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ABSTRACT OF THE DISSERTATION

Advances in Multi-agent Decision Making Systems with Adaptive Algorithms

by

Ashwin Verma

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California San Diego, 2024

Professor Behrouz Touri, Chair

With the growing demand for computation and the increasing prevalence of resource-

constrained agents, the importance of leveraging a network of agents to solve complex problems

has become often more pronounced. A multi-agent system consists of interconnected agents

with computing capabilities, working collaboratively towards a shared objective. Distributed

computation using a multi-agent system provides benefits with regards to privacy, reduction of

computational load and resources. In this dissertation, we study two problems that benefit from

being solved with the help of a multi-agent system namely (i) distributed convex optimization

xiv



and (ii) distributed fact-checking.

In part I, we consider a set of agents collaboratively solving a distributed convex

optimization problem, asynchronously, under stringent communication constraints. In such

situations, when an agent is activated and is allowed to communicate with only one of its

neighbors, we would like to pick the one holding the most informative local estimate. We propose

new algorithms where the agents with maximal dissent average their estimates, leading to an

information mixing mechanism that often displays faster convergence to an optimal solution

compared to randomized gossip.

In Part II, we explore a distributed fact-checking system to detect fake news using inexpert

agents. Each agent labels news as true or false based on its reliability, modeled as a Binary

Symmetric Channel (BSC) with some error probability. We develop an algorithm that estimates

statement validity by thresholding a linear combination of agents’ labels and deriving optimal

weights and thresholds to minimize error probability. Moreover, we present an adaptive algorithm

to learn the agents’ unreliability parameters and prove the convergence of the adaptive estimator.

We also propose a broader class of adaptive estimators for the agents’ unreliability parameters,

providing the necessary conditions for convergence. We show that estimators for ensembles of

two and three agents adhere to a consistent update rule, while hard-decoded estimates fail to

converge for any number of agents.

This dissertation contributes to the theoretical aspects of distributed optimization and

fact-checking in multi-agent systems, offering novel algorithms and insights for efficient and

reliable distributed decision-making.
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Chapter 1

Introduction

As the demand for computation grows and resource-constrained agents become more

prevalent, leveraging a network of agents to solve complex problems has become increasingly

important. A multi-agent system consists of interconnected agents with computing capabilities,

working collaboratively towards a shared objective. These agents can be sensors, computing

devices, or even humans, and they may possess different pieces of information or varying levels

of capability to perform specific tasks. The interaction among agents can occur in a decentralized

manner, or there may be a central entity that coordinates their outputs to make decisions for the

system’s overall objective.

This dissertation focuses on two critical multi-agent decision-making challenges:

1. Distributed Convex Optimization: This challenge involves a collective effort by agents

to minimize the sum of local objective functions through information exchange over a

communication network. Our goal is to develop algorithms that enable convergence to an

optimal solution via local interactions facilitated by the network.

2. Distributed Fact Checking: In environments with multiple imperfect fact-checkers,

determining the validity of a source based on their responses is a significant challenge.

Understanding the reliability of these fact-checkers is crucial. We explore how to formulate

and learn the reliability of various imperfect fact-checkers over time. Our proposed model

for distributed fact-checking utilizes unreliable or imperfect agents to address this issue.
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1.1 Maximal Dissent: Distributed Convex Optimization

In distributed convex optimization, a collection of agents collaborate to minimize the

sum of local objective functions by exchanging information over a communication network. The

primary goal is to design algorithms that converge to an optimal solution via local interactions

dictated by the underlying communication network. A standard strategy to solve distributed

optimization problems consists of each agent first combining the local estimates shared by its

neighbors followed by a first-order subgradient method on its local objective function [55, 39, 40].

Of particular relevance herein are the so-called gossip algorithms [51], where the information

mixing step consists of averaging the states of two agents connected by one of the edges selected

from the network graph.

Two benefits of gossip algorithms are their simple asynchronous implementation and

a reduction in communication costs. One common gossip algorithm is randomized, in which

an agent is randomly activated and chooses one of its neighbors randomly to average its state

[11, 47, 8]. The randomization mechanism used in this gossip scheme is usually state-independent.

We consider a different approach to gossip in which the agent chooses one of its neighbors

based on its state. At one extreme, we may think of agents who prefer to gossip with neighbors

with similar opinions, for example, in an echo-chamber where agents may only talk to others if

they reinforce their own opinions which hinders effective information mixing mechanism. On

the opposite extreme, we consider agents who prefer to gossip with neighbors with maximal

disagreement or dissent. In this dissertation, we focus on the concept of max-dissent gossip as a

state-dependent information mixing mechanism for distributed optimization. We establish the

convergence of the resulting distributed subgradient method under minimal assumptions on the

underlying communication graph, and the local functions.

The idea of enabling a consensus protocol to use state-dependent matrices dates back

to the Hegselmann and Krause [27] model for opinion dynamics. However, the literature

on state-dependent averaging in distributed optimization is scarce and mostly motivated by
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applications in which the state represents the physical location of mobile agents (e.g. robots,

autonomous vehicles, drones, etc.). In such settings, the state-dependency arises from the fact

that physically closer agents have a higher probability of successfully communicating with each

other [34, 5, 4]. Unlike previous work, our model does not assume that the state of an agent

necessarily represents its position in space. Moreover, we do not impose strong assumptions on

the network’s connectivity over time such as in [40] and [34].

Our work is closely related to state-dependent averaging schemes known as Load-

Balancing [15] and Greedy Gossip with Eavesdropping [56]. The main idea in these methods

is to accelerate averaging by utilizing the information from the most informative neighbor, i.e.,

the neighbors whose states are maximally different with respect to some norm from each agent.

We refer to it as the maximal dissent heuristics. The challenges of convergence analysis for

maximal dissent averaging are highlighted in [15, 37, 56]. However, concepts akin to max-dissent

have only been explored for the specific problem of averaging [56]. Our work, on the other

hand, focuses on distributed convex optimization, whose convergence is not guaranteed by the

convergence of the averaging scheme alone.

As a broader impact of the results herein, we show a general result regarding schemes

that possibly incorporate a mixing of information between max-dissent agents converging to a

global optimizer of the underlying distributed optimization problem almost surely. Our result

enables us to propose and extend the use of load-balancing, and max-dissent gossip to distributed

optimization. The key property of max-dissent averaging is that it leads to a contraction of the

Lyapunov function used to establish convergence. While recent work has considered similar

contraction results (e.g. [31, 30]), they are not applicable to state-dependent schemes and do not

establish almost sure convergence, but only convergence in expectation.
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1.2 Distributed Fact Checking

Transitioning to the problem of distributed fact-checking, we confront the increasingly

complex challenge of discerning the veracity of information disseminated across online platforms.

As online social networks become increasingly effective in disseminating information, the

task of distinguishing between true and false information becomes increasingly challenging.

This growing efficiency of information dissemination has led to a number of studies on how

misinformation spreads through networks [1, 2, 12, 43, 41]. Conversely, there is growing interest

in the development of automated fact-checkers that can perform tasks such as document retrieval,

evidence extraction, and claim validation in an automated manner [25, 26, 54].

When there are multiple imperfect fact checkers, determining the validity of a source

based on their responses becomes a challenge. In such cases, it is important to know the reliability

statistics of the fact checkers in question. As a result, a natural question arises: in the presence of

multiple imperfect fact checkers, how can we formulate and learn their reliability over time? We

provide a model for distributed fact-checking using unreliable or imperfect agents. A key step in

our model is that we model each agent as a BSC channel where the cross-over probability of the

channels models the unreliability of each agent. Given an estimate of the unreliability parameters,

a weighted thresholding estimator can be used to identify the validity of the statement [52, 42, 59],

where the weights are the log-odds based on the agents’ unreliability estimates. We propose and

study a learning rule to estimate the reliability parameters of the agents. Our algorithm provides

the advantage of requiring a minimal memory and having a simplified update rule.

In our problem, we are working with a mixture of product distributions. Determining

the parameters of an identifiable mixture, has been widely researched [20, 22, 23, 14, 19]. The

parameter estimation problem typically involves finding a hypothetical model that produces

samples with a distribution that closely resembles the true model.
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1.2.1 Related Work

Given the unreliability parameters of the agents, an optimal approach to reconstructing

unknown labels involves employing weighted majority voting. In this method, the weights

assigned to the output provided by each agent are equal to the log-odds based on the knowledge

of the workers’ unreliability [52] [42]. In [59], we provide the characterization of weights which

would result in the optimal estimator for labelling of validity of statements.

On the other hand the estimation of unreliability parameters is intertwined with literature

on crowdsourcing labeling. In the realm of machine learning, significant attention has been

devoted to the crowdsourcing of data labeling, where multiple workers are tasked with labeling

data. This process is susceptible to errors arising from various factors such as task complexity,

low incentive for accurate labeling, and the repetitive nature of tasks. Estimating the unreliability

of workers is challenging since the true labels of the data are unknown.

The challenge of distributed fact-checking shares similarities with the extensively studied

problem of crowdsourcing labeling tasks for classification of patients’ diagnosis, notably explored

within the Dawid-Skene model introduced through empirical studies by Dawid and Skene in

1979 [16]. Initially applied in the medical context, where multiple clinicians label a patient’s

state, Dawid and Skene proposed an Expectation-Maximization (EM) algorithm. Over the years,

various extensions and variants of this algorithm have emerged [48, 6, 53, 28], with a notable

line of work employing spectral analysis of matrices representing correlations between agents

and labeling tasks [60]. Recent years have witnessed a growing body of research focused on

performance guarantees for EM and its variants. Notably, Chao and Dengyong [21], as well as

Zhang et al. [60], have provided performance guarantees for different versions of EM employing

diverse initialization techniques. The convergence analysis of these variants of the Dawid-Skene

estimator, rooted in the EM algorithm, has been explored for the offline scenario. In this context,

where the sequence of statements to be verified is available as a batch, studies by Gao et al. [21]

and Zhang et al., [60] have delved into the convergence aspects.
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The analyses of the EM-based algorithms hinge on a sufficiently accurate initialization

derived from the output of a substantial batch of statements being validated. Importantly, all

these works assume access to the storage of all labels of all agents, given their focus on an

offline setting. The only notable work presenting an algorithm in a streaming setting, without

the necessity to store the entire dataset, is found in the work of Bonald and Combes [9]. Their

proposed Triangular Estimation (TE) algorithm focuses on estimating the unreliability parameters

of agents based on correlations between triplets of agents. This algorithm directly utilizes three

agents, rather than the entire set, for estimating the unreliability parameter of a specific agent.

The knowledge of all agents’ output becomes indirectly relevant in determining which three

agents to select for computing the unreliability parameter of a given agent. Our work is the first

attempt at providing an online estimator that has similarities to the EM variants. In establishing

convergence results for our online estimator we draw connections to stochastic approximation

concepts within the literature of control theory [7].

1.3 Thesis Organization

The subsequent sections of the dissertation will be organized as follows.

(i) In Part I (Chapter 2), we consider a set of agents collaboratively solving a distributed

convex optimization problem, asynchronously, under stringent communication constraints.

In such situations, when an agent is activated and is allowed to communicate with only

one of its neighbors, we would like to pick the one holding the most informative local

estimate. We propose new algorithms where the agents with maximal dissent average

their estimates, leading to an information mixing mechanism that often displays faster

convergence to an optimal solution compared to randomized gossip. The core idea is that

when two neighboring agents, whose local estimates have the greatest difference among all

neighboring agents in the network, average their states, it results in the largest immediate

reduction of the quadratic Lyapunov function. This reduction helps establish convergence
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to the set of optimal solutions. As a broader contribution, we prove the convergence of

max-dissent subgradient methods using a unified framework that can be used for other

state-dependent distributed optimization algorithms. Our proof technique bypasses the

need to establish the information flow between any two agents within a time interval

of uniform length by intelligently studying the convergence properties of the Lyapunov

function used in our analysis.

(ii) In Part II, we focus on the problem of distributed fact-checking. We introduce the problem

formulation and novel estimators in Chapter 3. We formulate the problem of fake news

detection using distributed inexpert agents. We consider the source for news/statements as

a binary source (to model true vs. false statements). Upon observing news, each agent

labels the news as true or false, which equals the validity of the statement with some

probability depending on the agents’ reliability. In other words, each agent is viewed as

a Binary Symmetric Channel (BSC) that misclassifies each statement with some error

probability.

(iii) In Chapter 4, we provide a solution to the problem where the agents’ unreliability is

known and we need an estimate for the validity of the statements. For an algorithm that

estimates the validity by thresholding a linear combination of the individual agents’ labels,

we characterize the optimal weights and threshold to minimize the probability of error. We

establish an upper bound on this probability of error and that of the naive majority rule.

(iv) In Chapter 5, we study the algorithm to learn the unreliability parameters. We focus on

the two-agent case, we extensively analyze the discrete-time limit of our algorithm, and

provide convergence results for the adaptive estimator.

(v) In Chapter 6, we analyze the variation of the adaptive algorithm to learn the unreliability

parameters, introduced in Chapter 3. We extensively analyze the discrete-time limit of our

algorithm proving the convergence of the variant adaptive algorithm to the equilibrium
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points of the mean-field Ordinary Differential Equations (ODE).

(vi) In Chapter 7, we introduce a class of adaptive estimators for the unreliability parameters of

the agents. For the class of estimators, we provide the necessary conditions for the adaptive

estimator to converge to the true unreliability parameters. We show that the estimators for

ensembles of two and three agents eventually adhere to a consistent (fixed) update rule.

Furthermore, we also show that, surprisingly, the estimator for the unreliability parameters

based on the hard-decoded estimate of the statement truths fails to converge to the true

unreliability parameters for any number of agents.

1.4 Notations

Let N denote the set of all natural numbers, N0 denote N ∪ {0}, and for any n ∈ N, define

[n] := {1, 2, . . . , n}. For any i ∈ [n], we define [n]−i := [n] \ {i}. We denote the set of real

numbers by R and denote the n-dimensional Euclidean space by Rn.

We use boldface letters, such as x, to represent vectors and lower-case letters, such as x,

to represent scalars. Upper-case letters, such as A, represent matrices. We use AT to denote the

transpose of a matrix A. For i ∈ [n], we denote by bi the i-th standard basis vector of Rn. We

denote by 1, the vector with all components equal to one, whose dimension will be clear from

the context. For a vector v, we denote the ℓ2-norm by ∥v∥, and the average of its entries by v̄.

We say that an n× n matrix A is stochastic if it is non-negative and the elements in each of its

rows add up to one. We say that A is doubly stochastic if both A and AT are stochastic. For two

vectors a, b ∈ Rn, we define ⟨a, b⟩ = aTb. Given a vector x ∈ Rn and a scalar y ∈ R, we use

(x, y) to denote (x1, x2, . . . , xn, y) ∈ Rn+1.

The trace of a square matrix A is defined to be the sum of entries on the main diagonal

of A and is denoted by tr(A). For matrices A,B ∈ Rn×m we define ⟨A,B⟩ = tr(ATB) as the

inner product and ∥A∥F to denote the resulting norm, i.e., Frobenius norm of A.

For a set S , we use Sc to denote the complement of S . Moreover, for x ∈ Rn and S ⊆ [n]

we define x(S) :=
∑

i∈S xi. For a statement A, we denote 1{A} to be the indicator function for
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A, i.e., 1{A} = 1, if A holds true, and 0, otherwise. In Part II, we use capital letters, such as R,

S, and X , to denote random variables.

Throughout each part of the dissertation, all random variables are defined with respect to

an underlying probability space (Ω,F ,Pr). In Part II, when the probability measure is defined

through a parameter, say x, we denote the probability measure by specifying x as Pr(·;x).

Throughout part II when the parameter x is not specified the probability measure is defined

through the true parameter (described in the problem formulation in Chapter 3) π.

In Part II, we abuse the bar notation, for a scalar a ∈ [0, 1]. We use ā to denote 1− a. We

use 1,0 to denote all one and all zero vectors respectively. For a vector x ∈ Rn, xi denotes its

i-th element. For a sequence of entities such as {P (t)}, we denote the entry at time t by P (t).

However, for step-size specifically, we denote the step-size at time t by using subscripts such as

ηt, νt. Throughout the dissertation, we use logarithm with respect to base e.
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Part I

Distributed Convex Optimization
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Chapter 2

Maximal Dissent

In this chapter, we study the problem of distributed convex optimization and a state-

dependent class of algorithms to solve it. The main contributions of this chapter are:

• presenting state-dependent distributed optimization schemes that do not rely on or imply

explicit strong connectivity conditions (such as B-connectivity).

• characterizing a general result highlighting the importance of max-dissent agents on a graph

for distributed optimization, significantly simplifying the task of establishing contraction

results for a large class of consensus-based subgradient methods.

• proving the convergence of state-dependent algorithms to a global optimizer for distributed

optimization problems using a technique involving the aforementioned contraction property

of a quadratic Lyapunov function.

• presenting numerical experiments that suggest that the proposed state-dependent subgradi-

ent methods improve the convergence rate of distributed estimation problems relative to

conventional (state-independent) gossip algorithms.

The rest of the chapter is organized as follows. First, we formulate distributed optimization

problems, and outline a generic state-dependent distributed subgradient method in Section 2.1.

In Section 2.2 we introduce Local and Global Max-Gossip, and review Randomized Gossip and

Load-Balancing distributed averaging schemes. We discuss the role of maximal dissent agents
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and their selection in averaging algorithms in Section 2.3. In Section 2.4, we present our main

results on the convergence of maximal dissent state-dependent distributed subgradient methods.

We provide a numerical example that shows the benefit of using algorithms based on the maximal

dissent averaging in Section 2.6. We conclude the chapter in Section 2.7 where we outline future

research directions.

2.1 Problem Formulation

Consider a distributed system with n agents with an underlying communication network

defined by a graph G = ([n], E). Each agent i ∈ [n] has access to a local convex function

fi : Rd → R. The agents can communicate only with their one-hop neighbors as dictated

by the network graph G. Our goal is to design a distributed algorithm to solve the following

unconstrained optimization problem

F ∗ = min
w∈Rd

F (w), where F (w) ≜
n∑

i=1

fi(w). (2.1)

We assume that the local objective function fi is known only to node i and the nodes can

only communicate by exchanging information about their local estimates of the optimal solution.

The solution set of the problem is defined as

W∗ ≜ arg min
w∈Rd

F (w).

Throughout the chapter, we make extensive use of the notion of the subgradient of a

function.

Definition 1 (Subgradient). A subgradient of a convex function f : Rd → R at a point w0 ∈ Rd

is a vector g ∈ Rd such that

f(w0) + ⟨g,w −w0⟩ ≤ f(w)
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for all w ∈ Rd. We denote the set of all subgradients of f at w0 by ∂f(w0), which is called the

subdifferential of f at w0.

We make the following assumptions on the structure of the optimization problem in

Eq. (2.1).

Assumption 1 (Non-empty solution set). The optimal solution set is non-empty, i.e.,W∗ ̸= ∅.

Assumption 2 (Bounded Subgradients). Each local objective function fi’s subgradients are

uniformly bounded. In other words, for each i ∈ [n], there exists a finite constant Li such that for

all w ∈ Rd, we have ∥g∥ ≤ Li, g ∈ ∂fi(w).

There exist many algorithms to solve the problem in Eq. (2.1). Nedic and Ozdaglar [39]

introduced one of the pioneering schemes, in which each agent keeps an estimate of the optimal

solution and at each time step, the agents share their local estimate with their neighbors. Then,

each agent updates its estimate using a time-varying, state-independent convex combination

of the information received from its neighbors and its own local estimate. For t ≥ 0, let aij(t)

denote the coefficients of the aforementioned convex combination at time t such that aij(t) ≥ 0,

for all i, j ∈ [n], aij(t) = 0 if {i, j} /∈ E , and
∑n

j=1 aij(t) = 1, for all i ∈ [n]. Let xi(t) denote

the i-th agent’s estimate of the optimal solution at time t. The convex combination is followed by

taking a step in the direction of any subgradient in the subdifferential at the local estimate, i.e.,

xi(t+ 1) =
n∑

j=1

aij(t)xj(t)− α(t)gi(t), (2.2)

where gi(t) ∈ ∂fi
(
xi(t)

)
, and α(t) is a step-size sequence.

Herein, we generalize the algorithm in [39] by allowing the weights in the convex

combination to be state-dependent in addition to being time-varying. Let each agent i ∈ [n]

initialize its estimate at an arbitrary point xi(0) ∈ Rd, which is updated at discrete-time iterations
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t ≥ 0 based on its own subgradient and the estimates received from neighboring agents as follows

wi(t+ 1) =
n∑

j=1

aij
(
t,x1(t),x2(t), . . . ,xn(t)

)
xj(t),

xi(t+ 1) = wi(t+ 1)− α(t+ 1)gi(t+ 1),

where aij
(
t,x1(t),x2(t), . . . ,xn(t)

)
are non-negative weights, α(t) is a step-size sequence, and

gi(t) ∈ ∂fi
(
wi(t)

)
for all t ≥ 0. We can express this update rule compactly in matrix form as

W (t+ 1) = A
(
t,X(t)

)
X(t), (2.3)

X(t+ 1) = W (t+ 1)− α(t+ 1)G(t+ 1),

where

A
(
t,X(t)

)
≜
[
aij
(
t,x1(t), . . . ,xn(t)

)]
i,j∈[n]

and

X(t) ≜


xT
1 (t)

...

xT
n (t)

 , W (t) ≜


wT

1 (t)

...

wT
n (t)

 , G(t) ≜


gT
1 (t)

...

gT
n (t)

 .

Note that another difference between Eqs. (2.3) and (2.2) is that agent i computes the subgradient

for the local function fi at the computed average wi(t+ 1) instead of xi(t), t ≥ 0.

Assumption 3 (Diminishing step-size). The step-sizes α(t) > 0 form a non-increasing sequence

that satisfies
∞∑
t=1

α(t) =∞ and
∞∑
t=1

α2(t) <∞.

For a step-size sequence that satisfies Assumption 3, if the sequence of matrices

{A(t)}, where A(t) = [aij(t)]i,j∈[n], is doubly stochastic and sufficiently mixing, and the

objective functions satisfy the regularity conditions in Assumptions 1 and 2, then the iterates

in Eq. (2.2) converge to an optimal solution irrespective of the initial conditions xi(0) ∈ Rd,
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i.e., limt→∞ xi(t) = x∗, i ∈ [n], where x∗ ∈ W∗ [40, Propositions 4 and 5]. Our goal for the

remainder of the chapter is to establish a similar result for state-dependent maximal dissent

distributed subgradient methods.

2.2 State-dependent average-consensus

In this section, we discuss three state-dependent average-consensus schemes that can

potentially accelerate the existing distributed optimization methods, in so doing, we endeavor to

unify the state-dependent average-consensus methodology. The first scheme, Local Max-Gossip,

was studied in [56] exclusively for the average consensus problem. We provide two novel

averaging schemes, the Max-Gossip and Load-Balancing averaging schemes, that provide faster

convergence. The dynamics of these algorithms can be understood as the instances of Eq. (2.3)

with constant local cost functions fi(x) ≡ c, i ∈ [n], i.e.,

X(t+ 1) = A
(
t,X(t)

)
X(t).

We will consider three (two asynchronous and one synchronous) algorithms. The first

two algorithms are related to the well-known randomized gossip algorithm [11, 51]. First, we

present a brief description of Randomized Gossip.

2.2.1 Randomized Gossip

Consider a network G = ([n], E) of n agents, where each agent has an initial estimate

xi(0). At each iteration t ≥ 0, a node i is chosen uniformly from [n], independently of the earlier

realizations. Then, i chooses one of its neighbors j ∈ Ni, where Ni ≜ {j ∈ [n] : {i, j} ∈ E},

with probability Pij > 0. The two nodes exchange their current states xi(t) and xj(t), and update

their states according to

xi(t+ 1) = xj(t+ 1) =
1

2

(
xi(t) + xj(t)

)
. (2.4)

15



The states of the remaining agents are unchanged. The update rule in Eq. (2.4) admits a more

compact matrix representation as

X(t+ 1) = B(e)X(t), (2.5)

where e = {i, j}, and

B(e) ≜ I − 1

2
(bi − bj)(bi − bj)

T . (2.6)

It is necessary that
∑n

ℓ=1 Piℓ = 1 for all i, where Piℓ = 0 if and only if {i, ℓ} ̸∈ E . The dynamical

system described in Eq. (2.5) and its convergence rate are studied in [11].

2.2.2 Global Max-Gossip

The standard gossiping algorithm described above is state-independent in the sense that

the selection of the gossiping edge e does not depend on the states at the agents at any time.

Herein, we propose Global Max-Gossip where we select the edge connecting the agents with the

largest possible dissent (disagreement) among all edges in the graph G = ([n], E), i.e.,

emax(G, X) = arg max
{i,j}∈E

∥xi − xj∥. (2.7)

In case there are multiple solutions to Eq. (2.7), we select the smallest pair of indices (i∗, j∗)

based on the lexicographical order, without loss of optimality. For brevity, we use emax(X) to

denote the max-edge.

Global Max-Gossip serves as a benchmark as to what is achievable via state-dependent

averaging schemes. Global Max-Gossip requires an oracle to provide the edge resulting in the

largest possible Lyapunov function reduction across all network edges. Obtaining a decentralized

algorithm to determine the max-dissent edge is a challenging open problem beyond the scope of

this chapter.

Given an initial state matrix X(0), the Max-Gossip averaging scheme admits a state-
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dependent dynamics of the form

A
(
t,X(t)

)
= B

(
emax

(
X(t)

))
,

where the gossiping matrix is given by Eq. (2.6) and the max-edge is selected according to

Eq. (2.7).

2.2.3 Local Max-Gossip

In Local Max-Gossip introduced in [56] under the moniker of Greedy Gossip with

Eavesdropping, a random selected node gossips with the neighbor j ∈ Ni that has the largest1

possible state discrepancy with i, i.e.,

j = argmax
j∈Ni

∥xj(t)− xi(t)∥. (2.8)

Convergence is accelerated by gossiping with the neighbor with the largest disagreement as this

leads to the largest possible immediate reduction in the Lyapunov function used to capture the

variance of the states in the network.

Since the edge over which the gossiping occurs depends on the current state of the

neighbors, the resulting averaging matrix is a state-dependent, random matrix. For a sequence of

independently and uniformly distributed index sequence {s(t)}, the Local Max-Gossip dynamics

can be written as a state-dependent averaging scheme as follows

A
(
t,X(t)

)
= B

({
s(t), rs(t)

(
X(t)

)})
,

where

rs(X) = argmax
r∈Ns

∥xs − xr∥. (2.9)

1In case there are multiple solutions to Eq. (2.8), we may select the agent with the smallest index, without loss of
optimality.
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2.2.4 Load-Balancing

Another state-dependent algorithm known as Load-Balancing can also be used to speed

up convergence of average-consensus [38]. However, in contrast to the previous two cases, where

only two nodes update at a given time, Load-Balancing is a synchronous averaging algorithm

where all the agents operate simultaneously.

In the traditional Load-Balancing algorithm, the state at each agent is a scalar, which

induces a total ordering amongst the agents, i.e., the neighbours of an agent are classified by

having greater or smaller state values than the agent’s current state. When the states at the agents

are multi-dimensional vectors, a total ordering is not available and must be defined. We introduce

a variant of Load-Balancing based on the Euclidean distance between the states of any two agents

as follows.

At time t, each agent i ∈ [n] carries out the following steps:

1. Agent i sends its state to its neighbors.

2. Agent i computes the distance between its state and each of its neighbors. Let Si denote

the subset of neighbors of agent i whose state have maximal Euclidean distance, i.e.,

Si ≜ argmax
j∈Ni

∥xi − xj∥. (2.10)

Agent i sends an averaging request to the agents in Si.

3. Agent i receives averaging requests from its neighbors. If it receives a request from a single

agent j ∈ Si, then it sends an acknowledgement to that agent. In the event that agent i

receives multiple requests, it sends an acknowledgement to one of the requests uniformly

at random.

4. If agent i sends and receives an acknowledgement from agent j, then it updates its state as

xi ← (xi + xj)/2.
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The conditions for interaction between two nodes in Load-Balancing is characterized in

the following proposition.

Proposition 1. Consider a connected graph G and a stochastic process
{
X(t), A

(
t,X(t)

)}
,

whereA
(
t,X(t)

)
is the characterization of averaging according to the Load-Balancing algorithm,

i.e. A
(
t,X(t)

)
X(t) is the output of the Load-Balancing algorithm for a network with state

matrix X(t), t ≥ 0. The following statements hold:

1. Two agents i, j such that (i, j) ∈ E average their states only if

∥xi(t) − xj(t)∥ ≥ max
{

max
r∈Ni\{j}

∥xi(t) − xr(t)∥, max
r∈Nj\{i}

∥xj(t) − xr(t)∥
}
. (2.11)

2. Let (i, j) ∈ E . If Eq. (2.11) holds with strict inequality, then i, j average their states.

Proposition 1 is proven in Section 2.8.1.

