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Original Article

Loss of Immunohistochemical Reactivity
in Association With Handling-Induced
Dark Neurons in Mouse Brains

Virawudh Soontornniyomkij1 , Rachel C. Chang1,
Benchawanna Soontornniyomkij1, Jan M. Schilling2,3,
Hemal H. Patel2,3, and Dilip V. Jeste1,4

Abstract
The handling-induced dark neuron is a histological artifact observed in brain samples handled before fixation with aldehydes. To
explore associations between dark neurons and immunohistochemical alterations in mouse brains, we examined protein products
encoded by Cav3 (neuronal perikarya/neurites), Rbbp4 (neuronal nuclei), Gfap (astroglia), and Aif1 (microglia) genes in adjacent
tissue sections. Here, dark neurons were incidental findings from our prior project, studying the effects of age and high-fat diet on
metabolic homeostasis in male C57BL/6N mice. Available were brains from 4 study groups: middle-aged/control diet, middle-aged/
high-fat diet, old/control diet, and old/high-fat diet. Young/control diet mice were used as baseline. The hemibrains were
immersion-fixed with paraformaldehyde and paraffin-embedded. In the hippocampal formation, we found negative correlations
between dark neuron hyperbasophilia and immunoreactivity for CAV3, RBBP4, and glial fibrillary acidic protein (GFAP) using
quantitative image analysis. There was no significant difference in dark neuron hyperbasophilia or immunoreactivity for any protein
examined among all groups. In contrast, in the hippocampal fimbria, old age seemed to be associated with higher immunoreactivity
for GFAP and allograft inflammatory factor-1. Our findings suggest that loss of immunohistochemical reactivity for CAV3, RBBP4,
and GFAP in the hippocampal formation is an artifact associated with the occurrence of dark neurons. The unawareness of dark
neurons may lead to misinterpretation of immunohistochemical reactivity alterations.
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Introduction

Artifacts associated with handling of animals can occur in any

step of experimental neuroscience research, including behavioral

testing,1 neuroimaging,2 and tissue collection and processing.3

The handling-induced dark neuron is a common feature among a

variety of histological artifacts observed in brain samples.4 With

hematoxylin and eosin (H&E) or cresyl violet staining, dark

neurons are characterized by the monotonous morphological

pattern of contracted hyperchromatic (hyperbasophilic on

H&E staining) cell bodies and dendrites. The formation of dark

neurons is associated with mechanical handling of fresh brain

samples prior to fixation with aldehydes.4–6

There have been a number of published research articles in

which handling-induced dark neurons were misinterpreted as

evidence of neuronal degeneration.4,5 Therefore, the recogni-

tion of dark neurons, as contrasted with degenerating neurons,

is critical for the valid interpretation of neuropathologic

changes that are identified on the basis of histopathological

assessment.4,5 Of note, it is plausible that the presence of dark

neurons could give rise to alterations in immunohistochemical

reactivity. Nonetheless, to our knowledge, there are no reports

in the literature describing immunohistochemical reactivity

changes in association with handling-induced dark neurons.

In the current study, to explore associations between the

occurrence of handling-induced dark neurons and the
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alterations of immunohistochemical reactivity in the mouse

hippocampal formation, we chose to examine 4 protein mar-

kers: caveolin-3 (CAV3, neuronal perikarya/neurites), retino-

blastoma binding protein-4 chromatin remodeling factor

(RBBP4, also known as RbAp48, neuronal nuclei),7 glial fibril-

lary acidic protein (GFAP, astroglia), and allograft inflamma-

tory factor-1 (AIF1, microglia). We used mouse brains

obtained from our previous project originally aimed to study

the effects of age and long-term high-fat diet exposure on

metabolic homeostasis, in which the presence of dark neurons

was an incidental finding. We hypothesized that dark neuron

hyperbasophilia density would negatively correlate with the

immunoreactivity density of protein markers, particularly neu-

ronal markers.

Materials and Methods

Animals

Male C57BL/6N mice (Taconic Biosciences, Taconic Farms,

Hudson, New York) were used. All the experiments were con-

ducted in accordance with the guidelines of the American Asso-

ciation for the Accreditation of Laboratory Animal Care and

National Research Council’s Guide for the Care and Use of

Laboratory Animals and approved by the University of Califor-

nia San Diego Institutional Animal Care and Use Committee.

