
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Computational Techniques to Investigate Structural Variation

Permalink
https://escholarship.org/uc/item/3n99h8cw

Author
Kinsella, Marcus Christopher

Publication Date
2013
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3n99h8cw
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Computational Techniques to Investigate Structural Variation

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Bioinformatics and Systems Biology

by

Marcus Christopher Kinsella

Committee in charge:

Professor Vineet Bafna, Chair
Professor Kelly A. Frazer, Co-Chair
Professor Pavel A. Pevzner
Professor Jonathan Sebat
Professor Kun Zhang

2013



Copyright

Marcus Christopher Kinsella, 2013

All rights reserved.



The dissertation of Marcus Christopher Kinsella is approved,

and it is acceptable in quality and form for publication on

microfilm and electronically:

Co-Chair

Chair

University of California, San Diego

2013

iii



DEDICATION

To my Mom for her support, and to my boyfriend for his relentless

encouragement.

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Scale of Genetic Variation . . . . . . . . . . . . . . . . 1
1.2 Detecting Structural Variations . . . . . . . . . . . . . . . . 2
1.3 Algorithmic Challenges in Structural Variation Detection . . 3

Chapter 2 Sensitive gene fusion detection using ambiguously mapping RNA-
Seq read pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Discovery of Putative Fusions . . . . . . . . . . . . 8
2.2.2 Mapping to Augmented Reference . . . . . . . . . . 11
2.2.3 Model of Paired-End RNA-Seq Data . . . . . . . . . 11
2.2.4 Expectation Maximization . . . . . . . . . . . . . . 14
2.2.5 Calculating Mappings to Fusion Junctions . . . . . . 15

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Fusion Transcripts Generate Ambiguous Reads . . . 17
2.3.2 Resolving Ambiguous Simulated Fusions . . . . . . 18
2.3.3 Application to a Prostate Tissue Transcriptome Data 20
2.3.4 Discovery of Novel Ambiguous Fusions . . . . . . . 22

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 3 Combinatorics of the Breakage-Fusion-Bridge Mechanism . . . . 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Formalizing the BFB Schedule . . . . . . . . . . . . . . . . 28
3.3 Algorithms for BFB . . . . . . . . . . . . . . . . . . . . . . 30

v



3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 4 An algorithmic approach for breakage-fusion-bridge detection in
tumor genomes . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 High-throughput evidence for BFB . . . . . . . . . . . . . . 52

4.2.1 Breakpoints . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Copy counts . . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Formalizing BFB . . . . . . . . . . . . . . . . . . . 53
4.2.4 Handling experimental imprecision . . . . . . . . . 55
4.2.5 The BFB Count Vector Problem . . . . . . . . . . . 55

4.3 Outline of the BFB Count Vector Algorithms . . . . . . . . 56
4.3.1 Properties of BFB palindromes . . . . . . . . . . . . 56
4.3.2 Required conditions for folding . . . . . . . . . . . 58

4.4 Running time . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Detecting Signatures of BFB . . . . . . . . . . . . . . . . . 63
4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 68

Chapter 5 Does Chromothripsis Have a Distinguishing Signature? . . . . . . 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Finding Chromosome Arrangements Consistent with
Observed Breakpoints . . . . . . . . . . . . . . . . 71

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.1 Simulating Progressive Rearrangements . . . . . . . 72
5.3.2 Chromothripsis Footprint Criteria Depend on Subtle

Simulation Implementation Details . . . . . . . . . 75
5.3.3 Simulation Method Does Not Distinguish Between

Progressive Rearrangement and Chromothripsis . . . 79
5.3.4 Plausible Progressive Rearrangement Schemes Exist

for Chromosomes Bearing Footprint of Chromothripsis 80
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 82

Appendix A Supplemental: Sensitive gene fusion detection using ambiguously
mapping RNA-Seq read pairs . . . . . . . . . . . . . . . . . . . . 87
A.1 Ambiguous fusion sequences. . . . . . . . . . . . . . . . . 112

A.1.1 HOMEZ-MYH6 . . . . . . . . . . . . . . . . . . . 112
A.1.2 KIAA1267-ARL17A . . . . . . . . . . . . . . . . . 112

vi



A.1.3 CPEB1-RPS17 . . . . . . . . . . . . . . . . . . . . 113
A.1.4 PPIP5K1-CATSPER2 . . . . . . . . . . . . . . . . 113

Appendix B Supplemental: Combinatorics of the Breakage-Fusion-Bridge Mech-
anism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.2 Applying BFB Rules . . . . . . . . . . . . . . . . . . . . . 117
B.3 Analysis of BFB_Tree . . . . . . . . . . . . . . . . . . . . 118

Appendix C Supplemental:An algorithmic approach for breakage-fusion-bridge
detection in tumor genomes . . . . . . . . . . . . . . . . . . . . . 120
C.1 Properties of BFB Strings . . . . . . . . . . . . . . . . . . . 120
C.2 Algorithm SEARCH-BFB . . . . . . . . . . . . . . . . . . 124

C.2.1 Additional Notation and Collection Arithmetics . . . 124
C.2.2 Folding Increases Signature . . . . . . . . . . . . . 129
C.2.3 The FOLD Procedure . . . . . . . . . . . . . . . . . 137
C.2.4 Correctness of Algorithm SEARCH-BFB . . . . . . 146
C.2.5 Time Complexity of Algorithm SEARCH-BFB . . . 147

C.3 The Decision Variant . . . . . . . . . . . . . . . . . . . . . 149
C.4 The Distance Variant . . . . . . . . . . . . . . . . . . . . . 150
C.5 Chromosome simulation details . . . . . . . . . . . . . . . 151
C.6 Cancer cell line results . . . . . . . . . . . . . . . . . . . . 152
C.7 ROC curves for varying simulation parameters . . . . . . . . 153
C.8 Pancreatic cancer data analysis pipeline . . . . . . . . . . . 153
C.9 Possible arrangement of segments on BFB

-rearranged chromosome 12 . . . . . . . . . . . . . . . . . 153

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

vii



LIST OF FIGURES

Figure 2.1: A read pair that maps to a fusion between genes A1 and B1 may
also map to homologous genes, leading either to spurious fusion
candidates or the elimination of read pairs supporting a true fusion
from consideration. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.2: Creating fusion genes from discordantly mapping mate pairs. . . . . 12
Figure 2.3: Nominating potential fusion transcripts. . . . . . . . . . . . . . . . 12
Figure 2.4: The graphical model of RNA-Seq read pairs. Transcript abundance,

transcript choice, starting position, ending position, and observed
read are represented by θ , T, S, E, and R, respectively. . . . . . . . 13

Figure 2.5: In this simplified situation, maximizing the likelihood function would
set the abundance of the fusion gene to 1 regardless of the relation-
ship between NA, NB, and NF . . . . . . . . . . . . . . . . . . . . . 17

Figure 2.6: The fusion between HOMEZ and MYH6. Three mate pairs support
this fusion, but two also map to a fusion between HOMEZ and MYH7. 23

Figure 2.7: The fusion between CPEB1 and RPS17. A copy of RPS17 lies
2,000 bases downstream of CPEB1, but another copy lies 400 kilo-
bases downstream, as well. . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.1: The Breakage Fusion Bridge mechanism. . . . . . . . . . . . . . . 27
Figure 3.2: An illustration of BFB-Pivot searching for candidate BFB strings. . 33
Figure 3.3: A BFB-tree generated from an RB-BFB-schedule. . . . . . . . . . 36
Figure 3.4: Pivot and tree algorithm running time. . . . . . . . . . . . . . . . . 44
Figure 3.5: Distribution of distances to nearest count-vector admitting a BFB

schedule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.1: A schematic BFB process. . . . . . . . . . . . . . . . . . . . . . . 50
Figure 4.2: Layer visualization of a BFB palindrome. . . . . . . . . . . . . . . 59
Figure 4.3: An algorithm for the BFB count vector problem. . . . . . . . . . . 62
Figure 4.4: Simulation and pancreatic cancer results. . . . . . . . . . . . . . . 65

Figure 5.1: A hypothetical shattered chromosome. . . . . . . . . . . . . . . . . 74
Figure 5.2: A set of possible simulation steps. . . . . . . . . . . . . . . . . . . 75
Figure 5.3: Charts of number of breakpoints versus number of copy number

states for simulated chromosomes. . . . . . . . . . . . . . . . . . . 83
Figure 5.4: Charts of breakpoints versus copy number states for simulations

with an overrepresentation of inversions. . . . . . . . . . . . . . . 84
Figure 5.5: Breakpoints and copy numbers of a chromosome simulated with

progressive inversions and deletions. . . . . . . . . . . . . . . . . . 84
Figure 5.6: Counts of breakpoints and copy number states from a simulation

based on the chromosome in Figure 5.5 . . . . . . . . . . . . . . . 85

viii



Figure 5.7: Result of the series of inversions and deletions for chromosome 5
of TK10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure A.1: Graph of ambiguously mapping read count frequency data above. . 95
Figure A.2: A short homologous sequence near the fusion site of GRHL2 and

SNTG1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure C.1: ROC curves for simulations with 2 rounds of BFB. . . . . . . . . . 158
Figure C.2: ROC curves for simulations with 4 rounds of BFB. . . . . . . . . . 159
Figure C.3: ROC curves for simulations with 6 rounds of BFB. . . . . . . . . . 160
Figure C.4: ROC curves for simulations with 8 rounds of BFB. . . . . . . . . . 161
Figure C.5: ROC curves for simulations with 10 rounds of BFB. . . . . . . . . 162
Figure C.6: Graphical representation of the analysis performed with the pancre-

atic cancer paired-end sequencing data. . . . . . . . . . . . . . . . 163
Figure C.7: Plausible BFB cycles that could lead to the copy counts observed in

chromosome 12 of pancreatic cancer sample PD3641. . . . . . . . 164

ix



LIST OF TABLES

Table 2.1: The fraction of totally and partially ambiguous fusions for a range of
read lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 2.2: Simulated fusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 2.3: Sum of expected values of Zni jk for read pairs supporting each fusion

after maximum-likelihood transcript abundance estimation. . . . . . 20
Table 2.4: Prostate neoplasia fusions with sum of expected Zni jk values. . . . . 21
Table 2.5: Prostate hyperplasia fusions with sums of expected Zni jk values. . . . 21
Table 2.6: Fusions found in previously published datasets that are either par-

tially or completely supported by ambiguously mapping read pairs. . 24

Table 3.1: Method and result for the count-vectors used to analyze algorithm
speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 3.2: Percentage of count-vectors at least as close to a count-vector admit-
ting a BFB schedule as the shown count-vector pair. . . . . . . . . . 46

Table 5.1: Breakpoint positions and orientations for rearranged chromosome in
Figure 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 5.2: Fraction of chromosomes in Figure 5.4a with few copy number states
for given breakpoint counts. . . . . . . . . . . . . . . . . . . . . . . 78

Table 5.3: The number of observed breakpoints. . . . . . . . . . . . . . . . . . 81

Table A.1: Frequency of amibiguously mapping read counts for various read
lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Table A.2: All gene fusions nominated by discordant read pairs in the simulated
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Table A.3: Unambiguous fusion results from melanoma and UHR data. . . . . . 98

Table C.1: The decomposition and signature of the collection B= {2β1, β2,2β3,
4β4}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

x



ACKNOWLEDGEMENTS

I would first like to acknowledge the wisdom and patience of my advisor, Vineet

Bafna. His guidance and advice were critical for every step of my graduate work. I

would like to thank my co-advisor, Kelly A. Frazer, for her valuable comments and

willingness to collaborate. I would also like to acknowledge my entire committee–Pavel

Pevzner, Jonathan Sebat, Kun Zhang–for sharing their advice and time. I have had the

privilege to collaborate with excellent investigators: Olivier Harismendy and Masakazu

Nakano at the Scripps Research Institute and the Moores Cancer Center, and Shay Zakov

and Anand Patel at UC San Diego. I have also benefited from the help of many labmates

and classmates who made graduate school more productive and entertaining.

Chapter 2 (with Appendix A) was published in Bioinformatics, Volume 27, Issue

8, pages 1068–1075, 2011, M. Kinsella, O. Harismendy, M. Nakano, K. A. Frazer, and

V. Bafna, “Sensitive gene fusion detection using ambiguously mapping RNA-Seq read

pairs”. The dissertation author was the primary investigator and author of this paper.

Chapter 3 (with Appendix B) was published in the Journal of Computational Bi-

ology, Volume 19, Issue 6, pages 662–678, 2012, M. Kinsella and V. Bafna, “Combina-

torics of the Breakage-Fusion-Bridge Mechanism” and was presented at the 16th Annual

International Conference on Research in Computational Molecular Biology (RECOMB

2012). The dissertation author was the primary investigator and author of this paper.

Chapter 4 (with Appendix C) was published in the Proceedings of the National

Academy of Sciences of the United States of America, 2013, S. Zakov, M. Kinsella, and

V. Bafna, “Detecting Breakage-Fusion-Bridge cycles in tumor genomes—an algorith-

mic approach”. The dissertation author was a primary co-investigator and co-author of

this paper.

Chapter 5 is currently in submission, M. Kinsella, A. Patel, and V. Bafna, ”Does

Chromothripsis Have a Distinguishing Signature?”. The dissertation author was the

primary investigator and author of this paper.

All other chapters are original work of the dissertation author.

xi



VITA

2006 Bachelor of Science in Mathematics and Biological Sciences,
University of Chicago

2013 Doctor of Philosophy in Bioinformatics and Systems Biology,
University of California, San Diego

PUBLICATIONS

Shay Zakov, Marcus Kinsella, and Vineet Bafna, “An algorithmic approach for breakage-
fusion-bridge detection in tumor genomes.”, Proceedings of the National Academy of
Sciences of the United States of America, 110(14), 2013

Marcus Kinsella and Vineet Bafna, “Combinatorics of the breakage-fusion-bridge mech-
anism.”, Journal of Computational Biology, 19(6), 2012

Marcus Kinsella and Vineet Bafna, “Modeling the Breakage-Fusion-Bridge Mecha-
nism: Combinatorics and Cancer Genomics.” In Proceedings of the Sixteenth Annual
Conference on Research in Computational Molecular Biology (RECOMB), pp. 148–
162, 2012

Marcus Kinsella, Olivier Harismendy, Masakazu Nakano, Kelly A. Frazer, and Vineet
Bafna, “Sensitive gene fusion detection using ambiguously mapping RNA-Seq read
pairs.”, Bioinformatics, 27(8), 2011

xii



ABSTRACT OF THE DISSERTATION

Computational Techniques to Investigate Structural Variation

by

Marcus Christopher Kinsella

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California, San Diego, 2013

Professor Vineet Bafna, Chair
Professor Kelly A. Frazer, Co-Chair

The importance of structural variation as a source of phenotypic variation has

become more and more apparent in recent years. At the same time, tools and techniques

that detect structural variation using high-throughput data have proliferated. These

trends have spurred interest in making increasingly sophisticated inferences about struc-

tural variation, including identifying complex or difficult to observe variants and eluci-

dating the biological mechanisms that produce structural variants.

