 

Coldness Features of Cloud Patch 
1. Minimum temperature of a cloud patch (Tmin) 
2. Mean temperature of a cloud Patch (Tmean) 

Geometric Features 
3. Cloud patch area (AREA) 
4. Cloud Patch Shape Index (SI) 

Texture Features 
5. Standard deviation of cloud patch temperature (STD) 
6. Mean value of local (5×5 pixels) standard deviation of cloud temperature 

( 55 xMSTD ) 

7. Standard deviation of local (5×5 pixels) standard deviation of cloud patch 
( 55: xSTDSTD ) 

8. Gradient of cloud cold top brightness temperature (TOPG) 
9. Gray image texture (Maximum Angular Second Moment) 

2.3 Cloud patch classification 
Classification includes concepts such as categorization, identification, reco-
gnition, clustering, and partitioning. Supervised and unsupervised learning 
techniques are often addressed for this purpose. In this study, we use an 
unsupervised clustering analysis to classify patch samples into a number of 
cloud patch groups. Clustering is proceeded based on the similarities of 
patches measured in the their feature space. 
     The Self-Organizing Feature Map (SOFM) clustering algorithm is used 
for this purpose (see Fig. 7) (Kohonen 1995; Hsu et al. 1999). The output 
layer of SOFM is a two-dimensional array of units (or clusters/groups), 
which are connected to their neighbor units and to the input features. A set of 
adjustable parameters, called weights, is assigned to the connections between 
the input features and output units. By sequentially assigning training 
patterns, the connection weights are adjusted and finally stabilized, i.e., the 
responses of the output units become ordered. As a result, the similar input 
features are assigned to the same output unit.  
 

classification of cloud patch status and their association with the preci- 
pitation amount and distribution in the patch coverage may be inves-
tigated. 
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1. Assign random numbers to the weights ijw , where i is the index of input 
feature and j is the index of output units.  

)(
220

pV
K

, 
)(235 pV K , )(253 pV K ], p=1...N, where N is the number of training samples. 

3. Select a normalized patch sample ],1[),( NmmV ∈  and determine the 
output unit that has minimized distance between input and connection 
weights: 

)(minarg* mVjw
j

j −=    (1) 

 

Figure 6. Cloud Patch Feature extraction.

A brief description of the training procedure is summarized below; a detailed 

Figure 7. Classification using Self-Organizing Feature Map. 

2. Collect a set of cloud patch samples and normalized as: V ( p) = [

description of the training procedure can be found in Kohonen (1995) and 
Hydkin (1994): 
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4. For all the units cj within a neighborhood of radius r of cj
*, perform the 

weight update with step size (learning rate) α > 0: 
 

))(( ijwmivijwijw −+= α    (2) 

 
ij is converged, or reduce r and α, and go to step 3. 

2.4 Patch rainfall estimation 

segmentation and cloud patch classification. The next stage is to fit a specific 
rainfall distribution to each classified cloud patch group. To assign rainfall 
in the classified patch group, ground radar and low-orbit satellites micro-
wave observations are likely to provide precipitation measurements. For the 
reliable representation of the classified cloud patch groups and their associ-

     After the patch classification is completed through SOFM training. Assume 
that a given cloud patch sample is assigned to patch group, cj, in the SOFM 
layer. The concurrent cloud temperatures and precipitation pixels under the 
cloud patch coverage are sampled out and assigned to the patch group cj. 
Allocation of pixel rainfall and temperature to the patch groups continues until 
all the patch samples and rainfall observations are processed. With a sufficient 
number of samples allocated, a large amount of pixel rainfalls and 
temperatures are assigned to each of the patch groups in the SOFM layer. The 
next step was to assign the GOES long-wave infrared temperature (Tb) and 
hourly radar rainfall rate (R) relationship in each classified patch group. 
     The Probability Matching Method (PMM) (Atlas et al. 1990) was used to 
match the relationship between the GOES long-wave infrared temperature 
and hourly radar rainfall rate. A rainfall probability density function (PDF) is 
calculated for each patch group in the SOFM layer based on the collected Tb 
and R samples. It is assumed that lower Tb pixels are associated with higher 
rain rates. With rainfall rates and infrared brightness temperatures consists of 
a same accumulated probability matched below: 
 

 )()()()(1 *

0

*
*

*
RFdRRfdTTfTF

R

T bbb
b

===− ∫∫
∞

   (3) 

 
where )( bTf  and )(Rf  are the PDFs of brightness temperature and rainfall 
rate; whereas )( *

bTF  and )( *RF are accumulated probability distribution 
functions of cloud top brightness temperature and radar rainfall, respectively.  