2.3 On the selection of Max-edges

Consider the stochastic process
{
X(t), A

(
t,X(t)

)}
, where X(t) is the network state

matrix, and A
(
t,X(t)

)
a state-dependent averaging matrix. Let {Ft}∞t=0 be a filtration such that

Ft is the σ-algebra generated by

{
{X(k), A

(
k,X(k)

)
| k ≤ t

}
\
{
A
(
t,X(t)

)}
.

We establish a non-zero probability that a pair of agents that constitute a max-edge will

update their states for the averaging schemes discussed in Section 2.2.

Proposition 2. Let
{
X(t), A

(
t,X(t)

)}∞
t=0

be the random process generated by either Randomized

Gossip, Local Max-Gossip, Max-Gossip, or Load-Balancing consensus schemes. Then, for the

random indices i∗, j∗ ∈ [n] defined through the max-edge in Eq. (2.7) as emax

(
X(t)

)
= {i∗, j∗},
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we have

E
[
A
(
t,X(t)

)T
A
(
t,X(t)

)
| Ft

]
i∗j∗
≥ δ a.s., (2.12)

where δ = min{i,j}∈E Pij/n for Randomized Gossip, such that Pij is the probability that node i

chooses node j ∈ Nj; δ = 1/n for Local Max-Gossip; δ = 1/2 for Global Max-Gossip; and

δ = 1/
(
2(n− 1)2

)
for Load-Balancing.

Proposition 2 establishes that given the knowledge until time t, in expectation, the agents

comprising the max-edge based on the network state matrix X(t), exchange their values with

a positive weight bounded away from zero. Qualitatively, for gossip-based algorithms, this

implies that there is a positive probability bounded away from zero that the agents comprising

the max-edge carry out exchange of information with each other. We use Proposition 2 along

with Theorem 3 to establish that the averaging matrices characterizing the algorithms discussed

in Section 2.2 are contracting. Therefore, the subgradient methods based on these averaging

algorithms converge to the same optimal solution almost surely as stated in Corollary 1 of

Theorem 4. In other words, as long as the averaging step involves gossip over the max-edge

with positive probability (bounded away from zero), we will have a contraction in the Lyapunov

function capturing the sample variance, which is a key step in proving the convergence of our

averaging based-subgradient methods. Proposition 2 is proven in Section 2.8.2.

2.4 Convergence of state-dependent Distributed Optimiza-
tion

In the previous section, we have set the stage for studying the convergence of state-

dependent averaging-based distributed optimization algorithms. Our proofs rely on two properties:

double stochasticity and the contraction property (Theorem 3).

To state the contraction property, we define the Lyapunov function V : Rn×d → R as

V (X) ≜
n∑

i=1

∥xi − x̄∥2, (2.13)
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where X = [x1, · · · ,xn]
T and x̄ = 1

n

∑n
i=1 xi.

Theorem 3 (Contraction property). Consider a connected graph G and the stochastic process{
X(t), A

(
t,X(t)

)}∞
t=0

with a natural filtration {Ft}t≥0 for the dynamics given by Eq. (2.3). If

A
(
t,X(t)

)
∈ Ft+1 is doubly stochastic for all t ≥ 0, and for the random variables i∗, j∗ ∈ [n]

defined through the max-edge in Eq. (2.7) as emax

(
X(t)

)
= {i∗, j∗},

E
[
A
(
t,X(t)

)T
A
(
t,X(t)

)
| Ft

]
i∗j∗
≥ δ, a.s., (2.14)

where δ > 0, holds for all t ≥ 0 and X(0) ∈ Rn×d, then

E
[
V
(
A
(
t,X(t)

)
X(t)

)
| Ft

]
≤ λV

(
X(t)

)
a.s., (2.15)

where λ = 1− 2δ/
(
(n− 1)diam(G)2

)
.

Theorem 3 is proven in Section 2.8.3 and provides our key new ingredient: proving a

contraction result for doubly stochastic averaging matrices containing the maximally dissenting

edge. The proof of Theorem 3 makes use of the double stochasticity of the matrices to characterize

the exact one-step decrease in the Lyapunov function and then uses a clever trick to characterize

its fractional decrease based on the fact that underlying communication graph is connected.

Remark 1. Theorem 3 also holds for time-varying graphs provided they remain connected at

each time t. More precisely, the theorem holds for a sequence of connected graphs {Gt} and

at every time t ≥ 0, for i∗, j∗ defined through emax(Gt, X(t)), the inequality in Eq. (2.14) holds,

then the inequality in Eq. (2.15) will hold with scaling at time t being

λt = 1− 2δ

(n− 1)diam(Gt)2
≤ 1− 2δ

(n− 1)3
.

Therefore, the contraction property for connected time-varying graphs holds with a factor of at

most λ ≜ 1− 2δ/(n− 1)3.
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For a connected graph G and the stochastic process
{
X(t), A

(
t,X(t)

)}∞
t=0

with the

filtration {Ft}∞t=0 generated according to the dynamics in Eq. (2.3), we define a contracting

averaging matrix as follows.

Definition 2 (Contracting averaging matrix). A state-dependent averaging matrix A
(
t,X(t)

)
is

contracting with respect to the Lyapunov function V (·) in Eq. (2.13) if there exists a λ ∈ (0, 1)

such that

E
[
V
(
A
(
t,X(t)

)
X(t)

)
| Ft

]
≤ λV

(
X(t)

)
(2.16)

holds a.s. for all t ≥ 0.

The main result of this work establishes convergence guarantees for these dynamics as

stated below.

Theorem 4 (Almost sure convergence of state-dependent subgradient methods). Consider the

distributed optimization problem in Eq. (2.1) and let Assumptions 1 and 2 hold. Assume a

connected communication graph G and the subgradient method in Eq. (2.3). If the random

matrices A
(
t,X(t)

)
in Eq. (2.3) are doubly stochastic and contracting, and the step-sizes {α(t)}

follow Assumption 3, then for all initial conditions X(0) ∈ Rn×d,

lim
t→∞

wi(t) = w∗, ∀i ∈ [n], a.s.,

where w∗ ∈ W∗.

Theorem 4 establishes the almost-sure convergence of the state variables to an optimal

solution of Eq. (2.1), based on the consensus-based subgradient methods where the averaging

matrices are doubly stochastic and contracting. Theorem 3 provides a simplified condition,

the presence of averaging over the ‘max-edge’, which, when satisfied, implies the averaging

matrix is contracting. Note that, as shown in Proposition 2, this simplified condition holds for

Local Max-Gossip, Max-Gossip, and Load-Balancing averaging. Thus, we have the subsequent

corollary following immediately from Proposition 2, Theorem 3, and Theorem 4.
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Corollary 1. Consider the distributed optimization problem in Eq. (2.1) and let Assumptions 1

and 2 hold. Assume a connected communication graph G and the subgradient method (2.3) where

the averaging matrices A
(
t,X(t)

)
in Eq. (2.3) are based solely on either the Local Max-Gossip,

Max-Gossip or Load-Balancing averaging, and the step-sizes {α(t)} follow Assumption 3. Then

lim
t→∞

wi(t) = w∗, ∀i ∈ [n], a.s.,

for all initial condition X(0) ∈ Rn×d, and some w∗ ∈ W∗.

For the remainder of this section, we provide the key steps and results that are needed to

prove Theorem 4. We defer the proof of these technical results to the end of the chapter.

The proof strategy for Theorem 4 can be broken down into two main steps: (i) showing

that the evolution of the dynamics followed by the average state variable {x̄(t)} converges to a

solution of the optimization problem in (2.1) and (ii) every node i ∈ [n] tracks the dynamics of

this average state variable such that the tracking error goes to zero. The first step requires the

following result which establishes a bound on the accumulation of the tracking error for every

agent.

Lemma 1. Let G be a connected graph and consider sequences {W (t)} and {X(t)} generated

by the subgradient method in Eq. (2.3) using sate-dependent, doubly stochastic and contracting

averaging matrices A
(
t,X(t)

)
. If Assumptions 2 and 3 hold, then for any initial estimates

X(0) ∈ Rn×d, the following hold a.s. for all i ∈ [n]

lim
t→∞
∥wi(t+ 1)− x̄(t)∥ = 0, and

∞∑
t=0

α(t+ 1)E [∥wi(t+ 1)− x̄(t)∥ | Ft] <∞.

Lemma 1, which is proven in Section 2.8.4, establishes guarantees on the consensus error

for the local estimates wi(t). Lemma 2 will be used to bound the distance of the average state

x̄(t) to an optimal point.
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Lemma 2 (Lemma 8, [36]). Suppose that Assumption 2 holds. Then, for any connected graph G,

initial condition X(0) ∈ Rn×d, v ∈ Rd, and t ≥ 0, for the dynamics {X(t), A(t,X(t))} of the

subgradient method Eq. (2.3) where A(t,X(t)) are doubly stochastic, we have

E
[
∥x̄(t+ 1)− v∥2 | Ft

]
≤ ∥x̄(t)− v∥2 − α(t+ 1)

2

n

(
F
(
x̄(t)

)
− F (v)

)
+ α(t+ 1)

4

n

n∑
i=1

LiE[∥wi(t+ 1)− x̄(t)∥ | Ft] + α2(t+ 1)
L2

n2
, a.s.

We note that Lemma 8 in [36] was originally intended for state independent dynamics.

However, its proof only relies on the double stochasticity of the averaging matrices, convexity

of the local functions, boundedness of the subgradients, and not on whether the averaging is

state-dependent or not. Finally, combining the above two results implies that the distance of

each agent’s local estimate xi(t) to the optimal setW∗ will be approximately decreasing. The

following result then will be used to show that this approximate decrease results in convergence

toW∗.

Lemma 3. Consider a minimization problem minx∈Rd f(x), where f : Rd → R is a convex

function. Assume that the solution set X ∗ of the problem is nonempty. Let {xt} be a stochastic

process such that for all x ∈ X ∗ and for all t ≥ 0,

E[∥xt+1 − x∥2 | Ft] ≤ (1 + bt)∥xt − x∥2 − at
(
f(xt)− f(x)

)
+ ct a.s.,

where bt ≥ 0, at ≥ 0, and ct ≥ 0 for all t ≥ 0 and
∑∞

t=0 bt <∞,
∑∞

t=0 at = ∞, and∑∞
t=0 ct <∞ a.s. Then the sequence {xt} converges to a solution x∗ ∈ X ∗ a.s.

This result has been proven as part of [3, Theorem 1] but due to the stand-alone

significance of the result we have stated it as a lemma above and its proof is provided in

Section 2.8.5. Now, we are ready to formally prove Theorem 4 by combining the aforementioned

results.
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Proof of Theorem 4. From Lemma 2, for v = w∗ ∈ W∗, we have

E[∥x̄(t+ 1)−w∗∥2 | Ft] ≤ ∥x̄(t)−w∗∥2 − 2α(t+ 1)

n

(
F
(
x̄(t)

)
− F ∗

)
+ α2(t+ 1)

L2

n2

+ 4
α(t+ 1)

n

n∑
i=1

LiE[∥wi(t+ 1)− x̄(t)∥ | Ft],

for all t ≥ 0. From Lemma 1, we know that

∞∑
t=0

4
α(t+ 1)

n

n∑
i=1

LiE[∥wi(t+ 1)− x̄(t)∥ | Ft] =

n∑
i=1

4Li

n

∞∑
t=0

α(t+ 1)E[∥wi(t+ 1)− x̄(t)∥ | Ft] <∞ a.s.

Furthermore, α(t) is not summable and
∑∞

t=0 α
2(t) <∞. Therefore, all the conditions for

Lemma 3 hold with at = 2α(t+ 1)/n, bt = 0, and

ct = α(t+ 1)
4

n

n∑
i=1

LiE[∥wi(t+ 1)− x̄(t)∥ | Ft] + α2(t+ 1)
L2

n2
.

Therefore, from Lemma 3, the sequence {x̄(t)} converges to a solution ŵ ∈ W∗ almost

surely. Finally, Lemma 1 implies that limt→∞ ∥wi(t + 1) − x̄(t)∥ = 0 for all i ∈ [n] almost

surely. Therefore, the sequences {wi(t + 1)} converge to the same solution ŵ ∈ W∗ for all

i ∈ [n] almost surely. ■

2.5 Convergence Rate

In this section we discuss the convergence rate of the time-averaged version of the

discussed state-dependent consensus based subgradient methods when the step size at time t is

set as 1/
√
t for t ≥ 1. The convergence rates for the different algorithm differ via the contraction

factor λ defined for the contracting averaging matrix through (2.16).
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Let λt be the contraction factor defined through the contracting property of the matrices

at time t. More precisely, for all t ≥ 0

E[V (A(t,X(t))X(t))] ≤ λtV (X(t)),

where λt = λϕt with ϕt ∈ (0, 1). Here, λ is the uniform bound on the contraction factor and

λt = λt(X(t)) is a state-dependent (and possibly time-dependent) contraction factor. We refer to

the tighter contraction bound to point out the improvement in convergence rate in state-dependent

consensus based subgradient method. The proof of the convergence rates closely follow the proof

provided in [36].

In the following lemma, we establish the convergence rate of the accumulation of error

between the estimate for each agent from the mean of the estimates over all agents.

Lemma 4. Under the assumptions of Theorem 4 with α(t) = 1/
√
t, we have

1√
n

t∑
k=0

α(k + 1)
n∑

i=1

E[∥wi(k + 1)− w̄i(k + 1)∥] ≤
(
K1E[∥X(0)− X̄(0)∥F ] (2.17)

+ LK2(1 + ln t)

)

and

1∑t
k=0 α(k + 1)

t∑
k=0

α(k + 1)
n∑

i=1

1√
n
E[∥wi(k + 1)− w̄i(k + 1)∥]

≤ 1√
t+ 1

(K1E[∥X(0)− X̄(0)∥F ] + LK2(1 + ln t)), (2.18)

where K1 = K2 =
√
λ

1−
√
λ
.

Proof. From triangle inequality similar to (2.30), we know for all t ≥ 1

E[∥W (t+ 1)− W̄ (t+ 1)∥F ] ≤
√

λtE[∥W (t)− W̄ (t)∥F ] +
√

λtE[∥E(t)− Ē(t)∥F ].
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Repeatedly applying the above inequality and since the perturbation is bounded as V (E(t)) ≤ L2

t

for all t ≥ 1 we get

E[∥W (t+ 1)− W̄ (t+ 1)∥F ] ≤
t∏

s=1

√
λsE[∥W (1)− W̄ (1)∥F ]

+
t∑

s=1

t∏
k=s

√
λkE[∥E(s)− Ē(s)∥F ]

≤
t∏

s=0

√
λsE[∥W (0)− W̄ (0)∥F ] +

t∑
s=1

t∏
k=s

√
λk

L√
s
.

For brevity, define ϕ(t : s) =
∏t

k=s ϕ(k) and rewrite the above inequality as

E[∥W (t+ 1)− W̄ (t+ 1)∥F ] ≤
√
λ
t+1

ϕ(t : 0)E[∥W (0)− W̄ (0)∥F ]

+
t∑

s=1

√
λ
t−s+1

ϕ(t : s)
L√
s

(2.19)

To obtain the bound on accumulation of the errors, using (2.19) we get

1√
n

t∑
k=0

α(k + 1)
n∑

i=1

E[∥wi(k + 1)−w̄i(k + 1)∥] ≤
t∑

k=0

α(k + 1)∥W (k + 1)−W̄ (k + 1)∥F

≤
t∑

k=0

1√
k + 1

√
λ
k+1

ϕ(k : 0)E[∥X(0)− X̄(0)∥F ] + L
t∑

k=1

1√
k + 1

k∑
s=1

√
λ
k+1−s

ϕ(k : s)√
s

= c1(t)E[∥X(0)− X̄(0)∥F ] + Lc2(t),

where c1(t), c2(t) are given by

c1(t) :=
t∑

k=0

√
λ
k+1

√
k + 1

ϕ(k : 0), c2(t) :=
t∑

k=1

1√
k + 1

k∑
s=1

√
λ
k+1−s

ϕ(k : s)√
s

. (2.20)

Using the decreasing property of α(t), the fact that ϕ(t) ≤ 1 for all t ≥ 0, and the expression for
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a sum of a geometric series, we can uniformly bound c1(t) by
√
λ

1−
√
λ
. For c2(t), note that

c2(t) ≤
t∑

k=1

k∑
s=1

√
λ
k+1−s

ϕ(k : s)

s
≤

t∑
k=1

k∑
s=1

√
λ
k+1−s

s

=
t∑

s=1

1

s

t∑
k=1

√
λ
k+1−s

≤
√
λ

1−
√
λ

t∑
s=1

1

s
≤

√
λ

1−
√
λ
(1 + ln t), (2.21)

where the second inequality in (2.21) follows from

t∑
s=1

1

s
= 1 +

t∑
s=2

1

s
≤ 1 +

∫ t

1

du

u
= 1 + ln t.

Define K1 :=
√
λ

1−
√
λ

and K2 :=
√
λ

1−
√
λ
. Therefore, we have

1√
n

t∑
k=0

α(k + 1)
n∑

i=1

E[∥wi(k + 1)− w̄i(k + 1)∥]

≤ K1E[∥X(0)− X̄(0)∥F ] + LK2(1 + ln t).

Finally using the fact that
∑t

k=0 α(k + 1) ≥
∫ t+1

0
du
u+1
≥
√
t+ 1 we get inequality (2.18). ■

Using the accumulation of variance of the state estimates we establish an upper bound on

the expected deviation of the global function at the time-averaged version of the average state

estimates from the optimal value in the following lemma.

Lemma 5. Under the assumptions of Theorem 4 with α(t) = 1/
√
t for all t ≥ 1 and for any

w∗ ∈ W∗ we have

E
[
F

(∑t
k=0 α(k + 1)x̄(k)∑t

k=0 α(k + 1)

)
− F (w∗)

]
≤ n

2

E[∥x̄(0)−w∗∥2]√
t+ 1

+
L2(1 + ln(t+ 1))

2n
√
t+ 1

+
2L
√
nK1√

t+ 1
E[∥X(0)−X̄(0)∥F ] + 2L2K2

√
n
1 + ln t√
t+ 1

,

where K1 = K2 =
√
λ

1−
√
λ
.
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Proof. By taking expectation on both sides for the inequality Lemma 2, for any v ∈ Rd and

t ≥ 0 we have

t∑
k=0

2α(k + 1)

n
E[F (x̄(k))− F (v)] ≤ E[∥x̄(0)− v∥2] +

t∑
k=0

α2(k + 1)
L2

n2

+
t∑

k=0

4α(k + 1)

n

n∑
i=1

LiE[∥wi(k + 1)− w̄(t+ 1)∥],

since w̄(t+ 1) = x̄(t) for all t ≥ 0. Define S(t+ 1) =
∑t

k=0 α(k + 1). Dividing the inequality

above by 2S(t+1)
n

we get

t∑
k=0

α(k + 1)

S(t+ 1)
E[F (x̄(k))− F (v)] ≤ n

2

E[∥x̄(0)− v∥]2

S(t+ 1)
+

1

S(t+ 1)

t∑
k=0

α2(k + 1)
L2

2n

+
t∑

k=0

2α(k + 1)

S(t+ 1)

n∑
i=1

LiE[∥wi(k + 1)− w̄(t+ 1)∥].

From Lemma 4 we have

n∑
i=1

t∑
k=0

α(k + 1)

S(t+ 1)

n∑
i=1

LiE[∥wi(k + 1)− w̄(t+ 1)∥]

≤ K1

√
n√

t+ 1
E[∥X(0)− X̄(0)∥F ] + LK2

√
n
(1 + ln t)√

t+ 1
. (2.22)

Furthermore as
∑t

k=0 α
2(k + 1) =

∑t
k=0

1
k+1
≤ 1 + ln(t + 1) and S(t + 1) ≥

√
t+ 1, for

v = w∗ we have

t∑
k=0

α(k + 1)

S(t+ 1)
E[F (x̄(k))− F (w∗)] ≤ n

2

E[∥x̄(0)−w∗∥2]√
t+ 1

+ 2
LK1

√
n√

t+ 1
E[∥X(0)− X̄(0)∥F ] + L2K2

√
n
1 + ln t√
t+ 1

+
1 + ln(t+ 1)√

t+ 1

L2

2n

which upon rearrangement gives us the result. ■
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Finally, we provide a bound on the expected deviation of the global function computed

at the time averaged version of the state estimates of any agent from the optimal value in the

following theorem.

Theorem 5. Consider the assumptions of Theorem 4 with α(t) = 1/
√
t for all t ≥ 1 and

w∗ ∈ W∗. For w̃i(t+ 1) =
∑t

k=0 α(k+1)wi(k+1)∑t
k=0 α(k+1)

, we have

E[F (w̃i(t+ 1))− F (w∗)] ≤ n

2

E[∥x̄(0)−w∗∥2]√
t+ 1

+
L2(1 + ln(t+ 1))

2n
√
t+ 1

+
L(2
√
n+ 1)K1√
t+ 1

E[∥X(0)−X̄(0)∥F ] + L2K2(2
√
n+ 1)

1 + ln t√
t+ 1

,

where K1 = K2 =
√
λ

1−
√
λ
.

Proof. By the boundedness assumption of the subgradients we have

E[F (w̃i(t+ 1))−F
(∑t

k=0 α(k + 1)x̄(k)∑t
k=0 α(k + 1)

)
≤ L

∑t
k=0 α(k + 1)E[∥wi(t+ 1)− x̄(k)∥]∑t

k=0 α(k + 1)

≤L(K1E[∥X(0)−X̄(0)∥F ] + LK2(1 + ln t))√
t+ 1

Using the above inequality and Lemma 5 we get

E[F (w̃i(t+ 1))− F (w∗)] ≤ L√
t+ 1

(K1E[∥X(0)− X̄(0)∥F ] + LK2(1 + ln t))+

+
n

2

E[∥x̄(0)−w∗∥2]√
t+ 1

+
L2(1 + ln(t+ 1))

2n
√
t+ 1

+
2LK1

√
n√

t+ 1
E[∥X(0)− X̄(0)∥F ] + 2L2K2n

1 + ln t√
t+ 1

.

=
n

2

E[∥x̄(0)−w∗∥2]√
t+ 1

+
L2(1 + ln(t+ 1))

2n
√
t+ 1

+
LK1(2

√
n+ 1)√

t+ 1
E[∥X(0)−X̄(0)∥F ] + L2K2(2

√
n+ 1)

1 + ln t√
t+ 1

.

■
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2.5.1 Discussion

The subgradient method converges to the optimal at the rate of O( ln t√
t
). For randomized

gossip, the convergence rate is comparable to the result that can be obtained from the result in

Theorem 5 from the result in [36, Theorem 2]. However the approach in [36] cannot be directly

used to state the result in Theorem 5 since the proof involves establishing inequality for every

coordinate of the vector estimates and summing up the resulting inequalities. Such an approach

cannot be extended to state-dependent averaging algorithms discussed in this work since the

averaging step depends on the ℓ2 norm of the difference between the nodes’ estimates and cannot

be decoupled to establish result on individual coordinates. Another reason behind using the

contraction factor approach is the lack of B-connectivity result for the interaction between the

agents when using state-dependent averaging.

The hidden constant terms of the convergence rate, O( ln t√
t
), are influenced by the consensus

algorithm used with the subgradient descent. In Theorem 5 the consensus step of the algorithms

influences the convergence rate through the constants K1, K2 such that the convergence becomes

faster as the constants decrease. Note that K1, K2 are upper bounds for c1(t), c2(t) defined

through (2.20). Based on Theorem 3, the contraction factor λ = 1− 2δ
(n−1)diam(G)2 is obtained in

the following corollary, where δ for Randomized Gossip, Local Max-Gossip, Max-Gossip, and

Load-Balancing are provided through Proposition 2.

Corollary 2. In Theorem 5 the constants K1, K2 are given by
√
λ

1−
√
λ

which are bounded above

by n2(n − 1)diam(G)2 for Randomized Gossip, n(n − 1)diam(G)2 for Local Max-Gossip,

2(n− 1)diam(G)2 for Max-Gossip, and (n− 1)3diam(G)2 for Load-Balancing being used as

the averaging scheme with the subgradient method.

Proof. For Randomized Gossip, 1 −
√
λ ≥ 1

2
(1 − λ) ≥ 1

n2(n−1)diam(G)2 ≥
1

n2(n−1)diam(G)2 .

Therefore K1, K2 are bounded as
√
λ

1−
√
λ
≤ n2(n− 1)diam(G)2.

Similarly,

i. for Local Max-Gossip, 1−
√
λ ≥ 1

n(n−1)diam(G)2 leading to
√
λ

1−
√
λ
≤ n(n− 1)diam(G)2,
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ii. for Max-Gossip, 1−
√
λ ≥ 1

2(n−1)diam(G)2 leading to
√
λ

1−
√
λ
≤ 2(n− 1)diam(G)2,

iii. and for Load-Balancing, 1−
√
λ ≥ 1

(n−1)3diam(G)2 resulting in
√
λ

1−
√
λ
≤ (n− 1)3diam(G)2.

■

Remark 2. We may also comment that the above result uses a conservative bound on the

contraction factor λ > 0. The values mentioned in Corollary 2 are upper bounds on the constants

in the convergence rate. However, tighter bounds on the constants K1, K2 are possible. For

Randomized Gossip, the contraction factor can be improved to the square of the second largest

eigenvalue of the expected averaging matrix E[A(t,X(t))].

In principle, in the proof of Theorem 5, for each of the state-dependent algorithm, such

a contraction factor would depend on the sample path (past trajectory) of the dynamics. For

example, when the consensus scheme used is Load-Balancing, we know that in practice, when the

nodes do not have multiple neighbors with maximal disagreement, the constant δ in Proposition 2

is even grater than 1
2
, more precisely, it is Ce(X)

2
, where Ce is the number of edges over which

the exchange is taking place in the averaging step with the state estimate X ∈ Rn×d. With the

improved δ, the bound on the constants K1, K2 can be improved to (n−1)diam(G)2
2Ce(X(t))

≤ (n−1)diam(G)2
2

.

Similarly the bounds on the convergence rate for Local Max-Gossip can be improved by

using tighter contraction factor for the averaging matrices. However as seen from [56, Theorem

2], the contraction factor may take cumbersome form which cannot be readily used to establish

better bounds on c1(t), c2(t).

The problem of finding useful convergence rate for state-dependent averaging is a

non-trivial open problem.

2.6 Numerical Examples

To illustrate our analytical results, we present a simulation of a distributed optimization

problem where the local functions’ subgradients are not restricted to be uniformly bounded. In

particular, we look at the standard distributed estimation problem in a sensor network setting with
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n = 180 agents. Here, each agent i ∈ [n] wants to estimate an unknown parameter θ0. Each node

has access to a noisy measurement of the parameter ci = θ0 + ni, where ni’s are independent,

zero mean Gaussian random variables with variance σ2
i > 0. In this setting, the Maximum

Likelihood (ML) estimator [57, Theorem 5.3] is the minimizer of the separable cost function

F (w) =
∑n

i=1(w − ci)
2/σ2

i . Note that this problem is a distributed optimization problem with

the local cost function fi(w) = (w− ci)
2/σ2

i . For the variance σ2
i , we picked 1/σ2

i independently

and uniformly over (0, 1). For each node i ∈ [n], the initial local estimates xi(0) are drawn

independently from a standard Gaussian distribution.

We consider the performance for different topologies of the underlying communication

graph G ranging from dense graphs (Complete and Barbell), moderately dense graphs (Erdös-

Rényi), to sparse graphs (Line and Star). We chose a connected graph with the edge probability

p = 0.4 for Erdös-Rényi graph. For the Barbell graph, we chose equal number of nodes for the

three components – two Complete graphs and the connecting Line graph.

We ran the averaging-based subgradient optimizer with four different averaging update

rules: Randomized Gossip [11], Local Max-Gossip, Max-Gossip, and Load-Balancing. For the

Randomized Gossip, at each time a node in [n] wakes up uniformly at random, and it chooses one

of its neighbors uniformly at random for communication. To account for the stochastic nature of

Randomized Gossip and Local Max-Gossip algorithms we average the error values over 10 runs

keeping the initial conditions and samples at the nodes the same. The resulting plots in Fig. 2.1,

show the decay of the error ∥w(t)− w∗1∥ as a function of t, where w∗ =
∑n

i=1
ci
σ2
i
/
∑n

i=1
1
σ2
i

is

the optimal solution for F (w). For the Erdös-Rényi communication graph, we also plot the decay

of the error with the number of bits exchanged between the nodes in Fig. 2.2 for Randomized

Gossip, Local Max-Gossip, and Load-Balancing.

In the simulation, 32 bits are used for exchange of the estimates and 1 bit is used for

the exchange of each acknowledgement. Therefore, the number of bits exchanged per step for

Randomized Gossip is 64. For Local Max-Gossip, at time t with s(t) ∈ [n] being the randomly

chosen node, |Ns(t)|+ 32|Ns(t)|+ 32 bits are exchanged for waking up the neighboring nodes,
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obtaining their values, and sending the neighbor with the maximum disagreement its own value.