Here, we identify several challenging problems in the investigation of structural

variation and discuss computational techniques that solve them. First, we examine the

discovery of fusion genes in the transcriptome using paired-end reads, a task compli-

cated by reads that map to multiple locations in the genome. Earlier methods ignored

xiii



these reads to control false discoveries. We demonstrate a method to resolve these am-

biguous mappings and increase the sensitivity of fusion gene detection. Second, we

investigate whether the breakage-fusion-bridge mechanism leaves a reliable footprint in

high-throughput data, a question that had largely been addressed using ad hoc analyses.

Using novel algorithms and simulation, we identify the surprisingly limited circum-

stances when the presence breakage-fusion-bridge can be inferred. Finally, we examine

evidence for the phenomenon known as chromothripsis, the shattering and reannealing

of chromosomes. We show that there are alternative hypotheses that can account for the

structural variation patterns that form the currently proposed signature of chromothrip-

sis.

xiv



Chapter 1

Introduction

1.1 The Scale of Genetic Variation

Genetic variation in humans occurs over a broad range of scales. At one extreme,

gains or losses of entire chromosomes have been observed and known to cause disease

for over five decades [42]. At the other, more recent efforts have cataloged and, to some

extent, characterized millions of variants of single nucleotides [22].

Between these two extremes lie what are termed “structural variations.” These

variations alter hundreds to millions of nucleotides at once and consist of insertions,

deletions, inversions, translocations, and other more exotic rearrangements. Recent

studies have revealed that structural variations are both quite prevalent and contribute

significantly to phenotypic variation [67, 33, 35]. Indeed, at least 12% of the human

genome is subject to structural variation, meaning the majority of variable nucleotides

in an individual genome are part of structural variations rather than single nucleotide

variations [64]. Moreover, structural variations are implicated in numerous diseases,

including schizophrenia [78, 74], autism [66], Crohn’s disease [51], and psoriasis [16].

The family of diseases with perhaps the strongest association with structural variation

is cancer. Of the approximately 490 genes currently known to be mutated and impli-

cated in cancer development, over 370 are mutated via translocation, amplification, or

deletion [80]. Thus, improved detection and understanding of structural variation may

provide significant insight into a broad range of diseases.

1



2

1.2 Detecting Structural Variations

There are a number of experimental techniques that have been developed to pro-

vide evidence about structural variation. They vary in the type of evidence provided,

and each has advantages and disadvantages. The methods used in this dissertation are

described below.

Fluorescence in situ hybridization (FISH)

FISH uses fluorescently labeled probes that hybridize to nucleotide sequences

from particular regions of chromosomes. Using fluorescece microscopy, these

probes can be observed directly within a cell.

FISH has several advantages over other methods. FISH can give information

about karyotype, so the relative location of the labeled chromosome segments with

respect to the rest of the genome may be determined even in aneuploid genomes.

FISH can also give the relative arrangements of labeled segments even when chro-

mosomes are complexly rearranged. On the other hand, FISH is laborious and

produces a small amount of difficult to quantify data.

Microarrays

Microarrays have multiple uses, but the application most relevant to structural

variation is the detection of genomic copy number. Microarrays measure fluo-

rescence intensities for many probes that finely cover most of the genome. These

intensities can be used to infer copy numbers of different segments of the genome.

Changes in copy number, amplifications and deletions, are linked to phenotypic

changes and reveal some information about the structural variation within a

genome. Microarrays give little information about copy-neutral variation such

as inversions and translocations. It can also be difficult to infer the location where

copy number changes with much precision, and copy number estimates are often

rough, only showing general increases or decreases in copy number.

Sequencing

The third method that can provide information about structural variation is se-

quencing. Sequencing yields nucleotide substrings of the genome or transcrip-



3

tome, called reads. The characteristics of these reads vary by sequencing technol-

ogy, particularly in length and error profile. Sequencing can reveal information

about structural variation in multiple ways. One use is similar to microarrays, ex-

cept rather than fluorescence intensity, the number of reads that map to segments

of the genome are measured. This metric, called “depth of coverage”, can show

parts of the genome that have been amplified or deleted. Another application of

sequencing uses “paired-end” reads, short reads joined by an unsequenced insert.

Read pairs that map in unexpected ways can reveal novel genomic adjacencies.

1.3 Algorithmic Challenges in Structural Variation De-

tection

While the technologies summarized abou are helpful for understanding struc-

tural variation, a gread deal of bioinformatics work must be done to convert fluorescence

intensities or sequence alignments to meaningful inferences about structural variation.

A number of methods have been developed that address the noisiness of biological data

and the complexity of the genomes in which structural variations occur so that different

kinds of structural variations can be identified. The successes of these methods have led

investigators to ask increasingly sophisticated questions about structural variation. In

this dissertation, we develop computational techniques and frameworks to address these

sorts of questions. We identify several challenging problems related to the detection

of and the mechanisms that produce structural variation and develop methods to solve

them.

In Chapter 2, we examine a class of variants that are difficult to identify with

existing approaches, fusions between genes with paralogs, pseudogenes, or other similar

sequence elsewhere in the genome. These genes often will have few reads align to them

unambiguously. We demonstrate a computational method that resolves this ambiguity

to the extent possible and is able to discover novel gene fusions.

In Chapters 3 and 4, we turn to an investigation of a mechanism that produces

large structural variations, the breakage-fusion-bridge mechanism. While breakage-

fusion-bridge was discovered many decades ago, its detection has largely relied on cy-



4

togenetic evidence. More recently, some investigators have proposed methods to detect

breakage-fusion-bridge using high-throughput data. Using simulations and novel algo-

rithms, we show that some variation patterns that at first glance appear to be strong ev-

idence for breakage-fusion-bridge are in fact weak evidence. We examine how varying

assumptions about breakage-fusion-bridge and genome rearrangement affect inferences

from high-throughput data.

In Chapter 5, examine a newly proposed phenomenon called chromothripsis that

describes the shattering of a whole chromosome or chromosome segment. The segments

then anneal back together in a random order, creating a complex set of breakpoints but

only two copy number states.



Chapter 2

Sensitive gene fusion detection using

ambiguously mapping RNA-Seq read

pairs

2.1 Introduction

The discovery of chimeric transcripts emerging from different and potentially

distant genes has introduced another layer of complexity to the genome [23]. Addi-

tionally, the importance of fusion transcripts in the genesis and progression of cancer is

becoming increasingly apparent [54, 81, 59]. Fusion transcripts may be the product of

trans-splicing, the joining of two different transcripts emerging from distinct and often

distant genes. This is especially common among lower eukaryotes [73, 40] where trans-

splicing is part of normal transcript processing [62]. However, trans-splicing has also

been observed in higher eukaryotes, including humans [31]. Additionally, fusions may

be produced by adjacent genes yielding a single, joined RNA product, creating a read-

through transcript [1]. Fusion transcripts can also result from genomic rearrangement

that brings together two once distant regions of the genome. Probably the best known

example of this type of fusion is BCR-ABL1, a product of a chromosomal translocation

[70] found in many hematologic cancers and a successful drug target [19]. In addition,

a growing list of fusion genes are being found in both hematologic and solid tumors

5



6

that are the product of genomic lesions or trans-splicing [20]. Thus, the study of fusion

transcripts has implications clinically as well for our basic understanding of the genome.

The development of high-throughput sequencing methods such as RNA-Seq [79]

has offered an opportunity to hasten a fuller characterization of the transcriptome [10],

including the identification of fusion transcripts. Maher et al. demonstrated the po-

tential of the technology by applying transcriptome sequencing to several tumors and

cancer cell lines [49, 48]. Using two different sequencing protocols, they were able to

detect known fusions such as TMPRSS2-ERG [76] in a prostate cancer cell line and

BCR-ABL1 in a leukemia cell line. Additionally, they identified and experimentally

confirmed multiple previously-unidentified fusions. Later, Berger et al. carried out sim-

ilar work on the melanoma transcriptome, finding 11 novel fusions [5].

Alongside these biological discoveries has been the development of computa-

tional tools and frameworks for the detection of fusion transcripts from RNA-Seq data.

Ameur et al. developed a method for joining partial alignments of single RNA-Seq

reads to find splice junctions and gene fusions[2]. Upon application of the method to a

public dataset, they found hundreds of examples of transcripts that apparently spanned

different chromosomes but were doubtful that many were genuine fusion genes. Hu

et al. created a probabilistic method for aligning RNA-Seq read pairs that uses ex-

pectation maximization to find maximum-likelihood alignments[32]. They showed that

paired-end reads better cover splice junctions than single reads and that their method

can reliably identify splice junctions. Then, by augmenting their approach with long

single reads, they were able to identify 18 gene fusions in two cancer cell lines.

Common to all of these efforts has been the requirement that a fusion transcript

be supported by reads that map uniquely to the genome or transcriptome. Maher and col-

leagues required single best-hit mappings to the genome or mapped short, 36 nt Illumina

paired-end reads to sequences derived from ∼230 nt Roche 454 reads. Berger et al. re-

quired paired-end reads to map uniquely and at least one end of a read to unambiguously

map to a junction between exons. Ameur et al. required each partial alignment for each

read to be unique. Hu et al. considered fusion discovery with short paired-end reads

infeasible and found putative fusions with uniquely-mapping 75 nt single reads. These

strategies highlight a key difficulty in the analysis of transcriptome sequencing data:



7

Gene A1 Gene B1

Gene A2 Gene B2

True Fusion

Spurious Fusion

Spurious Fusion

Spurious Fusion

Figure 2.1: A read pair that maps to a fusion between genes A1 and B1 may also map
to homologous genes, leading either to spurious fusion candidates or the elimination of
read pairs supporting a true fusion from consideration.

the transcriptome is filled with repetitive and similar sequences, and many reads cannot

be unambiguously mapped to a reference. Some of the repetitiveness is attributable to

known repeat families such as the Alu repeat sequence, which can be found both in 5’-

and 3’-UTRs as well as occasionally in coding sequence [83]. Additionally, many genes

are part of gene families or have paralogs or expressed pseudogenes and thus share se-

quence homology with other parts of the transcriptome. Reads mapping to these genes

or regions of these genes will often map well to other loci.

Ambiguously mapped reads are a concern for all transcriptome sequencing anal-

yses and have previously been addressed by discarding them [11] or by proportionately

allocating them over the different positions to which they map [56, 21]. However, this

issue becomes more prominent for gene fusions because combinations of mappings are

considered. Consider for example, a fusion between a pair of genes, A1 and B1. It

is possible that a read pair that maps to this fusion will also map to paralogs of each

gene, say A2 and B2. If all of these mappings were accepted as true, then three spuri-

ous fusions would be called (Figure 2.1). If the read pair were discarded because of its

ambiguous mappings, evidence for the true fusion would be disregarded. As we detail

below, our simulations indicate that these ambiguously mapping reads are present in up

to 30% of possible gene fusions, underscoring the significance of the problem.



8

In this chapter, we propose a method to discover fusion transcripts that exploits

ambiguously mapping RNA-Seq read pairs, does not require additional long, 75 nt or

greater, single read sequencing, and decreases the occurrence of mapping artifacts. We

begin by mapping read pairs to the transcriptome independently without imposing any

unique-mappability criterion. We then find pairs which do not map to the same gene

and build a set of possible gene fusions from the mappings of each read. Next, we em-

ploy a generative model of RNA-Seq data that utilizes mapping qualities and insert size

distributions to resolve any ambiguous mappings. After the convergence of the expec-

tation maximization technique used to find maximum-likelihood transcript abundances,

we perform a final partial expectation step for the discordantly mapping read pairs to

find optimal fusion assignments for pairs that span fusion junctions. In this way, rather

than discarding ambiguously mapping read pairs or allowing them to overstate the num-

ber of fusions present, we find the best supported fusions by using the mappings of all

the reads in the dataset, the quality of those mappings, and the implied insert sizes of

read pairs that span a fusion site. This allows our method to more sensitively detect gene

fusions than if ambiguously mapping read pairs were discarded.

We have implemented our method on simulated data generated from fusions be-

tween genes with very high similarity to other genes to demonstrate that our method

can resolve the ambiguous mappings to find the correct fusions when it is possible to do

so. We then implemented it on reads derived from neoplastic and hyperplastic prostate

tissue and recovered the known TMPRSS2-ERG fusion along with several read-through

fusions without finding many spurious, poorly supported fusions as a result of allow-

ing reads to have many mappings. Finally, using publicly available data from several

melanoma tumors and cell lines, we find fusion events that would not be detectable

without allowing for multimapping reads that span the fusion site.

2.2 Methods

2.2.1 Discovery of Putative Fusions

The first step of our method is to map each read of a pair independently. We use

Bowtie [41] in single-end mode to perform this mapping against a database of RefSeq



9

transcripts [60] that have been prepended with 50 nt of upstream sequence and appended

with string of adenines to account for variation in transcription start site and polyadeny-

lation, respectively. Filtering the mapping results yields a set of read pairs that only map

discordantly to different genes. Then, to decrease the possibility of generating inauthen-

tic fusions as a result of SNPs or mapping or annotation errors, we map these discordant

read pairs to the genome and transcriptome, and we greatly relax the stringency of re-

ported mappings and allow for many mappings to be reported for each read. For the

experiments in this study, we use the Bowtie flags -l 22 -e 350 -y -a -m 5000. These

flags cause Bowtie to report all mappings for each read, to try as hard as possible to

find valid mappings, and to suppress mappings with more than two mismatches in the

first 22 bases, summed quality values at all mismatched positions greater than 350, or

mappings from reads with more than 5000 reportable mappings. With these less strin-

gent mappings, we check if each pair of reads both map within the genomic bounds of

a known gene or within 10 kilobases of each other in a region of the genome with no

annotated genes. This filtering step decreases the possibility of events such as retained

introns or unannotated transcripts being mistakenly called as gene fusions.

