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Abstract 
This study investigates how individuals collaboratively 
constructed shared knowledge during a group activity. The 
dataset was collected from group activities for pre-service 
teachers in professional development. Participants designed 
body poses and action sequences that could help their students’ 
mathematical conceptualization. Using k-means clustering and 
principal component analysis, patterns of individuals’ 
contributions based on their verbal and gestural behavior 
identified two groups of individuals: (1) Those who 
contributed to the discussion by speaking and gesturing 
frequently (~ 25% of the participants), and (2) those who 
mostly listened and focused on design ideas presented by 
others. Furthermore, epistemic network analysis corroborated 
significant differences in discourse patterns between the 
clusters, the results of which has significant implications for 
collaborative embodied learning and application for teacher 
education and professional development. 
  

Keywords: Embodied Cognition; Collaboration, Multimodal 
Analytics;  

Introduction 
How do humans collaborate? How do they collaboratively 
build knowledge? With an interest in the collaborative 
knowledge-building process, we investigated how teachers in 
professional development constructed knowledge about how 
to teach mathematics to their students. 

In mathematics classrooms, students often communicate 
their thinking to teachers in the gestures they make when 
asking questions, explaining their thinking, and providing a 
rationale (Abrahamson et al., 2020). Despite the evidence that 
mathematical thinking has physically grounded origins 
(Lakoff & Núñez, 2000), many school-based mathematics 
curricula continue to emphasize abstract, a-modal-based 
approaches (i.e., symbolic, diagrammatic) that tend to neglect 

the embodied nature of mathematics, especially the role of 
gesture (Nathan, 2022). This creates practical issues in 
instruction and assessment where many math teachers are 
unaware of the valuable information contained in students’ 
nonverbal behaviors that express what they know and how 
they know it. Students often convey non-redundant 
information in their gestures to their speech, and these 
instances can indicate when these students could benefit from 
additional scaffolding or instruction (e.g., Church & Goldin-
Meadow, 1986, Goldin-Meadow et al., 1993).  

Nathan (2022) argues that the grounded and embodied 
approach to student learning should be actively implemented 
in educational practices. The assertion posits that student 
learning should be more than just learning through listening 
to lectures and writing exams. Instead, it should involve a 
range of activities that include physical activities, role-
playing, and simulations to enhance understanding and 
knowledge retention. In the author’s explorations of how 
embodied learning can facilitate a new and more effective 
way of learning, Nathan emphasized the importance of 
applying tangible teaching pedagogy forms that engage 
students’ to actively participate in their own learning process. 

 To investigate ways for supporting teachers, we developed 
a professional development (PD) workshop to raise teachers’ 
awareness of students’ embodied mathematical knowledge. 
Through an online research program, we enabled K-12 pre-
service teachers to experience and reflect on their own 
embodied geometric reasoning. The PD was segmented into 
two parts: (1) an action-based video gameplay and (2) an 
embodied co-design activity based on their gameplay. For the 
gameplay activity, we used The Hidden Village (THV), a 
motion-capture video game in which players are guided to 
perform directed actions (i.e., upper-body movements) that 
are emblematic of geometric concepts and then evaluating the 
truth of geometric conjectures (e.g., “The opposite angles of 

1587
In M. Goldwater, F. K. Anggoro, B. K. Hayes, & D. C. Ong (Eds.), Proceedings of the 45th Annual Conference of the Cognitive Science
Society. ©2023 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



two lines that cross are always the same”). After gameplay, 
teachers collaborated in a co-design activity in which they 
created their own directed actions for new conjectures using 
the content generating module of THV. 

Teachers’ gameplay and co-design activities provided 
opportunities to understand how performing mathematically 
related movements that engage body-based actions can 
support geometric thinking. For teachers, we hypothesized 
that these embodied learning activities would not only 
improve teachers’ awareness of students’ gestures during 
mathematical thinking and communication, but it would also 
improve teachers’ abilities to accurately assess students’ 
geometric reasoning by interpreting their gestures. For the 
current study, we processed multimodal data from the 
recordings of the teachers’ collaborative discussions (i.e., 
transcripts, discourse, directed action designs, and gestures) 
and conducted a multi-tiered algorithmic-based approach to 
explore patterns in their collaborative constructions of 
embodied knowledge and discourse.  