Finally, for Load-Balancing, 32
∑n

i=1 |Ni| + n + ACK(t) bits are exchanged for sharing the

values with the neighbors, sending request to the neighbour with the maximum disagreement, and

sending the acknowledgement, where ACK(t) is the total number of bits exchanged for sending

the acknowledgement bits at time t.2

2.6.1 Comparison of Asynchronous Methods

From Fig. 2.1, the performance of the subgradient methods using state-dependent

averaging shows an improvement in convergence rate. The convergence rates increase as we go

from Randomized Gossip, Local Max-Gossip, Max-Gossip to Load-Balancing averaging based

optimizers. We will refer to the subgradient methods using the state-dependent averaging by

their averaging algorithm in the succeeding discussion.

In general, the performance of Max-Gossip is superior to the one of Local Max-Gossip.

Clearly, Local Max-Gossip converges faster than Randomized Gossip. However convergence rate

also depends on the graph topology: Local Max-Gossip applied on a Star graph has essentially

the same rate as Randomized Gossip since the nodes at the periphery have only the central node

as the choice to gossip with, and the probability of the first node being selected for gossiping is

n− 1 times larger to be a peripheral node as compared to the central node. Overall, we notice the

increase in the performance of Max-Gossip and Local Max-Gossip as compared to Randomized

Gossip with increasing connectivity. Moreover, from Fig. 2.2 we note the significantly better

performance of Local Max-Gossip with respect to the number of exchanges between the nodes as

opposed to that of synchronous Load-Balancing.

2.6.2 Max-Gossip vs. Load-Balancing

When comparing different state-dependent averaging schemes, it should be noted that

unlike gossip, Max-Gossip, and Local Max-Gossip, Load-Balancing is a synchronous scheme

2In the numerical simulation, there are no cases with multiple neighbors with maximum disagreement.
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where in addition to the max-edge, other local max-edges are often incorporated in the averaging

scheme simultaneously. Therefore, it is only natural that the convergence rate of Load-Balancing

is superior to that of Max-Gossip, since it averages not only the two nodes defined by the

max-edge, but, additionally, other nodes connected by edges with large disagreement at the

same time. By a similar logic, for the Complete graph, the performance of Load-Balancing and

Max-Gossip are the same since all the nodes are holding scalar estimates and due to the ordering

between the estimates, all the nodes send their request for averaging to either the node with the

maximum or minimum estimate resulting in only the max-edge performing the updates.

We observe that the gap in performance of Load-Balancing and Max-Gossip, which has

the best performance amongst the discussed asynchronous methods, increases with the diameter

of the graph. Characterizing the analytical dependence of convergence rate as a function of graph

topology metrics is of interest for future work.

2.6.3 Logistic Regression

In order to illustrate the applicability of the results to a more general high-dimensional

convex problem, we look at an example of regularized logistic regression for classification over

MNIST dataset containing 56000 samples. In the experiment we train a model with the loss

function defined as

J(w, b) =
1

m

m∑
j=1

(
−yj log

1

1 + exp(−(xj
Tw) + b)

− (1− yj) log
exp(−(xj

Tw) + b)

1 + exp(−(xj
Tw) + b)

)
+

1

2m
∥w∥2 + 1

2m
|b|2,

where {(xj, yj)}56000j=1 are the samples used for training. The samples are used to classify the

digits in MNIST dataset into two classes based on whether the digits are greater than or equal to

5 or not. The experiment is run over a graph with 20 nodes with each node containing the same

number of samples from the dataset. We initialize the nodes with all zero vectors.

The communication graph representing the underlying connection between the nodes is a
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(b) Barbell Graph
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(c) Line Graph
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(d) Star Graph

Figure 2.1. Error decay for different graphs with 180 nodes

ladder graph. We consider the performance for the averaging-based subgradient optimizer with

Randomized Gossip, Local Max-Gossip, Max-Gossip, and Load-Balancing. For Randomized
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Figure 2.2. Error decay for Erdös-Rényi Graph with 180 nodes
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Figure 2.3. Network Variance for Ladder Graph with 20 nodes

Gossip, as in previous experiment, at each time a node in [n] wakes uniformly at random

and chooses one of its neighbor uniformly at random. We average the performance for

Randomized Gossip and Local Max-Gossip over 3 runs. In Fig. 2.3 we plot the network variance,

∥W (t)− 11T

n
W (t)∥2F + ∥b(t)− 11T

n
b(t)∥2 for step-size α(t) = 1

t
for all t ≥ 1. We observe that

the decay in the loss of the function for the consensus-based subgradient method is similar to

each other. However the decay of the network variance, defined as the sum of the square of

the deviation of the state estimates from their mean, over time in decreasing order of speed is

observed for Load-Balancing, Max-Gossip, Local Max-Gossip, and finally Randomized Gossip.
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2.7 Conclusions

We proposed, studied, and analyzed the role of maximal dissent nodes in distributed

optimization schemes, leading to many exciting state-dependent consensus-based subgradient

methods. The proof of our result relies on a certain contraction property of these schemes. Our

result opens up avenues for synthesizing or extending the use of state-dependent averaging-schemes

for distributed optimization including the Max-Gossip, Local Max-Gossip, and Load-Balancing

algorithms. Finally, we compared simulation results of a distributed estimation problem for

gossip-based subgradient methods and the proposed state-dependent algorithms. Our numerical

experiments show the faster convergence speed of schemes that use maximal dissent between

nodes compared with state-independent gossip schemes. These simulations strongly support the

intuition behind our main result, i.e., mixing of information between the maximal dissent nodes is

critically important for the working (and enhancing) of the consensus-based subgradient methods.

Although, we have shown the convergence of such state-dependent algorithms, establishing their

rate of convergence, and especially relating them to various graph quantities such as diameter and

edge density of the graph remains open problems for future research endeavors. The introduction

of a state-dependent element for other class of algorithms specifically those which provide linear

convergence rates such as distributed gradient tracking method [46, 45] and their convergence

analysis are part of future direction for the problem.

2.8 Skipped Proofs

2.8.1 Proof of Proposition 1

Proof of Proposition 1. For any ω ∈ Ω, consider X(t;ω) ∈ Rn×d. If nodes i and j update their

values to their average, that is
(
xi(t;ω) + xj(t;ω)

)
/2, then we know that during the round of

Load-Balancing algorithm starting at value X(t;ω) in step 2, node i and node j have sent their

averaging request to each other. Therefore, we have j ∈ argmaxr∈Ni
∥xj(t;ω)− xr(t;ω)∥ and
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i ∈ argmaxr∈Nj
∥xi(t;ω)− xr(t;ω)∥. Hence, for any ω ∈ Ω,

∥xi(t;ω)− xj(t;ω)∥ ≥ max
{

max
r∈Ni\{j}

∥xi(t;ω)− xr(t;ω)∥, max
r∈Nj\{i}

∥xj(t;ω)− xr(t;ω)∥
}
.

(2.23)

On the other hand, if Eq. (2.23) holds with strict inequality, then node i and node j send

averaging requests only to each other in step 2 and respond to each other in step 3, and carry out

their averaging according to step 4. ■

2.8.2 Proof of Proposition 2

Proof. We first discuss the result for Randomized Gossip, Local Max-Gossip, and Max-Gossip

averaging. The averaging matrices for the gossip algorithms where two agents update their states

to their average takes the form of Eq. (2.6). Therefore, for these gossip algorithms we have

A
(
t,X(t)

)T
A
(
t,X(t)

)
= A

(
t,X(t)

)
and

E
[
A
(
t,X(t)

)T
A
(
t,X(t)

)
| Ft

]
= E

[
A
(
t,X(t)

)
| Ft

]
.

Consider two nodes i, j ∈ [n] such that {i, j} ∈ E . For Randomized Gossip,

E
[
A
(
t,X(t)

)
ij
| Ft

]
= (Pij + Pji)/2n. Moreover, since {i, j} ∈ E , we have Pij, Pji > 0. Let

P∗ = min{i,j}∈E Pij . For the max-edge {i∗, j∗}, Eq. (2.12) holds with δ = P∗/n > 0.

Let i ∈ [n] and state estimate matrix X(t). For Local Max-Gossip, let ri
(
X(t)

)
be

determined according to Eq. (2.9). Consider the max-edge emax

(
X(t)

)
= {i∗, j∗}. Then,

ri∗
(
X(t)

)
= j∗ and rj∗

(
X(t)

)
= i∗. Thus,

E
[
A
(
t,X(t)

)
i∗j∗
| Ft

]
=

1

n

and Local Max-Gossip averaging satisfies inequality Eq. (2.12) with δ = 1/n.
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Similarly, for the Max-Gossip averaging with state estimate X(t) at time t, for the

max-edge emax

(
X(t)

)
= {i∗, j∗}, we have

E
[
A
(
t,X(t)

)
i∗j∗
| Ft

]
=

1

2
,

and Eq. (2.12) holds with δ = 1/2.

Let us now discuss the presence of max-edge in the Load-Balancing averaging scheme.

Consider the state estimate matrix X(t) and emax

(
X(t)

)
= {i∗, j∗} to be the max-edge with

respect to X(t). By the definition of a max-edge we know that nodes i∗, j∗ satisfy inequality

Eq. (2.11).

Consider the case when nodes i∗, j∗ satisfy Eq. (2.11) with strict inequality. From

Proposition 1, we know that A(t,X(t))i∗j∗ , A
(
t,X(t)

)
j∗i∗

, A
(
t,X(t)

)
i∗i∗

, A
(
t,X(t)

)
j∗i∗

are

equal to 1/2, which implies that A
(
t,X(t)

)
i∗ℓ

= A
(
t,X(t)

)
ℓj∗

= 0 for all ℓ ̸∈ {i∗, j∗}.

Therefore,

E
[
A
(
t,X(t)

)T
A
(
t,X(t)

)
| Ft

]
i∗j∗

= 1/2,

and the inequality in Eq. (2.12) holds with δ = 1/2.

Finally, consider the case when there are multiple neighbors of nodes i∗, j∗ with distance

equal to ∥xi∗(t)− xj∗(t)∥. Let |Si∗| ≥ 1 and |Sj∗| ≥ 1 where Si is given by Eq. (2.10). Then,

according to Load-Balancing algorithm, nodes i∗, j∗ update their states to their average with

probability 1/(|Si∗ | · |Sj∗|). Since |Si∗| ≤ n− 1 and |Sj∗| ≤ n− 1, we have

E
[
A
(
t,X(t)

)T
A
(
t,X(t)

)
i∗j∗
| Ft

]
≥ 1

2(n− 1)2
,

and Eq. (2.12) holds with δ = 1/2(n− 1)2. ■
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2.8.3 Proof of Theorem 3

To prove Theorem 3 we must first define a few quantities related to the distance between

the nodes on the graph and their relationships.

Definition 3. Consider a connected graph G and a matrix X = [x1, . . . ,xn]
T ∈ Rn×d such that

xi ∈ Rd is the estimate at node i in the graph G. Let d(X) denote the maximal distance between

the estimates of any two nodes in the graph

d(X) ≜ max
i,j∈{1,2,...,n}

∥xi − xj∥. (2.24)

Let dG(X) denote the maximal distance between the estimates among any two connected nodes

in the graph

dG(X) ≜ max
{i,j}∈E

∥xi − xj∥. (2.25)

Finally, let diam(G) denote the longest shortest path between any two nodes of the graph G.

Proposition 6. Given a connected graph G and a matrix X = [x1, . . . ,xn]
T ∈ Rn×d, such that

xi ∈ Rd is the solution estimate at node i in the graph G, we have

d(X)

diam(G)
≤ dG(X) ≤ d(X).

Proof. The upper bound on dG(X) follows from Eqs. (2.24) and (2.25) in Definition 3. To prove

the lower bound on dG(X), we assume, without loss of generality, that the rows of the matrix

X ∈ Rn×d are such that d(X) = ∥x1−xn∥. Since G is connected, its diameter is finite and there

is a path of length k ≤ diam(G), denoted by {v0, v1}, {v1, v2}, . . . , {vk−1, vk}, where v0 = 1

and vk = n, with vi ∈ [n] for i = 0, 1, . . . , k. The distance d(x) is bounded as

∥x1 − xn∥ ≤
k−1∑
i=0

∥xvi − xvi+1
∥, (2.26)
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where Eq. (2.26) follows from the triangle inequality. Finally, each term in the sum Eq. (2.26) is

bounded above by dG(x). Hence,

d(X) ≤ kdG(X) ≤ diam(G)dG(X).

■

Next, we state a result quantifying the decrease in the Lyapunov function defined in

Eq. (2.13) that is the vector form of [38, Lemma 1].

Lemma 6. Given a doubly stochastic matrix A ∈ Rn×n, let cij denote the (i, j)-th entry of the

matrix ATA. Then for all X = [x1, . . . ,xn]
T ∈ Rn×d, we have

V (AX) = V (X)−
∑
i<j

cij∥xi − xj∥2.

Proof. By definition, the Lyapunov function in Eq. (2.13) can be written as

V (X) = tr
[
(X − X̄)T (X − X̄)

]
,

where X̄ = 11T

n
X . The doubly stochasticity of A implies

AX =
11T

n
AX =

11T

n
X =

A11T

n
X = AX̄.

Therefore,

V (AX) = tr[(AX − AX̄)T (AX − AX̄)].

Finally,

V (X)− V (AX) = tr[(X − X̄)T (I − ATA)(X − X̄)].
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Since ATA is a symmetric and stochastic matrix, we have cij = cji and cii = 1−
∑

i ̸=j cij .

Thus,

ATA = I −
∑
i<j

cij(bi − bj)(bi − bj)
T ,

where bi ∈ Rn is the standard basis vector for all i ∈ [n]. Since

tr[(X − X̄)T (bi − bj)(bi − bj)
T (X − X̄)] = ∥xi − xj∥2,

we have

V (X)− V (AX) =
∑
i<j

cij∥xi − xj∥2.

■

Proof of Theorem 3. At time t ≥ 0 consider the state estimate X(t) = [x1(t), . . . ,xn(t)]
T ∈ Rn,

the corresponding max-edge emax(X(t)) = {i∗, j∗} and the doubly stochastic averaging matrix

A(t,X(t)) such that

E[A(t,X(t))TA(t,X(t))i∗j∗ | Ft] ≥ δ > 0 a.s.

Define

Ωδ(t) = {ω : E[A(t,X(t))TA(t,X(t))i∗j∗ | Ft] ≥ δ}.

For legibility, we drop the time index in the variables for the rest of this proof and use X , F ,

A(X), Ωδ instead of X(t),Ft,Ωδ(t), and A(t,X(t)).

Using arguments similar to the ones from [37, Lemma 9], for X ∈ F and doubly

stochastic matrix A(X) such that

E[
(
A(X)TA(X)

)
i∗j∗
| F ] ≥ δ > 0 a.s., (2.27)
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where F is a σ-field, X ∈ F , and emax(X) = {i∗, j∗}. We will show that

E
[
V (A(X)X) | F

]
≤ λV (X)

a.s. for some λ ∈ (0, 1). From Lemma 6, the difference in the quadratic Lyapunov function V

evaluated at X and A(X)X is given by

V (X)− V (A(X)X) =
∑
i<j

cij(X)∥xi − xj∥2,

where cij(X) is the (i, j)-th entry of A(X)TA(X), i.e., cij(X) = (A(X)TA(X))ij . Taking the

conditional expectation with respect to the filtration F , we obtain

V (X)− E
[
V (A(X)X) | F

]
=
∑
i<j

(
E[
(
A(X)TA(X)

)
ij
| F ]

)
∥xi − xj∥2

≥ ci∗j∗(X)∥xi∗ − xj∗∥2 ≥ δ∥xi∗ − xj∗∥2 a.s.,

where emax(X) = {i∗, j∗} and the first inequality follows from the non-negativity of the squared

terms and the second inequality follows from Eq. (2.27). Recall that the constant δ depends on

the averaging scheme.

If V (X) = 0, more precisely for the samples path characterized by ω ∈ Ωδ(t) such that

V (X(t;ω)) = 03, then X = 1cT for some c ∈ Rd. Therefore, A(X)X = A(X)1cT = 1cT

since A(X) is doubly stochastic and V (A(X)X) = 0. Thus, the inequality

E
[
V (A(X)X) | F

]
≤ λV (X)

is satisfied.
3We omit the dependency on ω and t for legibility.
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Let L ≜ {1pT | p ∈ Rd}. For X = [x1, · · · ,xn]
T ̸∈ L, more precisely for the samples

path characterized by ω ∈ Ωδ(t) such that X(t;ω) ̸∈ L, the conditional expected fractional

decrease in the Lyapunov function is

V (X)− E[V (A(X)X) | F ]
V (X)

≥ δ
∥xi∗ − xj∗∥2∑n
i=1 ∥xi − x̄∥2

,

where x̄ = 1
n

∑n
i=1 xi. Using the definition of dG(X) and Proposition 6, we obtain the following

bound
V (X)− E[V (AX) | F ]

V (X)
≥ δ

diam(G)2
d2(X)∑n

i=1 ∥xi − x̄∥2
.

For X ̸∈ L, let

g(X) ≜
d2(X)∑n

i=1 ∥xi − x̄∥2
.

Note that g(X) satisfies the following invariance relations

g(X + 1pT ) = g(X), p ∈ Rd,

and

g(cX) = g(X), c ∈ R \ {0}.

Therefore, for X ̸∈ L the following inequality and identity hold

g(X) ≥ min
Z∈Rn×d:

∑
i zi=0

d2(Z)∑n
i=1 ∥zi∥2

= min
Z∈Rn×d:

∑
i zi=0;

∑
i ∥zi∥2=1

d2(Z).

Note that if
∑n

i=1 zi = 0 and
∑n

i=1 ∥zi∥2 = 1, then we have

∑
1≤i<j≤n

⟨zi, zj⟩ = −
1

2

n∑
i=1

∥zi∥2 = −
1

2
. (2.28)
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By definition, d(Z) ≥ ∥zi − zj∥ for all i, j ∈ [n]. Using the fact that the maximum of a set of

values is greater than its average for the set {∥zi − zj∥2}1≤i<j≤n, we get

d2(Z) ≥ 2

n(n− 1)

∑
1≤i<j≤n

∥zi − zj∥2 =
2

n− 1
,

where the last step follows from Eq. (2.28) and the fact that
∑n

i=1 ∥zi∥2 = 1. Finally, using

Eq. (2.28), we get

V (X)− E
[
V (A(X)X) | F

]
V (X)

≥ 2δ

(n− 1)diam(G)2
.

Since E
[
V (A(X)X) | F

]
≤ λV (X) for X ∈ L and for X ̸∈ L, we have E

[
V (A(X)X) | F

]
≤

λV (X) a.s. Thus,

E
[
V (A(t,X(t))X(t)) | Ft

]
≤ λV

(
X(t)

)
a.s.,

where λ = 1− 2δ/
(
(n− 1)diam(G)2

)
. ■

2.8.4 Limiting properties of the Lyapunov function V (·)

To prove Lemma 1 we will make use of the following result.

Theorem 7 (Robbins-Siegmund Theorem). Let (Ω,F ,P) be a probability space and

F0 ⊆ F1 ⊆ · · · be a sequence of sub σ-fields of F . Let {ut}, {vt}, {qt}, and {wt} be

Ft-measurable random variables, where {ut} is uniformly bounded from below, and {vt}, {qt},

and {wt} are non-negative. Let
∑∞

t=0wt <∞,
∑∞

t=0 qt <∞ and

E[ut+1 | Ft] ≤ (1 + qt)ut − vt + wt, a.s.,

for all t ≥ 0. Then, the sequence {ut} converges and
∑∞

t=0 vt <∞ a.s.

Proof of Lemma 1. To study the convergence of V
(
W (t)

)
, we first derive a super-martingale

like inequality for the stochastic process
{
V
(
W (t)

)}
. For X(t) ∈ Ft using the contracting
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averaging property of A(t,X(t)) in Eq. (2.16), we get

E
[
V
(
W (t+ 1)

)
| Ft

]
= E

[
V
(
A(t,X(t))X(t)

)
| Ft

]
≤ λV

(
X(t)

)
, a.s., (2.29)

where λ ∈ (0, 1). We know that X(t) = W (t) + E(t), so from triangle inequality on

∥W (t)− W̄ (t) + E(t)− Ē(t)∥F we have

V
(
X(t)

)
≤ V

(
W (t)

)
+ V

(
E(t)

)
+ 2
√

V
(
W (t)

)√
V
(
E(t)

)
. (2.30)

Using the inequality above in Eq. (2.29), for all t ≥ 0 we get

E
[
V
(
W (t+ 1)

)
| Ft

]
≤ λ

(
V
(
W (t)

)
+ V

(
E(t)

)
+ 2
√

V
(
W (t)

)√
V
(
E(t)

))
a.s.

Since V
(
E(t)

)
= ∥E(t)− Ē(t)∥2F ≤ ∥E(t)∥2F ≤ L2α2(t), we get

E[V
(
W (t+ 1)

)
| Ft] ≤ λ

(√
V
(
W (t)

)
+ Lα(t)

)2

a.s.

From Jensen’s inequality, we have

E
[√

V
(
W (t+ 1)

)
| Ft

]
≤
√
E
[
V
(
W (t+ 1)

)
| Ft

]
≤
√
λ
(√

V
(
W (t)

)
+ Lα(t)

)
a.s.

Taking the expectation, multiplying by α(t + 1) and using the fact that {α(t)} is

non-increasing, we get

α(t+ 1)E
[√

V
(
W (t+ 1)

)]
≤ α(t)E

√
V
(
W (t)

)
− (1−

√
λ)α(t)E

√
V
(
W (t)

)
+ α2(t) a.s.
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Since the diminishing step sequence {α(t)} satisfies
∑∞

t=1 α
2(t) <∞, Theorem 7 results in

∞∑
t=1

α(t)E
√

V
(
W (t)

)
<∞,

and by the Monotone Convergence Theorem, we have,

E

[
∞∑
t=1

α(t)
√

V
(
W (t)

)]
<∞, (2.31)

which implies that
∞∑
t=1

α(t)
√
V
(
W (t)

)
<∞, a.s.

Since V (W (t)) =
∑n

i=1 ∥wi(t)− w̄(t)∥2, we know that

∞∑
t=1

α(t)∥wi(t)− w̄(t)∥ ≤
∞∑
t=1

α(t)
√

V
(
W (t)

)
<∞,

for all i ∈ [n], a.s. Since
∑∞

t=1 α(t)∥wi(t)− w̄(t)∥ <∞ and
∑∞

t=1 α(t) =∞, we have

lim inf
t→∞

∥wi(t)− w̄(t)∥ = 0, ∀i ∈ [n], a.s. (2.32)

Further since we have,

∞∑
t=1

α(t)E
√
V
(
W (t)

)
= E

[
∞∑
t=1

α(t)E
[√

V
(
W (t)

)
| Ft

]]
,

using Monotone Convergence Theorem similar to Eq. (2.31) implies that

E

[
∞∑
t=1

α(t)E [∥wi(t)− w̄(t)∥ | Ft]

]
<∞,

and so, we have
∞∑
t=1

α(t)E
[√

V
(
W (t)

)
| Ft

]
<∞ a.s.,
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and therefore,
∞∑
t=1

α(t)E [∥wi(t)− w̄(t)∥ | Ft] <∞, ∀i ∈ [n], a.s. (2.33)

Further, for all t ≥ 0, we know

E
[
V
(
W (t+ 1)

)
| Ft

]
≤ λ

(
V
(
W (t)

)
+ 2Lα(t)

√
V
(
W (t)

)
+ L2α2(t)

)
a.s.

Since we have
∞∑
t=1

2α(t)
√

V
(
W (t)

)
+ λL2α2(t) <∞ a.s.,

Theorem 7 implies that {V (W (t))} converges a.s. Therefore,

∥wi(t+ 1)− w̄(t+ 1)∥ converges, ∀i ∈ [n], a.s.

Using (2.32) with the above result, we get

lim
t→∞
∥wi(t+ 1)− w̄(t+ 1)∥ = 0, ∀i ∈ [n], a.s. (2.34)

Finally, since w̄(t + 1)T = 1TW (t+1)
n

= 1TA(t,X(t))X(t)
n

from the double stochasticity of

A(t,X(t)), we have

w̄(t+ 1)T =
1TX(t)

n
= x̄(t)T ,

which from Eqs. (2.33) and (2.34) implies Lemma 1. ■

2.8.5 Proof of Lemma 3

To prove Lemma 3, we follow the proof in [3, Theorem 1].

Proof. For all x ∈ X ∗ and t ≥ 0, we have

E
[
∥xt+1 − x∥2 | Ft

]
≤ (1 + bt)∥xt − x∥2 − at

(
f(xt)− f(x)

)
+ ct a.s.
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For any x ∈ X ∗, Theorem 7 implies that {∥xt − x∥} converges and

∞∑
t=0

at
(
f(xt)− f(x)

)
<∞ a.s.

Since for any x ∈ X ∗ we have f(x) = f ∗, the event

Ωx =

{
ω : lim

t→∞
∥xt(ω)− x∥ exists, and

∞∑
t=0

at(f(xt(ω))− f ∗) <∞
}

is such that P(Ωx) = 1. Note that here we denote by {xt(ω)}t≥0 the sample path for the

corresponding ω.

LetX ∗
d ⊆ X ∗ be a countable dense subset ofX ∗ andΩd =

⋂
x∈X ∗

d
Ωx.We haveP(Ωd) = 1

since X ∗
d is countable. For any ω ∈ Ωd, since

∑∞
t=0 at =∞ and

∑∞
t=0 at

(
f(xt(ω)− f ∗) <∞,

we have

lim inf
t→∞

f
(
xt(ω)

)
= f ∗. (2.35)

From Eq. (2.35) and the continuity of f , for all ω ∈ Ωd, we have

lim inf
t→∞

∥xt(ω)− x∗(ω)∥ = 0,

for some x∗(ω) ∈ X ∗
4. Consider a subsequence {xtk(ω)}k≥0 of {xt(ω)}t≥0 such that

lim
k→∞

f
(
xtk(ω)

)
= f ∗.

For any ω ∈ Ωd, limt→∞ ∥xt(ω) − x̂∥ exists for x̂ ∈ X ∗
d . Therefore, the sequences

{xt(ω)}t≥0 are bounded. Hence, {xtk(ω)}k≥0 is also bounded, has a limit point x∗(ω) ∈ X ∗,

and without loss of generality,

lim
k→∞

xtk(ω) = x∗(ω).

4v∗(ω) may not be in X ∗
d .
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Since X ∗
d is dense, there is a sequence {qs(ω)}s≥0 in X ∗

d such that

lim
s→∞
∥qs(ω)− x∗(ω)∥ = 0.

For ω ∈ Ωd, limt→∞ ∥xt(ω) − qs(ω)∥ exists for all s ≥ 0, which is ∥x∗(ω) − qs(ω)∥.

Moreover,

lim
t→∞
∥xt(ω)− qs(ω)∥ ≤ lim inf

t→∞
∥xt(ω)− x∗(ω)∥+ ∥x∗(ω)− qs(ω)∥ ≤ ∥x∗(ω)− qs(ω)∥,

which implies that

lim
s→∞

lim
t→∞
∥xt(ω)− qs(ω)∥ = 0.

Finally,

lim sup
t→∞

∥xt(ω)− x∗(ω)∥ ≤ lim
s→∞

lim sup
t→∞

∥xt(ω)− qs(ω)∥+ ∥qs(ω)− x∗(ω)∥ = 0.

Therefore, for any ω ∈ Ωd, we have limt→∞ xt(ω) = x∗(ω), where x∗(ω) ∈ X ∗. So we have,

limt→∞ xt = x∗ a.s. ■

Chapter 2, in full, is a reprint of the material as it appears in A. Verma, M. Vasconcelos,

U. Mitra, B. Touri, “Maximal Dissent: a State-Dependent Way to Agree in Distributed Convex

Optimization," in IEEE Transactions on Control of Network Systems. The dissertation author

was the primary investigator and author of this paper.
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Part II

Distributed Fact Checking
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Chapter 3

Problem Formulation and Soft Estimator

In this chapter we move to the problem of Distributed Fact-Checking. The structure of

the chapter is as follow:

1. Formulation of Distributed Fact-Checking Problem: We introduce a model for distributed

fact checking which constitutes agents modeled as Binary Symmetric Channels with

unknown reliability in Section 3.1.

2. Online Estimator: In Section 3.2 we propose an online estimator for the unreliability

parameters of the agents which makes use of the likelihood ratio between source being fake

or true given the agents’ conclusion about the validity of the statement computed using the

error estimate at a given time. Furthermore in Section 3.2.1 we introduce a variant of the

proposed online estimator based on expanding truncation sets.