After these filtering steps, we consider each pair of genes to which at least two

read pairs map discordantly with fewer than 3 mismatches. Our aim is to determine

which exons from each gene should comprise a putative fusion transcript. Combinations

of exons are required to satisfy three conditions. First, all exons upstream of the junction

site in the upstream gene isoform and all exons downstream of the junction site in the

downstream gene isoform must be included. So, in Figure 2.2 fusion 4, exon 4 from

gene A could not be included without also including exon 3. Second, all exons to which

a read maps must be included. For example, in Figure 2.2, exon 1 and exon 2 from

gene A must be included because reads map to them. Third, the implied insert size

of any read pair should not be unreasonably large given the known insert size used for

sequencing. For example, in Figure 2.2 fusion 4, the insert size of read pair 3 implied by

the inclusion of exons 3 and 4 from gene A may be too large. To decrease the sensitivity

of otherwise acceptable exon combinations to occasional abnormally long insert sizes,

we allow one tenth of read pairs to violate this third criterion. While there are certain

types of fusions that would not meet these criteria, say a fusion with multiple, similarly



10

expressed isoforms that vary near the fusion site, we find that these criteria effectively

eliminate many spurious fusions without losing sensitivity to bona fide ones.

Usually, there are multiple combinations of exons from each gene pair that sat-

isfy the above criteria. To enumerate them efficiently, we find every pair of RefSeq

isoforms from each gene pair that is supported by at least two discordantly mapping

read pairs. For each isoform pair, we build a directed graph of their exon structures

augmented with edges that connect each exon in the upstream isoform to each exon in

the downstream isoform (Figure 2.3). Then, we search for paths from the beginning of

the upstream isoform to the end of the downstream isoform by implementing a depth-

limited search:

Algorithm DLS(node, path,reads)

Input: A node representing an exon, a path through the exon graph, and a set of reads

mapping to the exons.

Output: Paths through the exon graph that satisfy the above criteria.

1. if node is in downstream gene and not all reads marked open or closed

2. then return

3. if node is in upstream gene

4. then for read that maps to node

5. mark read as open

6. else for read that maps to node

7. mark read as closed

8. for read marked as open

9. add length of node’s exon to implied read insert

10. if (count of read pairs with insert> max_insert_size) > .1*(count of reads)

11. then return

12. if node is sink node

13. then output path

14. else for neighbors of node

15. DLS(neighbor, path + node, reads)

DLS is initially called with the root node S, an empty path, and the set of discor-

dantly mapping read pairs for the isoform pair. It then proceeds through the graph in a



11

depth-first fashion. At each node it checks if there are reads mapping to that node and

opens or closes each read pair appropriately, keeping track of the state of each pair inde-

pendently. If a read maps to a splice junction, the inner boundary of the mapping is used

to determine the exon to which it maps. When a read maps to an exon, only the appropri-

ate portion of the exon’s length is added to the implied insert size in line 9. The directed

edges of the graph ensure that the first criterion above is met. The second and third cri-

teria are ensured explicitly in lines 1 and 2 and lines 10 and 11, respectively. Since the

depth of any search path is limited, this procedure can efficiently discover fusions that

meet our desired criteria. In addition, to better facilitate the detection of read-through

transcripts, the 3’ exon of the upstream gene and the 5’ exon of the downstream gene

do not contribute to the reads’ implied insert sizes. This follows from our observation

that these exons often appear truncated in read-through fusions. Finally, since different

isoforms of the same gene mostly contain the same exons, duplicate exon sets can be

generated by calling DLS on different isoforms. These duplicates are removed before

proceeding to the next step.

2.2.2 Mapping to Augmented Reference

After the set of putative fusions are generated, the sequence for each is generated

and added to the original set of transcripts from RefSeq. Then, the read pairs are mapped

to this augmented reference. Unlike the previous mapping, Bowtie is used in paired-end

mode and the default mapping stringencies are used except that up to 1500 possible

mappings for each paired-end read are allowed. While the addition of the putative fu-

sion sequences may result in the addition of thousands of additional transcripts to the

reference, the total amount of sequence in the augmented reference remains smaller than

the genome, and the mapping can still be carried out on a standard desktop computer.

After mapping, we proceed, as discussed below, to ranking fusions based on coverage.

2.2.3 Model of Paired-End RNA-Seq Data

We extend the generative model of [43] to develop a probabilistic model for

generating read pairs (Figure 2.4). We reason that a read pair is generated in four steps.



12

1 2 3 4 5

1 2 3 4

Read 1 Read 2 Read 3

Gene A

Gene B

Fusion 1

1 1 2 3 42

Fusion 2

1 2 3 42 3

Fusion 3

1 2 3 42 3 1

Fusion 4

1 2 3 42 3 4

Read 3

Read 3

Figure 2.2: Creating fusion genes from discordantly mapping mate pairs. Three mate
pairs map to two different gene isoforms. Fusion 1 and Fusion 2 include all the exons in
either isoform covered by reads. Fusions 3 and 4 also do, but they are rejected because
the implied insert size for Read 3 is too large.

s Exon
1

Exon
2

Exon
3

tExon
2

Exon
3

Exon
4

Exon
1

Figure 2.3: To nominate potential fusion transcripts, we build a graph from the exons
of each gene isoform in the pair. By adding edges from the upstream transcript to the
downstream transcript, we find paths that account for all read pairs mapped to the fusion
and that respect an upper bound for the insert size of the read pairs.



13

Figure 2.4: The graphical model of RNA-Seq read pairs. Transcript abundance, tran-
script choice, starting position, ending position, and observed read are represented by θ ,
T, S, E, and R, respectively.

First the transcript from which the pair will come, tn, is chosen. Then the starting point

for the upstream read, sn, within that transcript is chosen; then the end point for the

downstream read, en, is chosen. Finally, errors are introduced and the final read pair is

observed. As we only observe reads, we can consider transcript choice, starting position,

ending position, and read error to be hidden variables. The likelihood of a collection of

read pairs, and specific values of the hidden variables can be expressed as a function of

the true transcript nucleotide abundances:

P(R,T,S,E|θ) =
N

∏
n=1

P(tn|θ)P(sn|tn)P(en|sn, tn)P(rn|en,sn, tn)

Each term in this equation can be calculated in a straightforward way. The proba-

bility of a transcript t being chosen is the relative nucleotide abundance of that transcript,

that is, the fraction of all nucleotides that are part of that transcript. Thus, P(tn|θ) = θt .

Assuming that each base within a transcript is equally likely to be the starting point of

the upstream read, the probability of a particular starting point is the inverse of the length

of the transcript `t : P(sn|tn) = `−1
t . The choice of the ending point depends on the dis-

tribution of insert sizes used for sequencing and the starting point. We use d(|sn− en|)



14

to indicate the value of the insert size distribution for the distance between the start and

end points, which we empirically determine from the read pairs that map concordantly.

Finally, the probability of a read being observed from a given transcriptomic locus can

be calculated using matches and mismatches between the read sequence and the refer-

ence transcriptome and the quality values of the bases in the read [44]. We denote this

probability as ε(rn, tn,sn,en).

To expand the probability distribution to N read pairs, we take the product of

values for individual reads.

P(R,T,S,E|θ) =
N

∏
n=1

θt,n`
−1
t,n d(|sn− en|)ε(rn, tn,sn,en)

Finally, the probability of our observed variable, the read pairs, given the tran-

script abundances can be calculated by summing over the values of the hidden variables.

P(R|θ) =
N

∏
n=1

∑
t′,s′,e′

θt′,n`
−1
t′,nd(|s′n− e′n|)ε(rn, t′n,s′n,e′n)

We seek to find the set of transcript abundances, θ , that maximizes this proba-

bility by applying expectation maximization to the results of the paired-end mapping to

the reference augmented with the putative fusions.

2.2.4 Expectation Maximization

For consistency, we use notation similar to that used by Li et al. Let Zni jk = 1 if

(tn,sn,en) = (i, j,k). Then, as the first step of the EM algorithm, we find the expected

values of Zni jk given the observed reads and the current estimate of θ .

EZ|R,θ (t)[Zni jk] =
θ
(t)
i `−1

i d(| j− k|)ε(n, i, j,k)

∑i′, j′,k′θ
(t)
i′ `
−1
i′ d(| j′− k′|)ε(n, i′, j′,k′)

Then, the E-step consists of calculating the log-likelihood weighted by these values.

Q(θ |θ (t)) = ∑
n,i, j,k

EZ|R,θ (t)[Zni jk] log(θi`
−1
i d(| j− k|)ε(n, i, j,k))



15

The values for θ (t+1) are then found by finding the θ that maximizes this func-

tion subject to the constraint ∑
M
i=1 θi = 1 using Lagrange multipliers.

Λ = Q(θ |θ (t))+λ (
M

∑
i=1

θi−1)

∂Λ

∂θi
= ∑

n, j,k

EZ|R,θ (t)[Zni jk]

θi
+λ

Equating all of these terms to zero, we have

θ
(t+1)
i =

∑n, j,k EZ|R,θ (t)[Zni jk]

∑n,i, j,k EZ|R,θ (t)[Zni jk]

=
1
N ∑

n, j,k
EZ|R,θ (t)[Zni jk]

This procedure is repeated until convergence. We make the probability calcula-

tions tractable by only considering, for each read, the values of t, s, and e reported by

short read mapping software and assuming the probability of the read coming from any

other position to be zero.

2.2.5 Calculating Mappings to Fusion Junctions

After convergence of the expectation-maximization algorithm, we have an es-

timate of the maximum-likelihood abundances for each transcript, including all of the

putative fusion transcripts. These abundances reflect the resolution of read mapping am-

biguity, as demonstrated by the successful elimination of many spurious fusions in the

results below. However, they do not yet account for potential unevenness of coverage

across a given transcript. In particular, they can be confounded by a fusion transcript

with high coverage everywhere but the fusion site. To illustrate this issue, consider the

situation illustrated in Figure 2.5. We have three reference transcripts: Gene A, Gene

B, and a fusion gene created by concatenating Gene A and Gene B. We also have three

sets of read pairs: NA pairs that map to Gene A and the fusion gene, NB pairs that map to

Gene B and the fusion gene, and NF pairs that only map to the fusion gene. For simplic-

ity, assume that the values of ε(rn, tn,sn,en) = 1 and d(|sn− en|) = 1 for each mapping

of each read pair and the length of both Gene A and Gene B is 1. Then, the probability

of the observed data is



16

P(R|θ) = (θA +
1
2

θF)
NA(θB +

1
2

θF)
NB(

1
2

θF)
NF

If we further assume that NA = NB and therefore θA = θB, and use the fact that

the sum of the transcript abundances must be 1, we have that θA = 1−θF
2 . Then, the

probability of the observed data becomes

P(R|θ) = (1)NA(1)NB(
1
2

θF)
NF

This expression is maximized by setting θF to 1, which sets θA and θB to zero.

So, if there is a single read pair that spans the fusion site in this scenario, all abundance is

transferred to the fusion transcript regardless of how large NA and NB may be in relation

to NF . While this example has been rather stringently defined for sake of demonstration,

a similar situation occurs whenever NF > 0 and NA >> NF or NB >> NF : an unreason-

able abundance is assigned to the fusion transcript based on reads that do not map to

the fusion site. In the context of seeking fusions, this means a fusion between highly

expressed genes supported by a single read pair, perhaps an experimental artifact, will

dominate other putative fusions in abundance. To avoid this, rather than simply using

the maximum-likelihood abundances, we calculate the sum of the expected values of

Zni jk for each fusion transcript i for read pairs that span the fusion junction to get a

probabilistically weighted count of reads supporting the fusion, Ci.

Ci = ∑
n, j,k

EZ|R,θ ( f inal)[Zni jk] for n ∈ pairs spanning junction

This retains the ambiguity resolution described above but focuses the abundance

estimates on fusions.

As a final filtering step to eliminate experimental artifacts, we find the mean

physical coverage, that is, the coverage counting both the reads and the insert, for the

upstream gene and for the downstream gene in the fusion separately and compare each

of them to the physical coverage at the fusion site. If coverage at the fusion site is less

than one twentieth of the upstream and downstream coverage, we discard the fusion

as a probable artifact based on the same reasoning discussed above. We also discard

fusions where all reads have the sequence of an RNA component of the spliceosome,

U1 through U6, as these are likely produced artifactually as well.



17

Gene A

Gene B

Fusion Gene

NA NBNF

Figure 2.5: In this simplified situation, maximizing the likelihood function would set
the abundance of the fusion gene to 1 regardless of the relationship between NA, NB, and
NF .

2.3 Results

2.3.1 Fusion Transcripts Generate Ambiguous Reads

To quantify the prevalence of ambiguously mapping read pairs and the extent to

which discarding them would impact fusion discovery, we simulated gene fusions by

randomly selecting a pair of transcripts from RefSeq and the exon within each transcript

that would serve as the fusion breakpoint. For each fusion, we generated, with random

errors based on quality scores from an existing dataset, the full set of read pairs that

could span it given a constant insert size. We then mapped each of these reads and

tabulated the number of read pairs with unique mappings that satisfy default Bowtie

mapping criteria [41]. We repeated this for several read lengths, generating 100,000

simulated fusions for each read length, while keeping the insert between the two reads

at 200 nt.

For each read length, we calculated the fraction of partially ambiguous fusions

and totally ambiguous fusions, that is, fusions where some, but not all, of the reads sup-

porting them mapped ambiguously and fusions that only generated ambiguously map-

ping read pairs. As expected, the fraction of ambiguous fusions declined as read length

increased. At a read length of 50 nt, nearly one in twenty fusions would only be de-

tectable via ambiguously mapping read pairs (Table 2.1, A.1). Even at a read length of



18

100 nt, over a tenth of all fusions were able to generate an ambiguously mapping read

pair. These results suggest that even as read lengths increase, a significant portion of

fusions remain difficult to detect if read pairs are required to map unambiguously.

Table 2.1: The fraction of totally and partially ambiguous fusions for a range of read
lengths.

Read Length % Partially
Ambiguous

Fusions

% Totally
Ambiguous

Fusions
30 30.3 5.7
35 22.4 5.5
40 17.5 5.1
45 14.9 4.8
50 13.4 4.5
75 9.4 3.7

100 7.9 2.9

2.3.2 Resolving Ambiguous Simulated Fusions

To demonstrate the capability of our method to find gene fusions between highly

repetitive regions of the transcriptome using multimapping read pairs, we simulated

five fusion genes, outlined in Table 2.2, derived from possible fusions between genes

that share homology with other parts of the transcriptome. Then, 10,000 pairs of 40 nt

reads were generated from these five fusions using MAQ [44] in simulate mode with

insert size set to 200 nt. Sequencing errors and quality values were modeled from an

existing dataset, and the MAQ simulation code was modified to produce a distribution of

different expression levels for each transcript so performance over a range of coverage

levels could be examined. As a comparison, the coverage levels used in the simulation

would correspond to a range of approximately 8 FPKM for MAGED4-MBD3L2 to 80

FPKM for FOXO3-EIF3CL in a 20 M read pair sequencing experiment. Thus, the

simulated coverages provide a reasonable range on which to evaluate the performance

of our method.