Theoretical Framework 
Studies have shown that mathematics can be learned through 
action-based interventions (Abrahamson & Sánchez-García, 
2016; Smith et al., 2014). Drawing from the theory of Gesture 
as Simulated Action (GSA; Hostetter & Alibali, 2019), 
gestures activate perceptual-motor processes in the brain by 
simulating action, often co-articulated with speech or 
thought. Underlying these processes, Nathan's (2017) Action-
Cognition Transduction (ACT) posits that these sensorimotor 
experiences induce cognitive states through a reciprocation 
of feedforward (predictive) and feedback (reactive). 

By creating an intervention that uses directed actions, we 
provide a body-based way for learners to (predictively) 
conceptualize the spatial dimensions, relationships, and 
transformations of geometric objects relevant for promoting 
mathematical reasoning. Thus, ACT-based interventions (see 
Nathan & Walkington, 2017) (Figure 1) can be tools that 
teachers can use to help transform symbolic formalisms of 
typical instruction into action-based interventions that ground 
abstract concepts (Alibali & Nathan, 2007; Roth, 2001). 

In this study, we explore how teachers produce verbal and 
gestural contributions to co-construction of new embodied 
math knowledge during the action-based intervention that we 
provided as a teacher professional development. Specifically, 
we have processed the data from teachers’ collaborations in 
designing directed actions for geometric conjectures.  

Figure 1: Action facilitates concepts (Nathan & Walkington, 
2017). 

Pedagogical Content Knowledge 
Pedagogical Content Knowledge (PCK) is a term that refers 
to the ability of a teacher to understand how specific facts and 
ideas can be presented in a way that makes them most 
effectively learned by the students in their classroom 
(Shulman, 1986). It is a combination of the knowledge of the 
particular content area with the knowledge of how to teach it, 
and it involves an understanding of the different ways in 
which students learn, the various teaching styles that can be 
used, and the best strategies for helping students meet their 
goals. 

Figure 2: Pre-service teachers collaborative gestures 
(Schenck et al., 2022). 

Collaborative Gestures & PCK 
Schenck, Walkington, and Nathan (2022) (Figure 2) 
highlighted that, when working collaboratively on a 
mathematical problem, pre-service teachers use gestures to 
collectively construct their understanding and problem-solve. 
 
Research Questions Are there distinct patterns in pre-
service teachers’ collaborative verbal and gestural 
construction of pedagogical content knowledge? If so, what 
are they? 

Methods 

Participants 
We recruited thirty-three mathematics pre-service teachers 
(i.e., college students who intend to become teachers and are 
in an appropriate training program) from universities in the 
United States. During an online teacher professional 
development intervention, they were initially divided into 
groups of four to groups, but final group size ranged from two 
to five members due to scheduling challenges. Consequently, 
we had total of 9 groups: one with two members, two with 
three members, five group with four members, and one with 
five members. Participants received either a monetary reward 
($100 e-gift card) or extra course credit. Participation took 
place entirely online using Zoom. Each participant’s 
individual and collaborative audio and video were recorded. 
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Materials 
The Hidden Village (THV) and Conjecture Editor (THV-
CE)  
During the action-based gameplay, teachers experienced 
mathematically relevant body-based actions by mimicking 
the in-game avatar’s movements, along the storyline of the 
game. After the gameplay, users author geometry conjectures 
and design their own sets of movement-based directed 
actions during the following co-design activity. Teachers in 
PD collaboratively co-designed mathematically relevant 
directed actions (i.e., generated 3 poses of the avatar for 
players to mimic movements; see Figure 3). Once designed, 
users could preview their sequence of directed actions as a 
fluid animation. As a remote co-design activity (conducted 
virtually during the Covid-19 pandemic), a researcher 
operated the editing tool under participants’ directions. 

Figure 3: Pre-service teachers collaboratively discussing to 
create new directed actions for given conjectures during the 

co-design activity (Sung et al., 2021). 

Procedures 
On the day of the intervention, participants took part in a 3.5 
hour-long online session that contains a series of activities, 
including: each teacher took part in (1) pre-intervention 
surveys and semi-structured interviews, (2) online gameplay 
of THV with another teacher in pairs, and (3) co-design 
activity through a whole-group discussion in a group of 
teachers (range from two to five), and (4) post-intervention 
surveys and semi-structured interviews. 