Upon the completion of experiments (4-month exposure to either

high-fat diet or control diet), mice were divided into 4 harvest

batches for full necropsy and tissue collection within a period of

3 weeks with order counterbalanced for age/diet groups. Imme-

diately after being removed from the skull, the fresh brains were

bisected midsagittally. The left hemibrains were immersion-

fixed with 4% paraformaldehyde/phosphate-buffered saline

(PBS) at 4�C for 72 hours and then stored in 0.4% paraformal-

dehyde/PBS at 4�C until being processed for paraffin

embedment.

For neuropathologic examination, hemibrains were avail-

able from 4 age/diet study groups of mice: middle-aged (14-

15 months)/control diet (n ¼ 11), middle-aged/high-fat diet

(n ¼ 6), old (24-25 months)/control diet (n ¼ 9), and old/

high-fat diet (n ¼ 7). To acquire baseline data from mice of

younger age, we used young (3 months)/control diet male

C57BL/6N mice (n ¼ 9). All fresh brains in the baseline

group were harvested in 1 batch and the left hemibrains

were immersion-fixed and processed for paraffin embed-

ment with the same protocols as those used in the study

groups.

For all the left hemibrains (n¼ 33 totally in the study groups

and n ¼ 9 in the baseline group), the paraffin-embedded tissue

blocks were trimmed 500 mm off the medial surface. The first

5-μm-thick section taken was stained with H&E. The following

5-μm-thick sections were immunostained for GFAP, AIF1,

RBBP4, and CAV3 in order. All the parasagittal hemibrain

sections revealed the entire dorsal hippocampal formation and

fimbria, consistent with the levels between 500 and 700 mm

from the midline.8 For each hemibrain, 1 tissue section was

evaluated for each stain.

Chromogenic Immunohistochemistry

Primary antibodies used were directed against CAV3 (mouse

monoclonal clone A-3 specific for an epitope mapping amino

acid residues 3–40 at the N-terminus of mouse CAV3, sc-5310,

1:10 000 dilution; Santa Cruz Biotechnology, Santa Cruz, Cali-

fornia), RBBP4 (mouse monoclonal clone 11G10, GTX70232,

1:40 000 dilution; GeneTex, Irvine, California),7 GFAP (rabbit

polyclonal, Z0334, 1:1000 dilution; Dako, Carpinteria, Califor-

nia), and AIF1 (rabbit polyclonal, 019-19741, 1:1000 dilution;

Wako, Richmond, Virginia).

Tissue sections were deparaffinized with xylene and rehy-

drated through graded ethanol series and water. For RBBP4,

GFAP, and AIF1, antigen retrieval was performed by autoclav-

ing the tissue sections at 121�C for 20 minutes with 10 mM

Tris/1 mM EDTA-2Na/0.05% Tween-20 buffer (pH 9) and

then cooling down at room temperature for 20 minutes. The

tissue sections were treated for 30 minutes with 0.3% hydrogen

peroxide/PBS to quench endogenous peroxidase activity,

rinsed in PBS (2 times, 5 minutes each), and incubated for 30

minutes with 2.5% normal horse serum (Vector Laboratories,

Burlingame, California). Following 24-hour incubation with

primary antibodies at 4�C, the tissue sections were rinsed in

0.1% Tween-20/PBS (2 times, 5 minutes each) and PBS (5

minutes) and then incubated for 40 minutes at room tempera-

ture with horse anti-mouse or -rabbit immunoglobulin G (IgG)

secondary antibody (ImmPRESS HRP anti-IgG [peroxidase]

polymer detection kits, MP-7402 and MP-7401; Vector

Laboratories). Following washing with 0.1% Tween-20/PBS

(2 times, 5 minutes each) and PBS (5 minutes), the signals

were developed with 3,30-diaminobenzidine (ImmPACT DAB

peroxidase [HRP] substrate, SK-4105; Vector Laboratories) for

5 minutes at room temperature. After washing with water for 5

minutes, the tissue sections were dehydrated through graded

ethanol series, cleared in xylene, and mounted with Cytoseal 60

(Richard-Allan Scientific, Waltham, Massachusetts). For the

negative reagent control, the primary antibody was omitted,

as previously described.9

Quantifications of Dark Neuron Hyperbasophilia
and Immunohistochemical Reactivity