Mapping the 10,000 read pairs to RefSeq transcripts yielded 395 that mapped

only discordantly. As expected, all of these discordantly mapping pairs mapped to mul-

tiple genomic loci and thus suggested multiple fusion candidates. Each discordant read



19

Table 2.2: Simulated fusions.

Gene 1 Gene 2 Pair Count Pairs Spanning Fusion
FOXO3 EIF3CL 7152 281
PSG2 PHB 1324 117
FRG1 USP6 803 47
SMN2 CSAG1 434 78

MAGED4 MBD3L2 286 34

pair mapped, on average, to seven different pairs of genes, and in some cases mapped

to as many as 22. The total number of fusion genes that would be nominated by naïvely

accepting all discordant mappings was 56 (Table A.2).

Applying the filtering and fusion discovery process described in the Methods

Section 2.1 yielded 252 putative fusion transcripts. The high number reflects both the

multiple gene pairs to which the discordant read pairs mapped and the multiple sets of

exons from each gene pair that could be consistent with the discordant mappings.

After allowing the estimate of the maximum-likelihood transcript abundances to

converge, only 12 of the 252 nominated fusion transcripts had at least two read pairs

assigned to its junction site. Those 12 transcripts represent 7 potential fusion genes (Ta-

ble 2.3). All five of the fusions from which the data were generated are included in the

results. In addition, two spurious fusions are reported. The results include a fusion be-

tween FOXO3 and EIF3C in addition to the true fusion between FOXO3 and EIF3CL.

However, this is not a failing of the algorithm. The sequences of EIF3C and EIF3CL are

very nearly identical; depending which isoform of each gene is considered, they differ

at most by several bases at the end of their 3’ exons. So, every read that maps to the fu-

sion of FOXO3 and EIF3CL also maps to the fusion of FOXO3 and EIF3C. Rather than

discard these reads, the algorithm simply preserved this unresolvable uncertainty and

divided them between the two fusions according to values obtained from the probabilis-

tic model. Similarly, SMN1 and SMN2 are nearly indistinguishable. Thus, using only

ambiguously mapping read pairs, our method recovered the five true fusions, eliminated

49 spurious ones, and retained two fusions that are indistinguishable from true fusions.



20

Table 2.3: Sum of expected values of Zni jk for read pairs supporting each fusion after
maximum-likelihood transcript abundance estimation.

Upstream
Partner

Downstream
Partner

Supporting
Read Pairs

FOXO3 EIF3C 180.3
PSG2 PHB 117.0
FOXO3 EIF3CL 100.6
SMN1 CSAG1 56.6
FRG1 USP6 46.9
MAGED4 MBD3L2 34.0
SMN2 CSAG1 21.4

2.3.3 Application to a Prostate Tissue Transcriptome Data

We applied our method to two datasets derived from tissue resected from an in-

dividual with prostate cancer. The first dataset consisted of 18,027,834 pairs of 40 nt

reads from neoplastic tissue. The second was 21,978,463 read pairs from adjacent hy-

perplastic tissue. Of the neoplasia read pairs, 18,177 had only discordant mappings and

mapped to 127,102 gene pairs. Of the hyperplasia read pairs, 24,569 had only discor-

dant mappings and mapped to 266,571 gene pairs. Application of the filtering and fusion

discovery process described above yielded 887 and 746 putative fusion transcripts for

neoplasia and hyperplasia, respectively. After estimating transcript abundances, only 15

fusion transcripts from the neoplasia data had at least two reads assigned to its junction

site (Table 2.4). The top result, a fusion between TMPRSS2 and ERG, is a known recur-

rent fusion in prostate cancer [76]. A novel fusion between GRHL2 and SNTG1 was

also reported. These genes lie about 50 megabases apart on chromosome 8. Intriguingly,

there is a short sequence shared by both sequences at the site of the fusion (Figure A.2)

, potentially providing a clue to the origin of the chimera [45]. The remaining results

were read-through transcripts present in existing EST databases [4].

In sharp contrast to the neoplasia results, the hyperplasia data showed no evi-

dence of a fusion between TMPRSS2 and ERG (Table 2.5). This is consistent with the

central role the TMPRSS2-ERG fusion is suspected to play in the progression of prostate

cancer [82]. Beyond this critical difference, the results largely mirrored those from neo-

plasia. There was one novel read-through transcript reported, RPL7-LOC100130301,



21

Table 2.4: Prostate neoplasia fusions with sum of expected Zni jk values.

Upstream
Partner

Downstream
Partner

Supporting
Read Pairs

TMPRSS2 ERG 49.0
AZGP1 GJC3 28.0
TTY14 NCRNA00185 8.0
LOC728606 KCTD1 4.0
ZNF649 ZNF577 3.0
SMA4 GTF2H2B 2.5
LOC100134368 NME4 2.0
SYNJ2BP COX16 2.0
SMG5 PAQR6 2.0
PRKAA1 TTC33 2.0
LOC401588 CHST7 2.0
HARS2 ZMAT2 2.0
UQCRQ LEAP2 2.0
GRHL2 SNTG1 2.0
KLK4 KLKP1 2.0

and multiple previously reported read-throughs: AZGP1-GJC3, SPINT2-C19orf33,

DHRS1-RABGGTA, TMEM203-C9orf75, and IRF6-C1orf74. The large number of

potential fusions suggested by a naïve examination of discordant reads, over 100,000

in each dataset, underscores the complexity of the transcriptome and the often muddled

nature of experimentally-derived transcriptomic sequencing data. We were gratified that

our method was able to discard nearly all of these inauthentic fusions while retaining

those of biological importance.

Table 2.5: Prostate hyperplasia fusions with sums of expected Zni jk values.

Upstream
Partner

Downstream
Partner

Supporting
Read Pairs

AZGP1 GJC3 54.0
SPINT2 C19orf33 6.8
RPL7 LOC100130301 3.0
TMEM203 C9orf75 3.0
DHRS1 RABGGTA 3.0
IRF6 C1orf74 2.0



22

2.3.4 Discovery of Novel Ambiguous Fusions

To demonstrate the ability of our method to make new discoveries, we ana-

lyzed two publicly available datasets. The first was transcriptome sequencing of a set of

melanoma tumors and cell lines originally published by [5]. The second was sequencing

of Stratagene’s Universal Human Reference RNA (UHR), a reference composed of RNA

from ten cell lines originally published by [8]. Analysis of these data with our method

yielded numerous fusions, including all of the fusions reported by Berger and numer-

ous fusions known to be present in UHR including BCR-ABL1, BCAS4-BCAS3, and

GAS6-RASA3 (Table A.3). In addition, we found five fusion transcripts where some or

all of the read pairs mapping to them also mapped to other potential fusions (Table 2.6).

In each case, the ambiguity was due to genomic duplications. Some reads mapping to

the MYH6 side of the HOMEZ-MYH6 fusion also mapped to MYH6’s paralog, MYH7

(Figure 2.6). The remaining ambiguous fusions were due to recent segmental dupli-

cations. The fusion between CPEB1 and RPS17 was clearly a read-through, but was

confounded by the presence of another copy of RPS17 in an upstream segmental dupli-

cation (Figure 2.7). KIAA1267-ARL17A was similarly made ambiguous by multiple

copies of ARL17. The fusions between PPIP5K1-CATSPER2 and TRIM16L-FBXW10

were confounded by mappings to CATSPER2P1 and TRIM16-CDRT1. The sequence

of each fusion is available in Section A.1. These findings confirm that additional fu-

sions can be detected in tumors when ambiguously mapping read pairs are included in

the analysis.

2.4 Discussion

In this chapter, we have demonstrated a method to use discordantly and often

ambiguously mapping RNA-Seq read pairs to identify fusion transcripts. In doing so, we

bring the increasingly sophisticated methods employed to estimate transcript abundance

in the presence of multimapping reads to the problem of fusion discovery. In contrast to

previously proposed methods for fusion identification that focus on reads that map to the

junction between two genes [2], our method estimates fusion transcript abundances by

considering physical coverage over the entire length of the proposed fusion. In addition,



23

HOMEZ

HOMEZ

MYH7

MYH6

Chr 14, - strand

Chr 14, - strand

Figure 2.6: The fusion between HOMEZ and MYH6. Three mate pairs support this
fusion, but two also map to a fusion between HOMEZ and MYH7.

CPEB1

CPEB1

RPS17

RPS17

Chr 15, - strand

Figure 2.7: The fusion between CPEB1 and RPS17. A copy of RPS17 lies 2,000 bases
downstream of CPEB1, but another copy lies 400 kilobases downstream, as well.



24

Table 2.6: Fusions found in previously published datasets that are either partially or
completely supported by ambiguously mapping read pairs.

Fusion Samples Supporting
Read Pairs

Ambiguous
Read Pairs

HOMEZ-MYH6 UHR 3 2

KIAA1267- ARL17A
M000216 11 11
M010403 11 11

UHR 11 11

CPEB1-RPS17
M980409 3 3

MeWo 5 5

PPIP5K1- CATSPER2
M010403 4 3
M990802 17 13

TRIM16L-FBXW10 M010403 3 3

it employs several filters to minimize experimental artifacts. Finally, it does not require

that any single read sequence hit the point of fusion. Instead, it uses implied insert sizes

and known exon boundaries to determine the most likely point of fusion. This would

be a liability if a fusion transcript contained partial exons, but reported fusions to date

suggest that a vast majority of fusions do indeed involve the joining of whole exons

from different genes, the breakpoints occurring in introns and the splice sites remaining

unchanged [25].

Several avenues for future development are apparent from this work. Here, we

chose to use RefSeq transcripts as the reference against which reads are mapped. This

allowed us to avoid the issue of reads that map to splice junctions because the splice

junction sequence would be contiguous in the transcript sequence. However, it prevents

us from identifying transcripts that are produced by novel or aberrant splicing, which is

common in cancer [61], or are significantly altered by RNA-editing [71]. It may be fruit-

ful to combine the approach described here with methods that identify splice junctions

and expressed regions of the genome de novo [2, 77]. Additionally, fusion transcript

discovery shares many parallels with the problem of resolving genomic rearrangements,

especially the challenges of repetitive sequence. The adaptation of the methods devel-

oped here to genomic sequencing may prove useful in this related field.



25

2.5 Acknowledgements

We thank Eric Topol for his support and the clinical team at The Scripps Trans-

lational Science Institute for sample collections.

This work was supported by the National Institutes of Health [grant numbers

RO1-HG004962, 5U54HL108460, 1R21CA152613-01, CIRM DR1-01430, and CTSA-

1U54RR025204] and the California Institute for Regenerative Medicine [grant number

DR1-01430].

Chapter 2 (with Appendix A) was published in Bioinformatics, Volume 27, Issue

8, pages 1068–1075, 2011, M. Kinsella, O. Harismendy, M. Nakano, K. A. Frazer, and

V. Bafna, “Sensitive gene fusion detection using ambiguously mapping RNA-Seq read

pairs”. The dissertation author was the primary investigator and author of this paper.



Chapter 3

Combinatorics of the

Breakage-Fusion-Bridge Mechanism

3.1 Introduction

The breakage-fusion-bridge (BFB) mechanism was first proposed by Barbara

McClintock in 1938 to explain observations of chromosomes in maize [52, 53]. BFB

begins with a chromosome losing a telomere, perhaps through an unrepaired DNA break

or through telomere shortening. As the chromosome replicates, the broken ends of

each of its sister chromatids fuse together. During anaphase, as the centromeres of the

chromosome migrate to opposite ends of the cell, the fused chromatids are torn apart.

Each daughter cell receives a chromosome missing a telomere, and the cycle can begin

again (Figure 3.1a).

When the fused chromosome is torn apart during anaphase, it likely does not

tear exactly in the middle of the two centromeres. As a result, one daughter cell re-

ceives a chromosome with a terminal inverted duplication while the other receives a

chromosome with a terminal deletion. After many BFB cycles, repeated inverted dupli-

cations can result in a dramatic increase in the copy number of segments of the unstable

chromosome (Figure 3.1b).

BFB’s ability to amplify chromosomal segments suggests a role for the mecha-

nism in cancer. Gene amplification is common in tumors. A recent review identified 77

26



27

a. The BFB mechanism is a multiple
step process. First, a chromosome loses
a telomere (a). Then, the telomere-
lacking chromosome (b) replicates. The
sister chromatids lacking telomeres fuse
together (c). During anaphase, the cen-
tromeres separate, forming a dicentric
chromosome (d). As the centromeres mi-
grate to opposite ends of the cell, the chro-
mosome is torn apart, and each daughter
cell gets a chromosome lacking a telom-
ere (e).

b. After telomere loss (a), sister chromatid
fusion (b), and centromere separation (c),
the dicentric chromosome may not break
in the center of the two centromeres (d). In
this case, the break was between the green
and cyan segments, so one daughter cell
will have a a deletion of those segments
while the other will have an inverted du-
plication. Multiple rounds of inversion
and duplication can lead to amplification
of chromosomal segments (e).

Figure 3.1: The Breakage Fusion Bridge mechanism.

genes whose amplification is implicated in cancer development [65]. Multiple lines of

evidence indicate that BFB may be responsible for much of this amplification. Telomere

dysfunction and crisis is associated with tumorigenesis [3]. Such dysfunction is consis-

tent with the initiation and continuation of BFB cycles. Some tumors also display the

cytogenetic hallmarks of BFB: chromosomes that stretch across spindle poles during

anaphase, dicentric chromosomes, and homogeneously staining regions. Thus, an im-

proved understanding of BFB may shed light on how genomic instability leads to tumor

formation and progression.

Observing BFB through classical cytogenetic techniques can be difficult and

only provides coarse detail. Recent studies have begun to apply modern methods to the

problem of detecting BFB and elucidating its role in generating genomic aberrations.

Kitada and Yamasaki performed FISH and array CGH on a lung cancer cell line and

showed that the pattern of amplification and rearrangement they observed was consistent

with BFB [37]. Later, Bignell et al. sequenced breakpoints in a breast cancer cell line

and confirmed that the copy count and breakpoint patterns on 17q were consistent with



28

a BFB model, purportedly the first demonstration of a sequence-level hallmark of BFB

in human cancer [7].

These studies, among others, illustrate the promise of new methods for gaining a

more complete understanding of BFB. However, making observations that are consistent

with a model does not allow one to conclude that the model is correct. Moreover, without

a precise definition of the model under consideration, an investigator cannot use data to

refine the model and may succumb to bias when considering evidentiary support for the

model.

To address these concerns, we present perhaps the first formal description of the

BFB mechanism. We use this formalization to consider the range of amplification pat-

terns that can be produced by BFB. The underlying algorithmic problems are challeng-

ing and of unknown complexity. We develop heuristic algorithms and rules to determine

if a given pattern is consistent with BFB, based on, among other observations, a tight

connection between BFB patterns and trees with certain symmetries. The methods make

the problems tractable for practical instances.