3.1 Problem Formulation

Consider a source that streams a sequence of statements. Each statement can be true

or false. We use a hidden variable S(t) ∈ {+1,−1} to denote the label (true/false) of the

statement at discrete-time instance t ∈ N0. A fact-checker is interested in evaluating the

validity of the statements using imperfect (inexpert) agents. We assume that the stream symbols

are independently and identically distributed according to the Rademacher distribution, i.e.,

Pr(S(t) = +1) = Pr(S(t) = −1) = 1
2
, for every t ∈ N.
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Model for the fact-checker: We model a fact-checker as an overseer of multiple agents,

where each agent is responsible for testing the validity of the statement provided to it. For n ∈ N,

let [n] be the set of agents verifying the validity of the statements. At each time t ∈ N, the

agents observe the same statement S(t) and output their evaluation regarding the validity of the

statement to the fact checker, by returning their assessment about the statement. In other words,

if the agent considers the statement correct it marks the statement as True, otherwise, it marks

it as False. However, due to their limited expertise, the agents’ assessments may be different

from the actual label of the statements. Mathematically, we model agent i ∈ [n] as a memoryless

Binary Symmetric Channel (BSC) with the error probability or crossover probability πi ∈ (0, 1),

takes the input S(t) and outputs R(t), where for every s ∈ {−1,+1}, the distribution of the

output is given as

Pr(R(t) = −s|S(t) = s) = 1− Pr(R(t) = s|S(t) = s) = πi.

Therefore, agent i ∈ [n] observes an output Ri(t), which is independent of the past.

Here, πi represents the unreliability of agent i since the agent misclassifies the statement with

probability πi. Note that πi ∈ (0, 1/2) embodies the fact that the agents are not adversarial, and

hence, are reliable agent on ‘average’. We represent the collection of crossover probabilities by π

and the sequence of all agents’ outputs at time t by R(t).

Properties of Output distribution: Let us discuss some properties of output distribution.

i. Since the statement stream {S(t)} is assumed to be independent and each agent is viewed

as a memoryless channel, the random vector process {R(t)} is an independent process.

ii. At any time t ∈ N, given S(t), the outputs {Ri(t)}ni=1 are independent of each other.

Moreover, for any t ∈ N and for every i ∈ [n], Ri(t) has the Rademacher distribution.
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iii. The joint distribution of the output R(t) is given as

Pr(R(t) = r;π) =
1

2

(
n∏

i=1

π
1+ri

2
i π̄

1−ri
2

i +
n∏

i=1

π
1−ri

2
i π̄

1+ri
2

i

)
,

where r ∈ {+1,−1}n, and x̄ = 1− x.

We define the n-dimensional open unit hypercube as X = (0, 1)n. For brevity, given unreliability

parameters of the agents arex ∈ (0, 1)n, we define gx : {+1,−1}n → (0, 1) to be the distribution

of the output vector R ∈ {−1,+1}n, i.e.,

gθ(r) = Pr(R = r;x).

In this notation, gπ(R(t)) refers to the true distribution of the output vector R(t) at any time

t ∈ N.

If the unreliability vector is known π, a linear thresholding estimator can be used to

estimate the validity/label of the statements.

We mathematically formulate the problem of optimal estimator for truth detection/labeling.

The result was obtained in [59] which characterizes the optimal set of estimators that minimize

the probability of error of the labeling and will be discussed in detail later in Chapter 4. To

estimate the validity of the statements based on individual agents’ outputs, we focuss on the class

of estimators that make the decision based on whether the linear combinations of the outputs are

above or below a certain threshold.

Definition 4 (Linear Thresholding (LT) Estimator). Given outputs {Ri}ni=1 of n agents, we

define a Linear Thresholding estimator with the weight vector α = (α1, α2, . . . , αn) ∈ Rn and

threshold γ ∈ R as

SL(α, γ) := sgn

(
n∑

i=1

αiRi − γ

)
, (3.1)
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where sgn(x) = (−1)1{x<0} .

For brevity, we will refer to the LT estimator as SL, and we identify an LT estimator by a

vector (α, γ) ∈ Rn+1 where α ∈ Rn is the weight vector and γ ∈ R is the threshold. Then, a

fact-checker using an LT estimator with a vector (α, γ) ∈ Rn+1 announces the statement to be

True (or SL = 1) if
∑n

i=1 αiRi − γ ≥ 0, and False (SL = −1), otherwise.

In Chapter 4 we study the following problem regarding the optimal LT estimators for a

statement using pseudo-experts (agents).

Problem 8. Consider a fact-checker with access to n agents with known unreliability parameters

π1, π2, . . . , πn and known distribution of the statement S ∈ {−1, 1} with Pr(S = +1) = ω.

Determine the parameters (α, γ) ∈ Rn+1 for the LT estimator SL, defined through (3.1), that

minimizes the probability of error Pr(SL ̸= S). distribution).

In other words, our objective is to characterize the parameters (α, γ) ∈ Rn+1 for the LT

estimator to minimize the error probability Pr(SL ̸= S). We state the solution to the problem in

Theorem 10.

For distributed fact-checking another one of our main goals is to obtain reliable estimate

for the unreliability parameters π. Note that if {S(t)} was known, π could be simply estimated

as the fraction of time at which Ri(t) ̸= S(t). The challenge here is to estimate the channel

parameters without the knowledge of channel input. TThe ideal problem would be to identify

an estimator that converges almost surely to the true estimates of the unreliability parameter.

However, some parameters result in agents’ output distributions that are indistinguishable from

each other. Thus, we focus on the following problem for multi-agent fact-checker.

Problem 9. Consider a fact-checker with access to the sequence {R(t)} of the assessments of n

agents, with unknown unreliability parameters πi, for i ∈ [n]. Determine an online estimator for

the unreliability parameters such that

lim
t→∞

d(P (t),S) = 0, almost surely (a.s.),
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where P (t) is the estimates of π based on the output of the n agents up to time t and S is the set

of parameters that result in indistinguishable distribution for the agents’ output, i.e.,

S := {x ∈ X | gx(r) = gπ(r) for all r ∈ {+1,−1}n}. (3.2)

In fact, we can characterize the set S for n ≥ 3 as follows.

Lemma 7. For n ≥ 3, the set S defined in eq. (3.2) is given by S = {π,1− π}.

Proof. For r ∈ {+1,−1}n, we have gπ(r) = gx(r). Taking the sum over the subset where

r1 = r2 = +1, i.e., {r ∈ {+1,−1}n | r1 = r2 = +1} we get

x1x2 + (1− x1)(1− x2) = π1π2 + (1− π1)(1− π2).

Define h(a, b) = ab + (1 − a)(1 − b) for a, b ∈ [0, 1]. In other words, h(x1, x2) = h(π1, π2).

Using h(a, b) = 2
(
1
2
− a
) (

1
2
− b
)
+ 1

2
, we have

(
1

2
− x1

)(
1

2
− x2

)
=

(
1

2
− π1

)(
1

2
− π2

)
.

Similarly for all i, j ∈ [n] such that i ̸= j, we get

(
1

2
− xi

)(
1

2
− xj

)
=

(
1

2
− πi

)(
1

2
− πj

)
. (3.3)

The above set of equations gives us
(
1
2
− xi

)2
=
(
1
2
− πi

)2 for all i ∈ [n]. Simplifying along

with the system of equation (3.3) we get x = π or 1− π. Therefore S = {π,1− π}. ■

Chapter 5 provides the solution to Problem 9 for fact-checker system with two agents.

The solution for the fact-checker system with n ≥ 3 agents is provided in Chapter 6. In the

following section we introduce the online soft estimator and its projection-based variant whose

convergence analyses are provided in Chapters 5 and 6 respectively.
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3.2 Estimator

First, let us introduce an online estimator for the unreliability parameters of the agents

comprising the fact checker for any number of agents n ≥ 2 whose convergence guarantees for

n = 2 agents is provided in Chapter 5.

Consider the stream of output observed by the fact checker {R(t)}. After any time t ∈ N,

it has an estimate P (t) of the unreliability parameters π obtained at time t, which is updated

after observing the output R(t+ 1).

Recall that if π was known, the fact checker could evaluate the likelihood ratio
Pr(R(t+1)|S(t+1)=−1)
Pr(R(t+1)|S(t+1)=+1)

to decode S(t). Now, without π, we can use its estimate P (t), to compute

an approximate likelihood ratio L(t) of S(t + 1) = −1 to S(t + 1) = +1 based on R(t + 1).

For this, let us define L : X × {+1,−1}n → R by

L(R,x) =
n∏

i=1

(
xi

1− xi

)Ri

. (3.4)

This represents the likelihood function of receiving R given the unreliability parameters π = x.

Now, for the received vector R(t+ 1) and an estimate P (t) of their unreliability parameters, for

brevity, let

L(t) := L(R(t+ 1),P (t)). (3.5)

Using L(t), we can estimate S(t+ 1) by setting

Ŝ(t+ 1) := 21{L(t)<1} − 1 =

 −1 if L(t) ≥ 1,

+1 if L(t) < 1,
(3.6)

where 1{·} represents the indicator function.

We are ready to discuss the update rule for the unreliability parameters’ estimates, given
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the source symbol estimate Ŝ(t+ 1) and the output vector R(t+1). Note that Ri(t+ 1) agreeing

with Ŝ(t+ 1) suggests that it is unlikely that the agent was introducing error sat time t and

hence, we average Pi(t) with a value less than half to obtain Pi(t + 1). Similarly, if Ri(t + 1)

disagrees with Ŝ(t+1), we average it with a value greater than half. More precisely the proposed

algorithm/dynamics updates the unreliability parameters as

Pi(t+ 1) = (1−ηt)Pi(t)+
1

2
ηt

(
L(t)− 1

L(t) + 1
Ri(t+1)+1

)
, (3.7)

for all t ∈ N0 and i ∈ [n] with some initial condition (guess) P (0) ∈ (0, 1/2)n, where {ηt} is a

pre-decided step-size sequence, and L(t) is given in (3.5). Note that with an optimistic view of

the ensemble of agents we set the initial condition in (0, 1/2)n, however the analysis covers all

the cases, i.e., P (0) ∈ (0, 1)n. Allow us to write the above iteration in compact form,

P (t+ 1) = P (t) + ηtf̃(R(t+ 1),P (t)), (3.8)

where f̃ : {+1,−1}n ×X → Rn is the vector field with its ith coordinate given by

f̃i(R,x) :=
1

2

(
1 +

L(R,x)− 1

L(R,x) + 1
Ri

)
− xi. (3.9)

Note that (3.8) is a stochastic approximation-type iteration whose asymptotic behavior

resembles the asymptotic behavior of the mean-field Ordinary Differential Equations (ODE)

ẋ = f(x), (3.10)

where f :X →X is defined by

f(x) := ER∼gπ [f̃(R,x)]. (3.11)
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We will expand on this viewpoint in Section 6.1 of Chapter 6.

Extension to X̄ : Note that the likelihood function (3.4) can be extended to the vectors

x ∈ [0, 1]n, with only one element being 0 or 1 and such definition is not extendable to the case

of more than two such elements. For this, let us first define singly-extreme vectors as follows.

Definition 5. For i ∈ [n], let us define

X (i)
bound := {x ∈ [0, 1]n | xi ∈ {0, 1}, xj ∈ (0, 1)∀j ∈ [n]−i}.

We also define the set of singly-extreme vectors as Xbound :=
⋃n

i=1X
(i)
bound.

In fig. 3.1, we depict the sets X ,X 1
bound, and X 2

bound for the case where n = 2. Assuming

the convention 1
0
:= limp→0+

1−p
p

=∞, for a singly-extreme vector x ∈ X (i)
bound, we define

L(R,x) :=


0 if (−1)xi = Ri

∞ if (−1)xi ̸= Ri

,

leading to

L(R,x)− 1

L(R,x) + 1
=


−1 if (−1)xi = Ri

+1 if (−1)xi ̸= Ri

. (3.12)

Note that if for i ̸= j, xi, xj ∈ {0, 1}, then the likelihood ratio (3.4) cannot be defined for all

vectors R ∈ {+1,−1}n. In particular, if (−1)xiRi ̸= (−1)xjRj , the product in (3.4) would

contain a 0 and∞ term leading to an undefined expression 0×∞. This is in fact a fundamentally

unresolvable phenomena as this is related to the case where the fact-checker is receiving two

contradictory verdicts for a same statement from two fully reliable/unreliable agents.

With this discussion in mind, we can extend the definition of f̃ in (3.9) and f in (3.10) to

the set X̄ := X ∪ Xbound, by considering the ratio (3.12) for x ∈ X (i)
bound for i ∈ [n].
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Figure 3.1. Parameter set: For n = 2 agents the red and green lines represent the sets X (1)
bound

and X (2)
bound respectively. The shaded region represents X . The box excluding the blue points

represents X̄ .

For the step-sizes ηt, we assume they satisfy the following stochastic approximation

step-size assumption.

Assumption 4. The step-sizes {ηt} are positive, non-increasing, and satisfying
∑∞

t=0 ηt =∞

and
∑∞

t=0 η
2
t <∞.

One popular choice for the step-size sequence is the harmonic sequence ηt = 1
t+1

for all

t ∈ N0. To grasp the motivation behind the estimator using such a step-size sequence, examine

the scenario when the fact checker knows the source sequence symbols {S(t)}. Since, at any

time t ∈ N, the output distribution of the agents given S(t) is independent of each other, the

problem of estimating the unreliability parameters of the agents is equivalent to n uncoupled

problems of estimating the parameters of n Bernoulli distributions from their independent

samples. Estimation of parameter for This problem is a well-studied problem and a class of

estimators effective to solve it is the add-constant estimator [29]. For the current setting, for any

i ∈ [n], the add-β estimator, where β ≥ 0 for parameter πi at time t ∈ N is given by

Qi(t) =
β +

∑t
k=1 1{Ri(k)̸=S(k)}

t+ 2β
.

The estimator makes use of the empirical frequency of agent i misclassifying the source symbol
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received and can be expressed recursively as

Qi(t+ 1) = (1− νt)Qi(t) + νt1{Ri(t+1)̸=S(t+1)}.

Here, νt := 1
t+1+2β

and Qi(0) = 1/2. The convergence properties of estimator Q(t) for different

values of β and various loss functions are studied in [29]. Different values of β lead to well-known

estimators, including the empirical estimator (β = 0), the Krichevsky–Trofimov (KT) estimator

(β = 1
2
), and Laplace estimator (β = 1).

To see the connection to our setting, where the source symbol is unknown, consider an

extreme case where L(t)≫ 1 (which implies Ŝ(t+ 1) = −1). For Ri(t+ 1) = +1, we get

1

2

(
L(t)− 1

L(t) + 1
Ri(t+ 1) + 1

)
=

L(t)

L(t) + 1
≈ 1,

whereas for Ri(t+ 1) = −1 we have 1
L(t)+1

≈ 0. Thus,

1

2

(
L(t)− 1

L(t) + 1
Ri(t+ 1) + 1

)
≈ 1{Ri(t+1)̸=Ŝ(t+1)}.

A similar situation holds when L(t) ≈ 0. Therefore, the update rule (3.8) with ηt =
1

t+1
can be

viewed as an imperfect and adaptive version of the add-β estimator (with β = 0).

3.2.1 Estimator with resettings

With the presence of multiple agents making decisions, in order to obtain convergence

guarantees, it is important to stay away from the boundary where two or more agents have

estimated unreliability close to 0 or 1. In particular, in line with the concept of expanding

truncations for stochastic approximation in [13, Chapter 2], we maintain a collection of growing

truncation sets. These compact sets gradually converge to a superset. The estimate (but not the

process) is reset to an arbitrary initial value each time it crosses the current truncation set.

We define {Kt} to be a sequence of increasing compact truncation sets for X̄ , i.e.,
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⋃∞
t=0Kt = X̄ and for all t ∈ N0, Kt is compact and Kt ⊆ Kt+1.

There are many choices for the sequence of increasing truncation sets Kt that sat-

isfy the criterion related to the Lyapunov functions. One such class of sets has the form

Kt =
⋃n

i=1{x ∈ [0, 1]n|xi ∈ [0, 1], |xj − 1
2
| ≤ rt,∀j ∈ [n]−i}, where rt is a sequence of increas-

ing positive numbers converging to 1
2
.

Algorithm 1. Estimator with expanding truncation
Input: {Kt}, P 0 ∈ K0,

Initialization: P pr(0) ∈ K0, t = 0, γ(t) = 0.
while t ≥ 0 do

y = P pr(t) + ηtf̃(R(t+ 1),P pr(t))
if y ∈ Kγ(t) then

P pr(t+ 1) = y
γ(t+ 1) = γ(t)

else if P (t+ 1) ̸∈ Kγ(t) then
P pr(t+ 1) = P 0

γ(t+ 1) = γ(t) + 1
end if
t = t+ 1

end while

Consider the set of increasing truncation covers {Kt}, an initial estimate P pr(0) ∈ K0.Let

{γ(t)} be a sequence of non-negative integers that keeps track of the current boundary set of the

algorithm with γ(0) = 0. Then recursively, for any t ∈ N0, consider the update of the estimate

similar to (3.8) at point P pr(t), y = P pr(t) + ηtf̃(R(t+ 1),P pr(t)). We reset the dynamics if

y is outside the current active set Kγ(t), otherwise, let P pr(t+ 1) = y. In other words,

P pr(t+ 1) =


y, if y ∈ Kγ(t)

P 0, if y ̸∈ Kγ(t)

, (3.13)

where P 0 ∈ K0 is an arbitrarily chosen point from the set K0 and the counter for the truncation
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set is defined as

γ(t+ 1) = γ(t) + 1{y ̸∈Kγ(t)}. (3.14)

Chapter 3, in in part, is a reprint of the material as it appears in A. Verma, A. Sharbafchi,

S. Mohajer, B. Touri,“Distributed Fact Checking:A Stochastic Approximation Approach," in

preparation for IEEE Transactions on Autamtic Control. The dissertation author was the primary

investigator and author of this paper.
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Chapter 4

LT Estimators

As stated in Chapter 3 for the distributed fact-checker, we consider the class of estimators

that threshold a linear combination of the individual agents’ response to estimate the validity

of statements. In this chapter we provide the set of optimal weights and threshold to minimize

the error probability of the estimator as the intersection of at most 2n halfspaces, leading to

uncountably many optimal linear estimators. For these optimal estimators, we provide an upper

bound on the error probability, which provides insights regarding the decrease in the error

probability of the fact-checker as the number of agents increases. We also provide an upper

bound for an estimator that uses the majority rule to estimate the statements’ validity and compare

the two bounds. Similar problem has been studied in [52].

4.1 Problem Formulation

Let us revisit the problem formulation. For this chapter instead of a stream of statements

{S(t)} it is sufficient to study the one-shot version of the problem. Consider a source that outputs

a statement, which might be True or False. We model the validity of the statement by a binary

hidden random variable that is S = +1 if the statement is True and takes S = −1, otherwise.

Further, we assume that the validity label is distributed as

Pr(S = +1) = 1− Pr(S = −1) = ω.

66



Model for the fact-checker: Recall that we model a fact-checker as an overseer of

multiple agents, where each agent is responsible for labeling the validity of the statement provided

to it. We consider a set of n ∈ N agents, denoted by [n], each responsible for verifying the

statement. The agents observe the same statement and output their evaluation regarding its validity

according to their expertise and knowledge. However, due to imperfections, the label assigned to

the statement by an agent is not necessarily the same as the true label S. Mathematically, we

model the agents as a Binary Symmetric Channel (BSC), parameterized by the error probability

or crossover probability π ∈ [0, 1], which takes a binary1 input random variable S ∈ {+1,−1}

and outputs a binary random variable R ∈ {+1,−1} with

Pr(R = −s | S = s) = 1− Pr(R = s | S = s) = π.

Using this, we view agent i ∈ [n] as a BSC channel with input statement S and output Ri.

Moreover, Ri is the output of a BSC with error probability πi. In other words for s ∈ {+1,−1}

Pr(Ri = −s | S = s) = 1− Pr(Ri = s | S = s) = πi.

We represent the collection of crossover probabilities, and the output received at the fact-checker

by π := (π1, π2, . . . , πn) and R := (R1, R2, . . . , Rn), respectively. Moreover, we assume the

agents’ opinions are independent of each other, i.e.,

Pr(R = r | S = s) =
n∏

i=1

Pr(Ri = ri | S = s),

for every r ∈ {+1,−1}n and s ∈ {+1,−1}.

To estimate the validity of the statements based on individual agents’ outputs, we focus

on the class of estimators that make the decision based on whether the linear combinations of

the outputs are above or below a certain threshold. Recall the class of LT estimator stated in

1For convenience, we use {+1,−1} symbols instead of the default binary symbols {0, 1}.
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Definition 4.

Definition (Linear Thresholding (LT) Estimator). Given outputs {Ri}ni=1 of n agents, we define a

Linear Thresholding estimator with the weight vector α = (α1, α2, . . . , αn) ∈ Rn and threshold

γ ∈ R as

SL(α, γ) := sgn

(
n∑

i=1

αiRi − γ

)
, (4.1)

where sgn(x) = (−1)1{x<0} .

For brevity, we will refer to the LT estimator as SL, and we identify an LT estimator by a

vector (α, γ) ∈ Rn+1 where α ∈ Rn is the weight vector and γ ∈ R is the threshold. Then, a

fact-checker using an LT estimator with a vector (α, γ) ∈ Rn+1 announces the statement to be

True (or SL = 1) if
∑n

i=1 αiRi − γ ≥ 0, and False (SL = −1), otherwise.

In this work, we are interested in the study of optimal LT estimators for a statement using

pseudo-experts. Recall Problem 8 stated in the Chapter 3.

Problem. Consider a fact-checker with access to n agents with known unreliability parameters

π1, π2, . . . , πn and known distribution of the statement S ∈ {−1, 1} with Pr(S = +1) = ω.

Determine the parameters (α, γ) ∈ Rn+1 for the LT estimator SL, defined through (4.1), that

minimizes the probability of error Pr(SL ̸= S).

In other words, our objective is to characterize the parameters (α, γ) ∈ Rn+1 for the LT

estimator to minimize the error probability Pr(SL ̸= S).

4.2 Main Result

In order to provide the solution to Problem 8 we define a property involving two vectors

that resembles the parallel condition for two vectors.
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Definition 6 (Almost Parallel Vectors). Consider two vectors α,β ∈ Rn+1. Then the vector

α is said to be almost parallel to β and denoted by α∥̃β, if for every r ∈ {−1,+1}n+1 with∑n+1
i=1 riβi ̸= 0 we have

sgn

(
n+1∑
i=1

riαi

)
= sgn

(
n+1∑
i=1

riβi

)
. (4.2)

Note that if
∑n+1

i=1 riβi = 0, then there is no restriction on the sign of
∑n+1

i=1 riαi.

Let β-hyperplane be the hyperplane in Rn+1 whose normal vector is β. Then the points

in {+1,−1}n+1 can be partitioned into three groups, namely, those above the hyperplane, below

it, and right on it. The definition above ensures that the partitions above and below β-hyperplane

are subsets of the corresponding partitions with respect to α-hyperplane. It is worth mentioning

that the definition above ignores those points that lie on β-hyperplanes.

Remark 3. Note that the equality in (4.2) for all r ∈ Rn+1 (instead of r ∈ {+1,−1}n+1) implies

that the vectors α,β are normal vectors to the same hyperplane since they separate points in

Rn+1 in exactly the same way. In this sense, the definition of almost parallel vectors restricts this

separation condition to only points in {+1,−1}n+1.

In the following theorem, we define the set of weight vectors and thresholds that minimize

the error probability for the LT estimator to be the set of all vectors almost parallel to a vector

defined through the parameters π, ω.

Theorem 10. For a fact-checker with agents’ unreliability parameters πi ∈ (0, 1) for i ∈ [n], the

set of optimal parameters for LT estimators is given by

A :=
{
(α, γ) ∈ Rn+1

∣∣∣(α, γ)∥̃(ℓπ, ℓω)
}
, (4.3)

where ℓπ := (ℓπ1 , . . . , ℓπn) =
(
log 1−π1

π1
, . . . , log 1−πn

πn

)
and ℓω := log 1−ω

ω
. In other words, the

probability of error Pr(SL(α, γ) ̸= S) is minimized if and only if (α, γ) ∈ A.
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Note that LT estimators can be interpreted as classifiers characterized by separating

hyperplanes: labeling vertices of {+1,−1}n to two labels +1 and−1. Theorem 10 characterizes

all such separating hyperplanes that optimally bisect those vertices as those whose normal vectors

are almost parallel to (ℓπ, ℓω). We refer to Fig. 4.1 for a pictorial illustration..

Remark 4. In Theorem 10, the value of ℓπi
:= log 1−πi

πi
can be interpreted as the log-likelihood

ratio of the conditional probability of received output of agent i being same as source symbol to

the probability of received output being flipped.

Remark 5. Note that A includes B =
⋂

r∈{−1,+1}n Ar where Ar are open sets defined by

Ar =


Rn+1 if

∑n
i=1 riℓπi

− ℓω = 0,

{(α, γ)|
∑n

i=1 riαi > γ} if
∑n

i=1 riℓπi
− ℓω > 0,

{(α, γ)|
∑n

i=1 riαi < γ} if
∑n

i=1 riℓπi
− ℓω < 0.

Note that (ℓπ, ℓω) ∈ B and since B is an intersection of finitely many open sets, it is a non-empty

open set contained in A. Therefore, not only does the optimal set A contain infinitely many

vectors, but also it has a non-zero Borel measure. Therefore, a fact-checker does not need to know

the exact value of unreliability parameters (cross-over probabilities πi) to arrive at an optimal

LT estimator. For example, it is sufficient to run an estimator for the unreliability parameters

until we reach an estimate π̂ such that (ℓπ̂, ℓω) ∈ A where ℓπ̂ =
(
log 1−π̂1

π̂1
, . . . , log 1−π̂n

π̂n

)
. We

demonstrate the use of this fact through a simulation in Section 4.4.

Example 1. Consider a fact-checker comprised of n = 2 agents with unreliability pa-

rameters π1, π2 ∈ (0, 1/2] with π1 < π2 and a source with parameter ω = 1/2. Then

{(α, γ) ∈ R3 | |α2| < α1, γ = 0} is the subset of optimal weights with threshold γ = 0 for LT

estimators and the probability of error is given by Pr(S⋆
L ̸= S) = π1. To show this, we note that
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Figure 4.1. Several hyperplanes (LT estimators) leading to optimal labeling of {+1,−1}n for n = 3.

when π1 < π2 ≤ 1
2
, we have

ℓπ1 = log
1− π1

π1

> log
1− π2

π2

= ℓπ2 ≥ 0.

Hence, ℓπ1 − ℓπ2 > 0 and ℓπ1 + ℓπ2 > 0. Thus, to satisfy the almost parallel condition (4.2), for

the threshold γ = ℓω = 0, the optimal weights consist of vectors α = (α1, α2) with α1 + α2 > 0

and α1 − α2 > 0, i.e., any vector in {α ∈ R2 | |α2| < α1} along with the threshold γ = 0 leads

to an optimal LT estimator. Any such an optimal LT estimator announces SL = R1, the output

of agent i = 1, as the estimate of source symbol, and hence, the error probability would be

Pr(S⋆
L ̸= S) = Pr(R1 ̸= S) = π1.

4.2.1 Upper Bound on Error Probability

In this section, we provide an upper bound for the error probability for the LT estimator

as a function of the unreliability parameters π, and the source parameter ω.

Theorem 11. Consider a fact-checker comprised of agents with unreliability parameters

πi ∈ (0, 1) for i ∈ [n] and the optimal Linear Thresholding estimator S⋆
L based on an optimal set

of parameters (α⋆, γ⋆) ∈ Rn+1 satisfying (4.3). The probability of error for (α⋆, γ⋆) is upper
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bounded as

Pr (S⋆
L ̸= S) ≤ 2n+1

√√√√ω(1− ω)
n∏

i=1

πi(1− πi). (4.4)

Remark 6. The symmetry in the upper bound of error probability with respect to πi, 1− πi is

desirable because the fact-checker knows the unreliability parameters πi. If the fact-checker flips

the output of any pseudo-expert, it obtains an agent with unreliability 1− πi. Thus, πi and 1− πi

play similar roles in the performance of the fact-checker.

4.2.2 Majority Rule Fact-checker

A heuristic approach to the above fact-checker problem is to decide the validity of a

statement based on the majority of what fact-checkers believe. Here, we provide an upper bound

on the error probability of the majority-rule fact-checker.

Proposition 12. Consider πi ∈ (0, 1/2) for i ∈ [n] and a fact-checker with majority-based

estimator ŜMJ := sgn (
∑n

i=1 Ri). The probability of error, Pr
(
ŜMJ ̸= S

)
, is upper bounded by

n∏
i=1

√
πi(1− πi)

√∏
j ̸=i

1− πj

πj

+

√∏
j ̸=i

πj

1− πj

 . (4.5)

Remark 7. The Arithmetic-Geometric means inequality implies
√∏

j ̸=i
1−πj

πj
+
√∏

j ̸=i
πj

1−πj
≥ 2

and
√

ω(1− ω) ≤ 1
2
. Using these, it is straightforward to verify that the upper bound of error

probability for the majority-rule estimator in (4.5) is worse than that of the optimal LT estimator

in (4.4).

