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Real-Time Reyes-Style Adaptive Surface Subdivision

Anjul Patney

University of California, Davis

John D. Owens
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Figure 1: Flat-shaded OpenGL renderings of Reyes-subdivided surfaces, showing eye-space grids generated during the Bound & Split loop.

Abstract

We present a GPU based implementation of Reyes-style adap-
tive surface subdivision, known in Reyes terminology as the
Bound/Split and Dice stages. The performance of this task is im-
portant for the Reyes pipeline to map efficiently to graphics hard-
ware, but its recursive nature and irregular and unbounded mem-
ory requirements present a challenge to an efficient implementa-
tion. Our solution begins by characterizing Reyes subdivision as
a work queue with irregular computation, targeted to a massively
parallel GPU. We propose efficient solutions to these general prob-
lems by casting our solution in terms of the fundamental primi-
tives of prefix-sum and reduction, often encountered in parallel and
GPGPU environments.

Our results indicate that real-time Reyes subdivision can indeed be
obtained on today’s GPUs. We are able to subdivide a complex
model to subpixel accuracy within 15 ms. Our measured perfor-
mance is several times better than that of Pixar’s RenderMan. Our
implementation scales well with the input size and depth of subdi-
vision. We also address concerns of memory size and bandwidth,
and analyze the feasibility of conventional ideas on screen-space
buckets.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism; I.3.1 [Com-
puting Methodologies]: Computer Graphics—Hardware Architec-
ture; I.3.6 [Computing Methodologies]: Computer Graphics—
Methodology and Techniques

Keywords: Reyes, graphics hardware, GPGPU, adaptive surface
subdivision

1 Introduction

Today’s real-time graphics systems are rapidly migrating from an
era of graphics pipelines with a few programmable units to one
where the pipeline itself is completely programmable [Pharr et al.
2007]. This jump in programmability allows us to rethink the fun-
damental primitives used in real-time rendering.

The Reyes architecture [Cook et al. 1987] was originally developed
in mid-1980s as an offline renderer optimized for speed, complex-
ity, and visual appeal. Twenty years later, it continues to be one of
the most widely used techniques for photo-quality rendering. How-
ever, traditional Reyes implementations like Pixar’s RenderMan are
still primarily non-interactive [Apodaca and Gritz 1999]. The in-
creasing compute capability and programmability of the modern
GPU motivates its use for a real-time Reyes implementation. How-
ever, all parts of the Reyes pipeline do not map well to such a data-
parallel architecture. Within the pipeline we identify three main
bottlenecks:

• Surface subdivision in Reyes is a recursive depth-first algo-
rithm, which involves complex and irregular data structure
management. Such processing of irregular amounts of data
and work per element is an ongoing challenge for highly par-
allel processors such as today’s programmable GPUs.

• The Reyes pipeline generates a huge amount of data in the
form of micropolygons, each of which must be shaded inde-
pendently. Thus, shading is often the computational bottle-
neck in high-quality offline rendering. Managing such dy-
namic and unbound data has also been a weak point for tradi-
tional parallel hardware.

• Image composition in the form of the Reyes A-buffer is highly
specialized and hence, fairly complex for implementation in a
real-time system.

Each of the above is an individually challenging problem for mod-
ern GPUs. In this work, we address the first challenge, that is, sub-
division of higher-order surfaces to subpixel accuracy. This is an
important aspect of the pipeline to study, because the irregular na-
ture of its computation forms one of the biggest computational bot-
tlenecks to real-time performance [Owens et al. 2002]. Moreover,
a graphics pipeline that can natively render complex surfaces offers
larger amounts of freedom to application designers, both in terms
of performance and convenience.



On a broad level, we characterize the problem of subdivision as
a more general computing challenge: processing irregular and dy-
namic work queues. The combination of irregular work for a cen-
tralized queue is a difficult problem and often a significant bottle-
neck on a parallel computing system such as the GPU. Our work
attempts to solve this general problem using completely parallel op-
erations, and thus has significance beyond surface subdivision.

We begin by a short description of the Reyes pipeline in Section 2.
After a detailed discussion of the hardware issues, we detail our im-
plementation in Section 4. This is followed by performance results
in Section 5. We report several noteworthy observations and infer-
ences from these results, which can be found in sections 6 and 7.