Using these methods, we show that BFB-associated amplification patterns are

common. In fact, if some imprecision is allowed, a majority of possible patterns are

consistent with BFB. This suggests that observing that an amplification pattern could

have been produced by BFB is not conclusive evidence that BFB produced the amplifi-

cation.

3.2 Formalizing the BFB Schedule

Our first task is to describe a model of the breakage-fusion-bridge mechanism

that is both consistent with its biological features and is amenable to computational tech-

niques. We begin by considering a chromosome arm that has lost its telomere. Suppose

we label potentially unequally sized intervals along this chromosome arm A,B,C,... from

the telomeric end to the centromere. Then, we trace the fate of these intervals through a

BFB cycle.

For illustration, suppose that the chromosome arm, after loss of the telomere,

is composed of five intervals, ABCDE. Then, the chromosome is analogous to Figure



29

3.1b(a) where A,B,C,D,E correspond to the magenta, cyan, green, red, and blue seg-

ments, respectively. After replication, fusion, and centromere separation, the whole arm

has been duplicated to form a palindrome, EDCBAABCDE, as in Figure 3.1b(c). This

palindromic stretch of DNA is then torn apart. Unless it breaks in the center, between

the two A segments, one daughter cell will have a deletion and the other will have an

inverted duplication. In Figure 3.1b(d), one daughter cell gets CDE while the other gets

BAABCDE. Thus, BFB cycles can be thought of as operations on a string of chromo-

somal segments. The only significant restriction this creates is that breaks must occur

at segment boundaries, but this is not a loss of generality since the segment boundaries

can be defined freely. Moreover, BFB breakpoints may be reused in subsequent BFB

cycles [69], so it is likely useful to keep track of candidate breakpoints.

We are now ready to describe our model. Let Σ (|Σ| = k) be an alphabet where

each symbol corresponds to a chromosomal segment, and the ordering of Σ corresponds

to the ordering of the segments from telomere to centromere. Let xt denote the string

representing chromosomal segments after t BFB operations. Before any BFB operation,

the string is just the initial segments of the chromosome in order. Therefore, x0 consists

of all k lexicographically ordered characters from Σ. Let x−1 be the reverse of string x,

pref(x) be a prefix of the string x, and suff(x) be a suffix of the string x.

xt =

{
pref(x(t−1))−1x(t−1) if inverted duplication

suff(x(t−1)) if deletion
(3.1)

Define a BFB-schedule as a specific sequence of BFB operations, that is, in-

verted prefix duplications and prefix deletions. Define x as a BFB(x0)-string if it can

be generated from x0 through a series of BFB operations. For ease of notation, x0 is

implied, and we refer to x being a BFB-string. The following simple lemmas establish

basic properties and ensure that we do not need to worry about deletions.

Lemma 1. Let x be a BFB-string. If x0 is a suffix of x, then x can be obtained from x0

using only inverted prefix duplications.

Proof. Suppose x is produced by a BFB schedule that includes a prefix deletion. The

deletion must not delete any characters from the original string x0 because if it did, there



30

would be no way to subsequently generate those characters, and x0 would not be a suffix

of x.

If a prefix deletion removes some of the characters produced by an inverted

prefix deletion, then the deletion’s affect can be achieved by making the inverted prefix

shorter. If the deletion removes all of the characters produced by an inverted prefix

deletion, its affect can be achieved by omitting the inverted prefix deletion.

A prefix deletion will remove all or some of the characters produced by at least

one previous prefix inverted duplication and all of the characters produced by any du-

plications after that inverted prefix duplication but before the prefix deletion. If the

deletion is removed from the BFB schedule and the appropriate inverted duplications

are removed or shortened, then the final string produced will remain the same.

Lemma 2. Suffix Lemma: Any suffix of a BFB-string is itself a BFB-string.

Proof. A suffix of x can be made by a prefix deletion, which is a BFB operation. Since

x can be achieved via BFB operations than so can a suffix of x.

3.3 Algorithms for BFB

We begin with a simple problem: Given string x of length n, determine if x is a

BFB-string. This can be solved in O(n) time using the following algorithm:

Algorithm CheckBFB(x)

Input: String x (|x|= n) containing suffix x0 (|x0|= k)

Output: True if x is a BFB-string

1. (∗ Find the longest even palindrome beginning at each character in x ∗)
2. for (1≤ i < n− k)

3. P[i] =max{` | x[i . . . i+2`] is palindromic})
4. i = 1

5. while (i < n− k)

6. if (P[i] = 0) return false

7. i = i+P[i]

8. return true



31

Theorem 3. Algorithm CheckBFB checks if x is a BFB-string in O(n) time.

Proof. (Sketch) A string is a BFB-string iff it can be formed by an inverted prefix du-

plication from another BFB-string or it is the original string, x0. An inverted prefix du-

plication forms an even palindrome at the beginning of a string. CheckBFB finds such

a palindrome and then, in effect, recurses on the string that ends at that palindrome’s

center. Lemma 2 guarantees that that string must be a BFB-string if x is a BFB-string.

If a string does not begin with a palindrome, and it is not x0, then it is not a BFB-string.

A linear time algorithm for finding maximum palindrome sizes is described

in Appendix B. The remainder of CheckBFB visits each character at most once, so

CheckBFB is in O(n).

For illustration, consider the palindrome array P1 for the string x1 = BAABC-

CBAAAABC. Starting with i = 1, we can advance i as 1→ 3→ 6→ 10→ 11→ True.

For x2 = BBCCCCBBBAABC, we advance i as 1→ 5→ 6→ False.

i: 1 2 3 4 5 6 7 8 9 10 11 12 3

x1 B A A B C C B A A A A B C

P1[i] 2 4 3 2 1 4 3 2 1 1 0 0 0

x2 B B C C C C B B B A A B C

P2[i] 4 3 2 1 1 0 1 1 2 1 0 0 0

Thus, if we are given the full ordering of segments of a chromosome arm, we

can determine if BFB could have produced that ordering. However, such complete

information is often not available from current technologies. For example, an array

CGH or sequencing experiment may only give the count of each segment, not the order.

So, we would like to determine if a pattern of copy counts of chromosomal segments

could have been produced by BFB. Formally, we define a sequence of positive integer

copy counts from telomere to centromere along a chromosome arm as a count-vector

(~n = [n1,n2, ...,nk]). We say ~n admits a BFB-schedule if there is some BFB-string x

whose character counts equal~n. For example, the count vector [6,3,5] admits the BFB

schedule

ABC→CBAABC→CCBAABC→ AABCCCCBAABC→ AAAABCCCCBAABC



32

In this case, x4 has 6, 3, and 5 of characters A, B, and C. We now define our problem:

The BFB-count-vector Problem: Given a count vector~n, does~n admit a BFB schedule?

BFB-Pivot Algorithm: Each inverted prefix duplication reverses the order in which

characters in the BFB-string appear. Consider the BFB schedule ABC→ CBAABC→
BCCBAABC. From left to right, the characters appear in proper lexicographical order,

then reversed, then proper again. And each character is preceded by either itself or

the next character higher or lower depending on whether the string is increasing or

decreasing. With this knowledge, we can create a simple algorithm that adds single

characters to the beginning of a candidate BFB-string until either a string with character

counts satisfying~n is found or one is shown not to exist.

Algorithm BFB-Pivot

Input: A count vector~n, string s

Output: True if s can be extended via BFB operations to satisfy~n

1. if not CheckBFB(s)

2. then return false

3. if s satisfies~n

4. then return true

5. if count of f irstChar(s) in s is even

6. then nextChar← nextLetter( f irstChar)

7. else nextChar← prevLetter( f irstChar)

8. for char ∈ {nextChar, f irstChar}
9. if count of char in s 6= n[char]

10. then s′ = char+ s

11. if BFB-Pivot(~n, s′)

12. then return true

13. else continue

14. return false

Lemma 4. BFB-Pivot(~n,x) returns True if and only if x can be extended via BFB oper-

ations to a string with counts satisfying~n.



33

Figure 3.2: An illustration of BFB-Pivot searching for candidate BFB strings.

Proof. (Sketch) As we note above, segments of a BFB-string oscillate between “in-

creasing” and “decreasing”. So, when a character is prepended to an existing candidate

BFB-string, it must either follow the existing trend, or it can be the beginning of a new

inverted prefix duplication. In the latter case, another instance of the current first char-

acter of the string will be prepended.

BFB-Pivot attempts to prepend both eligible characters to the existing string until

either an acceptable string is found or the current string fails because it is not a BFB-

string or the count of a character exceeds the count in the count vector. By checking all

such candidate BFB-strings, BFB-Pivot is guaranteed to find a BFB-string satisfying ~n

if such a string exists.

It is useful to consider a graphical representation of BFB-Pivot, shown in Figure

3.2. As nodes of the same character are added, the color of the added node oscillates.

For each leftmost node, two possible edges are considered, a left edge (←) and either

an up (↖) or down (↙) edge, depending on the color of the node. Therefore, the worst

case complexity of BFB-Pivot is O(2n) where n = ∑ni. Note that the input size of the

problem is only O(k logn), so the output of a consistent BFB string as a certificate of

correctness is already exponential in the input size.



34

BFB-trees We will now develop a second algorithm for solving the BFB-count-vector

problem based on the equivalence between BFB-strings and trees with special symme-

tries. This new algorithm will have running times orders of magnitude lower than those

of BFB-pivot in practice. First, we will prove some properties of BFB-strings.

Each BFB-string has a “lowest” character. For example, in the BFB-string

CCCBBCCBAAAAAABC, that character is C. We will call this the base character.

Base characters appear in pairs within a BFB-string, with all other characters appear-

ing within these pairs. For example, the above BFB-string can be broken into CC,

CBBC, and CBAAAAAABC. We will call these substrings bounded by base characters

return-blocks. If the count of the base character of a BFB-string is even, then the entire

BFB-string will be composed of return-blocks.

Lemma 5. Every return-block is a palindrome.

Proof. First, we will show that the first/rightmost return-block (RB) is a palindrome.

Then, we will show that if all RBs to the right of a given RB are palindromes, then that

RB is a palindrome as well, and we will have our result by induction.

BFB-strings are produced by inverted prefix duplications. As a result, they are

composed of palindromes such that the left edge of one palindrome is the center of a

subsequent palindrome. Consider the rightmost RB of a BFB-string. It is flanked by

two base characters. The only palindrome these characters could be a part of is one

centered between them, so the rightmost RB is a palindrome.

Now consider an RB where all RBs to the right are palindromes. Either a palin-

drome center lies within the RB or no centers lie within the RB. In the latter case, the

RB is the reverse of a palindromic RB to the right, and hence a palindrome. In the for-

mer case, we have a situation similar to that of the rightmost RB: the left base character

can only be part of a palindrome centered at the center of the RB. Thus, the RB is a

palindrome.

Lemma 6. Every return-block is a BFB-string.

Proof. The rightmost return-block is a BFB-string by the Suffix Lemma. Now suppose

we have an RB such that all RBs to the right are BFB-strings. Either a palindrome center

lies within the RB or no centers lie within the RB. In the latter case, the RB is the reverse



35

of an RB to the right. By Lemma 5, that RB is a palindrome, and by assumption, it is a

BFB-string. So, the RB must be a BFB-string as well.

If there are palindrome centers within the RB, then there is a palindrome with

a left edge within the RB. The portion of that palindrome that lies within this RB is a

suffix of an RB to the right, and hence is a BFB-string. Subsequent BFB operations that

extend this suffix to the full RB still results in a BFB-string.

Now consider a count-vector~n that admits a BFB-schedule and the graph repre-

sentation of the resulting BFB-string, as in Figure 3.2. Denote the layers of the graph

corresponding to the characters as σ1,σ2, . . . ,σk. A count-vector ~n that admits a BFB-

schedule and has a final count of 2 yields a return-block; we denote this an RB-BFB-

schedule. A given count-vector may not end in a 2 and thus may not yield a BFB-string

that is a single return-block. But, we can transform the BFB-string into a return-block

through a single BFB operation:

Lemma 7. The count-vector~n = [n1,n2, . . . ,nk] admits a BFB schedule iff [2n1, 2n2, . . . ,

2nk, nk+1 = 2] admits a BFB-schedule.

Proof. If [n1,n2, . . . ,nk] admits a BFB-schedule, then adding a final inverted duplication

of the entire string will achieve [2n1,2n2, . . . ,2nk,2]. If [2n1,2n2, . . . ,2nk,2] admits a

BFB-schedule, the corresponding BFB-string is composed of one return block and is

thus a palindrome. Therefore, it has a suffix with counts [n1,n2, . . . ,nk], which by the

Suffix Lemma is a BFB-string.

As a result, we can focus on RB-BFB-schedules without loss of generality.

Lemma 6 shows that BFB-strings have a recursive structure that allows us to represent

them as trees (Figure 3.3b,c), Consider a BFB-string for a count-vector ~n =

[n1,n2, . . . ,nk], converted into an RB-BFB-string for [2n1,2n2, . . . ,2nk,nk+1 = 2]

(Fig. 3.3b). Create a root r of the tree (with label corresponding to σk+1). The path

through the BFB graph starts at σk+1, traverses other return-blocks at level k, and finally

returns to σk+1. Each return-block at level k is the root of a subtree with r as its parent.

We use this idea to define rooted labeled trees. Each node is labeled so all

nodes an identical distance from the root have the same label. For a node v with 2`+1

(odd) children, number the child nodes as v−`, . . .v0, . . . ,v`. For a node with 2` children



36

S:	
  BBAAAABBAABC	
  

σ1=A	
  

(a)	
  

(b)	
  

σ2=B	
  

σ3=C	
  

pairs	
  

(c)	
  

6	
  

5	
  

1	
  

n	
  

12	
  

10	
  

2	
  

2	
  

2n	
  

6	
  

5	
  

1	
  

1	
  

ν	
  

Figure 3.3: BFB-tree generated from an RB-BFB-schedule. (a) A graph for
BBAAAABBAABC that supports [6,5,1]. (b) A single BFB operation begets an RB-
BFB graph for [12,10,2,2]. Dotted ellipses denote the nodes of a BFB-tree. (c) A
BFB-tree for the BFB-string, with 3 levels. The single node at level 3 has 5 children,
ordered as {−2,−1,0,1,2}. Pairs are illustrated at levels 1, and 2.