4.3 Proof of Main Theorems

In this section, we present the proof of the results discussed in the previous section. We

begin with proving Theorem 10.
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Proof of Theorem 10. Using the law of total probability, the error probability is expressed as

Pr(SL ̸= S) = ωPr (SL =−1|S = 1) +(1−ω)Pr (SL = 1|S =−1) .

Based on the definition of LT estimator, for any parameter vector (α, γ) ∈ Rn+1, conditioned

on the statement being true (i.e., S = +1), the LT estimator provides an incorrect estimate (i.e.,

SL = −1) when
∑n

i=1 αiRi < γ. Therefore,

Pr(SL = −1 | S = 1) = Pr

(
n∑

i=1

αiRi < γ

∣∣∣∣∣S = 1

)
.

To evaluate the latter probability, we consider all the possibilities for the received vector

R ∈ {+1,−1}n such that
∑n

i=1 αiRi < γ, and add up the probabilities of all such disjoint events.

Note that each R ∈ {+1,−1}n corresponds to a subset Q ⊆ [n] where Ri = 1 if and only if

i ∈ Q. Then, we have
∑n

i=1 αiRi = α(Q)−α(Qc), and hence, R leads to SL = −1 if and only

if α(Q)−α(Qc) < γ. Therefore,

Pr

(
n∑

i=1

αiRi < γ

∣∣∣∣∣S = 1

)

=
∑

Q⊆[n]:
α(Q)−α(Qc)<γ

Pr
(
{Ri = 1,∀i ∈ Q} ∩ {Ri =−1,∀i ∈ Qc}

∣∣S = 1
)

=
∑
Q⊆[n]

∏
i∈Q

(1− πi)
∏
i∈Qc

πi · 1{α(Q)−α(Qc)<γ}.

Similarly, the conditional error probability when S = −1 is

Pr

(
n∑

i=1

αiRi ≥ γ
∣∣∣S = −1

)
=
∑
Q⊆[n]

∏
i∈Q

πi

∏
i∈Qc

(1− πi)1{α(Q)−α(Qc)≥γ}.
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Combining the terms above and rearranging them, we get

Pr (SL ̸= S) =
∑
Q⊆[n]

(
ω
∏
i∈Q

(1− πi)
∏
i∈Qc

πi1{α(Q)−α(Qc)<γ}

+ (1− ω)
∏
i∈Q

πi

∏
i∈Qc

(1− πi)1{α(Q)−α(Qc)≥γ}

)
. (4.6)

For Q ⊆ [n], let us define

pe(Q) :=ω
∏
i∈Q

(1− πi)
∏
i∈Qc

πi1{α(Q)−α(Qc)<γ} + (1− ω)
∏
i∈Q

πi

∏
i∈Qc

(1− πi)1{α(Q)−α(Qc)≥γ}.

Then, the obtained expression for the probability of error (4.6) can be compactly written as

Pr (SL ̸= S) =
∑

Q⊆[n] pe(Q). To minimize Pr (SL ̸= S) we use the fact that the minimum of

a sum is no less than the sum of the minimum of the terms. Therefore,

min
(α,γ)∈Rn+1

Pr (SL ̸= S) ≥
∑
Q∈[n]

min
(α,γ)∈Rn+1

pe(Q).

Recall that argminx∈{0,1} ax+ b(1− x) = 1{a=min(a,b)} for a, b≥ 0. Now, consider

a = ω
∏
i∈Q

(1− πi)
∏
i∈Qc

πi

and

b = (1− ω)
∏
i∈Q

πi

∏
i∈Qc

(1− πi)

for some fixedQ ⊆ [n]. Since 1{α(Q)−α(Qc)<γ} = 1−1{α(Q)−α(Qc)≥γ}, the minimizers of pe(Q)

are those pairs of (α, γ) in the set {(α, γ) ∈ Rn | α(Q)−α(Qc) ≥ γ} when

ω
∏

i∈Q(1− πi)
∏

i∈Qc πi

(1− ω)
∏

i∈Q πi

∏
i∈Qc(1− πi)

> 1,
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and in the set {(α, γ) ∈ Rn+1 | α(Q)−α(Qc) < γ} when

ω
∏

i∈Q(1− πi)
∏

i∈Qc πi

(1− ω)
∏

i∈Q πi

∏
i∈Qc(1− πi)

< 1.

Taking the logarithm of the expression above, we get

log

(
ω
∏

i∈Q(1− πi)
∏

i∈Qc πi

(1− ω)
∏

i∈Q πi

∏
i∈Qc(1− πi)

)
=
∑
i∈Q

log
1− πi

πi

−
∑
i∈Qc

log
1− πi

πi

− log
1− ω

ω

= ℓπ(Q)− ℓπ(Qc)− ℓω.

Thus, argmin(α,γ)∈Rn+1 pe(Q) is given by


Rn+1, if ℓπ(Q)−ℓπ(Qc) = ℓω,

{(α, γ)|α(Q)−α(Qc) ≥ γ} , if ℓπ(Q)−ℓπ(Qc)> ℓω,

{(α, γ)|α(Q)−α(Qc) < γ} , if ℓπ(Q)−ℓπ(Qc)< ℓω.

In order to determine the minimizing weights for Pr (SL ̸= S), it suffices to obtain (α, γ) that

minimizes pe(Q) for all Q ⊆ [n]. Taking the intersection of all the minimizers of pe(Q) over all

possible Q ⊆ [n], we obtain a set of (α, γ) that minimizes the error probability Pr (SL ̸= S) to

be A given in (4.3). Note that A is a non-empty set since (ℓπ, ℓω)∥̃(ℓπ, ℓω). ■

In Theorem 10, when we set (α, γ) = (ℓπ, ℓω), the resulting estimator reduces to the

Maximum A Posteriori (MAP) estimator [33, Page 20] which is given by

ŜMAP(r) =


+1 Pr(S=+1|R=r)

Pr(S=−1|R=r)
≥ 1

−1 Pr(S=+1|R=r)
Pr(S=−1|R=r)

< 1

,
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where

Pr(S = +1 | R = r)

Pr(S = −1 | R = r)
=

ω
∏

i∈Q(1− πi)
∏

i∈Qc πi

(1− ω)
∏

i∈Q πi

∏
i∈Qc(1− πi)

with Q = {i | ri = +1}.

Next, we prove the upper bound on the error probability of the optimal LT estimator

stated in Theorem 11.

Proof of Theorem 11: To determine Pr (S⋆
L ̸= S) we look at its components

Pr (S⋆
L ̸= S|S = −1) and (S⋆

L ̸= S|S = 1). Note the error probability is identical for all (α⋆, γ⋆)

satisfying (4.3), and hence, we can focus on α⋆
i = log 1−πi

πi
for every i ∈ [n] and γ⋆ = log 1−ω

ω
.

In the spirit of Chernoff bound, for any η > 0 we have

Pr (S⋆
L ̸= S|S = −1) = Pr

(
n∑

i=1

α⋆
iRi ≥ γ

∣∣∣∣∣S = −1

)
(4.7)

≤
E
[
eη

∑n
i=1 α

⋆
iRi | S = −1

]
eηγ

=

∏n
i=1 E

[
eηα

⋆
iRi | S = −1

]
eηγ

,

where the last equality follows from the fact that {Ri | i ∈ [n]} are mutually independent

conditioned on source symbol S. Then, for any i ∈ [n], we have

E[exp (ηα⋆
iRi) | S = −1] = πie

ηα⋆
i + (1− πi)e

−ηα⋆
i

= πi

(
1− πi

πi

)η

+ (1− πi)

(
πi

1− πi

)η

= πη
i (1− πi)

1−η + π1−η
i (1− πi)

η. (4.8)

Plugging (4.8) into (4.7), and setting η = 1
2
, we get

P (S⋆
L ̸= S|S = −1) ≤ 2n

√
ω

1− ω

∏n

i=1
πi(1− πi).
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Similarly, for S = 1 we arrive at

Pr (S⋆
L ̸= S|S = 1) ≤ 2n

√
1− ω

ω

∏n

i=1
πi(1− πi).

Using the total law of probability we get

Pr (S⋆
L ̸= S) ≤ 2n+1

√
ω(1− ω)

∏n

i=1
πi(1− πi). ■

Finally, we provide the proof for the upper bound of the Majority Rule Fact-checker as stated in

Proposition 12.

Proof. Following along the proof of Theorem 11, we have

Pr
(
ŜMJ ̸= S

∣∣∣S = −1
)
= Pr

(
n∑

i=1

Ri ≥ 0

∣∣∣∣∣S = −1

)

≤
n∏

i=1

E[exp(ηRi) | S = −1] =
n∏

i=1

(
πie

η + (1− πi)e
−η
)
,

for any η > 0. Setting η = 1
2

∑n
i=1 log

1−πi

πi
, we get

Pr
(
ŜMJ ̸= S

∣∣∣S = −1
)

≤
n∏

i=1

√
πi(1− πi)

[√∏
j ̸=i

1− πj

πj

+

√∏
j ̸=i

πj

1− πj

]
.

Using a similar approach, we can derive the same bound for Pr
(
ŜMJ ̸= S

∣∣∣S = 1
)

, and conse-

quently for Pr
(
ŜMJ ̸= S

)
. ■

4.4 Simulations

This section provides some numerical experiment results for the Linear Threshold

Estimator fact-checkers as discussed in previous sections. First, consider a fact-checker that
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does not know the unreliability parameters of the agents but utilizes a reinforcement learning

algorithm to learn them and use them for estimating the validity of the source statements.

For this, consider a fact-checker with n = 9 agents with unreliability parameters πi =
i
10

for i ∈ [n]. We generate N = 10000 i.i.d. labels {S(t)} from the source with parameter ω = 0.2.

For t = 1, . . . , N , we denote the output vector received by the fact-checker by R(t). For learning

the unreliability parameters, consider an initial estimate of the parameters {π̂i(0) | i ∈ [n]}.

Let us denote the estimate of the unreliability parameter at (the end of) iteration t by π̂(t). At

iteration t+ 1, based on the received vector R(t+ 1) and π̂(t), we estimate S(t+ 1) as SL,t+1,

which the output of an LT estimator with parameters (ℓπ̂(t), ℓω) and input R(t+ 1). Based on

the proximity between Ri(t+ 1) and a soft version of estimate SL,t+1, the algorithm adjusts the

policy estimate, π̂i(t), for each agent i ∈ [n]. In particular, we use the following reinforcement

learning dynamics

π̂i(t+ 1) =
t

t+ 1
π̂i(t) +

1

t+ 1

1− tanh
Ri(t+1)Ssoft

L,t+1

2

2
, (4.9)

where Ssoft
L,t+1 =

∑n
i=1 ℓπ̂i(t)Ri(t+ 1)− ℓω.

In Fig. 4.2 (top), we plot the true channel parameters π and the estimate π̂(t) as a function

of iteration t. It can be seen that the estimates approach the true parameters as the number of

iterations grows. Since the estimate of the unreliability parameter {π̂(t)} appears to converge to

the true parameter π, we expect the estimate SL,t to mimic the optimum estimator S⋆
L. Fig. 4.2

(bottom) illustrates the total number of mismatches between SL,t and S⋆
L at iteration t. As it is

shown there, this error becomes less frequent as the number of iterations t grows, leading to only

17 mismatches in 10000 iterations.

The non-zero Borel measure of A allows us to have an optimal LT estimator in spite

of having an imperfect estimate π̂ of unreliability parameters. Define the stopping time

T = inf{t ≥ 1 | (ℓπ̂(t), ℓω)∥̃(ℓπ, ℓω)}. Fig. 4.3 shows our algorithm’s histogram of T for 1000

sample paths (batches). There, N(t) represents the number of runs in which the almost parallel
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Figure 4.2. Top: Learning π̂i(t) using (4.9) as a function of t. The horizontal lines correspond to
each agent’s true unreliability parameters. Bottom: The number of misclassified labels vs the number of
received statements.
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Figure 4.3. Histogram for stopping-time T

condition holds for T = t.
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Chapter 4, in full, is a reprint of the material as it appears in A. Verma, A. Sharbafchi, B.

Touri, S. Mohajer, “Distributed Fact Checking," in 2023 International Symposium on Information

Theory. The dissertation author was the primary investigator and author of this paper.
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Chapter 5

Two-Agent Fact Checker

In this chapter, our focus is analyzing the convergence of online estimator introduced in

Chapter 3 for the two-agent fact-checker (n = 2). An important point to recall is that since the

fact checker has access only to the samples of the output vectors {R(t)}, unreliability parameters

resulting in the same output distribution, i.e., same statistics for R(t) are indistinguishable from

each other from the perspective of the fact checker. In particular, it is easy to verify that for any

µ = (µ1, µ2) satisfying µ1µ2 + µ̄1µ̄2 = π1π2 + π̄1π̄2, the probability of observing (R1, R2) at

the output of the channel µ is identical to observing (R1, R2) at the output of π. Hence, µ and

π are not distinguishable. This leads us to the following problem statement. Therefore, we focus

on the following problem for two-agent fact-checker.

Problem 13. Consider a fact-checker with access to the sequence of the assessments of two

agents, with unknown unreliability parameters π1, π2. Determine an online estimator for the

unreliability parameters such that

lim
t→∞

P1(t)P2(t) + P̄1(t)P̄2(t) = π1π2 + π̄1π̄2, a.s.,

where P1(t), P2(t) are the estimates of π1, π2 based on the output of the two agents up to time t.
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5.1 Main Result
Two-Agent Fact Checker

We focus on the study of our proposed learning dynamics (3.8) for a two-agent system.

In this case, the output distribution is determined through a single parameter π1π2 + π̄1π̄2 which

is the function of unreliability parameter (vector), π, i.e., for every s ∈ {+1,−1}, we have

Pr(R(t) = s1) = 1− Pr

R(t) =

 s

−s


 =

π1π2 + π̄1π̄2

2
.

Define h(a, b) := ab+ āb̄ for a, b ∈ [0, 1]. Some properties of h(a, b) which will be used

repeatedly throughout the chapter are (i) h(a, b) = h(ā, b̄) and consequently h(a, b̄) = h(ā, b),

(ii) h(a, b) + h(a, b̄) = 1, and (iii) 0 ≤ h(a, b) ≤ 1 with equality only at the corner points of

[0, 1]2.

Remark 8. For the update rule for the two-agent case n = 2, note that if R1(t+ 1) = R2(t+ 1),

then

1

2

(
L(t)− 1

L(t) + 1
Ri(t+ 1) + 1

)
=

P1(t)P2(t)

h(P1(t), P2(t))
.

Thus, if R1(t+ 1) = R2(t+ 1), from (3.8), P (t+ 1) will be a convex combination of the current

estimate P (t) and the vector P1(t)P2(t)
h(P1(t),P2(t))

1. Similarly, if R1(t) ̸= R2(t), then

1

2
ηt

(
L(t)− 1

L(t) + 1
Ri(t+1)+1

)
=

Pi(t)P3−i(t)

h(P1(t), P̄2(t))
,

and thus, the estimator P (t + 1) is a convex combination of the current estimate P (t) and

1
h(P1(t),P̄2(t))

P1(t)P̄2(t)

P̄1(t)P2(t)

.

In the following theorem, we provide a close answer to Problem 13 by proving that the
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proposed online estimators converge almost surely to the desired set.

Theorem 14 (Convergence of Online Estimator). For a fact-checker comprised of two agents

with unreliability parameters πi, for i ∈ [2], under Assumption 4 on the step-sizes, the online

estimator {P (t)}, defined in (3.8), converges to the set

E = {x ∈ [0, 1]2 | h(x1, x2) = h(π1, π2)} ∪ {(0.5, 0.5)} .

5.2 Proof of Main Result

We prove the main result using stochastic approximation techniques. To do so, we first

show that the difference in the updates of the estimates in (3.8) can be decomposed into a

deterministic part and a zero-difference martingale.

Lemma 8. For t ∈ N0, the online estimator (3.8) satisfies

P (t+ 1) = P (t) + ηt (f(P (t)) +M(t+ 1)) , (5.1)

where the function f : (0, 1)2→ (0, 1)2 has coordinates

fi(x) :=
h(π1, π2)− h(x1, x2)

h(x1, x2)(1− h(x1, x2))
xix̄i(x3−i − x̄3−i), (5.2)

and the sequence {M(t)} is a bounded martingale difference sequence with respect to the filtration

{Ft}t≥0, where Ft = σ(P (k),M(k) : k ≤ t), i.e., for all t ∈ N0 we have E[M (t+ 1) | Ft] = 0

and ∥M(t+ 1)∥∞ ≤ 2 almost surely (a.s.) (and hence, bounded in-expectation).

Proof. Let

M(t+ 1) :=
1

ηt
(P (t+ 1)− P (t))− f(P (t)).
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To prove the claim, first note that

ηtE[M (t+ 1) | Ft] = E[P (t+ 1)− P (t)|Ft]− ηtf(P (t)),

and thus, we need to show E[P (t+1)−P (t)|Ft] = ηtf(P (t)) almost surely. From Remark 8,

we know that whenever R1(t+ 1) = R2(t+ 1), we have

Pi(t+ 1)− (1− ηt)Pi(t) = ηt
P1(t)P2(t)

h(P1(t), P2(t))
,

for i ∈ [2], whereas when R1(t+ 1) ̸= R2(t+ 1), we have

Pi(t+ 1)− (1− ηt)Pi(t) = ηt
Pi(t)P̄3−i(t)

h(P1(t), P̄2(t))
.

Note that Pr(R1(t) = R2(t)) = π1π2 + π̄1π̄2 = h(π1, π2) and Pr(R1(t) ̸= R2(t)) = h(π1, π̄2)

for all t ∈ N0. Thus,

E[Pi(t+ 1)− Pi(t) | Ft]

=ηt

(
h(π1,π2)

P1(t)P2(t)

h(P1(t), P2(t))
+h(π1, π̄2)

Pi(t)P̄3−i(t)

h(P1(t), P̄2(t))
−Pi(t)

)
,

for all i ∈ [2]. Therefore, f(x) is given by

fi(x) =

(
h(π1, π2)

x1x2

h(x1, x2)
+ h(π1, π̄2)

xix̄3−i

h(x1, x̄2)
− xi

)
,

for i ∈ [2]. It is convenient to replace the last term (i.e., −x1) by −(h(π1, π2) + h(π1, π̄2))x1 in
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f1(x) to get

f1(x) = x̄1x1(x2− x̄2)
h(π1, π2)

h(x1, x2)
+ x1x̄1(x̄2−x2))

h(π1, π̄2)

h(x1, x̄2)

= x̄1x1(x2 − x̄2)

(
h(π1, π2)

h(x1, x2)
− h(π1, π̄2)

h(x1, x̄2)

)
.

Similarly, we have

f2(x) = x̄2x2(x1 − x̄1)

(
h(π1, π2)

h(x1, x2)
− h(π1, π̄2)

h(x1, x̄2)

)
.

Note that as h(a, b) + h(a, b̄) = 1,

h(π1, π2)

h(x1, x2)
− h(π1, π̄2)

h(x1, x̄2)
=

h(π1, π2)− h(x1, x2)

h(x1, x2)h(x1, x̄2)
.

Therefore, we have

f(x) =
h(π1, π2)− h(x1, x2)

h(x1, x2)(1− h(x1, x2))

x1x̄1(x2 − x̄2)

x2x̄2(x1 − x̄1)

 . (5.3)

Finally, we have 1
2

(
Ri(t+ 1)L(t)−1

L(t)+1
+1
)
∈ (0, 1) for Pi(t) ∈ (0, 1). This together with

fi(P (t)) ∈ (−1, 1) implies that |Mi(t+ 1)| ≤ 2 for i ∈ [2]. ■

The iterates of the form (5.1) are well-known as Stochastic Approximation iterates and

they were first introduced in [49] to find the zeros of scalar functions and later, were used to find

the zeros of vector fields (functions from Rn to Rn), using noisy measurements of the vector field

f(x). Therefore, the natural next step would be to identify the zeros of the particular function

f(x) given in (5.3), as stated in the following lemma.
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Figure 5.1. The blue with arrows and red curves represent the direction of the function f(x) at
point x and level set {x | h(x) = h(π)} for a π = (0.32, 0.36)T . The other curves represent the
sample paths for our estimator with different initial states (marked by o) and end states (marked
by ∗).

Lemma 9. The zero set of the function (vector-field) f(x) (defined in (5.2)) is the set

E = {x ∈ (0, 1)2 | h(x1, x2) = h(π1, π2)} ∪ {(0.5, 0.5)}. (5.4)

Proof. Note that f(x) = 0 iff

h(π1, π2)− h(x1, x2)

h(x1, x2)(1− h(x1, x2))

x1x̄1(x2 − x̄2)

x2x̄2(x1 − x̄1)

 =

0
0

 . (5.5)

Therefore, f(x) = 0 iff either h(π1, π2)−h(x1, x2) = 0 or x1x̄1(x2− x̄2) = x2x̄2(x1− x̄1) = 0.

For x ∈ (0, 1)2, the second condition holds true iff x1 = x2 = 0.5. ■

Although the discrete-time process {P (t)} satisfies the conditions to be viewed as the

Stochastic Approximation scheme for f(x), we cannot use the standard results in stochastic

approximation [10, 32] to establish the convergence guarantees of our learning rule since the

function f is not a Lipschitz function. We use certain potential or Lyapunov (like) functions and
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their properties to show the convergence of the proposed online estimator’s updates.

First, we establish a lemma showing an invariance relation for the estimates P1(t), P2(t),

which we use in the analysis of the limit of the online estimator. The following lemma states that

if the unreliability estimate of an agent is greater than the other, the estimates at any time for that

agent will stay greater than or equal to the estimate for the other agent.

Lemma 10. For a fact-checker with n = 2 agents, and for all t ≥ 0, the online estimator {P (t)},

given by (3.8), satisfies

(P2(t)− P1(t))(P2(0)− P1(0)) ≥ 0.

Proof. It suffices to show that the sign of P2(t)− P1(t) and P2(t+1)−P1(t+1) always agree.

If R1(t+1) =R2(t+1), then Remark 8 implies that P (t+ 1) is a convex combination of P (t)

and P1(t)P2(t)
h(P1(t),P2(t))

1, i.e., both P1(t) and P2(t) are scaled and shifted by the same amount, and

hence, their order is preserved. Now, let R1(t+ 1) ̸= R2(t+ 1), and without loss of generality

assume that P2(t) ≥ P1(t). Then this implies that P̄1(t)P2(t) ≥ P1(t)P̄2(t). From Remark 8 we

know that P (t+ 1) is a convex combination of P (t) and

1

h(P1(t), P̄2(t))

P1(t)P̄2(t)

P̄1(t)P2(t)

 ,

where in both vectors the second entry is greater than or equal is the first one. Thus,

P2(t+ 1) ≥ P1(t+ 1). ■

In the following lemma, we prove the convergence of our online estimator to a superset of

the zero set E (given by (5.4)).

Lemma 11. Under the hypothesis of Theorem 14, the online estimator updates {P (t)} converges

almost surely to the set

E1 := {x ∈ [0, 1]2 | h(x1, x2) = h(π1, π2)} ∪
{
x ∈ [0, 1]2 | x1 =

1

2
or x2 =

1

2

}
.
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Proof. Define

V (t) := (h(P1(t), P2(t))− h(π1, π2))
2

for t ≥ 0. From (5.1), we know that the update of the estimates is given by Pi(t + 1) =

Pi(t) + ηtf̃i(R(t+ 1),P (t)) where

f̃i(R(t+ 1),P (t)) = fi(P (t)) +Mi(t+ 1).

for i ∈ [2]. In order to simplify the notation, we will refer to the above expression as f̃i(t).

Utilizing this expression, we can simplify the function h(P1(t+ 1), P2(t+ 1)) as

h(P1(t+ 1), P2(t+ 1)) = h(P1(t), P2(t)) + 2η2t f̃1(t)f̃2(t)

+ ηt(f̃1(t)(P2(t)− P̄2(t)) + f̃2(t)(P1(t)− P̄1(t)).

Using the fact that for all t ∈ N and i ∈ [2], the terms |f̃i(t)| and Pi(t) are bounded above

by 1, for a positive constant K, we can obtain an upper bound on V (t+ 1) as

V (t+ 1) ≤ V (t) + η2tK + 2ηt(h(P1(t), P2(t)− h(π1, π2))

× (f̃1(t)(P2(t)− P̄2(t)) + f̃2(t)(P1(t)− P̄1(t))). (5.6)

Taking the conditional expectation on the past Ft of the above inequality, and using the

property that E[f̃i(t) | Ft] = fi(P (t)), we get

E[V (t+ 1) | Ft] ≤ V (t) + η2tK − 2ηtV (t)× (5.7)

P1(t)P̄1(t)(P2(t)− P̄2(t))
2 + P2(t)P̄2(t)(P1(t)− P̄1(t))

2

h(P1(t), P2(t))h(P1(t), P̄2(t))
.
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In order to simplify the last term in (5.7) observe that

aā(b− b̄)2 + bb̄(a− ā)2 = aāb2+ aāb̄2+ bb̄a2+ bb̄ā2−4abāb̄

= h(a, b)h(a, b̄)− 4abāb̄.

In addition, we have

h(a, b)h(a, b̄) = (a2 + ā2)bb̄+ aā(b2 + b̄2)

≥ 2aābb̄+ aā(b2 + b̄2) = aā(b+ b̄)2 = aā.

Similarly, bb̄ ≤ h(a, b)h(a, b̄) and hence,

aā(b− b̄)2 + bb̄(a− ā)2 ≥ h(a, b)h(a, b̄)(1− 4h(a, b)h(a, b̄)).

Using the above inequality in (5.7), we obtain

E[V (t+ 1) | Ft] ≤ V (t) + η2tK (5.8)

− 2ηtV (t)(1− 4h(P1(t), P2(t))h(P1(t), P̄2(t))).

Note that 1− 4h(a, b)h(a, b̄) = 1− 4h(a, b) + 4(h(a, b))2 ≥ 0 with equality iff h(a, b) = 1/2,

i.e., a = 1
2

or b = 1
2

since 2h(a, b) − 1 = (1 − 2a)(1 − 2b). Since,
∑∞

t=0 η
2
t < ∞, using the

Robbins-Siegmund Theorem [50] we obtain that V (t) converges almost surely and

∑∞

t=0
ηtV (t)(1− 4h(P1(t), P2(t))h(P1(t), P̄2(t))) <∞

almost surely, which implies that with probability one

lim inf
t→∞

V (t)(1− 4h(P1(t), P2(t))h(P1(t), P̄2(t))) = 0. (5.9)
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By the above observation, the event

Ω∗ :={ω ∈ Ω | V (t) converges and

lim inf
t→∞

V (t)(1− 4h(P1(t), P2(t))h(P1(t), P̄2(t))) = 0}

happens with probability one. We can partition Ω∗ into Ω∗ = Ωh ∪ Ωπ where

Ωh := {ω ∈ Ω | V (t) converges and (5.10)

lim inf
t→∞

(1− 4h(P1(t), P2(t))h(P1(t), P̄2(t))) = 0}

and Ωπ = Ω∗ \Ωh. Note that for ω ∈ Ωπ, (5.9) implies that lim inft→∞ V (t) = 0 which together

with the fact that V (t) converges a.s. implies that V (t) converges to 0.

Since we have diminishing step-sizes, the increment in h(P1(t), P2(t)) decreases with t

and the a.s. convergence of
√

V (t) = |h(P1(t), P2(t))− h(π1, π2)| implies that h(P1(t), P2(t))

converges almost surely.

To analyze the sample paths for ω ∈ Ωh, recall that 1− 4h(a, b)h(a, b̄) = 0 iff a = 1/2

or b = 1/2. Therefore, for the sample paths with

lim inf
t→∞

(1− 4h(P1(t), P2(t))h(P1(t), P̄2(t))) = 0,

we know that h(P1(t), P2(t)) must converge to 1/2. This along with the continuity of h, implies

that on Ωh, limt→∞ P (t) ∈
{
x ∈ [0, 1]2 | x1 =

1
2

or x2 =
1
2

}
. ■

With the convergence result on our online estimator, in the following lemma, we prove

the convergence of sample paths corresponding to ω ∈ Ωh to the point (1/2, 1/2)T in order to

establish the convergence of the updates to the zero set E itself instead of the superset.