By means of 2-dimensional computer-assisted image analysis,

hyperbasophilia of dark neurons on H&E-stained tissue slides

and immunoreactivity for CAV3, RBBP4, GFAP, and AIF1 on

DAB tissue slides were quantified, as described previously.9,10

In brief, the hemibrain sections were digitally scanned using a

microscope slide scanner (Aperio ScanScope GL; Leica Bio-

systems, Buffalo Grove, Illinois) equipped with a 20� objec-

tive lens. Using Aperio ImageScope software (version

10.2.2.2319), a square of 3000� 3000 μm2 covering the dorsal

hippocampal formation and fimbria was extracted from each

hemibrain.
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Using Image-Pro Analyzer software (version 6.3; Media

Cybernetics, Bethesda, Maryland), the hippocampal formation

(excluding the subiculum) and fimbria separately were digi-

tally drawn on each of the extracted images having the same

size and resolution. Because dark neurons were distinctly

hyperbasophilic in comparison with well-preserved neurons,

hyperbasophilia of dark neurons was quantified within the hip-

pocampal formation by setting histogram-based RGB color

segmentation to select the specific hyperbasophilia. This color

segmentation setting was consistently applied to all the hemi-

brains. The hyperbasophilia intensity per unit area (ie, hyper-

basophilia density of dark neurons) was calculated, as

described previously.9

For each of the protein markers examined, histogram-

based RGB color segmentation was set to select the specific

immunoreactivity signal and consistently applied to all the

hemibrains. The signal intensity per unit area (ie, signal

density) was calculated, as described previously.9 To adjust

Figure 1. Representative images of the left dorsal hippocampal formation from 2 middle-aged (14-15 months) male C57BL/6N mice (in columns
of adjacent tissue sections, original scan 20�). On hematoxylin and eosin staining, (A) dark neurons having contracted hyperbasophilic cell bodies
and dendrites are shown in the stratum pyramidale (between arrows), in comparison with (B) well-preserved neurons. On diaminobenzidine
immunohistochemistry for (C, D) caveolin-3 (CAV3, neuronal perikarya/neurites, with hematoxylin counterstaining), (E, F) retinoblastoma
binding protein-4 chromatin remodeling factor (RBBP4, neuronal nuclei), (G, H) glial fibrillary acidic protein (GFAP, astroglia), and (I, J) allograft
inflammatory factor-1 (AIF1, microglia), focal loss of immunoreactivity for CAV3, RBBP4, and GFAP is observed in a pattern that spatially matches
the presence of dark neurons, whereas the variation of AIF1 immunoreactivity is not conspicuous. Insets¼ high magnification (original scan�40).

Soontornniyomkij et al. 3



for the between-batch variation, 1 brain section from the

same positive tissue control block was included in each

immunostaining batch. The control signal density value (in

a specified neuroanatomic area) was used to normalize all

the signal density values of studied samples in the same

batch, generating the immunoreactivity density values.

Statistical Analysis

The assumption of normality was tested using the Shapiro-

Wilk test for the hyperbasophilia density of dark neurons

(W ¼ 0.750, P < .0001), the immunoreactivity density of

CAV3, RBBP4, GFAP, and AIF1 (W ¼ 0.924, 0.865, 0.940,

and 0.977; P ¼ .008, .0002, .029, and .536, respectively) in

the hippocampal formation, and the immunoreactivity den-

sity of GFAP and AIF1 (W ¼ 0.946 and 0.887, P ¼ .045

and .0006, respectively) in the hippocampal fimbria.

Because the normality assumption could not be confirmed

for all variables except AIF1 in the hippocampal formation,

nonparametric methods were used for all analyses. Spear-

man rho was used to test correlations between the hyperba-

sophilia density of dark neurons and the immunoreactivity

density of each protein marker. The Kruskal-Wallis test was

used to compare the hyperbasophilia density of dark neu-

rons and the immunoreactivity density of each protein mar-

ker across all 5 age/diet mouse groups (4 study and 1

baseline groups). Post hoc comparison procedures were

conducted using the Dunn multiple comparison test. Two-

sided P values of less than .05 were considered statistically

significant. The statistical analyses were performed using

GraphPad Prism (version 6.0h; GraphPad Software, San

Diego, California).