2 Background

2.1 The Reyes Pipeline

The Reyes image rendering system was introduced by Pixar in the
mid-1980s [Cook et al. 1987]. Pixar’s goal with this architecture
was the development of an efficient system for high-quality cine-
matic graphics. At that time, this meant that interactive rendering
was not an option. In concept, Reyes has several important differ-
ences from a modern-day GPU pipeline. Rendering occurs in units
of micropolygons, each of which according to the original archi-
tecture represents a flat shaded quad, no bigger than 1/2 pixel on a
side. Modern implementations often use a more relaxed bound of 1
pixel per side [Owens et al. 2002], and use shading to compensate
for image quality loss due to aliasing.

The primary inputs to a Reyes pipeline are higher-order parametric
surfaces. These surfaces, according to the original paper, take the
following path through the pipeline:

1. Bound & Split Loop During the first stage of the pipeline,
each of the input primitives is a) bound in screen space, b)
split into smaller primitives based on its screen-size, and c)
culled if the bound lies outside the screen. The resulting set
of primitives follows the same procedure recursively, until
all input primitives are smaller than a predetermined bound.
Splitting is performed in object space, and ensures no loss of
surface precision.

2. Dicing After the previous step, all primitives are known to
be bound by a constant. From these primitives, it is easy to
construct micropolygons by appropriately subdividing in eye
space. This subdivision dices primitives into regular grids,
each having a known number of micropolygons. Dicing is
similar to tessellation in a traditional context.

3. Shading Each micropolygon is shaded in eye space, using
scene-specific and usually programmable shaders.

4. Sampling After transforming to screen space, Reyes uses a
stochastic sampling technique on the micropolygons to form
the final image. Sampled polygons are resolved for visibility
using a depth buffer of sub-pixel degree.

Reyes offers several advantages over the conventional OpenGL
pipeline [Segal and Akeley 2006]. It supports higher-level sur-
faces as geometry primitives, allowing artists to incorporate com-
plex static as well as dynamic shapes and surfaces into a scene
with more modest bandwidth requirements than OpenGL’s trian-
gles, whose number blows up for even moderately complex sur-
faces. Moreover, triangles are inherently static, and hence render
quality is view-dependent. While OpenGL performs shading both
in eye space as well as screen space, in Reyes pipeline, all shading is
done in a single stage and in eye coordinates. Texturing in OpenGL
is a per-fragment operation, requiring special filtering techniques

(mipmapping, anisotropic filtering) to avoid artifacts, and suffering
from potentially incoherent memory access patterns. Instead, Reyes
can support object-space texturing in the form of “coherent access
textures” (CATs), avoiding the need for filtering during rendering.

Reyes forms the foundation for Pixar’s RenderMan [Apodaca and
Gritz 1999], the industry standard in cinematic rendering.

2.2 Existing Implementations

Parallel implementations of the Reyes pipeline are uncommon in
the academic literature; the works by Owens et al. [2002] and Laz-
zarino et al. [2002] are two of the most recent. In the former, the au-
thors compare implementations of Reyes and OpenGL on the Imag-
ine stream processor. Their implementation modifies the split/dice
loop and instead employs a screen-space dicing technique to gen-
erate micropolygons. This modification is not optimal, since it is
non-trivial to guarantee bounds of generated quad sizes. The num-
ber of micropolygons can be huge, which would introduce signifi-
cant performance overheads. They conclude that “subdivision cost
dominates the runtime of [their] Reyes scenes”. In the latter work,
the authors implement a Reyes renderer on a Parallel Virtual Ma-
chine [Lazzarino et al. 2002]. Slave nodes of the PVM compute
separate screen-space buckets for the master in parallel, and the
required geometry is replicated across all of them. The authors ex-
plore optimal bucket assignment for load balancing and maximizing
locality, and report near linear speedup in the number of nodes used
for rendering. We achieve similar scalability for a many-core GPU
in Section 5.

The current version of the NVIDIA Gelato renderer is based on
the Reyes pipeline [Wexler et al. 2005]. However, it appears that
Gelato uses GPU acceleration only for a few stages of the pipeline,
primarily sampling and hidden surface removal.

GPU-assisted surface subdivision algorithms are often used to tes-
sellate coarse meshes [Bóo et al. 2001; Boubekeur and Schlick
2008; Shiue et al. 2005]. One of the biggest advantages of Reyes
is the freedom to specify the scene as higher order surfaces, inde-
pendent of size or resolution. Unlike refined meshes, this requires
a much smaller set of inputs to represent complex geometry. More-
over, this does not precompute geometry, it instead performs view-
dependent subdivision at every step.