5. Terminate if the w

Up to the current stage, only a satellite cloud image is required in the image 

ated rainfall statistics, samples need to be collected across different seasons
and geolocations.  
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In the final step Tb and R data are binned and averaged based on a small 
temperature increment (∆Tb) in each patch group. The Tb-R relationship is 
fitted by a nonlinear function below: 
 

])(exp[ 5
4321

kvk
b

kkkk vTvvvR +⋅⋅+=    (4)   
 
where R is the rainfall rate (mm h–1), Tb is the cloud top brightness 
temperature (K), and vk

1, vk
2, vk

3, vk
4, and vk

5 are parameters with respect to 
patch group k of SOFM layer parameters [vk

1, vk
2, vk

3, vk
4, vk

5] are found from 

3 EXPERIMENTS 

0.04o × 0.04o latitude/longitude scale. The size of the classification groups 
was a set of 20 × 20 output units in the SOFM layer (see Fig. 8a). The 
rational for the selection of the classification group size is that the higher the 
number of units is assigned to the SOFM layer, the finer the classification of 
cloud patch samples may be obtained.  

matrix, Ijw . After SOFM is trained, Ijw  is the sample mean of an input feature 
I assigned to the cluster j. Here only three features are listed (see Fig. 8b–d). 
They show the mean sample value of input patch feature (Tmin, AREA235K, and 
MSTD5x5 at 235K
     It is worth noting the clustering process has organized the Tmin (see Fig. 

temperatures appear in the lower region of the map range from 220 K to   
200 K, from left-to-right locations. This means a patch sample with Tmin > 
230 K will be assigned to the group near the upper-right-hand corner of the 
SOFM layer. Likewise, a patch sample with Tmin < 210 K will be assigned to 
the lower-right-hand corner of the SOFM layer. The average pixel rain rate 

min feature. In 
general the rain rate map follows the Tmin feature map, where the lower-half 
SOFM units appear to contain higher average pixel rain rate.  
     The AREA235K feature is the patch size below the 235 K threshold. The 
circled regions of Fig. 8c are associated with large cloud patches. The 
corresponding patch rainfall volume (see Fig. 8e) is relatively higher in those 
circled spots, especially on the one where Tmin is lower than 205 K. 
 
 
 

an optimization scheme (Duan et al. 1992). 

) for the 20 × 20 classification units in the SOFM layer.  

     The input feature map presents the contour map of the SOFM weight 

8b) in a manner that the higher temperatures appear in the upper region of the 
map around 220 K to 240 K from the left to the right hand side, while the lower 

map (see Fig. 8f) also visually shows its relevance to the T

One month (June 1999) of GOES and stage IV radar data (NCEP) covering 
the continental USA were collected and processed to the pixel resolution of 
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     Figure 8d shows the feature map of the average of local standard 
deviation of 5 × 5 pixels at 235 K-threshold (MSTD5x5 at 235K). This feature 
map represents texture variation in a cloud patch. The circled regions are 

5x5 at 235K
highly average pixel rain rate (see Fig. 8f). In addition, those high MSTD5x5 at 

235K regions are spread from warm to cold cloud patch group (see Fig. 8b).  
     The calibrated Tb-R curves with respect to the 20 × 20 output units of 
SOFM layer are listed in Fig. 9. With reference to the Tmin shown in Fig. 8b, 
one could identify those Tb-R curves being associated with patch minimum 
temperature ranged from 240 K to 200 K. Accompanying with the input 
feature maps of AREA235K (Fig. 8c) and MSTD5x5 at 235K (Fig. 8d), we may 
further explain the Tb-R curves and their relevance to the various cloud top 
temperatures (Tmin), patch sizes (AREA235K), and patch texture variations 
(MSTD5x5 at 235K).  
 

 
 

Figure 8. Input feature maps (see also color plate 12). 
 