Lemma 12. Under the assumptions of Theorem 14, for ω ∈ Ωh (as defined in (5.10)) the online

estimator updates {P (t;ω)} converges to
(
1
2
, 1
2

)T .
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Proof. Without loss of generality assume that P2(0) ≥ P1(0), which by Lemma 10 implies

that P2(t) ≥ P1(t) and hence ∆P (t) := P2(t) − P1(t) ≥ 0 for all t ≥ 0 (surely). Since

Pr(R1(t+ 1) = R2(t+ 1)) = h(π1, π2), we get

E[∆P (t+ 1) | Ft] = h(π1, π2)(1− ηt)∆P (t)

+ (1− h(π1, π2))

(
1− ηt + ηt

1

1− h(P1(t), P2(t))

)
∆P (t)

= ∆P (t) + ηt
h(π1, π2)− h(P1(t), P2(t))

h(P1(t), P2(t))h(P1(t), P̄2(t))

× (P2(t)P̄2(t)(P1(t)− P̄1(t))− P1(t)P̄1(t)(P2(t)− P̄2(t)))

= ∆P (t)− ηt∆P (t)
h(π1, π2)− h(P1(t), P2(t))

h(P1(t), P̄2(t))

= ∆P (t)− ηt∆P (t)
(h(π1, π2)− h(P1(t), P2(t)))

+

h(P1(t), P̄2(t))

+ ηt∆P (t)
(h(π1, π2)− h(P1(t), P2(t)))

−

h(P1(t), P̄2(t))
,

where x+ = max(x, 0) and x− = max(−x, 0). Define

C := {ω ∈ Ω |
∞∑
t=0

ηt∆P (t)
(h(π1, π2)− h(P1(t), P2(t)))

−

h(P1(t), P̄2(t))
<∞}.

The generalization of Robbins-Siegmund Theorem (cf. Theorem 1.3.12 in [17]) implies that for

all ω ∈ C, we have

∞∑
t=0

ηt∆P (t)
(h(π1, π2)− h(P1(t), P2(t)))

+

h(P1(t), P̄2(t))
<∞

and ∆P (t) converges. Therefore, for ω ∈ C, we get

∞∑
t=0

ηt∆P (t)
|h(π1, π2)− h(P1(t), P2(t))|

h(P1(t), P̄2(t))
<∞.

On the other hand, we know that if ω ∈ Ωh, then we know for any ϵ > 0 there exists a time Tϵ(ω)
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such that |h(P1(t), P2(t))− 1/2| < ϵ for all t > Tϵ(ω). Choosing ϵ < h(π1, π2)− 1
2

we see that

lim inf
t→∞

h(π1, π2)− h(P1(t), P2(t)) > 0,

which implies that ω ∈ C, i.e., Ωh ⊆ C. For ω ∈ Ωh, we get that limt→∞ V (t) = 0 (since

lim inft→∞ V (t) = 0 from the finite-sum conclusion above and V (t) converges for ω ∈ Ωh)

or limt→∞∆P (t) = 0 (since lim inft→∞∆P (t) = 0 from the finite-sum conclusion above

and ∆P (t) converges for ω ∈ C). By the definition of the set Ωh for ω ∈ Ωh, we know

that limt→∞ V (t) ̸= 0. Therefore for ω ∈ Ωh, ∆P (t) converges to 0, i.e., P (t) converges to

(1/2, 1/2). The same arguments hold for the case when P2(0) ≤ P1(0). ■

Finally with Lemmas 11 and 12, we prove Theorem 14.

Proof of Theorem 14. Combining the results of Lemma 11 and Lemma 12, we know that

for ω ∈ Ωπ the online estimator converges to {x ∈ [0, 1]2 | h(x1, x2) = h(π1, π2)} and for

ω ∈ Ωh the online estimator converges to (1/2, 1/2). Therefore P (t) converges to E a.s. since

P (Ω∗) = P (Ωπ ∪ Ωh) = 1. ■

5.3 Conclusion

We presented a model for fact checking of binary facts involving agents modeled as

memoryless binary symmetric channels and proposed an online algorithm to estimate the

unreliability parameters of the agents and for n = 2 agents, we proved that the estimates form a

dynamic process which is a stochastic approximation scheme and using results from martingale

theory, we showed that it converges almost surely to the set of equilibrium points of the mean-field

ODE. In particular, we characterized the zeros of the mean-field ODE, which are, interestingly,

the set of unreliability parameters resulting in the same output distribution as the true unreliability

parameters.
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Chapter 5 in full, is a reprint of the material as it appears in A. Verma, S. Mohajer, B.

Touri, “Distributed Fact Checking:Learning Unreliability," in 2024 American Control Conference.

The dissertation author was the primary investigator and author of this paper.
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Chapter 6

Convergence in Systems with n ≥ 3 Agents

In Section 3.2 we proposed an online estimator for the unreliability parameters of the

agents which makes use of the likelihood ratio between source being fake or true given the agents’

conclusion about the validity of the statement computed using the error estimate at a given time.

In this chapter we study the convergence properties of the proposed online estimator involving

resetting introduced in Section 3.2.1 of Chapter 3. To establish convergence, we utilize results

akin to the Stochastic Approximation theorem presented in [7]. However, since the hypotheses of

the theorem, specifically the assumptions on the Lyapunov function, in [7] are not met in our

case, we extend the result and provide a proof tailored to our specific problem.

In the following theorem, we offer a solution to Problem 9 by demonstrating that the

online estimator defined in (3.13), almost surely converge to an intended set. To articulate the

theorem, recall that h(a, b) = ab+ (1− a)(1− b) for a, b ∈ [0, 1].

Theorem 15 (Convergence of Online Estimator). For a fact-checker comprised of agents with

unreliability parameters π ∈ X , under Assumption 4 on the step-sizes, with probability one the

online estimator {P pr(t)}, defined in (3.8), converges to the set Ē = E ∪ G where E is the set of

equilibrium points of the mean-field ODE (3.11), i.e., E = {x ∈ X | f(x) = 0} and G is the

collection of 2n points G = {x ∈ X̄ | xi ∈ {0, 1}, i ∈ [n], xj = h(πi, xiπj + x̄iπ̄j)∀j ∈ [n]−i}.

In other words, limt→∞ d(P pr(t), Ē) = 0 a.s.

To understand the set Ē to which the estimates converge, note that it is comprised of E ,
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the set of zeros of the mean-field ODE f(x) = ER∼gπ [f̃(R,x)] and 2n points at the boundary

of the set X̄ . We know that points π and 1− π are present in the set E and they should naturally

be there as π and 1 − π are indistinguishable from the distribution of the output vector R.

Moreover, we conjecture that the set E is comprised of these two points and the trivial point 1
2
1.

Conjecture 1 (Characterization of E). For n ≥ 3, we conjecture that E = {π,1− π, 1
2
1}.

In fact for n = 3 we show that E = {π,1− π, 1
2
1} in Theorem 22 of Chapter 7.

On the other hand to understand the points on the boundary note that h(πi, π̄j) represents

the probability of agents i and j declaring the opposite verdict regarding the validity of the

statement. Given that xi = 0 then h(πi, π̄j) = Pr(Rj ̸= Ri). In other words, since the

fact-checker has decided that agent i is completely reliable for agent j instead of estimating

πj = Pr(Rj ̸= S), it is estimating h(πi, π̄j) = Pr(Rj ̸= Ri). Similarly, if xi = 1 the fact-checker

has decided that agent i is completely unreliable, or that 1−Ri(t) is the true label. Hence for

xi = 1, for agent j the fact-checker is estimating Pr(Rj ̸= Ri) = Pr(Rj = Ri) = h(πi, πj).

6.1 Proof of Main Theorem

6.1.1 Stochastic Approximation

A stochastic approximation of an Ordinary Differential Equation (ODE) is a recursive

algorithm to find the zeros of a function F : Z → Rd from noisy observations of the function F

and is commonly expressed as

Z(t+ 1) = Z(t) + ηt(F (Z(t)) + ξ(t+ 1)), t ∈ N0, (6.1)

where the initial condition is Z(0) ∈ Z , {ηt} is a step-size sequence that often assumed to satisfy

Assumption 4. Furthermore, {ξ(t)} is a martingale-difference sequence, i.e., E[ξ(t+1) | Ft] = 0

for all t ∈ N0, where Ft = σ(Z(k), ξ(k) : k ≤ t) is the σ-algebra generated by the past [10].

The update vectors Z(t) can be viewed as an approximation of the path taken by the so-called
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mean-field ODE ż = F (z).

To prove the main result, we first show that the difference in the updates of the estimates

in (3.8) can be decomposed into a deterministic part and a zero-difference martingale.

Lemma 13. For t ∈ N0, the online estimator (3.8) satisfies

P (t+ 1) = P (t) + ηt (f(P (t)) +M(t+ 1)) , (6.2)

where f is the mean-field ODE given in (3.11) and M (t+1) := f̃(R(t+1),P (t))− f(P (t)).

Moreover, for the sequence {M(t)}, for all t ≥ 0 we have the following with probability one.

i. E[M (t+ 1) | Ft] = 0 and

ii. ∥M (t+ 1)∥∞ ≤ 2 (and hence, bounded in-expectation),

where the filtration {Ft} is defined as Ft = σ(P (k),M(k) : k ≤ t) for all t ∈ N0.

In other words {M (t)} is a bounded martingale difference sequence with respect to the

filtration {Ft}.

The proof of Lemma 13 is provided in Section 6.4.1.

Although the discrete-time process {P (t)} satisfies the conditions to be viewed as the

Stochastic Approximation scheme for f(x), we cannot use the standard results in stochastic

approximation [10, 32] for convergence guarantees of our learning rule since the function f is

not a Lipschitz function. We use certain Lyapunov functions and their properties to show the

convergence of the proposed online estimator’s updates.

In the following lemma, we provide an alternative way of expressing the probability of

the output vector gx(r) and the update value f̃(r,x).

Lemma 14. For any r ∈ {−1,+1}n and x ∈ X , the expression of output probability for R
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based on unreliability vector x, Pr(R = r;x), is given as

gx(r) =

(
1

2
exp
−⟨r, ℓx⟩

2
+

1

2
exp
⟨r, ℓx⟩

2

) n∏
i=1

√
xi(1− xi) (6.3)

= cosh

(
⟨r, ℓx⟩

2

) n∏
i=1

√
xi(1− xi).

Moreover, the function f̃(r,x) can be expressed as

f̃(r,x) =
1

2

(
1− tanh

(
1

2
⟨r, ℓx⟩

)
r

)
− x. (6.4)

The proof of Lemma 14 is provided in Section 6.4.2. We express the resetting based

update rule (3.13) in a recursive stochastic approximation form using a correction term ρ(t)

during the step of resetting. We later show that the correction term ρ(t) is non-zero finitely often

in Lemma 18.

Note that the projected update rule {P pr(t)} defined in (3.13) can also be expressed in

the stochastic approximation form as

P pr(t+ 1) = P pr(t) + ηt[f(P pr(t)) +M (t+ 1) + ρ(t+ 1)],

where f(·),M(t+ 1) are as discussed in Lemma 13, and the correction term for the event of

resetting is given as

ρ(t+ 1) :=
1

ηt
1{γ(t+1)̸=γ(t)}× (6.5)(

P 0 − (P pr(t) + ηtf̃(R(t+ 1),P pr(t))
)
,

where P 0 ∈ K0 is the reset estimate.
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6.1.2 Lyapunov Function

In this section, we propose and study a Lyapunov function for the mean-field ODE

(3.10), and we prove the desirable properties related to the function to establish the almost

sure convergence of the projected update rule. To define the Lyapunov function, we utilize the

Kullback-Leibler (KL) divergence which is defined as follows.

Definition 7 (Kullback-Leibler Divergence [44]). Let µ, ν be distributions on discrete set/alphabet

U . The KL divergence between µ and ν is defined as DKL(µ∥ν) =
∑

u∈U µ(u) log µ(u)
ν(u)

, where we

use the conventions (i) 0 · log 0
0
= 0, (ii) if there exists u ∈ U such that ν(u) = 0 and µ(u) > 0

then DKL(µ∥ν) =∞.

For a Lyapunov candidate, we focus on the Kullback-Leibler divergence between the

output distribution R generated by the agents having the unreliability parameters vectors π and

x. More precisely, for any π ∈ X we define the Lyapunov candidate as V : X → [0,∞) with

V (x) := DKL(gπ∥gx). (6.6)

Note that here the alphabet is U = {+1,−1}n. Note that this Lyapunov candidate is finite for all

x ∈ X = (0, 1)n because gx(r) > 0 for any r ∈ {+1,−1}n. Similarly, V (x) is a continuously

differentiable function as it is the difference between a constant and a convex combination of 2n

functions that are logarithms of polynomials gx(r). More precisely,

V (x) = Cπ −
∑

r∈{+1,−1}n
gπ(r) log gx(r),

where Cπ :=
∑

r∈{+1,−1}n gπ(r) log gπ(r) is a finite constant for any π ∈ X .

Extension to X̄ : Note that the Lyapunov candidate function (6.6) can be extended to the
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set of singly-extreme vectors x ∈ Xbound. For r ∈ {+1,−1} and x ∈ (0, 1) we can rewrite

x
1+r
2 (1− x)

1−r
2 =

1 + r

2
x+

1− r

2
(1− x).

From the above representation for x = 0, we adopt 0 1+r
2 := limx→0

1+r
2
x + 1−r

2
(1− x) = 1−r

2

for r ∈ {−1,+}. Based on the new representation, we can extend the definition of the output

distribution, gx, for x ∈ Xbound. For i ∈ [n], for a singly-extreme vector x ∈ X (i)
bound and vectors

r ∈ {+1,−1}n, the output distribution is defined as

gx(r) :=


∏

k∈[n]−i
x

1−rk
2

k (1− xk)
1+rk

2 if ri = (−1)xi

∏
k∈[n]−i

x
1+rk

2
k (1− xk)

1−rk
2 if ri ̸= (−1)xi

. (6.7)

For x ∈ Xbound we extend the definition of V (x) = DKL(gπ∥gx) using definition (6.7) for gx.

Moreover, for i ∈ [n], we define the gradient of V (x), ∇V (x), for x ∈ X (i)
bound, as

∂V (x)

∂xj

=


limh→0+

V (x+(−1)xihei)−V (x)
(−1)xih

if j = i

limh→0
V (x+hej)−V (x)

h
if j ̸= i

,

where ei is the i-th standard basis vector of Rn.

In the following theorem, we show that V (x) satisfies the conditions to be a Lyapunov

function for the ODE ẋ = f(x).

Theorem 16. For the mean-field dynamics (3.10) and the function V (x) given in (6.6), we

have ⟨∇V (x),f(x)⟩ ≤ 0 for all x ∈ X . Furthermore the equality holds iff x ∈ E , where

E = {x ∈ X | f(x) = 0} is the set of equilibrium points of the ODE.

The proof of Theorem 16 is provided in Section 6.4.2. To prove the convergence we use

the Stochastic Approximation result in [7]. In [7, Theorem 2.3], it is established that under certain

assumptions related to the functions f(x) and V (x), if the updates stay in a compact subset K of
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X , and the step-sizes and error term satisfy certain boundedness conditions, then the updates

converge to the set K ∩ E . In doing so a key property that is being used is the compactness of

the sublevel set of Lyapunov function V (x) associated with the ODE ẋ = f(x). However, note

that the Lyapunov function V (x) = DKL(gπ∥gx) defines a non-compact sublevel set for levels

greater than a certain value. In other words, for large enough M {x ∈ X | V (x) ≤M} is not a

compact set, as will be clarified as a consequence of Lemma 15 in Section 6.1.3. Consequently,

if we focus only on the updates over X , the compactness assumption essential for Theorem 2.3 in

[7] would not hold. However, we can address this issue by extending the function to the set X̄

ensuring the assumptions are satisfied, as detailed in the following subsection.

6.1.3 Boundary Behavior with Extreme Unreliability

In this subsection we discuss the behavior of the Lyapunov function V (x) and the

mean-field function f(x) when one of the agents’ estimate is at the extreme limit, i.e., the

unreliability vector x ∈ [0, 1]n is such that xi ∈ {0, 1} for exactly one i ∈ [n]. In other words,

we discuss the functions for x ∈ Xbound, where Xbound is defined in Definition 5.

A singly-extreme vector represents an unreliability parameter vector where one agent

deterministically provides either the true validity or the opposite. Note that we would not have

such an unreliability parameter as the true unreliability parameter of the agent since πi ∈ (0, 1) for

all i ∈ [n]. However, the estimates might converge to a singly-extreme point. This convergence

implies that the fact-checker would solely rely on the agent with an unreliability estimate as 0 or

1 disregarding the opinions of other agents. It is worth noting that the scenario where multiple

agents’ estimates are in {0, 1} is not meaningful since the true unreliability for these agents lies

in (0, 1) ensuring the existence of outputs where the agents would disagree. Such a situation

would lead to an impossible estimator of the statement’s validity.

To motivate the inclusion of the study of these singly-extreme points, we broaden the

scope of our study by expanding the definition of the Lyapunov function V and the ODE f as

the value of the functions in the limit taken along any trajectory inside X . With these values we
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show that the Lyapunov function takes finite value over Xbound. Note that for x ∈ Xbound, the

definitions of the functions for f(x) and V (x) in (3.11) and (6.6) respectively remain valid and

yield the expressions presented in Lemma 15.

To introduce the next lemma, let’s define Ha(x) for a, x ∈ (0, 1) as

Ha(x) := −a log x− (1− a) log(1− x).

Lemma 15. Let Cπ = ER∼gπ [log gπ(R)]. Then for any i ∈ [n] and x ∈ X (i)
bound, we have

i. V (x) = Cπ + log 2 +
∑

k∈[n]−i
Hh(πi,πk)(h(xi, xk)),

ii. f(x) is defined through fi(x) = 0 and

fj(x) = h(πi, h(xi, πj))− xj, ∀j ∈ [n]−i.

iii. fj(x) = xj(1− xj)
∂V (x)
∂xj

, for all j ∈ [n].

The proof of Lemma 15 is provided in Section 6.4.3.

Corollary 3. For x ∈ Xbound, f(x) = 0 iff x ∈ Eboundary where

Eboundary :=
n⋃

i=1

{x ∈ Xbound | xi ∈ {0, 1}, xj = h(πi, xiπj + x̄iπ̄j)∀j ∈ [n]−i}. (6.8)

Since the function Ha(x) is minimized at x = a, we have Ha(x) ≥ Ha(a). Additionally,

Ha(x) is an unbounded function of x. Therefore,

V (X (i)
bound) = {V (x) | x ∈ X̄ , xi ∈ {0, 1}}

= (Cπ + 1 +
∑

k∈[n]−i

Hh(πi,πk)(h(πi, πk)),∞).
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Note that thatWM = {x ∈ X | V (x) ≤M} ⊂ X = (0, 1)n is not closed for any level

M > Mmin := min
i∈[n]

Cπ + log 2 +
∑

k∈[n]−i

Hh(πi,πk)(h(πi, πk)),

as for such an M , V (x) < M for some x ∈ X (i)
bound for some i ∈ [n] but as a sublevel set in X ,

x ̸∈ WM .

We conjecture that there exists a level set of the Lyapunov function which contains the

zeros of the derivative of the Lyapunov function along the trajectory of the ODE ẋ = f(x).

Conjecture 2. For the Lyapunov function V (x) = DKL(gπ∥gx), there exists a positive constant

M0 > 0 such that

E = {x ∈ X | f(x) = 0} ⊆ {x ∈ X | V (x) < M0}. (6.9)

Note that although we state (6.9) as a conjecture it immediately follows if E is a proper

subset of X . In fact if E has finitely many points then the condition (6.9) holds true. Since

we show that E = {π,1− π, 1
2
1} in Theorem 22 of Chapter 7, condition (6.9) is known to be

satisfied for n = 3 agent fact-checker system.

In the following lemma, we prove that the Lyapunov function V (x) satisfies certain

properties with the function f(x). For any M > 0 we denote the sublevel set of V (x) over X̄ as

W̄M := {x ∈ X̄ | V (x) ≤M}.

Lemma 16. The function V : X̄ → [0,∞), defined through (6.6), for the vector-field f : X̄ → Rn

satisfies the following properties.

i. ⟨∇V (x),f(x)⟩ ≤ 0 for any x ∈ X̄ ;

ii. there exists M̄0 such that

Ē := E ∪ Eboundary ⊆ {x ∈ X̄ | V (x) < M̄0};
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iii. for any M̄1 ∈ (M̄0,∞), W̄M̄1
is a compact set;

iv. the closure of V (Ē) has an empty interior.

The proof of Lemma 16 is stated in Section 6.4.3.

6.1.4 Convergence of Estimator

In the following lemma, we show that the total error accumulated through the zero-

difference martingale term converges almost surely.

Lemma 17. Consider the estimates {P pr(t)} defined through the update rule (3.13). For all

t ∈ N0, let X(t+ 1) = ηtM (t+ 1). The series ∥
∑∞

t=1X(t)∥ converges a.s.

The proof of Lemma 17 is provided in Section 6.4.4. We will refer to the sample paths

for which ∥
∑∞

t=1X(t)∥ converges as Ωconv, i.e.,

Ωconv = {ω ∈ Ω | ∥
∞∑
t=0

X(t)∥ converges}. (6.10)

From Lemma 17 we know that Pr(Ωconv) = 1. Using Lemma 17, we establish that the estimates

lie in a truncation set.

Lemma 18. For the projected update rule defined through (3.13), for every sample path ω ∈ Ωconv,

there exists a index q(ω) such that {P pr(t;ω)} lies in Kq(ω). Moreover, Ē ⊆ Kq(ω) a.s.

The proof of Lemma 18 is provided in Section 6.4.4. Lemma 18 establishes that with

probability one, {ρ(t)} is non-zero finitely often implying that resetting takes place finitely often.

Theorem 17. For the projected update rule defined through (3.13) consider the sequence of

updates associated with the sample path ω ∈ Ωconv. Consider a compact subset Kq(ω) of X̄ such

that Kq(ω) ∩ Ē ̸= ∅. Then we have lim supt→∞ d(P pr(t;ω),Kq(ω) ∩ Ē) = 0.

The proof of Theorem 17 is provided in Section 6.4.5.
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Finally, using the fact that the estimates of the projected update rule lie in a truncation set

and the cumulative error term convergence almost surely, we establish the almost sure convergence

result of the estimates.

Proof of Theorem 15. Through Lemma 17 we know that the error term
∑∞

t=0 ηtM (t + 1)

converges a.s. From Lemma 18 we know that for all sample paths in the set ω ∈ Ωconv the

sequence {P pr(t;ω)} stays in some compact subset Kq(ω) of X̄ . We also know that Ē ⊆ Kq(ω)

from Lemma 18, therefore Kq(ω) ∩ Ē = Ē . So, applying Theorem 17 to every sample path in

Ωconv, we conclude that d(P pr(t), Ē) converges to 0 a.s. ■

6.2 Simulations

In this section we provide simulation results for both synthetic and real data, to conduct a

thorough investigation into the performance of proposed estimator. In addition to analyzing the

distributed fact-checking dynamics using our proposed algorithm, referred to as Soft Algorithm,

we also employ the Triangular Estimation (TE) algorithm [9] as a comparative benchmark. TE

algorithm estimates worker reliability by analyzing the correlations among workers’ answers. At

any time t we determine the estimate Ŝ(t) of the validity of the statement S(t) using the current

estimates of the unreliability parameters and use the LT estimator eq. (3.1). To be consistent with

the plots in Chapter 4, we denote the estimates of unreliability parameter at time t by π̂(t). For

the LT estimator we use weight vector ℓπ̂(t) whose i-th coordinate is given by ℓπ̂i(t) = log 1−π̂i(t)
π̂i(t)

and threshold γ = 0.

6.2.1 Synthetic Data

In this subsection, we provide a simulation that involves a synthetic dataset comprising

n = 9 agents. The unreliability probabilities, πi = 0.1i− 0.01 for i ∈ [n], incremented in steps

of 0.1, representing a wide spectrum of agent behaviors. We generate T = 10000 i.i.d. labels

S(t) for t ∈ [T ] according to the Rademacher distribution. We run the proposed algorithm with
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step-sizes ηt = 1
t+1

and initialization πi(0) chosen independently from a uniform distribution

over (0.1, 0.4). In simulations, the algorithm converges even without the truncation component

of the algorithm. The minimum distance of the estimates from the boundary of (0, 1)n was 0.091.

Figure 6.1. Convergence of proposed and TE Algorithms over 10000 Statements

Figure 6.1 illustrates the convergence behavior of the proposed algorithm and the TE

algorithm in estimating the true unreliability parameters of agents. Each colored line corresponds

to one of the nine agents, showing the trajectory of the estimated unreliability parameter as the

algorithm processes more statements. The proposed algorithm’s estimates approach the true

unreliability values and maintain stability. On the other hand, the TE algorithm’s performance,

while ultimately converging to the true values, suggests a possible requirement for a larger dataset

to stabilize its estimates. The early estimates of the TE algorithm estimation exhibit noticeable

variance, indicating the potential need for a larger initial dataset for stabilization of the estimates.

To highlight the behavior in Figure 6.2 we plot the convergence of the two algorithms over the
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Figure 6.2. Convergence of unreliability parameters for proposed and TE Algorithms over 1000
Statements

early 1000 statements. Figure 6.3 shows a comparison of the cumulative number of mismatches

between the estimates of the two algorithms. The behavior of the two algorithms is comparable

in this aspect. Note that once the estimator of unreliability gets close to the true unreliability

parameter, the behavior of the plot of the estimators imitates the behavior of the optimal linear

threshold (LT) estimator discussed in Theorem 10.

Finally, Figure 6.4 presents the error dynamics of the proposed algorithm and the TE

algorithm over the 10000 statements. As the number of statements increases, both algorithms

demonstrate a decrease in the error magnitude, reflecting the convergence of the estimates to

the true unreliability parameters. The figure indicates that the proposed algorithm may provide

more stable convergence in estimating the unreliability parameters than the TE algorithm.
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Figure 6.3. Cumulative mismatches between estimated validity Ŝ(t) and true validity S(t) of
proposed and TE Algorithm for synthetic dataset

Figure 6.4. Average ℓ1-error per agent of unreliability parameter estimates for proposed and TE
Algorithm for synthetic dataset
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6.2.2 Real Dataset

In this subsection we illustrate the performance of the estimators on a real-world dataset,

specifically one concerning the binary classification of bird observation. This dataset, henceforth

referred to as the "Blue Bird Dataset", presented in [60]. The dataset consists of a 39 number of

agents and 108 statements, categorized into two distinct classes, that are labeled 1 and 2. We

associate instances of label 2 with label −1, and those with label 1 with +1 in our setting.

The original structure of the dataset presents an ordered sequence, with all instances

of label 1 positioned prior to those of label 2. Such an arrangement does not demonstrate the

performance of a randomly streaming source. To address this issue we have randomized the

order of the observations, thereby mitigating any potential bias that could arise from the initial

ordered state. The shuffling ensures that each observation is equally likely to be sampled at any

point in the analysis, adhering to the i.i.d. assumption.

In Figure 6.5 the cumulative number of mismatches is plotted for a random permutation of

the data. The performance of proposed algorithm is better than the performance of TE algorithm

for blue bird dataset.

6.3 Conclusion and future work

We presented a model for fact-checking of binary facts involving agents modeled as

memoryless binary symmetric channels and proposed an online algorithm to estimate the

unreliability parameters of the agents. We proved that the estimates form a dynamic process

which is a stochastic approximation scheme and using results from stochastic approximation

theory, we showed that it converges almost surely to the set of equilibrium points of the mean-field

ODE over an extended domain X̄ . In proving the convergence we studied the properties of

the KL divergence used as the Lyapunov function V (x) for mean field ODE f(x). Finally,

through synthetic and real-data simulations, we showed that the proposed estimator has merits in

certain cases over the streaming TE estimation algorithm. The online estimator proposed in this

109



Figure 6.5. Cumulative mismatches between estimated validity Ŝ(t) and true validity S(t) of
proposed and TE Algorithm for Blue Bird dataset

dissertation and its analysis open up a variety of avenues for future work. We conjecture that the

set to which the online estimator converges can be further reduced to a smaller set containing the

stable equilibrium points such as π and 1 − π when we have πi ̸= 1
2

for any i ∈ [n]. Further

work involves studying the convergence of variants of the proposed online estimator when not all

the agents participate in the fact-checking task at every time t a new statement arrives.
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6.4 Skipped Proofs

6.4.1 Proof of Stochastic Approximation Lemmas

Proof of Lemma 13. To prove the claim, first note that

ηtE[M(t+ 1) | Ft] = E[P (t+ 1)− P (t)|Ft]− ηtf(P (t)),

and thus, we need to show E[P (t+1)−P (t)|Ft] = ηtf(P (t)) almost surely. By definition,

we know that ηtf̃(R(t+ 1),P (t)) = P (t+ 1)− P (t) which results in the conclusion that

f(P (t)) = E[f̃(R(t+ 1),P (t)) | Ft] = ER∼gπ [f̃(R,P (t))] since {R(t)} is i.i.d. according

to gπ.