Data Sources, Coding & Analyses 
Figure 4 provides a sample of a transcription of speech and 
coding of gestures that was used to investigate how the 
embodied interventions impacted teachers’ awareness and 
abilities to interpret students’ gestures. Each utterance was 
coded with respect to the seven verbal and gestural codes. 

Figure 4: Segmented transcription data for ENA. 
 

Coding Scheme This study identified the seven verbal and 
gestural ways pre-service teachers contributed to the 
discourse about pedagogical content knowledge while 
engaging in a group activity. Seven binary codes on verbal 
and gestural behavior were used to evaluate each utterance as 
to what type of contribution was made (Table 1). 

 
Table 1: Coding scheme. 

 

 
Contribution Scores From the coded transcript data, we 

calculated individual participants’ contribution scores. A 
contribution score of an individual represents the ratio of an 
individual’s contribution to the total contribution made by the 
group with respect to one of the seven verbal and nonverbal 
manners of contribution. Mathematically speaking, a 
contribution score is a function of one of the seven behavioral 
code and an individual that is defined as the proportion of 

Code 
Type 

Name Description 

Verbal Mathematical  
Thinking 
(V_MT) 

Discussing mathematical 
concepts such as angles, lines, 
and conjectures 

Verbal  Design 
Oriented 
(V_DO) 

Talking about how to design 
directed actions to help 
students’ understanding and 
visualization of given 
geometric conjectures, with 
the concentration of design 
aspects. 

Verbal Consensus 
Building 
(V_CB) 

Building consensus while 
collaboratively designing 
directed actions for given 
conjectures 

Gestural  Co-Speech 
Initiative 
(G_CI) 

Producing a gesture 
accompanying speech, which 
was original and had no 
connection with the 
previously shown gesture by 
others 

Gestural Co-Speech 
Collaborative 
(G_CC) 

Producing a gesture 
accompanying speech, 
following up with the 
previously shown gesture by 
others. Must be evidence that 
the person doing the echoing, 
mirroring, or alternating was 
looking at the original 
gesturer 

Gestural Non-speech 
initiative 
(G_NI) 

Producing a gesture without 
any speech, which was 
original and had no 
connection with the 
previously shown gesture by 
others 

Gestural  Non-Speech 
Collaborative 
(G_NC) 

Producing a gesture without 
any speech, following up with 
the previously shown gesture 
by others. Must be evidence 
that the person doing the 
echoing, mirroring, or 
alternating was looking at the 
original gesturer 
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code occurrences made by the individual against the total 
occurrences made by all members of the group, weighted by 
the utterance span. For example, Individual i’s contribution 
score for Mathematical thinking was calculated as below. 
Assume that Individual i was in a group, where there were 
four people.  

 
• I ∈	1,2,3,4: index for individuals 
• Ut: number of total utterances made by the group 

o Ui: the number of total utterance made by 
Individual i 

o Therefore, Ut=U1+U2+U3+U4 
• tki: Utterance span. StartingTime - EndingTime of 

the kth utterance made by Individual i (k ∈	1,2,...,Ui) 
• V.MTki: V_MT value of kth utterance of 

Individual i (k	∈	1,2,...,Uik	∈	1,2,...,Ui) (i.e. 0 or 1) 
• C(V.MT,i): Individual i’s contribution value (V_MT) 

 

 
 

K-Means Clustering Analysis K-Means clustering is an 
unsupervised machine-learning algorithm that splits a data 
set into a set of k clusters, such that objects within the same 
cluster are highly similar. Each cluster has a centroid which 
corresponds to the mean of points assigned to the cluster. The 
algorithm minimizes within-cluster variances using the sum 
of squared Euclidean distances  

 
W(Ck)=∑(xi−μk)2 

 
where xi is a data point belonging to the cluster Ck; μk is the 
mean value of the points assigned to the cluster Ck. 
Therefore, the cost function is  

 
∑kk=1∑xi∈Ck(xi−μk)2 

 
(original from Hartigan-Wong algorithm (1979)). We 
used factoextra package of Kassambara and Mundt (2020) 
to render the cluster analysis in R.  
  
Principal Component Analysis (PCA). Principal 
component analysis (PCA) was used for dimensionality 
reduction. We sought to maximize the amount of variance 
explained by a given set of variables by transforming the data 
into a set of uncorrelated variables, also known as principal 
components. We used psych package of Revelle (2022). To 
examine whether there were distinct patterns, the individuals 
were classified for the seven verbal and nonverbal 
contribution scores. 
  