With coming generations of rendering APIs [Microsoft Corpora-
tion 2008] and graphics hardware anticipated to support hardware-
accelerated tessellation, what is the place for software-based sur-
face subdivision in future GPUs? We believe the trend toward
programmable pipelines over fixed-function hardware ones [Pharr
et al. 2007] will, in time, also apply to subdivision schemes, al-
lowing more flexible and scene-specific subdivision. Interest has
also been drawn towards completely programmable graphics pro-
cessors, which may not include hardware tessellation [Seiler et al.
2008]. Even in the presence of hardware-supported subdivision,
however, the median installed graphics system is still years away
from carrying such a feature, making it more likely that applica-
tion developers will continue to explore software-based tessellation
techniques in the meantime.

3 Reyes Analysis and Hardware Challenges

In this section, we present an analysis of the stages of Reyes algo-
rithm from an architect’s perspective, and their relation to general
purpose issues in parallel computing. Note that our present work
addresses the problem of efficient acceleration for the Bound/Split
and Dice Stages. Although we discuss other stages as well, these
two form the focus of this section. We begin by revisiting our Reyes
pipeline description from Section 2.1.



3.1 Analysis of Reyes Pipeline

When approached from a hardware designer’s angle, we see that
each stage in the Reyes pipeline is individually challenging to ap-
proach.

1. Bound & Split Loop In this stage, a relatively few primitives
may split into a large number of smaller primitives. This is re-
cursive, i.e. the split primitives might further subdivide. This
process must continue until no new primitives are generated.
Even though each primitive can be processed completely in
parallel, a new iteration can only begin after it has been com-
pletely split. This process is serial and irregular, because new
work may be generated in every iteration. The stopping crite-
ria for the subdivision is inherently unpredictable.

2. Dicing Unlike the previous stage, dicing is a fairly regular and
predictable step. Since the input primitives to this stage have
guaranteed bounds, sufficiently small micropolygons can be
easily obtained. Dicing offers abundant parallelism, as the
resulting grids are independent.

3. Shading Shading is performed in object space on individual
micropolygons. Huge levels of parallelism are thus usually
available, and the job is again fairly regular. Shaders can how-
ever, be extremely complex. Many Reyes renderings are lim-
ited by shading performance.

4. Sampling Sampling in the Reyes pipeline is similar to rasteri-
zation in a modern GPU. The only difference is that the Reyes
renderers sample in a stochastic fashion, while GPU samples
are obtained from a regular grid.

Several key observations can be made from the above analysis.
First, the stages of dicing, shading and sampling appear extremely
well suited for efficient execution on a data-parallel machine. Am-
ple parallelism is available, and the workload is highly regular. As a
result, we find appreciable coherence in the execution of these oper-
ations. For example, all micropolygons in a grid usually execute the
same shader. Thus, these operations are expected to benefit greatly
from a massively parallel SPMD (Single-Program Multiple-Data)
architecture similar to today’s GPUs.

The second observation concerns the irregular nature of the
Bound/Split loop. This is a recursive multi-iteration stage, in which
each iteration may dynamically allocate and deallocate work for
the next. A primitive starts as a single object, but within a few iter-
ations it can produce many individual objects. This problem can be
generalized to managing a highly irregular dynamic work queue.

A third observation can be made regarding memory requirements
of the Reyes pipeline in general. A huge number of micropolygons
are generated during dicing, and storing all of them simultaneously
may not be feasible. Moreover, this number is unpredictable and
view-dependent, which makes it even harder to manage.

3.2 Implications for Parallel Computing

The two problems of irregular behavior and unbounded memory
usage, mentioned above, are by no means new in the domain of
parallel computing. The first is often encountered in applications
other than graphics, and is easily solved for conventional parallel
systems. Computing nodes perform units of work in parallel, and
update the queue when they are done. These updates are required
to be atomic, i.e., accesses to the queue must be serialized. Unfor-
tunately, this forced serialization adversely affects SIMD threads.
It is expected that using atomic operations will be detrimental to
Bound/Split performance, since many threads will invariably re-
quest queue access at the same time.

Rather than forcing threads to synchronize on accessing the queue,
we propose a two-stage solution. First, parallel thread groups work
independently on elements from the input queue, accumulating out-
put primitives at independent locations. These outputs must then be
merged back into the original queue efficiently. We use the parallel
primitives of scan and reduce [Sengupta et al. 2007; Harris et al.
2007] to achieve this compaction.