Since L(t)−1
L(t)+1

Ri(t + 1) ∈ [−1, 1] and Pi(t) ∈ [0, 1], we know that the value of the

coordinates satisfy f̃i ∈ [−1, 1]. Therefore, ∥M (t+ 1)∥∞ ≤ 2 a.s. ■

6.4.2 Proof regarding Lyapunov and ODE functions

Proof of Lemma 14. For a fact-checker with unreliability vector x ∈ X , we define the log-

odds value associated with agent i as ℓxi
:= log 1−xi

xi
and the log-odds vector as ℓx =

(ℓx1 , ℓx2 , . . . , ℓxn)
⊤. Then the probability of the output vector being r for a set of agents

with unreliability vector x, Pr(R = r;x) is given by

gx(r) =
1

2

n∏
i=1

x
1+ri

2
i (1− xi)

1−ri
2 +

1

2

n∏
i=1

x
1−ri

2
i (1− xi)

1+ri
2 . (6.11)
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Taking the exponents of the logarithm to express the probability using the log-odds vector ℓx we

get

gx(r) =
1

2
exp

(
n∑

i=1

1 + ri
2

log xi +
1− ri
2

log(1− xi)

)

+
1

2
exp

(
n∑

i=1

1− ri
2

log xi +
1 + ri
2

log(1− xi)

)

=
1

2
exp

(
n∑

i=1

ri
2
log

xi

1− xi

+ log xi(1− xi)

)

+
1

2
exp

(
n∑

i=1

−ri
2

log
xi

1− xi

+ log xi(1− xi)

)

=

(
1

2
exp
−⟨r, ℓx⟩

2
+

1

2
exp
⟨r, ℓx⟩

2

) n∏
i=1

√
xi(1− xi).

Moreover since the likelihood ratio given the unreliability vector x for output realization

r is L = exp (−⟨ℓx, r⟩), the function f̃(r,x) can be rewritten as

f̃(r,x) =
1

2

(
1+

exp (−⟨r, ℓx⟩)− 1

exp (−⟨r, ℓx⟩) + 1
r

)
− x

=
1

2

(
1+ tanh

(
−1

2
⟨r, ℓx⟩

)
r

)
− x

=
1

2

(
1− tanh

(
1

2
⟨r, ℓx⟩

)
r

)
− x.

■

Proof of Theorem 16. Note that the KL Divergence between gπ and gx can be expressed as

V (x) = ER∼gπ [log gπ(R)]− ER∼gπ [log gx(R)].

Therefore for any i ∈ [n] the partial derivative of V (x) with respect to xi is given by

∂V (x)

∂xi

= −∂ER∼gπ [log gx(R)]

∂xi

= −ER∼gπ

[
∂ log gx(R)

∂xi

]
,
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where the second equality follows due to the finite support of random variable R.

From (6.4) we know that

log gx(r) =
1

2

n∑
i=1

log(xi(1− xi))

+ log

(
1

2
exp
−⟨r, ℓx⟩

2
+

1

2
exp
⟨r, ℓx⟩

2

)
. (6.12)

Therefore the partial derivative of log gx(r) with respect to xi can be obtained as follow.

∂ log gx(r)

∂xi

=
1

2xi(1− xi)

(
1− 2xi − ri

exp ⟨r,ℓx⟩
2
− exp −⟨r,ℓx⟩

2

exp ⟨r,ℓx⟩
2

+ exp −⟨r,ℓx⟩
2

)

=
1

2

1− 2xi

xi(1− xi)
− ri

2xi(1− xi)
tanh

⟨r, ℓx⟩
2

=
1

2xi(1− xi)

(
1− 2xi − ri tanh

⟨r, ℓx⟩
2

)
=

1

xi(1− xi)

(
1

2

(
1− ri tanh

⟨r, ℓx⟩
2

)
− xi

)
=

1

xi(1− xi)
f̃i(r,x).

For any i ∈ [n], the partial derivative of V with respect to xi is given as

∂V (x)

∂xi

= −ER∼gπ

[
∂ log gx(x)

∂xi

]
= −E

[
1

xi(1− xi)
f̃i(R,x)

]
= − 1

xi(1− xi)
fi(x).

For x ∈ X the derivative along the trajectory of ẋ = f(x) is

⟨∇V (x),f(x)⟩ = −
n∑

i=1

1

xi(1− xi)
(fi(x))

2

= −
n∑

i=1

xi(1− xi)

(
∂V (x)

∂xi

)2

≤ 0, (6.13)
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where equality holds if and only if fi(x) = 0 for all i ∈ [n].

Therefore we have {x ∈ X | ⟨∇V (x),f(x)⟩ = 0} = {x ∈ X | f(x) = 0}.

■

6.4.3 Proof of Results on Extreme Behavior

Proof of Lemma 15. The Lyapunov function V (x) is given by

V (x) = ER∼gπ [log gπ(R)]− ER∼gπ [log gx(R)].

For brevity, we denote the expectation as ER.

Without loss of generality assume that x1 = 0 and xi ∈ (0, 1) for all i ∈ [n]−1. Then the

probability of the output vector R is given by

gx(r) = Pr({Ri = ri,∀i ∈ [n]−1} | S = 1− r1)

=
(1 + r1)

4

n∏
i=2

x
1−ri

2
i (1− xi)

1+ri
2

+
(1− r1)

4

n∏
i=2

x
1+ri

2
i (1− xi)

1−ri
2 .

By Theorem 4.1.13 (Law of Iterated Expectations) in [18],

ER[log gx(R)] = ER1 [ER|R1 [log gx(R)] | R1 = +1]

= ER|R1=+1[log gx(R)] | R1 = +1],

where the last equality follows due to gx(r) = gx(−r) and Pr(R1 = +1) = 1
2
.
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Therefore

ER|R1=+1[log gx(R)]

ER|R1=+1

[
n∑

i=2

1−Ri

2
log xi +

1 +Ri

2
log(1− xi)

]
−1

=
n∑

i=2

ER|R1=+1

[
1−Ri

2
log xi +

1 +Ri

2
log(1− xi)

]
− log 2

= − log 2 +
n∑

i=2

1

2
log(xi(1− xi)) +

ER|R1=+1[Ri]

2
log

1− xi

xi

= − log 2 +
n∑

i=2

log(xi(1− xi)) + (2h(π1, πi)− 1])

2
log

1− xi

xi

= − log 2 +

∑n
i=2 2h(π1, πi) log(1− xi) + (2− 2h(π1, πi) log xi)

2

= − log 2 +
n∑

i=2

h(π1, πi) log(1− xi) + h(π1, π̄i) log xi

Finally, due to the symmetry gx(r) = g1−x(r),

V (x) = Cπ + log 2−
n∑

i=2

(h(π1, πi) log xi + h(π1, π̄i) log (1− xi))

for any x ∈ Xbound with x1 = 1. Compactly expressed for x ∈ X (1)
bound we have

V (x) = Cπ + log 2 +
n∑

k=2

Hh(π1,h(x1,πk))(xk). (6.14)

On the other hand, for x ∈ Xbound such that x1 = 0, by taking the limit as the argument

goes to x in the set X we get f(x) = 1
2
ER∼gπ [1 − R1R] − x. Therefore, f̃1(x) = 0 and for

any i ∈ [n]−1, we get 1
2
E[1−R1Ri] = Pr(R1 ̸= Ri) = h(π1, π̄i). Similarly for x ∈ Xbound with

x1 = 1, we would have f(x) = 1
2
ER∼gπ [1+R1R]− x and 1

2
E[1 +R1Ri] = h(π1, πi) which

gives us the result.
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For x ∈ X (1)
bound, for i ∈ [n]−1 we know

∂V (x)

∂xi

= −h(π1, h(x1, πi))

xi

+
h(π1, 1− h(x1, πi))

1− xi

=
xi − h(π1, h(x1, πi))

xi(1− xi)
.

On the other hand for i = 1, since ∂V (x)
∂x1

is finite, we have f1(x) = −x1(1−x1)
∂V (x)
∂x1

= 0

for x ∈ X (1)
bound.

Therefore for all x ∈ Xbound we have fi(x) = −xi(1− xi)
∂V (x)
∂xi

for all i ∈ [n].

■

Proof of Lemma 16. From Theorem 16, for any x ∈ X , we know that ⟨∇V (x),f(x)⟩ ≤ 0.

Moreover, from Lemma 15, for x ∈ Xbound, we have fi(x) = xi(1 − xi)
∂V (x)
∂xi

for all i ∈ [n].

Therefore, (6.13) holds for x ∈ Xbound, ⟨∇V (x),f(x)⟩ ≤ 0. Thus we have property (i).

Define the maximum value that the function V (x) takes on the equilibrium points at the

boundary set, Eboundary be Mmax = max{V (x) | x ∈ Eboundary}, where Eboundary is defined through

(6.8)

From Conjecture 2, we know that E ⊆ W̄M0 . Define

M̄0 > max(M0,Mmax). (6.15)

Therefore Ē ⊆ {x ∈ X̄ | V (x) < M̄0}.

For any C > 0, we know that W̄C is a closed subset of X̄ . Therefore, W̄C is a compact

set.

Finally from Sard’s theorem, we know that the closure of V (E) has an empty interior

since E = {x ∈ X | ∇V (x) = 0}. On the other hand, Eboundary has finitely many isolated points.

Therefore the closure of V (E ∪ Eboundary) has an empty interior.

■
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6.4.4 Proof of Recurrence

Proof of Lemma 17. We know that ∥f̃(r,x)−f(x)∥2 ≤ 4n, for any r ∈ {−1,+1}n andx ∈ X .

So we have

E[∥X(t+ 1)∥2 | Ft] ≤ 4nη2t .

Since
∑∞

t=0 η
2
t <∞, by the convergence theorem in [24, Theorem 2.17] for any coordinate

i ∈ [n], we know that
∑∞

t=0 Xi(t) converges a.s. Therefore, the series ∥
∑∞

t=0X(t)∥ converges

a.s. ■

In order to prove the recurrence of estimates in a compact set, we need the following

result. The following theorem ensures that after a large enough time such that the step-sizes and

the accumulated error from that time forward are small enough, then the estimates stay within a

sublevel set of the Lyapunov function. The following theorem is based on Theorem 2.2 in [7].

Theorem 18. Consider the function f : X̄ → X̄ and V : X̄ → [0,∞) defined through (3.11)

and (6.6) respectively (with function definitions extended to X̄ ). For any M̄ ∈ (M̄0, M̄1] there

exist δ0, λ0 ∈ R+ such that for all t ≥ 1, all θ(0) ∈ W̄M̄0
, all sequences {ηt} of non-negative

numbers, and all sequences {ξ(t)} of n-dimensional vectors satisfying

sup
0≤k≤t

ηk ≤ λ0, sup
0≤k≤t

∥∥∥∥∥
k∑

ℓ=0

ηℓξ(ℓ+ 1)

∥∥∥∥∥ ≤ δ0,

we have for k ∈ [t], V (θ(k)) ≤ M̄ , where θ(k) = θ(k − 1) + ηk−1(f(θ(k − 1)) + ξ(k)).

Using the above result we can prove Lemma 18.

Proof of Lemma 18. We prove the result for every sample path ω ∈ Ωconv = {ω ∈ Ω |∑∞
t=0 ηtM(t + 1;ω) <∞}. For brevity, we drop the ω from the notation of random variable

unless needed for clarity.

Define the supremum of the function V (·) over the initial set K0 as C0 := sup{V (x) |

x ∈ K0}.
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We know that C0 <∞ since K0 is a compact subset of X̄ and V (x) <∞ for all x ∈ X̄ .

Define CM = max{C0, M̄0}, where M̄0 is defined through (6.15). CM represents the

constant for which the sublevel set of V contains the union of the equilibrium set Ē and the initial

truncation set K0. Recall that the resetting estimate P 0 ∈ K0.

So, we have Ē ∪K0 ⊆ W̄CM
. Recall that for any C > 0, W̄C is a compact subset of X̄ and

∪∞
t=0Kt = X̄ . So we know for any C ′

M ∈ (CM ,∞) there exists q ∈ N0 such that W̄C′
M
⊆ Kq .

According to Theorem 18, there exists δ0, λ0 ∈ R+ such that for any t0 ≥ 0 for all

t ≥ t0 + 1, any P pr(t0) ∈ WCM
, if we have

sup
t0≤k≤t

ηk ≤ λ0, sup
t0≤k≤t

∥∥∥∥∥
k∑

ℓ=t0

ηℓM (ℓ+ 1)

∥∥∥∥∥ ≤ δ0, (6.16)

then for k ∈ {t0, . . . , t}, V (P pr(t)) ≤ C ′
M .

Let us assume, contrary to the conclusion, that the resetting takes place infinitely often.

For t ≥ t0, define τ(t) := min{k ≤ t : γ(k) = γ(t)} as the most recent index at which

resetting takes place.

We have limt→∞ ∥
∑∞

k=tX(k)∥ = 0 a.s. since from Lemma 17 we know that

∥
∑∞

t=0X(t)∥ converges a.s. Therefore there exists a T0 after which the step-sizes sequence

{ηt | t ≥ T0} and zero-difference martingale sequence {M(t+ 1) | t ≥ T0} satisfy (6.16).

Due to the assumption that resettings occur infinitely often, we know there exists T1 such

that τ(T1 − 1) > T0, T1 = τ(T1), and γ(T1) > q. In other words, T1 is a time after T0 by which

two resettings have taken place. Define

y = P pr(T1 − 1) + ηT1−1f̃(R(T1),P pr(T1 − 1)). (6.17)

We know y ̸∈ Kq since γ(T1) ≥ q + 1 and τ(T1) = T1.

Additionally τ(T1−1) being a time at which resetting occurs implies thatP pr(τ(T1−1)) =

P 0 ∈ K0. Since τ(T1 − 1) > T0 we also have {ηt | t ≥ τ(T1)}, {M(t + 1) | t ≥ τ(T1)}
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satisfying (6.16). From Theorem 18 we know that for y defined in (6.17) V (y) ≤ C ′
M which

contradicts the inference that y ̸∈ Kq sinceWC′
M
⊆ Kq. ■

6.4.5 Proof of Stochastic Approximation Result

The proof in this section closely follows the proof provided in [7]. We begin with proving

the following generic properties regarding functions f and V .

Lemma 19. Consider the functions f : X̄ → X̄ and V : X̄ → [0,∞) defined through (3.11)

and (6.6) respectively (with function definitions extended to X̄ ).

i. LetK ⊂ X̄ be a subset such that 0 < infθ∈K |⟨∇V,f⟩|. For any 0 < δ < infθ∈K |⟨∇V,f⟩|,

there exist λ > 0 and β > 0 such that, for any ρ ∈ [0, λ], ζ, ∥ζ∥ ≤ β, and θ ∈ K,

V (θ + ρf(θ) + ρζ) ≤ V (θ)− ρδ.

ii. For any M̄ ∈ (M̄0, M̄1], (where M0,M1 are defined in Lemma 16, there exist λ > 0 and

β > 0 such that, for any ρ ∈ [0, λ], ζ, ∥ζ∥ ≤ β, and θ ∈ W̄M̄ , θ + ρf(θ) + ρζ ∈ W̄M̄ .

Proof. i. For any 0 < δ < infθ∈K |⟨∇V,f⟩|, there exist λ > 0 and β > 0 such that for all

ρ ∈ [0, λ] and ∥ζ∥ ≤ β, and t ∈ [0, 1] we have θ ∈ K, θ + ρtf(θ) + ρtζ ∈ X̄ , whose

existence ensured since f will be finite over K when compact since f is bounded, and

|⟨∇V (θ),f(θ)⟩ − ⟨∇V (θ + ρtf(θ) + ρtζ),f(θ) + ζ⟩

≤ inf
θ∈K
|⟨∇V,f⟩| − δ.
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We know

V (θ + ρf(θ) + ρζ)− V (θ)

= ρ

∫ 1

0

⟨∇V (θ + ρtf(θ) + ρtζ),f(θ) + ζ⟩dt

= ρ⟨∇V (θ),f(θ)⟩

+ ρ

∫ 1

0

(⟨∇V (θ + ρtf(θ) + ρtζ),f(θ) + ζ⟩ − ⟨∇V (θ),f(θ)⟩)dt.

ii. Consider M̄ ′ ∈ (M̄0, M̄). There exists λ0, β0 ∈ R+ such that for all ρ ∈ [0, λ0] and

∥ζ∥ ≤ β0, and θ ∈ W̄M̄ ′ we have θ + ρf(θ) + ρζ ∈ W̄M̄ since f is bounded and V is

continuous.

Applying the result of i. to the set

K = {θ ∈ X̄ |M̄ ′ ≤ V (θ) ≤ M̄} =WM̄ \ {θ ∈ X̄ |V (θ) < M ′}.

From Lemma 16 we know that 0 < δ < infθ∈K |⟨∇V,f⟩|. Therefore there exists λ1, β1 ∈

R+ such that for all ρ ∈ [0, λ1] and ∥ζ∥ ≤ β1, and θ ∈ K, we have V (θ + ρf(θ) + ρζ) ≤

V (θ) ≤ M̄ showing that θ + ρf(θ) + ρζ ∈ W̄M̄ .

■

Now we provide the proof for Theorem 18 following the proof of Theorem 2.2 in [7].

Proof of Theorem 18. Consider some M̄ ′ ∈ (M̄0, M̄). From Lemma 19, we know that there

exists λ0, β0 ∈ R+ such that for all θ, ρ, and ζ satifying V (θ) ≤ M̄ ′, ρ ∈ [0, λ0], and ∥ζ∥ ≤ β0,

we have

V (θ + ρf(θ) + ρζ) ≤ M̄ ′.
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By continuity of f and V there exists δ0 ∈ (0, β0] such that for all θ × θ′ ∈ X̄ × X̄ satisfying

V (θ) ≤ M̄ and ∥θ − θ′∥ ≤ δ0, we have

∥f(θ)− f(θ′)∥ ≤ β0 and |V (θ)− V (θ′)| ≤ M̄ − M̄ ′. (6.18)

We will use induction to prove for all k ∈ [t], we have V (θ′(t)) ≤ M̄ ′, and V (θ(k)) ≤ M̄ , where

the sequence {θ′(k)} is defined as θ′(0) = θ(0) and for all k ∈ [t],

θ′(k) = θ′(k − 1) + ηk−1f(θ(k − 1)).

Under the stated assumptions V (θ′(0)) = V (θ(0)) ≤ M̄0. Since 0 ≤ η0 ≤

λ0 and ∥θ′(1)− θ(1)∥ = ∥η0ξ(1)∥ ≤ δ0, on the one hand Lemma 19 shows that

V (θ′(1)) = V (θ′(0) + η0f(θ(0))) ≤ M̄ ′ and on the other hand

V (θ′(1)) = V (θ(0) + η0f(θ(0)) + η0ξ(1)) ≤ M̄,

which proves the result for t = 1.

Assuming the result holds for k ∈ [t − 1] for t > 1. By construction for j ∈ [k],

θ(j)− θ′(j) = θ′(j − 1)− θ(j − 1) + ηj−1ξ(j), which implies that

θ(j)− θ′(j) =

j∑
i=1

ηi−1ξ(i).

Under the stated assumptions ensuring continuity and (6.18), for j ∈ [k], we have

∥θ(j)− θ′(j)∥ ≤ δ0 and ∥f(θ(j))− f(θ′(j))∥ ≤ β0.
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On the other hand,

θ′(k + 1) = θ′(k) + ηkf(θ(k))

= θ′(k) + ηkf(θ
′(k)) + ηk(f(θ(k))− f(θ′(k))).

Since 0 ≤ ηk ≤ λ0 and V (θ′(k)) ≤ M̄ ′, Lemma 19 shows V (θ′(k + 1)) ≤ M ′. Using

∥θ(k + 1)− θ′(k + 1)∥ ≤ δ0, (6.18) implies that V (θ(k + 1)) ≤ M̄ which concludes the

proof. ■

For any A ⊂ X̄ and δ > 0 we define Aδ := {θ ∈ X̄ |d(θ, A) ≤ δ}; for any function

ϕ : X̄ → R, we define ∥ϕ∥A := supθ∈A ∥ϕ(θ)∥.

The following Lemma based on [7, Lemma 2.4] will be used in the proof of Theorem 17.

We will state the lemma for any ω ∈ Ωconv and will drop the ω-notation from q(ω) for brevity.

Lemma 20. Under the assumption of Theorem 17 letN ⊂ X̄ be a neighborhood of Ē ∩Kq which

satisfies supθ∈Kq\N ⟨∇V (θ,f(θ)⟩ < 0. There exist positive constants δ, ε, and λ (depending on

the sets N and Kq) such that for any δ′ ∈ (0, δ], λ′ ∈ (0, λ], and η > 0, one can find an integer

T and a sequence {P̂ pr(j)|j ≥ T} satisfying

sup
j≥T

∥∥∥P pr(j)− P̂ pr(j)
∥∥∥ ≤ δ′, sup

j≥T
ηj−1 ≤ λ′, and

sup
j≥T
|V (P pr(j))− V (P̂ pr(j))| ≤ η, (6.19)

V (P̂ pr(j)) ≤ V (P̂ pr(j))− ηj−1ε+ (η + ηj−1ε)1{P̂ pr(j−1)∈N}), (6.20)

for j ≥ T + 1.

Proof. For legibility in the proof we set K = Kq . Let us choose δ0 > 0 such that the set of points

in X̄ which are δ0 away from the set K satisfy Kδ0 ⊂ W̄M̄2
⊂ X̄ , for some M̄2 ≥ M̄ . The set
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Kδ0 \ N satisfies supθ∈Kδ0
\N ⟨∇V (θ,f(θ)⟩ < 0.

By Lemma 19, for any ε > 0 such that supθ∈Kδ0
\N ⟨∇V (θ),f(θ)⟩ < −ε, one may

choose λ > 0 and β > 0 small enough so that for any ρ ∈ [0, λ] and ∥ζ∥ ≤ β, and θ ∈ Kδ0 \ N

we have

V (θ + ρf(θ) + ρζ) ≤ V (θ)− ρε. (6.21)

Note that f is bounded so ∥f∥K is finite. So, using the uniform continuity of f on K, for

any η > 0 one may choose δ ∈ (0, λ ∥f∥K) small enough so that for all (θ,θ′) ∈ Kδ0 × Kδ0

satisfying ∥θ − θ′∥ ≤ δ ≤ λ ∥f∥K ,

∥f(θ)− f(θ′)∥ ≤ β and |V (θ)− V (θ′)| ≤ η. (6.22)

Under the stated conditions (regarding bounded step-size and bounded cumulative error) for all

δ′ ∈ (0, δ] and λ′ ∈ (0, λ] there exists an integer T such that for any t ≥ T + 1, and ηt ≤ λ′ and∥∥∑t
k=T ηk−1M(k)

∥∥ ≤ δ′.

Define recursively for j ≥ T , the sequence {P̂ pr(j)|j ≥ T} as P̂ pr(T ) := P pr(T ) and

for j ≥ T + 1,

P̂ pr(j) = P̂ pr(j − 1) + ηj−1f(P pr(j − 1)).

By construction for j ≥ T + 1, P̂ pr(j)− P pr(j) =
∑j

i=T+1 ηi−1ξ(i) which implies that

supj≥T

∥∥∥P̂ pr(j)− P pr(j)
∥∥∥ ≤ δ′. On the other hand for j ≥ T + 1,

P̂ pr(j) = P̂ pr(j − 1) + ηjf(P̂ pr(j − 1)) + ηj−1(f(P pr(j − 1))

− f(P̂ pr(j − 1))),
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and since
∥∥∥P̂ pr(j − 1)− P pr(j − 1)

∥∥∥ ≤ δ′ ≤ δ, (6.22) shows that

∥∥∥f(P pr(j − 1))− f(P̂ pr(j − 1))
∥∥∥ ≤ β.

By (6.21) we know that whenever P̂ pr(j − 1) ∈ Kδ \ N since Kδ ⊂ WM2 . V (P̂ pr(j)) ≤

V (P̂ pr(j − 1)) − ηjε. Now (6.22) implies that |V (P̂ pr(j)) − V (P̂ pr(j − 1))| ≤ η for any

P pr(j − 1) ∈ Kδ and |V (P pr(j))− V (P̂ pr(j))| ≤ η for any P pr(j) ∈ K. ■

Finally, we need the following lemma from [7] for the proof of Theorem 17.

Lemma 21 ([7, Lemma 2.5]). Assume 4. Let ε be real constant, n be an integer, and let

−∞ < a1 < b1 < · · · < an < bn <∞ be real numbers. Let {uj} be a bounded real sequence

such that, for any η > 0, there exists an integer J such that for all j ≥ J ,

uj ≤ uj−1 − ηj−1ε+ (η + ηj−1ε)1{uj−1∈A}, A =
n⋃

i=1

[ai, bi].

Then the limit points of the sequence {uj} are included in A.

With all the required lemmas we now proceed to the proof of Theorem 17. Since the

statements of the proof hold for ω ∈ Ωconv we drop the notation of ω in the following proof.

Proof of Theorem 17. We first prove that limj→∞ V (P pr(j)) exists. For any α > 0, define the

set

[V (Ē ∩ Kq)]α := {x ∈ R : d(x, V (Ē ∩ Kq)) ≤ α}.

Since ∥V ∥Kq
<∞, V (Ē ∩ Kq)α is a finite union of disjoint intervals of length at least

equal to 2α. By Lemma 20, there exist positive constants δ, ε, λ such that for any δ′ ∈ (0, δ],

λ′ ∈ (0, λ], and η > 0, one may find an integer T and a sequence {P̂ pr(j)|j ≥ T} such that

sup
j≥T

∥∥∥P pr(j)− P̂ pr(j)
∥∥∥ ≤ δ′ and sup

j≥T
|V (P pr(j))− V (P̂ pr(j))| ≤ η.
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Moreover for any j ≥ T + 1, for any j ≥ T + 1.

V (P̂ pr(j) ≤ V (P̂ pr(j − 1))− ηj−1ε+ (η + ηj−1ε)1{V (P̂ pr(j−1))∈[V (Ē∩Kq )]α},

where we have chosen N = V −1(int([V (Ē ∩ Kq)]α)) and used 1{θ∈N} ≤ 1{V (θ)∈[V (Ē∩Kq )]}.

By Lemma 21, the limit points of the sequence {V (P pr(j))}j≥0 are in [V (Ē ∩ Kq)]α′ for

α′ = α + η. Since α and η can be chosen arbitrarily small, this implies that the limit points

of the sequence {V (P pr(j))}j≥0 are included in ∩α>0[V (Ē ∩ Kq)]α. We have V (Ē ∩ Kq) =

∩α>0[V (Ē ∩ Kq)]α. Thus the limit points {V (P pr(j))} belong to the set V (Ē ∩ Kq).

On the other hand, lim supj→∞ |V (P pr(j)− V (P pr(j − 1))| = 0 which implies that the

set of limit points of {V (P pr(j))} is an interval. Because V (Ē) has an empty interior, the only

intervals included in V (Ē ∩Kq) are isolated points, which shows that the limit, limj→∞ V (P pr(j)),

exists.

We now prove that lim supj→∞ d(P pr(j), Ē ∩ Kq) = 0. Let N ⊂ Kq be an arbitrary

neighborhood of Ē ∩ Kq . From Lemma 20 there exist constants δ, ε, λ ∈ R+ such that for any

δ′ ∈ (0, δ], λ′ ∈ (0, λ], and η > 0 one may find an integer T and a sequence {P̂ pr(j)}j≥T such

that

sup
j≥T

∥∥∥P pr(j)− P̂ pr(j)
∥∥∥ ≤ δ′, and sup

j≥T
|V (P pr(j))− V (P̂ pr(j))| ≤ η

and for any j ≥ T + 1.

V (P̂ pr(j) ≤ V (P̂ pr(j − 1))− ηj−1ε+ (η + ηj−1ε)1{V (P̂ pr(j−1))∈[V (Ē∩Kq )]α}.

For j ≥ T , define τ(j) := inf{k ≥ 0|P̂ pr(k + j) ∈ N}. For any integer p, define
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τ p(j) := τ(j) ∧ p, where a ∧ b = min(a, b). We have

V (P̂ pr(j + τ p(j)))− V (P̂ pr(j)) =

j+τp(j)∑
i=j+1

{V (P̂ pr(i))− V (P̂ pr(i− 1))}

≤ −ε
j+τp(j)∑
i=j+1

ηi−1,

with the convention that, for any sequence {ai} and any integer l,
∑l

i=l+1 ai = 0.

Therefore,

V (P pr(j + τ p(j)))− V (P pr(j))

= V (P pr(j + τ p(j)))− V (P̂ pr(j + τ p(j))) + V (P̂ pr(j + τ p(j)))− V (P̂ pr(j))

+ V (P̂ pr(j))− V (P pr(j))

≤ 2η − ε

j+τp(j)∑
i=j+1

ηi−1

Since {V (P pr(j)} converges, for any ε′ > 0 there exists T ′ > T such that, for all j ≥ T ′,

−ε′ < V (P pr(j + τ p(j)))− V (P pr(j)) ≤ 2η − ε

j+τp(j)∑
i=j+1

ηi−1

This implies that, for all j ≥ T ′ and all integer p ≥ 0,

j+τp(j)∑
i=j+1

ηi−1 ≤ C(ε′, η) := ε−1(ε′ + 2η).