In Fig. 9b, several regions, denoted as G0-G6, containing special Tb-R curve 
groups, are located. Cloud groups on G0 are no-rain warm cloud; cloud groups 
on G1 and G2 are around the same Tb range, but associated with two different 
slopes of Tb-R curves. Both G1 and G2 contain Tmin around 230 K and higher, 

1 5x5 at 235K  than G2 
region. Cloud groups on G3 and G4 also represent cloud patch groups with Tmin 
around 215 K and above. G4 group has much higher local texture variations 

denoted with higher values of MSTD , which apparently consist of 

however, a cloud patch classified in G  region has a lower MSTD
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Figure 9. Cloud patch groups (G0 to G6) contain special Tb-R curves. 

 
Figure 10 shows the lifetime of a convective cloud system and its Tb-R 
curves. The time period from 1440 UTC to 1900 UTC is the towering to 
mature stages of the cloud patch, while after 1900 UTC, the cloud patch is in 
the recession and decay stage. The cloud Tb distribution in the evolution 
stage of cloud patch is listed in Fig. 10a, while the corresponding sorted Tb-R 
distribution is displayed in Fig. 10b (the dot plots are the averaged radar 
rainfall binned at 1 K Tb interval. The line plots are the fitting curves based 
on the regression functions). They show that the Tb-R curves progressively 
varied during the evolution stage of a convective storm. One can imagine 
that the estimation of rainfall rates may not perform well, if only one fixed 
Tb-R function is assigned to all of the stages. 
     Figure 11 shows hourly rainfall estimates over east New Mexico area 
during a consecutive 6-h time period, from 00UTC to 05UTC of July 4, 
2002. Precipitation observation from NCEP stage IV radar estimates is listed 
in the upper panel, while the rainfall estimates from cloud patch 
classification system is listed in the lower panel. The image is processed at 
0.04o × 0.04o latitude/longitude scale. It shows that rainfall regions are well 
matched from both radar and model’s estimates. 

(MSTD5x5 at 235K ) than G3 group. As a result, the slopes of Tb-R curves are 
steeper on group G4. Likewise, the slopes of Tb-R curves are steeper on G6 
region than on G5 region. Although both regions represent patches Tmin 
around 200 K, the MSTD5x5 at 235K map (Fig. 8d) reveals that the higher MSTD 
value, the steeper Tb-R curves. 
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Figure 10. The evolution process of a convective cloud and its Tb-R curves. 
 

Figure 11. Rainfall estimates during 6-h period. 
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4 CONCLUSIONS 
This paper describes a cloud patch classification approach applied to the 
surface rainfall estimation. This approach implements image processing and 
pattern classification techniques to the analysis of long-wave infrared (10.7 
µm) cloud images of GOES satellites. In low-level image processing, 

patches from their image background. This is followed by image extraction 
and interpretation where cloud patches are treated as independent objects 
and are described by object features such as patch coldness, size, shape, and 
texture. Classification of cloud patch objects is based on an unsupervised 
clustering scheme. When the patch rainfall is assigned to the classified patch 
group, the interpretation of the cloud patch property and rainfall relation-
ships are established. Finally, the rainfall distribution of the classified patch 
group is described by a set of infrared brightness temperature and rainfall 
rate (Tb-R) functions. Parameters of the nonlinear Tb-R function are 
calibrated from the spatial and temporal co-located satellite image and radar 
rainfall map.  
     Multiple seasons of rainfall estimates were generated and evaluated using 
ground gauge and radar data. Details of the evaluation performance can be 
found from Hong et al. (2004). For the potential extension of precipitation 
estimates over the oceans and remote regions, we are exploring using 
TRMM satellite rainfall measurements in the calibration of model para-
meters. Evaluation of those results will be discussed in a separate report. 
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COLOR PLATES 
 

Plate 1.  Time longitude sections at 5º N–5º S, January 1997–October 1998; GPCP Version 2 monthly, 
pentad and daily data. (Figure 3 of Gruber et al., Section 1) 
 
Plate 2.  Air pollution decreases the drop sizes of convective clouds over the British Isles.  This NOAA-
AVHRR image from 18 April 1995, 1337 UT was analyzed by the scheme of Rosenfeld and Lensky 
(1998), showing convective rain clouds with large drops (re > 20 µm, well exceeding the 14 µm 
precipitation threshold) in the northwesterly flow from the Atlantic Ocean.  The clouds interact with the 
air pollution over the populated land areas and become composed of small drops (re < 10 µm, too small 
for precipitating) that appear in yellow shades.  Note that the sharp distinction of the clouds around the 
latitude of Glasgow.  Northern Scotland is sparsely populated and hence the clouds remain pristine with 
large drops, as indicated by the red shades. (Figure 3 of Rosenfeld, Section 1) 
 