Regardless of visibility, on-screen Reyes primitives cannot be dis-
carded until transparency and blending have been resolved. To re-
duce this problem of potentially unbounded data, most implemen-
tations divide the screen into screen-space tiles (“buckets”) [Cook
et al. 1987] and render those buckets one at a time. Because buck-
ets are usually much smaller than the screen, the memory footprint
while rendering is substantially reduced. However, sequential buck-
ets restrict the available parallelism. Running multiple buckets in
parallel, on the other hand, increases memory requirements. For a
hardware implementation, we expect a designer to balance between
the two extremes, by choosing enough buckets to keep the processor
busy, but only as much as the memory budget permits. In Section 5,
we examine the effects of this tradeoff on our implementation.

4 Implementation on a GPU

In this section, we describe our implementation and how it deals
with the issues discussed in Section 3. We present our solution
as an implementation on a modern programmable GPU. This
poses several hardware-specific challenges in addition to those
mentioned above, and we also discuss how we overcome those. The
most prominent of these implementation related issues concern the
SIMD nature of GPU cores, and the high off-chip memory latency.
Our solution takes significant steps to ensure maximal utilization of
these scarce resources. The implementation is based on a NVIDIA
GeForce 8800 GTX graphics processor. To access this device, we
used release 1.1 of the NVIDIA CUDA data-parallel programming
framework [NVIDIA Corporation 2007]. We also used reference
code from the open-source CUDPP library for efficient implemen-
tations of common data-parallel primitives [Harris et al. 2007].

The system takes a collection of scene primitives as its input, and
generates adaptively subdivided grids as the output. It accepts these
primitives in the form of Bézier bicubic (4×4) patches, which are
subdivided in a view-dependent fashion every frame. The follow-
ing subsections cover this procedure in detail. The obtained set
of micropolygons is rendered in a simple manner using OpenGL.
Section 4.2 provides a detailed description for the exact approach
taken.

4.1 Subdivision Kernels

4.1.1 The Bound & Split Loop

Input primitives are first passed to the bound/split procedure. The
job of this kernel is to recursively split these primitives into smaller
ones, until each primitive is contained in a fixed bound. The ker-
nel is also responsible for culling primitives that do not contribute
to the scene. In our first key insight, we transform this operation
from a recursive depth-first one to a parallel breadth-first one. Ev-
ery iteration of bound/split is launched as a data-parallel task for all
the available primitives. This kernel calculates the bound for each
primitive, and based on the result either splits it into multiple ones,
or culls it (removes it from the queue of primitives). If enough prim-
itives are present in the scene, this provides ample operations to the
many-core GPU. Moreover, as input primitives split into finer ones,
the number of parallel operations quickly grows to fill the machine.

Managing the above irregular work queue efficiently on a data-
parallel machine is an important implementation hurdle. For rea-
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Figure 2: An iteration of the Bound & Split loop (Algorithm 1)
for a collection of primitives. The gray region represents a pool
of free memory, which is occupied by the queue of input primi-
tives. Initially, all primitives are processed by bound/split to gen-
erate 0 (CUL), 1 (VAL), or 2 (SPL) primitives each. The result-
ing queue is processed by the compact kernel to yield a contiguous
memory region, which is used as input for the next iteration.

sons already mentioned, we must obtain maximum instruction and
data throughput for our kernel. For high instruction throughput,
we decided to unroll each input primitive across 16 CUDA threads,
each responsible for processing one control point. The execution
path for each of these threads is the same, because they all corre-
spond to the same primitive. This ensures high SIMD coherence
among warps (32 threads), each of which only contains two primi-
tives. Divergence occurs in the relatively rare case when these adja-
cent primitives take different paths during the split part of the ker-
nel. The bound portion, however, is uniform across all primitives,
so the worst case penalty is minimal.

We also make sure that the available memory bandwidth is highly
utilized. To do this, we follow every iteration with a scan-based
compact kernel [Sengupta et al. 2007]. This ensures that any holes
introduced by the creation of new primitives or destruction of old
ones are eliminated. That is, the work queue always represents a
contiguous region of memory. Consequently, all memory accesses
made by a group of 16 threads get merged into a single contiguous
access, completely utilizing the available bandwidth.

For a pseudocode detailing the above description, please refer to
Algorithm 1. Steps 2, 16, and 17 each represent a different CUDA
kernel.

In order to reduce their memory footprint, Reyes implementa-
tions often use screen-space buckets to sort grids before render-
ing [Wexler et al. 2005]. This significantly reduces the memory
footprint of the pipeline, since only micropolygons from one bucket
stay in flight at a time. On serial hardware, this has negligible ef-
fect on performance, since the processor maintains its workload.
On a GPU-like parallel environment, however, buckets induce seri-
alization in the subdivision procedure. Unless a single bucket can
populate all the available execution units, the GPU will not be fully
utilized, and performance will be adversely affected. To monitor
the relative gains and costs in this procedure, we added buckets to
our implementation. This works by a straightforward augmentation
to the Bound & Split loop, which simply culls any primitives that
lie outside the current bucket.