Since
∑j+τ(j)

i=j+1 ηi−1 = limp→∞
∑j+τp(j)

i=j+1 ηi−1 and
∑∞

i=1 ηi−1 =∞, the previous relation

implies that, for all j ≥ T ′, τ(j) <∞, and
∑j+τ(j)

i=j+1 ≤ C(ε′, η).

For any integer p, P pr(j+p)−P pr(j) =
∑j+p

i=j+1 ηi−1f(P pr(i−1))+
∑j+p

i=j+1 ηi−1M (i),
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which implies that

∥P pr(j + p)− P pr(j)∥ ≤ ∥f∥Kq

j+p∑
i=j+1

ηi−1 +

∥∥∥∥∥
j+p∑

i=j+1

ηi−1M(i)

∥∥∥∥∥ .
Applying this inequality for j ≥ T ′ and p = τ(j) and using that, by definition P̂ pr(j+τ(j)) ∈ N ,

d(P pr(j),N ) ≤
∥∥∥P̂ pr(j + τ(j))− P pr(j + τ(j))

∥∥∥
+ ∥P pr(j + τ(j)) = P pr(j)∥

≤ δ′ + ∥f∥Kq
C(ε′, η) +

∥∥∥∥∥∥
j+τ(j)∑
i=j+1

ηi−1M (i)

∥∥∥∥∥∥ .
Since η, δ′, and ε′ can be chosen arbitrarily small, and lim supk→∞ supl≥k

∥∥∥∑l
i=k ηi−1M (i)

∥∥∥ = 0,

the latter inequality shows that limj→∞ d(P pr(j),N ) = 0. Since N is arbitrary, we thus have

limj→∞ d(P pr(j), Ē ∩ Kq) = 0.

■

Chapter 6 in full, is a reprint of the material as it appears in A. Verma, A. Sharbafchi,

S. Mohajer, B. Touri,“Distributed Fact Checking:A Stochastic Approximation Approach," in

preparation for IEEE Transactions on Autamtic Control. The dissertation author was the primary

investigator and author of this paper.
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Chapter 7

Generalized Estimators

In this chapter (i) we move beyond ALL estimator and propose a generalized class of

online estimators for the unreliability parameters of the agents. The estimators are associated

with a function, of the agents’ opinions and unreliability estimate. The associated function can

be interpreted as an estimate for the validity of the statements. We also propose a set of axioms

that a natural estimator should satisfy and hence, we call the class of functions satisfying the

desired properties as the natural functions. (ii) We determine the class of natural functions for

two and three agent fact-checker system that satisfy the desired properties and can serve as the

function for the adaptive estimator. (iii) Finally we prove that a ALL estimator belongs to the

class of natural functions for any n-agent fact-checker system and the hard-estimator does not

belong to this class for any n ≥ 2.

7.1 Natural Estimators

First, let us recall the online estimator for the unreliability parameters of the agents

comprising the fact-checker for any number of agents n ≥ 2 as introduced in Chapter 3. We

have provided convergence guarantees for this algorithm for n = 2 agents in Chapter 5 and for its

variant in Chapter 6.
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The proposed algorithm/dynamics in (3.8) updates the unreliability parameters as

Pi(t+ 1) = (1−ηt)Pi(t)+
1

2
ηt

(
L(t)− 1

L(t) + 1
Ri(t+1)+1

)
,

for all t ∈ N0 and i ∈ [n], with some initial condition (guess) P (0) ∈ (0, 1)n, where {ηt} is a

pre-decided step-size sequence, and L(t) is given in (3.5). One popular choice for the step-size

sequence is the harmonic sequence ηt =
1

t+1
for all t ∈ N0. To grasp the motivation behind

the estimator using such a step-size sequence, we examined the scenario when the fact-checker

knows the source sequence symbols {S(t)}. Since, at any time t ∈ N, the output distribution of

the agents given S(t) is independent of each other, the problem of estimating the unreliability

parameters of the agents is equivalent to n uncoupled problems of estimating the parameter of

Bernoulli distribution from its samples. Estimation of parameter for a Bernoulli distribution

from its sample is a well-studied problem and a class of estimator effective to solve it is the

add-constant estimator [29]. For the current setting, for any i ∈ [n], the add-β estimator, where

β ≥ 0 for parameter πi at time t ∈ N is given by

Qi(t) =
β +

∑t
k=1 1{Ri(k) ̸=S(k)}

t+ 2β
. (7.1)

The estimator makes use of the empirical frequency of agent i misclassifying the source symbol

received and can be expressed recursively as

Qi(t+ 1) = (1− γt)Qi(t) + γt1{Ri(t+1)̸=S(t+1)}.

Here, γt := 1
t+1+2β

and Qi(0) = 1/2.

Note that a central idea in describing the estimator for the unreliability parameter is to

implicitly or explicitly define an estimator for the validity of the statements. Let us define a

class of estimators based on functions B : {−1,+1}n × (0, 1)n → [−1, 1]. The function B(·; ·)

represents a soft estimate of the statement truth S. Using the function B(·; ·) we can define the
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adaptive estimator for π as

P (t+ 1)=(1− ηt)P (t)+ηt
1

2
(1− B(R(t+ 1);P (t))R(t+ 1)) . (7.2)

Let us look at three examples of the function B(·; ·) representing different potential

estimators.

(1)Approximate Log-Likelihood (ALL) Estimator: If we use the approximate log-likelihood

ratio (3.5) to get an estimate of the statement validity we get the ALL estimator resulting in the

online estimator defined through (3.8). It can be shown that the B-function for this estimator is

given as

BALL(R;x) := tanh

(
n∑

i=1

1

2
Ri log

1− xi

xi

)

=
1− L(R;x)

1 + L(R;x)
, (7.3)

where L(R;x) :=
∏n

i=1

(
xi

1−xi

)Ri

is the approximation of the likelihood ratio.

(2)Hard-Thresholding (HT) Estimator: Instead of using the approximate likelihood ration

for statement validity we can use the hard estimator which uses the hard estimate of statement

validity to compute the empirical frequency of misclassifying the source symbol. In other words,

the HT estimator compares the output of each agent with the estimated value for S(t+ 1) given

in (3.6), if the two values agree, HT Estimator decreases the agent’s unreliability parameter down,

otherwise, the unreliability parameter will be increased. The B-function for the HT estimator can

be expressed as

BHT(R;x) := sgn

(
n∑

i=1

Ri log
1− xi

xi

)
, (7.4)

where sgn(a) := −1{a≤0} + 1{a≥0} for any a ∈ R.
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To corroborate the idea that B(·; ·) is an estimate of the statement validity S, let us

introduce the Oracle Estimator

Boracle(R, S;x) := S1. (7.5)

Using the Boracle-function results in the add-β estimator defined through (7.1). Note that the

function Boracle does not fit in our class of functions B(·; ·) of interest since it takes the truth of

the statement S as an argument.

7.2 Results

In this section, we state the main results of this chapter. Let us start with stating the

desirable properties of the function B(·; ·) that must be satisfied in order to have a feasible

estimator of unreliability parameters that converges to π.

7.2.1 Natural Estimators: Axioms and Necessary Conditions

First, let us introduce some conditions/axioms that one would expect from a reasonable

estimator. Later, we will discuss why such axioms are expected from such an estimator.

Definition 8. For anyn ∈ N let us define Cnat
n as the set of all functionsB : {−1,+1}n×(0, 1)n →

[−1, 1] that satisfy

Assumption (i) Anti-Symmetry of reliability:

B(R;x) = −B(R;1− x). (7.6)

Assumption (ii) Anti-Symmetry of Opinions:

B(−R;x) = −B(R;x). (7.7)
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Assumption (iii) Consistency of Estimators:

ER∼gx [R · B(R;x)] = 1− 2x. (7.8)

We refer to Cnat
n as the set of natural functions for an n-agent fact-checker system.

Assumption (i) ensures that the estimates of the statement validity for fact-checker systems

with unreliability parameters π and 1− π takes the same absolute value but has different sign.

The assumption is justified as the output of the fact-checker system with unreliability parameter

vector 1 − π can be seen as the flipped output of a fact-checker system with unreliability

parameter π. Similarly given a fact-checker system Assumption (ii) ensures that the flipping

the output of all the agents’ opinion flips the sign of the estimate of the statement validity.

Finally, regarding Assumption (iii), note that the consistency condition (7.8) is equivalent to

x = 1
2
(1− ER∼gx [RB(R;x)]), which is what is expected from the mean-field dynamics of (7.2),

i.e., to have x as its equilibrium point, given that the agents true reliability parameter vector is x.

With the above discussion, we are ready to present our main results. The first result

shows that interestingly the only natural estimator for two-agent fact-checker system is the ALL

estimator (7.3).

Proposition 19 (Elements of Cnat
2 ). For a two-agent fact-checker system the class of functions

B(·; ·) satisfying Assumption (i)-Assumption (iii) contains exclusively the function BALL(R;x)

as defined in (7.3), i.e., Cnat
2 = {BALL(R;x)}.

Remark 9. In [58] we studied the ALL estimator for a two-agent fact-checker system whose

unreliability parameter is π and we have shown that the estimates {P (t)} converge to the solution

set E of the equation

ER∼gπ [RBALL(R;x)] = 1− 2x. (7.9)
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Note the difference in (7.6) and (7.9) lies in the distribution over which the expectation is taken.

Since BALL(·; ·) satisfies Assumption (iii) we know that π ∈ E . However the set E is a continuum

of points x for which gx(R) = gπ(R) for all R ∈ {−1,+1}2.

In the following proposition we identify the functions that satisfy the properties required

by a natural estimator for a three-agent fact-checker system.

Proposition 20 (Elements of Cnat
3 ). For a three-agent fact-checker system, the set of natural

estimators Cnat
3 consists of functions B(·; ·) satisfying

B(R;x) = BALL(R;x) +
cxR1R2R3

2gx(R)
, (7.10)

where BALL(R;x) is the ALL estimator defined in (7.3) and cx is any function of the vector x

such that cx = −c1−x.

In the following proposition, we show that for all n ≥ 2 there exists x for which BHT(·; ·)

does not satisfy Assumption (iii).

Proposition 21 (Convergence for Hard-Thresholding Estimator). The functionBHT(·; ·) as defined

through (7.4), based on the hard-thresholding estimator, does not satisfy Assumption (iii). In

other words, BHT(·; ·) ̸∈ Cnat
n for any n ≥ 2.

Recall that the system of equations in Assumption (iii) is a necessary condition for

the estimates {P (t)} to converge to π. However, for a fact-checker system with unreliability

parameter π it is also important to identify the solution set E to the system of equation

ER∼gπ [RBALL(R;x)] = 1− 2x.

The solution set E represents the points x ∈ (0, 1)n that could be the points of convergence for the

estimates {P (t)}. In the following theorem, we identify the set E for a three-agent fact-checker
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system to be the set containing the true estimate π, the ‘symmetric’ estimate 1 − π and the

degenerate point 1
2
1.

Theorem 22 (Fixed points of ALL-estimator for three-agent fact-checker). For a three-agent

fact-checker system where the agents have unreliability parameters πi ∈ (0, 1) \ {1
2
} for i ∈ [3],

the set of solutions of the fixed-point equation x = 1
2
(1− ER∼gπ [RBALL(R;x)]) is S :=

{π,1− π, 1
2
1}.

Note that the set E also represents the set of convergence for the Dawid-Skene estimator

[16] and the Theorem 22 is the first result to identify the exact set E . The theorem signifies that

for a three-agent system, the only points the Dawid-Skene and its variants would converge to are

the relevant points π, 1− π or the degenerate point 1
2
1.

In the following theorem, we show that for any n-agent fact-checker system the adaptive

estimator associated with the ALL estimator satisfies all the desired properties.

Theorem 23. For n ≥ 2, BALL(·; ·), as defined in (7.3), satisfies Assumption (i)-Assumption (iii).

In other words, BALL ∈ Cnat
n .

7.3 Proof of Main Results

In this section, we present the proof of the results discussed in the previous section. First,

let us establish a notation to impose an ordering on the 2n distinct possibilities of the output

vector R.

Definition 9 (Notation). Consider the binary representation (b1, b2, . . . , bn) ofN ∈ {0}∪[2n−1].

Here b1 represents the most significant bit and bn the least significant bit. Define the output

vector RN associated with N as

RN :=

(
−1b1 −1b2 . . . −1bn

)⊤

.

Now we provide the proof for the characterization of elements in Cnat
2 .
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Proof of Proposition 19. We show that for any fixed x ∈ (0, 1)2, if B(·; ·) ∈ Cnat
2 , the values

B(R;x) takes for any vector R ∈ {−1, 1}2 coincides with that of BALL(R;x) given in (7.3). To

do this, we utilize Assumption (iii).

So, consider an arbitrary point x ∈ (0, 1)2. To compute E[R1B(R;x)], note that

gx(R0) = gx(R3) and gx(R1) = gx(R2). Therefore,

E[R1B(R;x)] = gx(R0)B(R0;x) + gx(R1)B(R1;x)

− gx(R2)B(R3;x)− gx(R3)B(R2;x)

= gx(R0)B(R0;x) + gx(R1)B(R1;x)

− gx(R0)B(R3;x)− gx(R1)B(R2;x)

= 2gx(R0)B(R0;x) + 2gx(R1)B(R1;x),

where the last step follows from the Assumption (i), B(−R;x) = −B(R;x). Similarly we have

E[R2B(R;x)] = 2gx(R0)B(R0;x)− 2gx(R1)B(R1;x).

Therefore in order for B(·; ·) to satisfy (7.8), we need to have

2gx(R0) 2gx(R1)

2gx(R0) −2gx(R1)


B0

B1

 =

1− 2x1

1− 2x2

 ,

where Bi = B(Ri;x) for i ∈ {0, 1}. Note that for non-degenerate x, i.e., if xi ̸∈ {0, 1}, the

above matrix is invertible. Solving the system of linear equations in B0, B1 we get

B0

B1

 =

 1
4gx(R0)

1
4gx(R0)

1
4gx(R1)

− 1
4gx(R1)


1− 2x1

1− 2x2

 =

1−x1−x2

2gx(R0)

x2−x1

2gx(R1)

 .
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We can simplify B0 as follow

B0 =
1− x1 − x2

2gx(R0)
=

(1− x1)(1− x2)− x1x2

x1x2 + (1− x1)(1− x2)
= BALL(R0;x).

Similarly we have B1 = BALL(R1;x). ■

Next we provide the characterization of elements in Cnat
3 .

Proof of Proposition 20. As in the proof of Proposition 19 we show that for any fixed x ∈ (0, 1)3,

B(·; ·) ∈ Cnat
3 iff the value B(R;x) takes for any vector R ∈ {−1, 1}2 satisfies (7.10). Consider

an arbitrary point x ∈ (0, 1)3. To compute ER∼gx [RiB(R;x)] note that gx(Ri) = gR7−i
for any

i ∈ {0, 1, 2, 3}. Similar to the proof of Proposition 19, we can express the equations in terms of

the values of the functions at Ri for i ∈ {0, 1, 2, 3} through the equationHB = 1− 2x, where

H =


2gx(R0) 2gx(R1) 2gx(R2) 2gx(R3)

2gx(R0) 2gx(R1) −2gx(R2) −2gx(R3)

2gx(R0) −2gx(R1) 2gx(R2) −2gx(R3)



and B =

(
B0 B1 B2 B3

)⊤

. Here Bi = B(Ri;x) for i ∈ {0, 1, 2, 3}. The matrixH in one

of its row echelon form can be expressed as


2gx(R0) 2gx(R1) 2gx(R2) 2gx(R3)

0 −2gx(R1) 0 −2gx(R3)

0 0 −2gx(R2) −2gx(R3)

 .

Therefore, we know that H is a matrix with rank 3 if gx(Ri) ̸= 0 for i ∈ {0, 1, 2, 3}. By the

rank-nullity theorem [35, eq.(4.4.15)] the dimension of the null-space ofH is 1. It can be seen
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that the null-space ofH is given by span(z), where

z =

(
1

2gx(R0)
− 1

2gx(R1)
− 1

2gx(R2)
1

2gx(R3)

)⊤

.

Therefore, the solution set forHB = 1−2x is given by {b ∈ R4 : b = B∗+ cz}, where

B∗ is one solution to the system of linear equationHB = 1− 2x. We can choose

B∗ =



(1−x1)(1−x2)(1−x3)−x1x2x3

2gx(R0)

(1−x1)(1−x2)x3−x1x2(1−x3)
2gx(R1)

(1−x1)x2(1−x3)−x1(1−x2)x3

2gx(R2)

(1−x1)x2x3−x1(1−x2)(1−x3)
2gx(R3)


, (7.11)

whose i-th element is in fact (B∗)i = BALL(Ri−1;x). Therefore the functions satisfying

Definition 8 take the form

B(R;x) = BALL(R;x) +
cxR1R2R3

2gx(R)
,

where cx is an arbitrary function of x. Furthermore, to ensure B(R;x) = −B(R; 1− x), we

need to have

BALL(R;x)+
cxR1R2R3

2gx(R)
= −BALL(R; 1− x)− c1−xR1R2R3

2g1−x(R)
.

As gx(R) = g1−x(R) and BALL(R;x) = −BALL(R; 1 − x), the above equality holds iff

cx = −c1−x. ■

Proof of Proposition 21. From Proposition 19, it readily follows that for two-agents fact-checker

system BHT(·; ·) ̸∈ Cnat
2 . For any n ≥ 2, we show that there exists x ∈ (0, 1)n such that BHT(·; ·)

does not satisfy Assumption (iii).
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Consider x∗ ∈ (0, 1)n such that

log
1− x∗

1

x∗
1

>
n∑

i=2

∣∣∣∣log 1− x∗
i

x∗
i

∣∣∣∣ . (7.12)

Then, for any R ∈ {−1,+1}n, we have BHT(R;x∗) = R1. Therefore E[R1BHT(R;x)] =

E[R2
1] = 1. However 1− 2x∗

1 < 1. So, BHT(R;x∗) does not satisfy (7.8), at least for vectors x

satisfying (7.12). ■

In order to prove Theorem 22 for a, b, c ∈ (0, 1), we define a function h(a, b, c) =

abc+ āb̄c̄. For convenience, with an abuse of notation, we also use the same notation and define

h(a, b) = ab+ āb̄.

Proof of Theorem 22. Using the fact that xi ̸∈ {0, 1} for i ∈ [3], we can perform algebraic

manipulations and express the fixed-point equation x = 1
2
(1− ER∼gπ [RBALL(R;x)]) as Xu =

0 where

X =



x2 + x3 − 1 x3 + x1 − 1 x1 + x2 − 1

1− x2 − x3 x3 − x1 x2 − x1

x3 − x2 1− x1 − x3 x1 − x2

x2 − x3 x1 − x3 1− x1 − x2



⊤

and u = (u0, u1, u2, u3)
⊤, with u0 =

gπ(R0)
gx(R0)

, u1 =
gπ(R3)
gx(R3)

, u2 =
gπ(R2)
gx(R2)

, and u3 =
gπ(R1)
gx(R1)

.

Summing equations in Xu = 0 and multiplying the result by 1
2
, we get

(
3

2
− (x1 + x2 + x3)

)
u0 =

(
1

2
− x1

)
u1 (7.13)

+

(
1

2
− x2

)
u2 +

(
1

2
− x3

)
u3.

Case 1: Consider the case where x1 + x2 + x3 ̸= 3
2
. For i ∈ [3] define wi =

1
2
−xi∑3

j=1
1
2
−xj

.
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Then we have

u0 = w1u1 + w2u2 + w3u3, (7.14)

where w1 + w2 + w3 = 1. Replacing u0 from (7.14) in Xu = 0, we get

w1u1 + w2u2 + w3u3 − u1 =
w3 − w2

w2 + w3

(u3 − u2),

w1u1 + w2u2 + w3u3 − u2 =
w1 − w3

w3 + w1

(u1 − u3), (7.15)

w1u1 + w2u2 + w3u3 − u3 =
w2 − w1

w1 + w2

(u2 − u1).

We can rewrite the above system as

u1 = au2 + (1− a)u3,

u2 = bu3 + (1− b)u1, (7.16)

u3 = cu1 + (1− c)u2,

where the coefficients a, b, and c are given as

a =
w2(w2 + w3) + (w3 − w2)

(w1 − 1)2
,

b =
w3(w3 + w1) + (w1 − w3)

(w2 − 1)2
,

c =
w1(w1 + w2) + (w2 − w1)

(w3 − 1)2
.
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The system of equation (7.16) is equivalent to

(1− a(1− b))(u1 − u3) = 0,

(1− b(1− c))(u2 − u1) = 0, (7.17)

(1− c(1− a))(u3 − u2) = 0.

We note that a(1 − b) = 1 if and only if w1w2w3 = 0. Similar conclusions hold for

b(1− c) = 1 and c(1− a) = 1. Therefore, the system of equations in (7.17) holds only if we

have either w1w2w3 = 0 (Case 1-1) or u1 = u2 = u3 (Case 1-2) .

Case 1-1: Note that w1w2w3 = 0 implies that xi =
1
2

for some i ∈ [3]. Let us consider

the case with w1 = 0, or equivalently x1 = 1
2
. The system of equations Xu = 0 can then be

simplified to

(x2+x3 − 1)
(h(π1, π2, π3)− h(π̄1, π2, π3))

(h(π1, π2, π̄3)− h(π1, π̄2, π3))

=
h(x2, x3)

h(x2, x̄3)
(x3 − x2), (7.18)(

x3 −
1

2

)
(u0 + u1 − u2 − u3) = 0,(

x2 −
1

2

)
(u0 + u1 − u2 − u3) = 0.

It is clear that x = 1
2
1 is a feasible solution for (7.18). In the following, we prove that (7.18) has

no other solution.

Letx ̸= 1
2
1, and without loss of generality, x2 ̸= 1

2
. Hence, we should have u0+u1 = u2+

u3. However, we have u0+u1 = 2h(π2,π3)
h(x2,x3)

and u2 + u3 = 2h(π2,π̄3)
h(x2,x̄3)

. Therefore, u0+u1 = u2+u3

holds if and only if

h(π2, π3) = h(x2, x3). (7.19)
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Plugging (7.19) in (7.18), we arrive at (x2 + x3 − 1) = c̃(x3 − x2), or equivalently,

x2 =
x3(c̃− 1) + 1

1 + c̃
, (7.20)

where

c̃ =
h(π2, π3)

h(π2, π̄3)

(h(π1, π2, π̄3)− h(π1, π̄2, π3))

h(π1, π2, π3)− h(π̄1, π2, π3)

=
h(π2, π3)

h(π2, π̄3)

(
π2 − π3

π2 + π3 − 1

)
=

h(π2, π3)

h(π2, π̄3)

(
π2 − π3

π2 − π̄3

)
.

Plugging (7.20) into (7.19), we get

0 = h(x2, x3)−h(π2, π3) = 2x2x3−x2 − x3 + 1− h(π2, π3)

=
c̃− 1

2(c̃+ 1)
(2x3 − 1)2+

1

2
−h(π2, π3). (7.21)

We know h(π2, π3) =
1
2
(2π2 − 1)(2π3 − 1) + 1

2
= 2π̃2π̃3 +

1
2
, where π̃i =

1
2
− πi ∈ (−1

2
, 1
2
) for

i ∈ [3]. Moreover, we have

c̃− 1

c̃+ 1
=

h(π2, π3)(π2 − π3)− (1− h(π2, π3))(π2 + π3 − 1)

h(π2, π3)(π2 − π3) + (1− h(π2, π3))(π2 + π3 − 1)

=
−4π̃2

2π̃3 + π̃3

4π̃2π̃2
3 − π̃2

= − π̃3(4π̃
2
2 − 1)

π̃2(4π̃2
3 − 1)

. (7.22)

Using this in (7.21), we arrive at

0 = −1

2

π̃3(4π̃
2
2 − 1)

π̃2(4π̃2
3 − 1)

(2x3 − 1)2 − 2π̃2π̃3

= − π̃3

2π̃2

(
4π̃2

2 − 1

4π̃2
3 − 1

(2x3 − 1)2 + 4π̃2
2

)
.

This last equation holds if and only if π̃3 = 0. Plugging this in (7.22) implies c̃ = 1, which

together with (7.20) leads to x2 = 1
2
, which is a contradiction. Hence, the only solution for
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Case 1-1 is x ̸= 1
2
1.

Case 1-2: Next, we study the case of u1 = u2 = u3, which together with (7.13) leads

to u0 = u1 = u2 = u3 = K for some K ∈ R. Equivalently, we get gπ(Ri) = Kgx(Ri) for

i ∈ [3] ∪ {0}. Summing up the equations over i, we get K = 1, since gπ and gx are probability

mass functions. Therefore we get gπ(Ri) = gx(Ri) for i ∈ [3] ∪ {0}.

From the definition of the function h we have

h(x1, x2, x3)−h(x1, x2, x̄3) = (1−2x3)(1−x1−x2),

h(x1, x2, x3)−h(x1, x̄2, x3) = (1−2x2)(1−x3−x1), (7.23)

h(x1, x2, x3)−h(x̄1, x2, x3) = (1−2x1)(1−x2−x3).

Using (7.23) and gx(R0)− gx(Ri) = gπ(R0)− gπ(Ri) for i ∈ [3] we get

π̃1(π̃2 + π̃3)

x̃1(x̃2 + x̃3)
=

π̃2(π̃3 + π̃1)

x̃2(x̃3 + x̃1)
=

π̃3(π̃1 + π̃2)

x̃3(x̃1 + x̃2)
, (7.24)

where x̃i =
1
2
− xi and π̃i =

1
2
− πi for i ∈ [3]. Further simplifying we get the following set of

equations

x̃1x̃2 = π̃1π̃2, x̃2x̃3 = π̃2π̃3, x̃3x̃1 = π̃3π̃1,

whose solution is (x̃1, x̃2, x̃3) = ±(π̃1, π̃2, π̃3). Equivalently, the solution for u0 = u1 = u2 = u3

is x = π or 1− π.

Case 2: x1 + x2 + x3 =
3
2
. Then, with x̃i =

1
2
− xi for i ∈ [3], the case condition is equivalent to

x̃1 + x̃2 + x̃3 = 0. Using this fact in (7.13), we get x̃1u1 + x̃2u2 + x̃3u3 = 0. Thus, the equations
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in Xu = 0 can be simplified to the following

x̃1 (3u1 − u0 − u2 − u3) = 0,

x̃2 (3u2 − u0 − u3 − u1) = 0, (7.25)

x̃3 (3u3 − u0 − u1 − u2) = 0.

The system in (7.25) can be satisfied only if one of the following two scenarios holds: (i) if

x̃i = 0 or equivalently, xi =
1
2

for some i ∈ [3]. This case has been discussed under Case 1-1,

and it is shown that x = 1
2
1 is the only solution; (ii) alternatively, if x̃i ̸= 0 for i ∈ [3], we should

have

u1 =
u0 + u2 + u3

3
=

∑3
i=0 ui − u1

3
,

u2 =
u0 + u3 + u1

3
=

∑3
i=0 ui − u2

3
, (7.26)

u3 =
u0 + u1 + u2

3
=

∑3
i=0 ui − u3

3
.

This set of equations leads to u0 = u1 = u2 = u3, which is studied under Case 1-2. It is shown

that x = π and 1− π are the only solutions for Case 1-2. This concludes the proof. ■

Proof of Theorem 23. For any m ∈ N, for x ∈ (0, 1)m and R ∈ {−1,+1}m define Π(R;x) as

Π(R;x) :=
m∏
i=1

(
xi1{Ri=1} + (1− xi)1{Ri=−1}

)
.

Note that summing over all possible realizations of R we get

∑
R∈{−1,+1}m

Π(R;x) =
m∏
i=1

(xi + (1− xi)) = 1.
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For any x ∈ (0, 1)n and any R ∈ {−1,+1}n we know that

Rigx(R)BALL(R;x) =
1

2
(Π(−RiR;x)− Π(RiR;x))

=
1

2
((1− xi)Π(−R−i;x−i)− xiΠ(R−i;x−i)) ,

where x−i ∈ (0, 1)n−1 and R−i ∈ {−1,+1}n−1 are obtained by removing the ith element in x

and R, respectively.

Therefore, for any i ∈ [n] we have

E[RiBALL(R;x)] =
∑

R∈{−1,+1}n
gx(R)RiBALL(R;x)

=
1

2

∑
R∈{−1,+1}n

(1− xi)Π(−R−i;x−i)− xiΠ(R−i;x−i)

= (1− xi)− xi = 1− 2xi,

which concludes the proof. ■

Chapter 7 in full, is a reprint of the material as it appears in A. Verma, S. Mohajer, B.

Touri, “Multi-Agent Fact-Checker: Adaptive Estimators," submitted in 2024 Conference on

Decision and Control. The dissertation author was the primary investigator and author of this

paper.
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