37

the child nodes are labeled v−`, . . . ,v−1,v1, . . . ,v`; there is no v0 node. T (v) denotes

the subtree rooted at v. Define a labeled-traversal of T (r), as the string obtained by

traversing the labels in an ordered, depth-first-search as given below:

Algorithm LabelTraverse(T(r))

Input: A labeled tree rooted at r

Output: The string given by a labeled traversal

1. Let σ = Label(r)

2. Let S1 = ε

3. for (each child r j ordered from least to max)

4. S1 = S1 ·LabelTraverse(T (r j))

5. return σS1σ

A labeled tree is mirror-symmetric if for all nodes v, LabelTraverse(T (v))=

LabelTraverse(T (v))−1. In other words, ‘rotation’ at v results in the same tree. The

labeled traversal of a tree T visits each node exactly twice, outputting its label each

time. Define a partial order on the nodes of T in which u < v if the last appearance of

u precedes the first appearance of v in the labeled traversal. For any u < v, let T<(u,v)

denote the subtree of T containing the LCA of u,v and all nodes w s.t. u < w < v.

We call (u,v), with u < v, a label-pair if u and v have the same label σ , and no node

in T<(u,v) has label σ . A labeled tree is pair-symmetric if for all label-pairs (u,v),

T<(u,v) is mirror-symmetric. Finally, we say a labeled tree has long-ends if starting

from the root, and following the least numbered node at each step, we can reach each

layer k,k−1, . . . ,2,1.

Definition 1. A BFB-tree is a labeled tree with long-ends, mirror-symmetry, and pair-

symmetry.

Theorem 8. Let T (r) be a BFB-tree rooted at r. Then LabeledTraversal(T (r)) is an

RB-BFB-string.

Proof. Recall that a BFB-string is a string composed of overlapping palindromes such

that the left edge of one palindrome is the center of the subsequent palindrome. Because

T (r) is a BFB-tree, it is mirror-symmetric. Thus, the label traversal beginning from r



38

will yield a string composed of nested palindromes. And, at any level of the tree, the

label traversal will yield a set of concatenated palindromic return-blocks.

Because T (r) has long-ends, we know that the label traversal of each return-

block does not contain any characters lexicographically higher than its initial ordered

substring. For example, the return-block DCBBCCBBCD begins with BCD and hence

cannot contain any A’s. So, if there are two consecutive return-blocks such that the high-

est character in the return-block on the left is not higher than the highest character in the

return-block on the right, there is a palindrome centered between the two return-blocks

that extends to another palindrome center on the left. For example, if we have DCBBC-

CBBCDDCBAABCD, we have two return-blocks: DCBBCCBBCD and DCBAABCD.

And, between them, there is the palindrome BCDDCB whose left edge is the center

of the palindrome CBBC. So, we are able to find a set of appropriately overlapping

palindromes.

On the other hand, if there are two consecutive return blocks such that the highest

character in the return-block on the left is higher than the highest character in the return-

block on the right, pair-symmetry guarantees that there is still a palindrome that extends

left to another palindrome center. For example, the string CBAABCCBBCCBAABC

is composed of three return-blocks: CBAABC, CBBC, and CBAABC. Pair-symmetry

ensures that there is a palindrome that reaches to the center of the leftmost return-block,

in this case ABCCBBCCBA.

Thus, the structure of T (r) guarantees that its label traversal is composed of

overlapping palindromes and is thus a BFB-string.

Theorem 9. The tree TS derived from an RB-BFB-string S is a BFB-tree.

Proof. By Lemma 5, we have that each return-block is palindromic. This ensures that

the label traversal of the tree rooted at any node is palindromic, and thus the TS has

mirror-symmetry. By Lemma 6, we have that each return-block is a BFB-string. By

definition, a BFB-string begins with all characters that appear in the string in lexico-

graphical order. Thus, from any node v in TS, we can follow edges to the least- num-

bered child to reach the deepest node in TS(v). Hence, TS has long-ends. Finally, if there

are whole return-blocks between two consecutive instances of the same character in S,



39

then the concatenation of those return-blocks must be palindromic. Otherwise, no palin-

drome could include both instances of the character. Thus, TS has pair-symmetry.

The BFB-Tree Algorithm: Given a count-vector ~n = [n1,n2, . . . ,nk] (∑i ni = n), the

BFB-Tree algorithm builds a BFB-tree on n+1 nodes, with the count of nodes in each

layer given by ~ν = [n1,n2, . . . ,nk,1]. We start with the single node BFB-tree T at level

k+1, and extend it layer by layer. In each step j, 1≤ j≤ k, we assign n j children to the

leaves of the current tree T , maintaining BFB-properties.

Denote the children of node v by the set Cv = {v−`, . . . ,v`}. Mirror-symmetry

ensures that for each 0 ≤ i ≤ ` , the subtrees T (v−i) and T (vi) are identical. Thus, it

can be said the subtree T (v−i) is dependent on the subtree T (vi). We maintain this

information by defining multiplicity, I(v), for each node as follows: I(r) = 1 for the root

node r. For nodes v with children v−`, . . . ,v`, set I(v j)= 2I(v) for `≥ j > 0, I(v0)= I(v),

I(v j) = 0 otherwise. That is, for child nodes v j with a corresponding dependent child

v− j we assign a multiplicity of double the parent’s multiplicity. For nodes with an

odd number of children, there will be a child v0 without a corresponding dependant

child node. This node is assigned the same multiplicity as the parent node. Finally,

for each dependent node pair, one is assigned a multiplicity of zero since, by mirror-

symmetry, it is completely defined by its dependent whose multiplicity has doubled.

Valid assignments at level j must then satisfy the diophantine equations ∑v Iv = n j+1,

and ∑v I(v)|Cv|= n j.

Algorithm BFB-Tree(T, j, I)

1. if j = 0, return CheckBFB(LabeledTraversal(T))

2. for each assignment Cv s.t. ∑v I(v)|Cv|= n j

3. Extend T according to the assignment

4. Adjust I

5. if (Construct_BFB_tree(T, j−1, I)) return true

6. return false

Note that once a node is dependent (I(v) = 0), its descendants remain dependent. Fur-

ther, the multiplicity of the node is a power of 2, and is doubled each time an independent

node is a non-central child of its parent. As the multiplicities increase, the number of



40

valid assignments decreases quickly, improving the running time in practice. Further

analysis of the algorithm is presented in Appendix .

Rules for BFB: In addition to the two algorithms for solving the BFB count-vector

problem presented above, it is also possible that some combinatorial rules completely

define the set of count-vectors that admit a BFB schedule. We present seven conditions

below that can guarantee that a BFB-schedule exists or does not exist for a subset of

possible count-vectors.

Consider a count-vector ~n = [n1,n2, . . . ,nk]. We use BFB(~n) to denote that ~n

admits a BFB schedule.

Lemma 10. [Subsequence Rule] Let~n′ be a subsequence of~n. BFB(~n)⇒ BFB(~n′).

For example, if (6,4,6,8) admits a BFB schedule, then so must (6,4,6), (6,6,8),

(6,4,8), (4,6,8), etc.

Proof. As discussed above, a BFB string is composed of palindromes that overlap so

that the end of one palindrome is the center of the next palindrome. If all instances of a

particular character are removed, the palindromes will still exist and have this property.

So, the string will still be a BFB string. And, the character counts associated with the

string will be a subsequence of the counts of the original string.

Lemma 11. [Rule of One] If ∃ i < j ≤ k such that ni = 1, n j > 1, then ¬BFB(~n).

Proof. In order for the jth character to achieve a count greater than one, it must be

part of a prefix inversion/duplication. If the jth character is in the prefix, then so is

the ith. But, the ith character has a count of one, so it can never be part of a prefix

inversion/duplication.

Lemma 12. [Odd-Even Rule] If ∃ i < j ≤ k such that ni is odd and n j is even, then

¬BFB(~n).

Proof. We will consider the case where k = 2 and n1 is odd and n2 is even. So, we start

with AB and need to get an odd count of As and an even count of B’s.



41

We will show that, in a string yielded by any BFB schedule, the number of A’s

to the right of any B is even. First consider the trivial case where the B in question is the

rightmost B. Then the number of A’s to the right of that B is zero, which is even.

Now, suppose there is only one run A’s to the right of the B in question, B1. Then

the string is

B1(B)m(A)nB2

where m >= 0 and (A)n means a string of n A’s.

In this case, B1 can only have been generated after a copying of B2. When B2

was copied, it doubled the count of A’s before B2. So, n must be even.

Finally consider the case when there are arbitrarily many runs of A’s after the

given B, and all but the leftmost run contain an even number of A’s

. . .B1(B)n(A)k(B)n(A)2i(B)` . . .(A)2 jB2

In this case B1 could only have been generated after a copying of a run of B’s to

the right of (A)k. This copying doubled the previous number of A’s, so k is even. Since

k is even and the counts of all other runs of A’s are even, then the total count of A’s to

the right of B1 is even. The result that the number of A’s to the right of any B is even

then follows by induction.

Similar reasoning can establish that the count of B’s to the right of any A is odd.

When a BFB schedule begins, A can be duplicated arbitrarily many times before B is

duplicated for the first time, yielding

B(A)mB

In this case, the count of B’s to the right of any A is 1, which is odd. Now, consider the

case where there are only two runs of B’s after a given A. One of those runs must be the

original B, so we have

. . .A1(A)k(B)n(A)mB

Using the reasoning above, n must be even because A1 could only have been

generated after a copying of an A from (A)m, which would have doubled the B’s leading

to the run (B)n.



42

In the case where there are arbitrarily many runs of B’s after an A, and all of the

runs have an even number of B’s except the leftmost run and the rightmost run of length

1. Then, the count of B’s to the right of every A is odd.

Now, return to the question of whether a BFB schedule can create a final string

with an odd number of A’s and and even number of B’s. The final string ends in either

A or B. If it ends in A, then the count of B’s is odd because the count of B’s to the right

of the last A must be odd. But, we want the count of B’s to be even, so the string cannot

end in A. If the string ends in B, then the total count of A’s must be even, but we want

the count of A’s to be odd. So, there is no string resulting from a BFB schedule where

the count of A is odd and the count of B is even.

By using the Subsequence Rule, we can extend this result to conclude that no

odd count can precede an even count in a count-vector achievable by BFB.

Lemma 13. [Rule of Four] Suppose, all counts in ~n are even. Let i be the index of the

first count that is not divisible by four, that is 4 - ni and ∀ j < i 4| j. Let f` be the number

of times that divisibility by four changes in ni, . . . ,n`. If f` >
n`
2 then ¬BFB(~n).

Proof. Suppose that f` >
n`
2 . Consider only counts that come before n` so that the

character corresponding to n` is the base character. Then, the corresponding BFB-string

will be composed of n`
2 return-blocks. By Lemmas 5 and 6, each return-block is a

palindrome and a BFB-string. By the Suffix Lemma, the right half of each return-block

is also a BFB-string. The Odd-Even Rule tells us that no odd count precedes an even

count in each half-return-block. So, no count not divisible by four precedes a count

divisible by four within a return-block. Thus, after each return-block, the number of

times that divisibility by four changes in the remaining counts can be decremented by at

most one.

Lemma 14. [Two Reduction] If ni = 2 for some i. Then,

BFB(~n)⇔ BFB([1
2n1, . . . ,

1
2ni−1])

∧
BFB([nk−1,nk−1−1, . . . ,ni−1])

Proof. Consider a set of counts a,b,2,d,e that starts with the string ABCDE. At some

point, the C must be part of a prefix inversion/duplication so that it can achieve a count

of 2. After that, no C can be part of any subsequent prefix inversion/duplication, as

that would increase its count above 2. At that point, all A’s and B’s will be after a C,



43

so no A or B can be part of a subsequent prefix inversion/duplication either. And, the

duplication of the C would have also duplicated all existing A’s and B’s. So, a BFB

schedule yielding a
2 ,

b
2 must be part of the overall BFB schedule yielding a,b,2,d,e.

Now, if d > 1 or e> 1, then D and E must also be duplicated the first time C is du-

plicated. If they were not, then the string after the C duplication would be C[AB]*CDE,

and all D’s and E’s would be after a C and therefore ineligible to be part of any prefix

inversion/duplication. So, the string must be EDC[AB]*CDE, and subsequent prefix

inversion/duplications will not extend past the final ED. The subsequent BFB schedule

must achieve counts of e−1 and d−1 for E and D, respectively.

Lemma 15. [Four Reduction] If ∃ i < j < k s.t. ni = 4, nk = 4, and n j > 4. Then

BFB(~n)⇒ BFB(n1
2 ,

n2
2 , . . . ,

ni
2 ).

Lemma 16. [Odd Reduction] Suppose all counts in ~n are odd. Then, BFB(~n) ⇒
BFB(reverse(~n−~1)).

We also have a sufficient condition for BFB(~n).

Lemma 17. [Count Threshold Rule] BFB(~n) if for all i ni is even, and ni > 2(i−1).

Once the rules have been applied, we apply BFB-Pivot or BFB-Tree. Note that

some of these rules are reductions, that is, they reduce an instance of the count-vector

problem to simpler instances. These can be applied multiple times. More detail is

available in Appendix B.

3.4 Results

Performance on realistic data-sets Using practical sized examples, we investigated

the performance of the 3 approaches to checking BFB: rules, BFB-Pivot, and BFB-Tree.

We applied the BFB rules to all ∑
5
i=1 20i = 3,368,420 count-vectors with k≤ 5 and each

ni ≤ 20. Remarkably, the rules were able to resolve 3,034,440, or 90%, of the count-

vectors. As BFB-Pivot and BFB-Tree are both exponential time procedures, this check

helped speed up the entire study.



44

Nearly all of the count-vectors that the rules could not resolve admitted a BFB

schedule (Table 3.1), so BFB-Pivot and BFB-Tree could usually halt once an acceptable

BFB string was found rather than exhausting all possible paths or trees.

Table 3.1: Method and result for the count-vectors used to analyze algorithm speed.

Rules Tree/Pivot Total
Admits BFB 170,576 333,840 504,416 (15.0%)

Not BFB 2,863,864 140 2,864,004 (85.0%)
Total 3,034,440 333,980 3,368,420

Fraction (90.1%) (9.9%)

We ran BFB-Pivot and BFB-Tree on each of the 333,980 count-vectors that could

not be resolved by rules. The running times plotted against n for each algorithm is

shown in Figure 3.4. As expected, both algorithms’ worst-case running times grew

exponentially with n. However, the worst case running times for BFB-Tree were orders

of magnitude lower than for BFB-Pivot. For example, the longest running count-vector

for BFB-Tree was [20,3,19,19,19] which took 10 seconds to complete. The longest

running count-vector for BFB-Pivot was [20,18,20,20,6] which took 23,790 seconds to

complete.

Figure 3.4: Pivot (left) and tree (right) algorithm running time. Each point refers to the
size and running time of a specific example. The line represents median running time.
Note that since the rules excluded nearly all count-vectors that did not admit a BFB
schedule, almost all points are blue.