4.1.2 The Dicing Kernel

Once all input primitives have been split to the desired bound, they
are sent to the dice routine. This kernel takes each of these grids,
and uniformly dices (tessellates) them into micropolygons. Again,

Algorithm 1 Bound & Split Loop

1: repeat
2: for all input primitives do {in parallel}
3: Bound each primitive prim in object space using its

Bézier control points
4: Transform the bounds to screen space; evaluate screen

space bound
5: if bounds lie outside the drawing region then
6: Mark prim as CUL (culled)
7: else
8: Mark prim as VAL (valid)
9: if the screen space bound is larger than 8x8 pixels then

10: Mark prim as SPL (split)
11: Split prim into two smaller primitives (prim1,

prim2) using De Casteljau’s algorithm
12: Update self with prim1, and store prim2 at an in-

dependent offset from the end of the work queue;
mark prim2 as GEN (generated)

13: end if
14: end if
15: end for
16: Perform a prefix-sum (scan) operation on the updated queue

of primitives, ignoring ones were marked as CUL
17: Use the scanned queue values to copy all primitives to a con-

tiguous memory region (compact)
18: until there are no GEN or CUL primitives

since individual micropolygons are independent of each other, each
thread can generate a micropolygon. Dicing is a highly parallel
workload that suits the architecture very well. Pseudocode for the
dicing operation can be found in Algorithm 2.

Each grid is assigned to a thread block composed of 16×16 threads
each. These threads share input data using the on-chip shared mem-
ory, and subdivide the input grid into 256 micropolygons. Since
dicing is a uniform operation, high efficiency is achieved both in
terms of SIMD occupancy and memory bandwidth.

Algorithm 2 Dicing

1: for all grids obtained from bound/split do {in parallel}
2: Subdivide the grid into 16×16 micropolygons, equally dis-

tributed in parametric space
3: end for

4.2 Rendering Micropolygons

In this research, our focus lies in accelerating the two previous algo-
rithms. Thus, we eschew a CUDA implementation of the shading
and sampling stages. Instead, we forward the collection of diced
micropolygons as a vertex buffer to the OpenGL pipeline, which is
then rendered in a regular fashion. This simple choice serves as an
example for the situations where this subdivision scheme may be
used, that is, in conjunction with conventional rendering. Under a
unified shader architecture, this has minimal performance penalty
and shading can be done in the vertex stage.

CUDA permits the above interoperability with OpenGL. However,
at the time of writing, there are known issues with the performance
of this interface. These issues significantly affect our rendering per-
formance, even though surface subdivision is much faster. More-
over, only one of CUDA and OpenGL can be executed on the GPU
at a time, which serializes rendering, further affecting performance.
Analysis in Section 6 addresses these overheads and their impact in
detail. We use flat shading on micropolygons. Normals are gener-
ated using a simple kernel that evaluates cross product normals for



Figure 3: One of the scenes used in performance analysis; this
frame renders 10 randomly generated bicubic patches.

each micropolygon in a grid.

4.3 Implementation Characteristics

Let us now enumerate the salient features of our implementation.
On an algorithmic level, we have identified a methodology to effi-
ciently carry out bound/split and dice operations over Reyes prim-
itives on a massively data-parallel device. By noting the inde-
pendence of operations in the originally recursive subdivision, we
have provided a way to treat it as a parallel breadth-first opera-
tion with a more regular behavior. We have also proposed some
key implementation-level solutions to obtaining high performance
out of the subdivision kernels. By assigning 16 threads to a primi-
tive during bound/split, we have obtained a high utilization for the
SIMD hardware units. Divergence is rare and has minimal impact
on performance, ensuring high instruction throughput. By main-
taining a contiguous list of primitives throughout the subdivision,
we have also preserved the memory bandwidth. We used the CUDA
profiler to help us quantize these achievements. Taking a time av-
erage over the entire subdivision procedure, we found that 99.50%
of all memory fetches were perfectly coalesced, and 90.16% of all
branches taken were SIMD-coherent. These figures stayed consis-
tent over all scenes rendered, and given hardware trends, will con-
tinue to be important aspects of efficient parallel solutions for future
parallel hardware as well.