Epistemic Network Analysis (ENA). The transcripts were 
also analyzed using epistemic network analysis (ENA; 
Shaffer et al., 2016), a discourse analysis technique for 
identifying and quantifying the connections among cognitive 
elements in a discussion. The data was segmented by a turn 
of talk and coded using an automated coding process 

(nCoder; Marquart et al., 2018) based on regular expression 
matching techniques. All six emergent codes were validated 
using comparisons between a human rater and nCoder and 
pairwise Cohen’s kappa scores ranged between 0.90 ≤ κ ≤ 
0.98 and Shaffer’s rho values ρ < 0.05 (Shaffer, 2017). 

ENA builds dynamic models of discourse as a nodal 
network and then calculates a mean centroid around which 
the discussion centers, weighting the connections between 
codes (Shaffer, 2017). ENA codes correspond to the 
epistemic elements that characterize a discourse. The edges 
reflect the relative frequency of co-occurrence between two 
codes. To test for differences between the networks of pre- 
and post-interview, we applied a two-tailed paired-sample t-
test, assuming unequal variance to the location of points in 
the projected ENA space, then used the corresponding 
network graphs to interpret any statistically significant 
differences. 

Results 
The clustering algorithm recommended two clusters, and, as 
a result, k-means clustering with k=2 was carried out. 

Figure 5: Proportional distribution between C1 and C2 
 
Figure 5 highlights some noteworthy differences between 

the clusters. The adjusted test of independence shows that 
individuals were fairly evenly represented across groups, 
with a ratio of 1:3, respectively (χ2df=8 = 6.60, p =.58). Figure 
5 also shows that C1 individuals’ contribution scores were 
higher across all seven measures compared to C2 individuals.  

Figure 6: PCA showing cluster characteristics.  
 
Figure 6 depicts the results of the Principal component 

analysis (PCA). The model on the left shows the patterns of 
the teachers’ contributions can be categorized twofold: (1) 
co-speech occurrences (RC1) and (2) non-speech (RC2). The 
visualization on the right illustrates that C1 scored higher in 
co-speech contribution compared to C2, while there were no 
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differences between the two clusters in non-speech 
contribution.  

Epistemic Network Analysis (ENA, Figure 7) corroborated 
the PCA findings, with reliability, further clarifying a 
significant difference in discourse patterns between C1 and 
C2 (x̄C1 = -0.95, x̄C2 = 0.30, t(29.04) = 4.25,  p <  0.01, d = 1.16). 
From this large effect size, interpretation of the ENA plots 
show C1 demonstrating more incidences 

Figure 7: ENA plots of differences in discourse between 
Clusters 1 & 2. 

 
of verbal mathematical thinking (V_MT), co-speech 
collaborative gestures (G_CC), and verbal design oriented 
(V_DO) utterances; C2 showed stronger connections 
between non-speech collaborative gestures (G_NC), co-
speech collaborative gestures (G_CC), and verbal consensus 
building (V_CB). 

Discussion 
The results illustrate two groups of individuals that show 
distinct patterns in collaboratively constructing mathematical 
knowledge. Cluster 1 represents individuals who consist one-
fourth of the group in a group activity setting. Making more 
contributions than any other group members, Cluster 1 
individuals’ roles could be considered as leaders since they 
make most of the group’s contributions themselves. 
Specifically, their contributions to the discourse are mostly 
through speech-related processes and are distinguished by 
their verbal articulation of how the designed actions relate to 
mathematical concepts and how these actions could help 
students’ understanding, a finding corroborated by ENA.  

Cluster 2 represented approximately three-fourths of the 
group in the activity setting.  In general, these are the teachers 
whose contributions focused on listening rather than 
speaking. They made less contributions than Cluster 1 
individuals across all verbal and nonverbal measures, and this 
difference was more pronounced for speech-related 
processes. Moreover, Cluster 2 focused on comprehending 
the embodied design ideas presented by others to reach to the 
consensus. 

Recent research by Walkington et al. (2022) demonstrated 
not only that relevant actions (informed by gestures) are 
crucial to conceptualization, but also that learners whose 
explanations included gestures that replayed those actions led 
to superior performances in proof production for geometry. 

This study can help educational practitioners, teacher 
educators and policy-makers make curricular decisions. It 
informs them on the patterns of discourse and knowledge-
building and helps quantify and qualify how collaborative 
discourse can contribute to teacher training.   
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