Results

Presence of Dark Neurons on H&E Histopathology

On H&E-stained histopathologic examination, we observed

dark neurons of varying density as an incidental finding in

a high proportion of mouse hemibrains in the study and

baseline groups. In the hippocampal formation (Figure 1),

dark neurons were more conspicuous in the stratum pyrami-

dale than in the stratum granulosum. There was no consis-

tent difference in the distribution of dark neurons across the

hippocampal subfields. No definite changes in the number

or morphology of astroglia or microglia were observed in

spatial relation to the presence of dark neurons in the hip-

pocampal formation of any hemibrains examined. In the

cerebral cortex of all mice in the study and baseline groups,

dark neurons were frequently observed at least in the super-

ficial layers. The hippocampal fimbria white matter showed

no significant histopathologic changes. Thalamic mineral

deposits11 were observed in one of the old/control diet

mice.

Figure 1. (continued).
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Figure 2. Scatter plots showing the relationship between the hyperbasophilia density of dark neurons and the immunoreactivity density of each
protein marker in the left dorsal hippocampal formation. The negative correlation is observed for (A) caveolin-3 (CAV3; r ¼ �0.444, P ¼ .0032),
(B) retinoblastoma binding protein-4 chromatin remodeling factor (RBBP4; r¼�0.614, P < .0001), and (C) glial fibrillary acidic protein (GFAP; r¼
�0.527, P ¼ .0003) but not statistically significant for (D) allograft inflammatory factor-1 (AIF1; r ¼ �0.246, P ¼ .116; n ¼ 42, Spearman rho).

Table 1. The Hyperbasophilia Density of Dark Neurons and the Immunoreactivity Density of Protein Markers in the Hippocampal Formation by
Age/Diet Mouse Groups.a

Dark Neurons CAV3 RBBP4 GFAP AIF1

Baseline group
Young/control diet group (n ¼ 9) 0.078 (0.074-0.302) 0.899 (0.018-1.054) 0.232 (0.076-0.252) 0.255 (0.075-0.265) 1.020 (0.740-1.298)

Study groups
Middle-aged/control diet group

(n ¼ 11)
0.055 (0.029-0.100) 0.908 (0.466-1.031) 0.238 (0.227-0.257) 0.254 (0.136-0.387) 1.013 (0.867-1.674)

Middle-aged/high-fat diet group
(n ¼ 6)

0.077 (0.020-0.148) 0.722 (0.298-1.331) 0.197 (0.162-0.219) 0.198 (0.132-0.292) 1.219 (0.849-1.395)

Old/control diet group (n ¼ 9) 0.050 (0.030-0.118) 0.808 (0.594-0.993) 0.212 (0.191-0.230) 0.293 (0.193-0.360) 1.434 (0.808-1.670)
Old/high-fat diet group (n ¼ 7) 0.076 (0.048-0.086) 0.823 (0.329-1.029) 0.237 (0.184-0.259) 0.271 (0.102-0.309) 1.118 (0.972-1.439)
Kruskal-Wallisb Statistic, P 5.383, .250 1.045, .903 3.947, .413 4.244, .374 2.070, .723

Abbreviations: AIF1, allograft inflammatory factor-1; CAV3, caveolin-3; GFAP, glial fibrillary acidic protein; RBBP4, retinoblastoma binding protein-4 chromatin
remodeling factor.
aData are presented as median (interquartile range) in arbitrary unit.
bThe Kruskal-Wallis test is applied to all 5 groups (n ¼ 42).
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Focal Loss of Immunohistochemical Reactivity in the
Hippocampal Formation

Based on qualitative assessments in the hippocampal forma-

tion, we found focal loss of immunoreactivity for CAV3,

RBBP4, and GFAP in a pattern that spatially matched the

presence of dark neurons observed in the H&E-stained adja-

cent hemibrain sections (Figure 1). The spatial variation of

AIF1 immunoreactivity was not conspicuous in relation to

the presence of dark neurons in the hippocampal formation

(Figure 1).