To sum-up, the key achievement of our implementation is the re-
duction of a seemingly irregular algorithm to fundamental parallel
operations like scan and compact. By using these operations, we
can efficiently extract non-local aggregate information about large
amounts of parallel data. This has enabled us to manage a dynamic
shared work queue with negligible performance overheads. Our
compute-independently-then-compress strategy obviates the need
for the potential bottleneck from using atomics or locks for shared
queue management.

We have also alleviated the problem of memory capacity by us-
ing screen-space buckets, which are extremely simple to support
in our system without loss in performance of the individual ker-
nels. Although a bounded memory requirement still is not guaran-
teed, bucketing significantly reduces the requirement in the average
case.

5 Results

Because our primary interest lies in the feasibility of a Reyes-like
hardware pipeline, we present our results from that perspective. We
expect that the initial impact of the work will be in rendering partic-
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Figure 4: Bound/Split and Dice timings for various randomly gener-
ated inputs (Figure 3) show roughly linear behavior with increasing
number of grids.

ular Reyes-style objects within a larger (non-Reyes) scene, though
our results scale to larger screen sizes and more objects.

Thus we initially report raw numbers for performance of subdivi-
sion on two sample objects: the Utah Teapot and the Killeroo1 (both
shown in Figure 1). The former is the well-known teapot model
formed by 32 Bézier patches, and the latter is a complex model of
a creature formed by about 11.5K patches. The fundamental dif-
ference between the two is the number and average size of patches.
In Teapot, a few individual patches smoothly span a significant ob-
ject area, while in Killeroo, a large number of small patches cause
subtle variations in the model’s skin. The two are representative of
the range of scenes that might be encountered by a Reyes-like ren-
derer. We also study many scenes composed of a varying number
of randomly generated patches, like those shown in Figure 3.

We compare the obtained performance to that of a CPU, by ob-
taining approximate subdivision times for Pixar’s RenderMan. To
measure the scalability of our implementation over diverse work-
loads, we monitor performance for varying input size and depth of
subdivision. Lastly, we also study the performance–memory trade-
offs in using screen space buckets. We use these results to propose
an optimal bucket size for the Killeroo scene.

5.1 Raw Performance and Comparison

Table 1 shows our measured performance for a render resolution
of 512× 512 pixels. Also, Figure 4 shows these numbers for sev-
eral random datasets. It can be seen that the time taken to render
these primitives has roughly a linear dependence on the number
of grids generated during subdivision. Also noteworthy is the fact
that subdivision time is less than 25 ms for most inputs. On current
hardware, then, we can perform subdivision of a moderately-sized
object up to 40 times a second.

Our implementation of a renderer sustains an average performance
of 12.41 frames per second for Teapot and 4.15 frames per second
for Killeroo. Also, a scene with 30 randomly placed patches renders
at 5.48 frames per second. Since rendering performance is substan-
tially lower than subdivision, we conclude that we are limited by
overheads. The breakdown of frame time is shown in Figure 5, and
the corresponding discussion can be found in Section 6.

1Killeroo NURBS model supplied by headus 3D tools, http://

headus.com.au/.



Scene Killeroo Teapot Random Scene
(30 patches)

Number of grids 14426 4823 9810
Subdivision depth 5 11 17

Bound/Split 6.99 ms 3.46 ms 8.81 ms
Dicing 7.21 ms 2.42 ms 5.02 ms

Total subdivision time 14.21 ms 5.88 ms 13.83 ms

Table 1: Subdivision statistics and time for three input scenes.
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Figure 5: Breakdown of overall execution time: subdivision ac-
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To put these performance numbers in perspective, we performed a
broad level performance comparison with a known reference: the
bound/split and dice timings from Pixar’s Photorealistic Render-
Man (PRMan). In order to do so, we first recreated our exact scenes
as inputs to PRMan. Then, to minimize any overheads due to shad-
ing, special effects and visibility testing, we used null shaders, con-
figured a single sample per pixel, and turned off all culling and
hiding units. This way, we reduced PRMan execution to geometry
evaluation, which primarily consists of split and dice procedures.
To avoid any further unknown overheads including input parsing,
we instantiated the scene several times, and took an average of the
total execution time. We believe that this provided us a reasonable
estimate of the time taken for geometry evaluation. PRMan 13.0.3,
running on a single core of an AMD Opteron (2.4 GHz) system
with 16 GB memory, took 154.9 ms to subdivide the Teapot. This is
26.35 times slower than our implementation. Similar numbers for
the Killeroo are 488.8 ms on PRMan and 14.21 ms on our imple-
mentation, indicating a speedup of 34.4.