Plate 3.  MSG image from 20 May 2003 1342 UTC, over central Africa at a 1200 × 1200 km2 rectangle 
between 1–12N and 15–26E. The area shows the transition between the relatively microphysically 
maritime clouds over the forested area (dark surface) and microphysically continental clouds over the dry 
lands of the Sahel to the north (bright surface). The T-re relations of the continental clouds (1) show much 
smaller re for a given T compared to the maritime clouds (2). The median re of the maritime clouds (the 
yellow line) saturates near T = –20°C, indicating glaciation at that temperature. The small median re at 
area 1 even above the –40°C isotherm indicates homogeneous glaciation of the cloud water and hence 
low precipitation efficiency. The color scheme is red for the visible, green for 3.9 µm reflectance 
component, and blue for temperature. For full description and interpretation of the color table is given in 
Rosenfeld and Lensky (1998). The T-re lines represent percentiles of re for a given T in 10% steps for 
each line, between 5% and 95%. The median is between the yellow and green lines. (Figure 4 of 
Rosenfeld, Section 2) 
 
Plate 4.  Sample of the diffusion rainfall estimation method of Tapiador et al. compared with an IR-based 
procedure and the actual radar data. (Figure 6 of Tapiador et al., Section 2) 
 
Plate 5.  Mean rainrate (RR) in the fore/after TB plane at 19.3H GHz (left panels) and 85.5H GHz (right 
panels). Top and bottom panels correspond to the simulations of the Goddard Cumulus Ensemble (GCE) 
TCOF22 and MIDACF.  (Figure 4 of Battaglia et al., Section 2) 
 
Plate 6.  (a) Retrieved conditional rainfall; (b) probability of rain; (c) retrieved conditional rain for 
probability of rain greater than 50%; (d) uncertainty of rain [%].  Rain retrieval algorithm of Kummerow 
et al.  (Figure 7 of Kummerow et al., Section 3) 
 
Plate 7.  24-h rainfall potential (inches) (right) derived from SSM/I instantaneous rain rates (left) on 1510 
UTC, 18 September 2003 for Hurricane Isabel.  (Figure 1 of Ferraro, Section 3) 
 
Plate 8.  (a) Fraction of precipitation events with snowfall at the surface over the northern Atlantic for 
October 2002; (b) total number of precipitation events found per 0.5 × 0.5 degree box; (c) same as (a) but 
for January 2003; (d) same as (b) but for January 2003.  (Figure 4 of Bennartz, Section 3) 
 
Plate 9.  Mean surface rain rates, convective rain proportions, and latent heating rates at 7 and 3 km 
altitude, derived from TMI observations from January 2000, using the GPROF algorithm.  (Figure 5 of 
Olson et al., Section 3) 
 
Plate 10.  Final combined HQ+VAR precipitation field computed with the Real-Time MPA for 1500 
UTCon  15 September 2004. Zero values are colored white if computed by the HQ and gray if by VAR; 
all other precipitation values have the same color value for both sources.  (Figure 3 of Huffman et al., 
Section 4) 
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Plate 13.  Precipitation (mm day–1) for January 1994 as observed in the satellite estimates of GPI, SSM/I 
scattering (SCT), SSM/I emission (EMS), OPI, MSU, the gauge-based analysis, the NCEP/NCAR 
reanalysis (REANAL), and the merged analysis.  (Figure 1 of Xie et al., Section 4) 
 
Plate 14.  10 November 2001, 0300 UTC; upper left: BOLAM model; upper right: combined IR-MW 
NRL Turk algorithm estimate; bottom: IR NRE (neural rain estimator) estimate.  (Figure 5 of Kästner, 
Section 5) 
 
Plate 15.  12-h accumulated precipitation (mm h–1), 1200 UTC, 10 Nov. 2001 (Algiers flood): estimated 
from satellite (upper left), reference forecast (R, upper right), and for the assimilation run (N, bottom) of 
the BOLAM model.  (Figure 5 and 6 of Buzzi and Davolio, Section 6) 
 