Negative Correlations Between Dark Neuron
Hyperbasophilia and Immunohistochemical
Reactivity in the Hippocampal Formation

Based on quantitative image analyses in the hippocampal for-

mation, we found negative correlations between the hyperba-

sophilia density of dark neurons and the immunoreactivity

density of CAV3, RBBP4, and GFAP to be statistically

significant (r ¼ �0.444, �0.614, and �0.527; P ¼ .003, P <

.0001, and P ¼ .0003, respectively, n ¼ 42, Spearman rho;

Figure 2A-C). For AIF1 immunoreactivity, the correlation was

Figure 3. Representative images of the left hippocampal fimbria from young (3 months), middle-aged (14-15 months), and old (24-25 months)
male C57BL/6N mice (in rows of adjacent tissue sections). The diaminobenzidine immunohistochemistry for (A, C, and E) glial fibrillary acidic
protein (GFAP, astroglia) and (B, D, and F) allograft inflammatory factor-1 (AIF1, microglia) is depicted (original scan 20�). Insets ¼ high
magnification (original scan �40).
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not statistically significant (r ¼ �0.246, P ¼ .116, n ¼ 42,

Spearman rho; Figure 2D).

No Difference in Dark Neuron Hyperbasophilia or
Immunohistochemical Reactivity in the Hippocampal
Formation Across Age/Diet Mouse Groups

In the hippocampal formation, we found no significant differ-

ence in median values of the hyperbasophilia density of dark

neurons or the immunoreactivity density of CAV3, RBBP4,

GFAP, or AIF1 across all 5 age/diet mouse groups (n ¼ 42,

Kruskal-Wallis test; Table 1).

Differences in Immunohistochemical Reactivity for GFAP
and AIF1 in the Hippocampal Fimbria Across Age/Diet
Mouse Groups

To compare the hippocampal formation affected by the occur-

rence of dark neurons with a neighboring white matter region in

regard to the immunohistochemical reactivity, we examined

GFAP and AIF1 immunoreactivity in the hippocampal fimbria

(Figure 3).

Across all 5 age/diet mouse groups, we found differences in

median values of the immunoreactivity density of GFAP and

AIF1 (P ¼ .020 and P < .0001, respectively, n ¼ 42, Kruskal-

Wallis test; Table 2). Compared with the baseline young/con-

trol diet group, the GFAP immunoreactivity density was higher

in the old/high-fat diet group (P < .05) but not significantly

higher in the other 3 study groups (Dunn multiple comparison

test; Figure 4A). Compared with the baseline young/control

diet group, the AIF1 immunoreactivity density was higher in

the old/control diet (P < .05) and old/high-fat diet (P < .01)

groups but not significantly higher in the other 2 study groups

(Dunn multiple comparison test; Figure 4B).

Discussion

As an incidental finding in our previous project studying the

effects of age and long-term high-fat diet exposure on meta-

bolic homeostasis in male C57BL/6N mice, we observed dark

neurons of varying density in the dorsal hippocampal formation

in a high proportion of mouse hemibrains from both study and

baseline groups. Based on quantitative image analysis, the

hyperbasophilia density of dark neurons (ie, dark neuron bur-

den) did not significantly differ among 5 age/diet mouse

Table 2. The Immunoreactivity Density of GFAP and AIF1 in the
Hippocampal Fimbria White Matter by Age/Diet Mouse Groups.a

GFAP AIF1

Baseline group
Young/control diet

(n ¼ 9)
0.542 (0.199-0.699) 1.527 (1.190-1.614)

Study groups
Middle-aged/control

diet (n ¼ 11)
0.726 (0.429-1.031) 1.405 (1.279-1.736)

Middle-aged/high-fat
diet (n ¼ 6)

0.464 (0.248-0.655) 1.363 (1.223-1.588)

Old/control diet (n ¼ 9) 0.892 (0.630-1.117) 2.304 (1.823-2.936)
Old/high-fat diet (n ¼ 7) 1.145 (0.413-1.473) 2.384 (2.182-3.185)

Kruskal-Wallisb Statistic, P 11.64, .020c 23.82, <.0001d

Abbreviations: AIF1, allograft inflammatory factor-1; GFAP, glial fibrillary acidic
protein.
aData are presented as median (interquartile range) in arbitrary unit.
bThe Kruskal-Wallis test is applied to all 5 groups (n ¼ 42).
cP < .05.
dP < .0001.

Figure 4. Box plots showing differences in the immunoreactivity
density of glial fibrillary acidic protein (GFAP) and allograft inflamma-
tory factor-1 (AIF1) in the left hippocampal fimbria among 5 age/diet
mouse groups. Data in each group are presented in arbitrary unit as a
box and whisker plot; X ¼ mean, � ¼ outlier. Compared with the
young/control diet group, the immunoreactivity density of GFAP (A)
was higher in the old/high-fat diet group and that of AIF1 (B) was
higher in the old/control diet and old/high-fat diet groups (Dunn mul-
tiple comparison test). *P < .05, **P < .01.
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groups. Accordingly, we interpreted that dark neurons in the

present study occurred in association with the mechanical han-

dling of fresh mouse brains prior to immersion fixation with

paraformaldehyde.4–6

Of note, we found focal loss of immunohistochemical reac-

tivity for CAV3, RBBP4, and GFAP in spatial association with

the presence of dark neurons in the hippocampal formation.