45

Consequences For Experimental Interpretation Consider experimental data, such

as array CGH or read mapping depth of coverage, that reveal the copy counts of seg-

ments of a chromosome arm, or in the terminology of this chapter, a count-vector. If

this count-vector admits a BFB schedule, one might infer from this observation that

BFB occurred.

On its face, this is a reasonable conclusion. Only 15% of the count-vectors

with k ≤ 5 admit a BFB schedule. If we expand that analysis to the 64,000,000 count-

vectors with k = 6 and ni ≤ 20, only 7.3% admit a BFB schedule. So, it is plausible that

observing a count-vector that admits a BFB schedule is much more likely if BFB did

in fact occur. However, using our model of BFB, we show that this inference is usually

incorrect.

Note first that experimentally-derived count-vectors are often imprecise. Exper-

iment typically provides a small range of values for each element in the count-vector

rather than a single definite value. This is a result of the imprecision of the experimen-

tal method as well as potentially high levels of structural variation or aneuploidy in the

genome being studied. Therefore, the observation made about the data may not be that

a particular count-vector admits a BFB schedule but that there is a count-vector that

admits a BFB schedule “nearby”, that is, within experimental precision of the observed

count-vector.

Further, the uncertainty in a count tends to increase with the magnitude of the

count. It is easier to distinguish between copy counts 1 vs. 2 than between 32 vs. 33.

For simplicity, we assume that the relationship between uncertainty and magnitude is

linear and use the Canberra distance [18] to compare count-vectors:

d(x,y) = ∑
i

|xi− yi|
|xi|+ |yi|

(3.2)

For each of the 64,000,000 count-vectors with 6 segments, we searched for the nearest

count-vector that admits a BFB schedule and recorded the distance to that count-vector.

For the 7.2% of count-vectors that admit a BFB schedule, the distance was, of course,

zero. The distribution of distances is shown in Figure 3.5.

The results are striking. Consider the count-vector [14,7,18,16,9,12], which

does not admit a BFB-schedule. The nearest count-vector that does is [14,7,19,17,9,13],



46

Figure 3.5: Distribution of distances to nearest count-vector admitting a BFB schedule.

Table 3.2: Percentage of count-vectors at least as close to a count-vector admitting a
BFB schedule as the shown count-vector pair.

Distance (%ile) Count-Vector Nearest Admitting BFB
.097 (50) [14,7,18,16,9,12] [14,7,19,17,9,13]
.129 (60) [7,13,6,4,19,12] [8,14,6,4,20,12]
.192 (70) [9,7,7,8,2,14] [8,8,8,8,2,14]
.362 (80) [16,17,14,18,1,19] [16,18,14,18,2,19]
.458 (90) [20,1,7,3,10,6] [20,2,7,3,11,7]
.566 (95) [15,8,8,1,15,2] [16,8,8,2,15,3]
.889 (99) [9,1,5,9,1,15] [10,2,5,9,3,15]

at a distance of .097. Half of all count-vectors tested were at least this close to a count-

vector admitting a BFB-schedule. So, if the precision of the experimental method em-

ployed is such that it can not reliably discern between a copy count of 12 and a copy

count of 13 or a copy count of 18 and a copy count of 19, then half of the count-vectors

we examined would appear to admit a BFB schedule. Similarly, if the method can not

reliably discern a copy count of 9 and and 8 or 7 and 8, then 70% of count-vectors will

appear to admit a BFB schedule. Figure 3.2 has distances and and example vector pairs

for additional percentiles.

Thus, even with small amounts experimental uncertainty, a majority of count-

vectors admit a BFB schedule, so mechanisms other than BFB are likely to produce

count-vectors that look like they were created by BFB. Therefore, finding a count-vector



47

consistent with BFB should only slightly increase one’s belief that BFB occurred.

On the other hand, observing a count-vector that is distant from any BFB admit-

ting count-vector, provides strong evidence that BFB was not the cause of the amplifica-

tion. The likelihood of observing a count-vector that is distant from a count-vector that

admits a BFB schedule is low in any case, and is surely even lower if the chromosome

arm underwent BFB.

3.5 Discussion

We present perhaps the first formalization of the BFB mechanism. Our main re-

sult is that BFB can result in a surprisingly broad range of amplification patterns along

a chromosome arm. Indeed, for most contiguous patterns of amplification, it is possible

to find a BFB schedule that yields either the given pattern or one that is very similar. As

a result, one must be cautious when interpreting copy count data as evidence for BFB.

The presence of amplification at all, or the presence of a terminal deletion from a chro-

mosome arm can both suggest the occurrence of BFB, though they may not distinguish

well between BFB and other amplification hypotheses. However, unless the counts are

known precisely, a specific pattern of copy counts along the chromosome arm cannot

offer compelling support for BFB.

This study suggests several avenues for future work. There are other types of

evidence that can be deployed to argue that BFB has occurred. FISH can reveal, to

some extent, the arrangement of segments along a chromosome arm. Next-generation

sequencing can reveal the copy counts of breakpoints between rearranged chromosomal

segments and may allow for a fuller characterization of a chromosome arm. Methods

similar to those presented in this chapter may prove useful for evaluating and inter-

preting these different types of evidence. Modeling may also be helpful for evaluating

proposed refinements to models of BFB.

Finally, we have outlined two algorithms for determining whether a count-vector

admits a BFB schedule, but neither is polynomial in reasonable measures of the input

size. This problem, along with related problems, is interesting as computational prob-

lems per se. We hope in the future to have either faster solutions to these problems or



48

proofs of hardness.

3.6 Acknowledgements

This research was supported in part by grants from the NIH (5RO1-HG004962)

and the NSF (CCF-1115206).

Chapter 3 (with Appendix B) was published in the Journal of Computational Bi-

ology, Volume 19, Issue 6, pages 662–678, 2012, M. Kinsella and V. Bafna, “Combina-

torics of the Breakage-Fusion-Bridge Mechanism” and was presented at the 16th Annual

International Conference on Research in Computational Molecular Biology (RECOMB

2012). The dissertation author was the primary investigator and author of this paper.



Chapter 4

An algorithmic approach for

breakage-fusion-bridge detection in

tumor genomes

4.1 Introduction

Genomic instability allows cells to acquire the functional capabilities needed to

become cancerous [26], so understanding the origin and operation of genomic instability

is crucial to finding effective treatments for cancer. Numerous mechanisms of genomic

instability have been proposed [28], including the faulty repair of double-stranded DNA

breaks by recombination or end-joining and polymerase hopping caused by replication

fork collapse [12]. These mechanisms are generally not directly observable, so their

elucidation requires the deciphering of often subtle clues after genomic instability has

ceased.

In contrast, the breakage-fusion-bridge (BFB) mechanism creates gross chromo-

somal abnormalities that can be seen in progress using methods that have been available

for decades [53]. BFB begins when a chromosome loses a telomere (Figs. 4.1a, 4.1b).

Then during replication, the two sister chromatids of the telomere-lacking chromosome

fuse together (Figs. 4.1c, 4.1d). During anaphase, as the centromeres of the chromo-

some migrate to opposite ends of the cell (Fig. 4.1e), the fused chromatids are torn apart

49



50

c
a

b

d

e

f

Figure 4.1: A schematic BFB process.

(Fig. 4.1f). Each daughter cell receives a chromosome missing a telomere, and the cy-

cle can begin again. As this process repeats, it can lead to the rapid accumulation of

amplifications and rearrangements that facilitates the transition to malignancy [17].

This process produces several plainly identifiable cytogenetic signatures such as

anaphase bridges and dicentric chromosomes. However, as cancer genomics has shifted

to high-throughput techniques, the signatures of BFB have become less clear. Methods

like microarrays and sequencing do not allow for direct observation of BFB; instead

BFB is now similar to other mechanisms of instability in that it must be inferred by

finding its footprint in complex data.

Multiple groups have begun to address the problem of finding evidence for BFB

in high-throughput data. For example, Bignell et al. found a pattern of inversions and

exponentially increasing copy numbers “[bearing] all the architectural hallmarks at the

sequence level” of BFB [7]. Kitada and Yamasaki found a pattern of copy counts and

segment organization consistent with a particular set of BFB cycles [37]. Hillmer et al.

used paired-end sequencing to find patterns of inversions and amplification explainable

by BFB [30].

The procedures of these investigators, among others [46, 29, 68], share an el-

ement in common: they determine whether a particular observation is consistent with

or could be explained by BFB. While this is helpful, it does not on its own allow one

to infer whether or not BFB occurred. Indeed, in a previous work [36] we examined

short patterns of copy number increases consisting of five or six chromosome segments.

We found that most such patterns, whether produced by BFB or not, were consistent or



51

nearly consistent with BFB. Thus, finding that such a pattern was consistent with BFB

would only be weak evidence that it had been produced by BFB. This finding highlights

the need for a rigorous and systematic approach to the interpretation of modern data for

BFB in order to avoid being misled by the complexity of cancer genomes and the BFB

mechanism itself.

Here we present a framework for interpreting high-throughput data for signatures

of BFB. We incorporate observations of breakpoints as well as copy numbers to create a

scoring scheme for chromosomes. Through simulations, we find appropriate threshold

scores for labeling a chromosome as having undergone BFB based on varying models

of cancer genome evolution and tolerances for error. This framework complements

the work of previous groups by not only finding breakpoint and copy number patterns

consistent with BFB but also showing under what assumptions they are more likely to

be observed if BFB occurred than if it did not.

The key technical contribution that underlies our scoring scheme is a new, fast

algorithm for determining if a given pattern of copy counts is consistent with BFB. This

algorithm is related to a previously described algorithm [36] in that it takes advantage of

a distinctive feature of BFB: when fused chromatids are torn apart, they may not tear at

the site of fusion. This yields chromosomes with either a terminal deletion or a terminal

inverted duplication. When a chromosome undergoes this process repeatedly, it results

in particular patterns of copy number increases. The running time of the earlier algo-

rithm grew exponentially with the amount of amplification and the number of segments

in a copy number pattern. This greatly narrowed the scope of copy number patterns

that could be investigated. This was particularly limiting because it appeared that copy

number patterns with more segments would be more useful for identifying BFB, but

these patterns could not be evaluated in a reasonable amount of time with the previous

method. The new algorithm presented here is linear time and therefore allows complex

copy number patterns to be checked in a trivial amount of time.

We begin by describing the kinds of high-throughput data that can provide ev-

idence for BFB. We then proceed to lay out some formalizations needed to precisely

describe scoring methods of samples based on BFB evidence implied from such data.

Next, we define related computational problems, followed by an outline of algorithms



52

for these problems. In the results section, we detail the simulations we used to measure

the performance of our scoring system for BFB. Based on simulation parameters, we

find false and true positive rates for different BFB signatures. We apply our methods

to two datasets. The first is copy number data from 746 cancer cell lines [6]. We find

three chromosomes that have long copy number patterns consistent with BFB, but the

false positive rates from our simulations suggest that these may be false discoveries.

We also examine paired-end sequencing data from pancreatic cancers [9]. We find two

chromosomes that likely have undergone BFB, one that was identified by the original

publishers of the data and one novel finding.

4.2 High-throughput evidence for BFB

We consider two experimental sources for evidence for BFB: microarrays and

sequencing. Microarrays allow for the estimation of the copy number of segments of a

chromosome by measuring probe intensities [13]. Sequencing also yields copy number

estimates by measuring depth of sequence coverage [15]. In addition, if the sequencing

uses paired-end reads and is performed on the whole genome rather than, say, the exome,

it can reveal genomic breakpoints where different portions of the genome are unexpect-

edly adjacent. This is generally the extent of evidence available from either technique.

Sequencing does not allow for a full reconstruction of a rearranged chromosome, as the

repetitive nature of the genome leads to multiple alternative assemblies. Neither method

can resolve segment copy numbers by orientation, so copy numbers from both forward

and reversed chromosome segments are summed. Nevertheless, BFB should leave its

signature in both breakpoints and copy counts, and we examine each in turn.

4.2.1 Breakpoints

During BFB, the telomere-lacking sister chromatids are fused together. This

causes the ends of the sister chromatids to become adjacent but in opposite orientations

(see Fig. 4.1d). This adjacency is unlikely to be disrupted by subsequent BFB cycles and

will remain in the final sequence as two duplicated segments arranged head-to-head. If

the chromosome is paired-end sequenced, the rearrangement will appear as two ends



53

that map very near each other but in opposite orientations. This type of rearrangement

has been termed a “fold-back inversion” [9], and regions of a chromosome rearranged by

BFB should have an enrichment of these fold-back inversions. Reliable indications for

fold-back inversions may or may not be available, depending on the type of experiment

and its intensity.

4.2.2 Copy counts

Each BFB cycle duplicates some telomeric portion of the chromosome undergo-

ing BFB. These repeated duplications should lead to certain characteristic copy number

patterns, which are the signature of BFB in copy number data. We would like to eval-

uate copy numbers observed from microarrays or sequencing and determine if the copy

numbers contain the footprint of BFB. Previous groups have searched for such a foot-

print by manually inspecting copy number data and searching for a set of BFB cycles

that could produce the observed copy numbers [7, 37]. This approach is challenging and

labor intensive, but developing a more general approach turns out to be rather difficult.

A key technical contribution of this chapter is the development of efficient algorithms

to evaluate copy counts for consistency with BFB.

4.2.3 Formalizing BFB

Creating an efficient method for evaluating copy numbers requires some formal-

ization, so we begin with some definitions and basic results.

We represent a chromosome as a string ABC. . . , where each letter corresponds

to a contiguous segment of the chromosome. For example, the string ABCD would

symbolize a chromosome arm composed of four segments, where A is the segment

nearest the centromere. More generally, we use σl for the l-th segment in a chromosome.

So, ABCD could be written σ1σ2σ3σ4. A bar notation, σ̄ , is used to signify that a

segment is reversed. Greek letters α,β ,γ,ρ denote concatenations of chromosomal

segments, and a bar will again mean that the concatenation is reversed. For example if

α = σ1σ3σ̄2, ᾱ = σ2σ̄3σ̄1. An empty string is denoted by ε .