Note that the above comparison is approximate, and presented pri-
marily for completeness. Even after our best efforts, a few portions
of PRMan’s execution time could not be accounted for in our im-
plementation. PRMan spends some time stitching cracks resulting
from non-uniform dicing across grids. Currently, our implementa-
tion does not explicitly stitch such cracks. Also, PRMan supports
several classes of primitives in addition to Bézier patches, which is
expected to add to the execution overhead. However by taking the
average of a batched subdivision for several instances of the scene,
we have tried to minimize this overhead. Finally, the splitting crite-
rion used by PRMan is another point of difference. While PRMan
averages lengths of isolines sampled over a grid to decide whether
to split a primitive, we use the screen-space bound for making this
decision. We expect these overheads to be small though significant
parts of the total subdivision time. However, even if they amount
to as much as half of the total, our implementation is still an order

Scene Killeroo Teapot Random Scene
(30 patches)

Geometry/data allocation 3.13 ms 2.91 ms 1.68 ms
Data transfer 2.41 ms 0.33 ms 0.33 ms

Split/dice time 14.21 ms 5.88 ms 13.83 ms
Vertex buffer allocation 143.44 ms 47.44 ms 107.89 ms
Total subdivision time 163.19 ms 56.56 ms 123.73 ms

Table 2: GPU allocation and transfer overheads.
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Figure 6: Performance scaling for our implementation: Dicing
maintains high utilization for most input sizes, whereas the effi-
ciency of bound/split increases with increasing input size. The ag-
gregate trend follows that of the latter.

of magnitude faster. Since the goal of our work is not to rival an
offline renderer but to provide comparable quality of geometry at
real-time performance, we are satisfied with this comparison.

CPU-GPU transfer time for the input geometry has not been in-
cluded in the above results. This is a fair assumption in our tar-
get scenario, because even for dynamic surfaces, negligible data
needs to be transferred from the CPU to the GPU after the initial
system setup. The input model stays in the GPU memory for as
long as it is needed. All subdivisions after the first frame, irre-
spective of the viewpoint, entirely use this data. To be thorough,
however, we still report these numbers. Execution time with vari-
ous setup overheads can be found in Table 2. Including all the dis-
cussed overheads, the teapot takes 56.56 ms on our system, which
is 2.74 times faster than the estimate for PRMan. Subdivision of the
Killeroo takes 163.19 ms on our implementation, 2.99 times faster
than PRMan. Again, these comparisons provide only an approxi-
mate picture. Also note that most of the execution overhead is due
to vertex buffer allocation. We believe that it is because of the slow
CUDA-OpenGL interface, an issue which is further discussed in
Section 6.

5.2 Scalability

The feasibility of a hardware Reyes renderer depends heavily on
how robust it is in taking advantage of future improvements in sil-
icon. To this end, we note how performance scales with two in-
put parameters of our implementation, the primitive count and the
screen size.

Primitive Count The input size significantly affects the perfor-
mance of a massively parallel system, because it determines how
effectively the available resources are utilized. Thus, we noted the
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Figure 7: Performance with varying screen size follows roughly the
same trend as with varying input size. While dicing attains its peak
quickly for small screen sizes, bound/split scales to high utilization
as the screen size of the model increases.

variation in performance of our system for varying sizes of input
(number of grids). Figure 6 shows this trend for split and dice ker-
nels, and for the aggregate subdivision. In each case, it can be seen
that increasing input size is not detrimental to performance. While
utilization remains fairly consistent for dicing, it increases with the
input sizes for bound/split, and hence, for the combination.

Screen Size In Reyes, the screen size of a model is closely re-
lated to the scene complexity, because it affects the depth of sub-
division. Generating enough micropolygons requires deeper sub-
division for a larger image. To study the corresponding effect on
performance, we carried out subdivision for the teapot at varying
screen-sizes, from about 0.25 to 2.5 times its original size. Beyond
that, we were unable to allocate vertex buffers of sufficient size. The
resulting performance variation is plotted in Figure 7. For increas-
ing complexity of subdivision, the performance of bound/split in-
creases until it roughly saturates, and shows occasional dips in per-
formance whenever the maximum depth of subdivision increases.
The dicing kernel occupies most GPU resources even for a small
number of grids, and hence maintains consistent performance. The
combined performance of subdivision follows bound/split.