Plate 16.  Analysis increments of TCWV (in kg m-2) on April 7, 2003, 0000 UTC from all observations 
(a) and rain observations (b). (c) 48 h-24 h precipitation forecast (in 10-3 mm) initialized on April 1, 2003, 
1200 UTC with rain observations.  (Figure 5 of Bauer et al., Section 6) 
 
Plate 17.  6 August 2002. Rain intensity maps in mm h–1 for the Emilia-Romagna storm case study. All 
times are UTC. (a) Radar map at 0012; (b) NRLT for the slot starting at 0000; (c) Radar map at 0042; (d) 
NRLT for the slot starting at 0030; (e) NRLT for the slot starting at 0630; (f) PMW NESDIS algorithm 
for the SSM/I orbit 08D (F13) starting at 0627; (g) NRLT for the slot starting at 0700; (h) Radar map at 
0642; (i) NRLT for the slot starting at 0800; (j) PMW NESDIS algorithm for the SSM/I orbit 10D (F14) 
starting at 0828; (k) NRLT for the slot starting at 0800; (l) Radar map at 0842; (m) NRLT for the slot 
starting at 0930; (n) PMW NESDIS algorithm for the SSM/I orbit 12D (F15) starting at 0941; (o) NRLT 
for the slot starting at 1000; (p) Radar map at 0942.  (Figure 1 of Torricella et al., Section 7) 
 
Plate 18.  January 1-10 (decade 1) 2003 rainfall accumulation estimate in mm (top), and maize yield 
projection (% yield potential) based on estimated rainfall and an empirical equation (bottom). White 
spaces denote zero yield potential.  (Figure 7 and 8 of Liu et al., Section 7) 
 
Plate 19.  MM5 and discrete ordinate Jacobian simulations at 424.763 ± 4 GHz of Hurricane Bonnie at 
landfall (courtesy of A. J. Gasiewski).  (Figure 8 of Bizzarri et al., Section 8) 
 
Plate 20.  (a) CWCs of six hydrometeor species [cloud droplets (top left), rain drops (top middle), graupel 
(top right), pristine crystals (bottom left), snowflakes (bottom middle), and aggregates (bottom right)] for 
inner grid of UW-NMS snowstorm simulation at time step 1800 s (i.e., 0600 UTC, 25 January 2000).  
Vertical lines indicate path of vertical cross-section in Plate 18b. 
(b) Synthetic snow IWC retrievals for selected cross-section of eastern U.S. snowstorm simulation.  Left 
panels from top to bottom are: (1) EGPM radiometer retrieval using only four lower window frequencies, 
i.e. 18.7, 23.8, 36.5 and 89 GHz (similar to four SSM/I frequencies), (2) as previously but using all five 
window frequencies including 150 GHz, (3) as previously but using all five window frequencies plus four 
pairs of sounding channels in 50–54 and 118 GHz regions, (4) combined EGPM radar-radiometer 
retrievals, and for comparison (5) model “truth”.  For each retrieval case, associated right panels show 
estimated average profile (blue solid line) together with model “truth” average profile (red line), plus 
retrieval error standard deviations at various atmospheric levels (blue error bars).  (Figure 3 and 7 of 
Mugnai et al., Section 8) 
 
Plate 21.  Distributions of monthly rainfall accumulation over global tropics for Feb 1998 produced by 
most recent version (V6) of standard TRMM L2 / L3 algorithms: (1) top panel shows TMI-only (L2 alg 
2a12) (see Kummerow et al. 1996, 2001; Olson et al. 2001, 2007); (2) 2nd from top panel shows PR-only 
(L2 alg 2a25) (see Iguchi et al. 2000; Meneghini et al. 2000); (3) 3rd from top panel shows TMI-PR 
Combined (L2 alg 2b31) (see Haddad et al. 1997; Smith et al. 1997); and (4) bottom panel shows TMI-
only (L3 alg 3a11) (see Wilheit et al. 1991; Hong et al. 1997; Tesmer and Wilheit 1998).  Color bar 
denotes average rainrate in mm day–1.  (Figure 3 of Smith et al., Section 8) 

 
 

Plate 11.  Cumulated rainfall (mm h–1) from the MICRA algorithm on November 1–17, 1999, within the 
Meteosat sector.  (Figure 2 of Marzano et al., Section 4) 
 
Plate 12.  Input feature maps of the rainfall estimation technique based on cloud patch classification maps 
of Hsu et al.  (Figure 8 of Hsu  et al., Section 4) 
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