These qualitatively observed associations were confirmed by

our findings of negative correlations between the hyperbaso-

philia density of dark neurons and the immunoreactivity den-

sity of CAV3, RBBP4, and GFAP in the quantitative image

analysis. Furthermore, for each of protein markers examined,

we found no significant difference in the immunoreactivity

density in the hippocampal formation among 5 age/diet mouse

groups. On the other hand, in the hippocampal fimbria (a white

matter continuation of the hippocampal formation), there were

differences in the immunoreactivity density of GFAP and AIF1

among 5 age/diet mouse groups. That is, old age seemed to be

associated with the higher immunoreactivity density, in agree-

ment with previous studies showing aging-related increases in

GFAP and AIF1 expression in C57BL/6 mice.12,13 One poten-

tial explanation for these observations is the difference in tex-

ture of these 2 neuroanatomic structures with regard to the

handling-induced histological artifact, where the fimbria white

matter is less vulnerable to mechanical pressure applied to the

brain surface. Collectively, loss of immunohistochemical reac-

tivity for CAV3, RBBP4, and GFAP in the hippocampal for-

mation was likely a histological artifact associated with the

formation of handling-induced dark neurons.

Accumulating evidence suggests that handling-induced dark

neurons are formed as a result of pressure applied to living

fresh brains that are subsequently fixed with aldehydes.4–6 In

an experiment with rat cerebral cortex biopsy, the formation of

dark neurons could be prevented by pharmacologic blockage of

glutamate receptors.14 In addition, pathologically induced dark

neurons (ie, either reversibly or irreversibly injured neurons),

morphologically indistinguishable from handling-induced dark

neurons, were well documented in rodent brains that were ade-

quately perfusion-fixed with aldehydes following the experi-

mental induction of certain acute insults,5,6 such as status

epilepticus,15 hypoglycemia, and ischemic reperfusion

injury.16 Taken together, it is possible that the formation of

dark neurons of either handling or pathological origin repre-

sents an early-stage neuronal response to complete energy

deprivation and glutamate release, the perturbation that leads

to the cellular contraction at the time of fixation with

aldehydes.6

With regard to loss of immunohistochemical reactivity in

association with handling-induced dark neurons, it remains to

be explored in future studies as to how conformational changes

in protein molecules inherent to dark neurons16 could interfere

with the antigen–antibody interaction on immunohistochemis-

try. Note that our present study of immunohistochemical reac-

tivity alterations in association with handling-induced dark

neurons was based solely on 4 antibodies. This histological

artifact may or may not occur with other antibodies not tested

in our study. Moreover, our present finding may not be applied

to the context of dark neurons of pathological origin.17

In the current study, in addition to neuronal markers exam-

ined (CAV3 and RBBP4), the association between the presence

of dark neurons and loss of immunohistochemical reactivity for

an astroglial marker (GFAP) was unexpectedly observed. Our

findings suggest that the handling-induced histological artifact

resulting from pressure applied to fresh brains before being

fixed with aldehydes can interfere with the antigen–antibody

interaction on immunohistochemistry in astroglia as well.

In conclusion, our findings suggest that loss of immunohis-

tochemical reactivity can occur as an artifact associated with

the formation of handling-induced dark neurons. In experimen-

tal neuroscience research, if both histopathologic assessment

and molecular analysis are necessary, brain samples are to be

mechanically handled prior to fixation. In this scenario, the

brain should be handled gently and carefully to avoid the for-

mation of dark neurons.3 The unawareness of handling-induced

dark neurons, which are identifiable on bright-field H&E

microscopy, may lead to misinterpretation of immunohisto-

chemical reactivity alterations.5 In particular, this misinterpre-

tation may occur in the assessment of protein expression on

dark-field immunofluorescence microscopy of brain samples

that are not optimally handled during harvest and subsequently

fixed with aldehydes and in which histopathologic changes are

not concurrently evaluated on bright-field microscopy.
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