5.3 Memory Usage and Buckets

Section 3.2 described the tradeoff in bucketing: smaller buckets use
less memory but present less parallelism. When rendering an entire
scene, our kernels use a lot of device memory to store micropoly-
gons, up to 50 MB for some objects. To explore this tradeoff, we
experimented with several bucket sizes, and for each, noted the per-
formance of subdivision and the memory requirement per bucket
for that size. These plots are shown together in Figure 8. Maximum
memory usage increases roughly linearly with the bucket width,
while bucket sizes of approximately 100× 100 pixels or more are
necessary to fully utilize the available parallelism.

6 Discussion

Our results indicate a number of implications for a real-time Reyes
implementation. We have demonstrated that subdivision can run
at real-time rates efficiently on a the GPU. Presently, our render-
ing throughput is limited by overheads of the OpenGL and CUDA
interface. In Figure 5, we can see that this overhead can account
for more than 50% of the frame time. Because no memory trans-
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Figure 8: Varying sizes of screen-space buckets show a strong re-
lationship between subdivision performance and memory demand.
Bigger buckets mean higher performance from the parallel ma-
chine, but at the cost of requiring more storage per bucket.

fer is ideally required, this should have been negligible. This issue
with performance of data transfer between OpenGL and CUDA has
been acknowledged by NVIDIA, and will significantly reduce in
future systems. Also, architectures that allow graphics and com-
putation to seamlessly interact are also expected to be soon avail-
able [Seiler et al. 2008]. For conventional GPU-rendered scenes,
the result should be frame rates commensurate with the subdivision
performance. The behavior of our implementation is desirable in
three main respects:

• The performance is fairly scalable with the complexity of the
input and the screen size of the model. We expect our ker-
nels to perform better with improvements in the underlying
hardware.

• Our experiments with screen space buckets indicate that there
is a strong relationship between the performance of subdivi-
sion and the memory requirements. This conclusion is differ-
ent for buckets on a CPU, because the available parallelism
on a GPU must be utilized well to achieve high performance,
and buckets discourage this. Only a finite number of buckets
may be in flight at the same time to preserve available mem-
ory. Fortunately, this relationship is one that can be tuned by
the programmer, even on a per-scene basis, to match the re-
quirements of the graphics system. In a simple experiment to
this end, we use the plot in Figure 8 to estimate a good bucket
size for the Killeroo. Let us assume a performance budget of
around 20 ms per subdivision, for a modest real-time render-
ing goal. We find that to achieve this performance goal, we
must have a minimum bucket size of about 240×240 pixels.
This also gives us the average and the maximum memory re-
quirements for this setting, which in this case are about 10 MB
and 25 MB, respectively (much less than the peak requirement
of 45 MB).

• Our implementation subdivides the input surfaces once every
rendered frame. Since we only tessellate to pixel accuracy,
minimal work is wasted with this approach. Interesting future
work includes caching split geometry across frames.

A possible outcome of this work is that the surface subdivision por-
tion of PRMan could be mapped to a GPU coprocessor for preview
systems. Coupled with the known ability of the GPU to perform



quality, high-performance shading [Pellacini et al. 2005] and the
availability of hardware queues that eliminate issues of unbounded
data, this opens new possibilities for both GPU-based Reyes accel-
erators and standalone renderers.

Another important piece of future work is crack avoidance, which
is an orthogonal task to an efficient implementation of subdivision.
As of now, our implementation of Reyes subdivision does not in-
clude support for filling cracks and pinholes generated during adap-
tive subdivision. We expect to explore three main approaches in
this investigation: local methods (edge equations) [Owens et al.
2002]; neighbor information (identifying hanging vertices) [More-
ton 2001]; and stitching [Christensen et al. 2006], which is the
method used by RenderMan itself.

We also plan to implement variable dicing rates to avoid excessive
micropolygon counts. This is a simple exercise in specializing the
present kernel and is not expected to cause any performance drops.

7 Conclusion

The problem of real-time surface subdivision in a Reyes pipeline
is known to have irregular behavior and does not map well to a
hardware implementation. We identify two core issues with the
original algorithm: managing irregular work queues, and handling
unbounded data patterns. Our implementation offers an efficient
solution to the first problem, and our experiments with buckets indi-
cate a reasonable trade-off for the second. By using the fundamen-
tal parallel primitives of scan and compact to manage the shared
queue of rendering primitives, we have demonstrated that a Reyes-
like subdivision scheme can indeed run in real-time.

Our ongoing research aims to address issues of cracks and render-
ing overheads in the near future. We also plan to incorporate more
parts of the Reyes pipeline in our implementation.

The age of programmable graphics motivates the exploration of a
much broader range of graphics primitives in future rendering sys-
tems, and we hope that our work will serve as a stepping stone to-
wards tomorrow’s fully-featured and high-visual-quality systems.
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