Consider the following BFB cycle on a chromosome X•ABCD, where • repre-



54

sents the centromere, X is one chromosomal arm, and ABCD is the 4-segmented other

chromosomal arm which has lost a telomere. The cycle starts with the duplication of the

chromosome into two sister chromatids and their fusion at the ends of the ‘D’ segments,

generating the dicentric chromosome X •ABCDD̄C̄B̄Ā • X̄. During anaphase, the two

centromeres migrate to opposite poles of the cell and a breakage of the dicentric chro-

mosome occurs between the centromeres, say between D̄ and C̄, providing one daughter

cell with a chromosome with an inverted suffix, X •ABCDD̄, and another daughter

cell with the trimmed chromosome X•ABC (chromosomes C̄B̄Ā• X̄ and X•ABC are

equivalent). The now amplified segment D in the first daughter cell may confer some

proliferative advantage, causing its descendants to increase in frequency. The daughter

cells also lack a telomere on one chromosome arm and therefore may undergo additional

BFB cycles. One possible subsequent cycle could, for example, cause an inverted du-

plication of the suffix CDD̄, yielding the chromosome X•ABCDD̄DD̄C̄. As these BFB

cycles continue, the count of segments on the modified chromosome arm can increase

significantly.

The notation α
BFB−→ β will be used for indicating that the string β can be ob-

tained by applying 0 or more BFB cycles over the string α , as formally described in

Definition 2.

Definition 2.For two strings α,β , say that α
BFB−→ β if β =α , or α = ργ for some strings

ρ,γ such that γ 6= ε , and ργγ̄
BFB−→ β .

We say that β is an l-BFB string if for some consecutive chromosomal region

α = σlσl+1 . . . starting at the l-th segment σl , α
BFB−→ β . Say that β is a BFB string if it

is an l-BFB string for some l. As examples, CDE = σ3σ4σ5 is a 3-BFB string, and so

are CDEĒ and CDEĒEĒD̄. The empty string ε is considered an l-BFB string for every

integer l > 0.

Denote by ~n(α) = [n1,n2, . . . ,nk] the count vector of α , where α represents a

modified chromosomal arm σ1σ2 . . .σk with k segments, and nl is the count of oc-

currences (or copy number) of σl and σ̄l in α . For example, for α = BCDD̄C̄C,

~n(α) = [0,1,3,2]. Say that a vector ~n is a BFB count vector if there exists some 1-

BFB string α such that~n =~n(α).



55

4.2.4 Handling experimental imprecision

Experimental methods do not provide the precise and accurate copy number of

a given chromosome segment. Instead, some measurement error is expected. Moreover,

in a cancer genome, it is plausible that a region undergoing BFB may also be rearranged

by other mechanisms. So when we evaluate a count vector for consistency with BFB,

we must also consider whether the count vector is “nearly” consistent with BFB.

For this, we define a distance measure δ between count vectors, where δ (~n,~n ′)

reflects a penalty for assuming that the real copy counts are ~n ′ while the measured

counts are ~n. We have implemented such a distance measure based on the Poisson

likelihood of the observation, as follows: Let Pr(n|n′) = n′ne−n′

n! be the Poisson proba-

bility of measuring a copy number n, given that the segment’s true copy number is n′.

Assuming measurement errors are independent, the probability for measuring a count

vector ~n = [n1,n2, . . . ,nk], where the true counts are ~n ′ = [n′1,n
′
2, . . . ,n

′
k] is given by

Pr(~n|~n ′) = ∏
1≤i≤k

Pr(nk|n′k). Define the distance of~n from~n ′ by

δ (~n,~n ′) = 1− Pr(~n|~n ′)
Pr(~n ′|~n ′)

For every pair of count vectors ~n and ~n ′ of the same length, 0 ≤ δ (~n,~n ′) < 1,

being closer to 0 the greater is the similarity between~n and~n ′.

4.2.5 The BFB Count Vector Problem

With these definitions, we can now precisely pose a set of problems that need to

be solved to evaluate copy number patterns for consistency with BFB:

BFB count vector problem variants

Input: a count vector~n = [n1,n2, . . . ,nk].

• The decision variant: decide if~n is a BFB count vector.

• The search variant: if ~n is a BFB count vector, find a BFB string α such that

~n =~n(α).

• The distance variant: Identify a BFB count vector~n ′ such that δ (~n,~n ′) is mini-

mized. Output δ .



56

4.3 Outline of the BFB Count Vector Algorithms

We defer the full details of the algorithms we have developed to Appendix C,

presenting here only essential properties of BFB strings and some intuition of how to

incorporate these properties in algorithms for BFB count vector problems. We focus on

the search variant of the problem, where the goal of the algorithm is to output a BFB

string α consistent with the input counts, if such a string exists.

4.3.1 Properties of BFB palindromes

Call an l-BFB string β of the form β = αᾱ an l-BFB palindrome1. For an l-

BFB string α , the string β = αᾱ is an l-BFB palindrome by definition (choosing ρ = ε

and γ = α in Definition 2). In [36], it was shown that every prefix of a BFB string is

itself a BFB string, thus, for an l-BFB palindrome β = αᾱ , the prefix α of β is also an

l-BFB string. Hence, it follows that α is an l-BFB string if and only if β = αᾱ is an

l-BFB palindrome. For a BFB string α with~n(α) = [n1,n2, . . . ,nk] and a corresponding

BFB palindrome β = αᾱ , we have that ~n(β ) = 2~n(α) = [2n1,2n2, . . . ,2nk]. Thus, a

count vector~n is a BFB count vector if and only if there is a 1-BFB palindrome β such

that~n(β ) = 2~n. Considering BFB palindromes instead of BFB strings will facilitate the

algorithm description.

Define an l-block as a palindrome of the form β = σlβ
′σ̄l , where β ′ is an

(l+1)-BFB palindrome. For example, from the 4-BFB palindromes β ′1 = DEĒD̄DEĒD̄

and β ′2 = ε , we can produce the 3-blocks β1 = σ3β ′1σ̄3 = CDEĒD̄DEĒD̄C̄ and β2 =

σ3β ′2σ̄3 = CC̄. It may be asserted that an l-block is a special case of an l-BFB palin-

drome. Next, we show how l-BFB palindromes may be decomposed into l-block sub-

strings.

For a string α 6= ε , denote by top(α) the maximum integer t such that σt or

σ̄t occur in α , and define top(ε) = 0. For two strings α and β , say that α ≤t β if

top(α)≤ top(β ), and that α <t β if top(α)< top(β ). For example, for α = AB and

β = ABCDD̄C̄, top(α) = 2 and top(β ) = 4, therefore α <t β .

1We assume that genomic segments σ satisfy σ 6= σ̄ , therefore strings of the form ασᾱ will not be
considered palindromes.



57

Definition 3. A string α is a convexed l-palindrome if α = ε , or α = γβγ such that γ is

a convexed l-palindrome, β is an l-BFB palindrome, and γ <t β .

While every l-BFB palindrome α is also a convexed l-palindromes (since α =

εαε), not every convexed l-palindromes is a valid BFB string. For example, α =

AĀABB̄ĀAĀ is a convexed 1-palindromes (choosing γ = AĀ, β = ABB̄Ā), yet it is

not a 1-BFB string. Instead, we have the following claim, proven in Appendix C:

Claim 1. A string α is an l-BFB palindrome if and only if α = ε , α is an l-block, or

α = βγβ , such that β is an l-BFB palindrome, γ is a convexed l-palindrome, and γ ≤t β .

From Definition 3 and Claim 1, it follows that an l-BFB palindrome α is a palin-

dromic concatenation of l-blocks. In addition, for the total count 2nl of σl and σ̄l in α , α

contains exactly nl l-blocks, where each block contains one occurrence of σl and one oc-

currence of σ̄l . When nl is even, α is of the form α = β1β2 . . .β nl
2 −1β nl

2
β nl

2
β nl

2 −1 . . .β2β1,

each βi is an l-block. When nl is odd, α is of the form α = β1β2 . . . βb nl
2 c βb nl

2 c+1

βb nl
2 c . . . β2β1. In the latter case, say that βb nl

2 c+1 is the center of α , where in the former

case say that the center of α is ε . Note that every l-block β appearing in α and different

from its center occurs an even number of times in α . If the center of α is an l-block, this

particular block is the only block which appears an odd number of times in α , while if

it is an empty string then no block appears an odd number of times in α .

Now, let β be a 1-BFB palindrome with a count vector ~n(β ) = 2~n = [2n1,2n2,

. . . , 2nk]. It is helpful to depict β so that each character σl is at its own layer l, increasing

with increasing l, as shown in Fig. 4.2a. As β is a concatenation of 1-blocks, we can

consider the collection B1 = {m1β1,m2β2, . . . ,mqβq} of these blocks, where each count

mi is the number of distinct repeats of βi in β . For example, for the string in Fig. 4.2a,

B1 = {2β1,β2,2β3,4β4}, where
∣∣B1
∣∣= n1 = 9, and β2 is the center of β . Masking from

strings in B1 all occurrences of A and Ā, each 1-block βi = Aβ ′i Ā in B1 becomes a

2-BFB palindrome β ′i . Such 2-BFB palindromes may be further decomposed into 2-

blocks, yielding a 2-block collection B2 (in Fig 4.2b, B2 = {2β5,β6,2β7}, where
∣∣B2
∣∣=

n2 = 5). In general, for each 1 ≤ l ≤ k, masking in β all letters σr and σ̄r such that

r < l defines a corresponding collection of l-block substrings of β . Each collection Bl



58

contains exactly nl elements, as each l-block in the collection contains exactly two out of

the 2nl occurrences of σl in the string (where one occurrence is reversed). The collection

Bl+1 is obtained from Bl by masking occurrences of σl and σ̄l from the elements in Bl ,

and decomposing the obtained (l + 1)-BFB palindromes into (l + 1)-blocks. We may

define Bk+1 = /0 (where /0 denotes an empty collection), since after masking in β all

segments σ1, . . . ,σk we are left with an empty collection of (k+1)-blocks.

The algorithm we describe for the search variant of the BFB count vector prob-

lem exploits the above described property of BFB palindromes. Given a count vector

~n = [n1,n2, . . . ,nk], the algorithm processes iteratively the counts in the vector one by

one, from nk down to n1, producing a series of collections Bk,Bk−1, . . . ,B1. Starting with

Bk+1 = /0, each collection Bl in the series is obtained from the preceding collection Bl+1

in a two-step procedure: First, (l + 1)-blocks from Bl+1 are concatenated in a manner

that produces an (l+1)-BFB palindrome collection B′ of size nl (B′ may contain empty

strings, which can be thought of as concatenations of zero elements from Bl+1). Then,

Bl is obtained by “wrapping” each element β ′ ∈ B′ with a pair of σl characters to be-

come an l-block β = σlβ
′σ̄l . We will refer to the first step in this procedure as collection

folding, and to the second step as collection wrapping. For example, in Fig 4.2d, the el-

ements in B4 = {4β10} are folded to form a 4-palindrome collection B′ = {2β10β10,ε}
of size n3 = 3. After wrapping each elements of B′ by C to the left and C̄ to the right, we

get the 3-block collection B3 = {2Cβ10β10C̄,CC̄} = {2β8,β9}. Algorithm SEARCH-

BFB(~n) in Fig. 4.3 gives the pseudo-code for the described procedure, excluding the

implementation of the folding phase which is kept abstract here. We next discuss some

restrictions over the folding procedure, and point out that greedy folding is nontrivial.

Nevertheless, in Appendix C we show an explicit implementation of a folding proce-

dure, which guarantees that the search algorithm finds a BFB string provided that the

input is a valid BFB count vector.

4.3.2 Required conditions for folding

Recall that the input of the folding procedure is an l-block collection B and

an integer n, and the procedure should concatenate all strings in B in some manner to

produce an l-BFB palindrome collection B′ of size n. Since both l-blocks and empty



59

(a)
1
2
3
4

B

D
C

B B
C

B

D
C

BB
C

D

B B B B

D
C C

DD DD

A A AA A A AA A A AA A A AA AA

(b)
1
2
3
4 D

C

A

C
D

C

A
B B

C
D

BB B B BB B B

D
C C

DD DD

A AA A A AA A A AA A A AA A

(c)
1
2
3
4

B
A

B B BB
A

B B B B B
CC

D
C C

DDD D
C

D
C

DD

A AA A A AA A A AA A A AA A

(d)
1
2
3
4

B
C

A
B B

C
B
C

B
A

B
C

B B B B
C C

D DDD D DDD

A AA A A AA A A AA A A AA A

β8
β9

β10 β10

β8

β10 β10

β5 β5
β6

β7 β7

β4

β1 β1
β2

β3 β3
β4β4β4

Figure 4.2: Layer visualization of a BFB palindrome β = αᾱ , where
α = ABCDD̄DD̄C̄B̄ĀAĀABB̄ĀAĀABC. A possible BFB sequence that pro-
duces α is ABCD → ABCDD̄ → ABCDD̄DD̄C̄B̄Ā → ABCDD̄DD̄C̄B̄ĀA →
ABCDD̄DD̄C̄B̄ĀAĀAB → ABCDD̄DD̄C̄B̄ĀAĀABB̄ĀAĀABC. ~n(α) = [9,5,3,4],
and ~n(β ) = 2~n(α). Figures (a) to (d) depict layers 1 to 4 of β , respectively. In each
layer l, the l-blocks composing the collection Bl are annotated as substrings of the form
βi. These collections are: B1 = {2β1,β2,2β3,4β4}, B2 = {2β5,β6,2β7}, B3 = {2β8,β9},
B4 = {4β10}.



60

strings are special cases of l-BFB palindromes, when n ≥ |B| it is always possible to

obtain B′ by simply adding n−|B| empty strings to B. Nevertheless, when n < |B|, there

are instances for which no valid folding exists, as shown next.

For a pair of collections B and B′, B+B′ is the collection containing all elements

in B and B′. When B′′ = B+B′, we say that B = B′′−B′ (note that B′′−B′ is well

defined only when B′′ contains B′). For some (possibly rational) number x ≥ 0, denote

by xB the collection {bxm1cβ1,bxm2cβ2, . . . ,
⌊
xmq

⌋
βq}. The operation mod2(B) yields

the sub-collection of B containing a single copy of each distinct element β with an odd

count in B. For example, for B = {2β1,β2,5β3,6β4}, mod2(B) = {β2,β3}. Observe

that B = mod2(B)+2
(1

2B
)
.

Claim 2. Let B be an l-BFB palindrome collection such that mod2(B) = /0. Then, it is

possible to concatenate all elements in B to obtain a single l-BFB palindrome.

Proof. By induction on the size of B. By definition, mod2(B)= /0 implies that the counts

of all distinct elements in B are even. When B= /0, the concatenation of all elements in B

yields an empty string ε , which is an l-BFB palindrome as required. Otherwise, assume

the claim holds for all collections B′ smaller than B. Let β ∈ B be an element such that

for every β ′ ∈ B, top(β ′) ≤ top(β ), and let B′ = B−{2β}. Note that mod2(B′) = /0

(since the count parity is identical for every element in both B and B′), and from the

inductive assumption it is possible to concatenate all elements in B′ into a single l-BFB

palindrome α ′. From Claim 1, the string α = βα ′β is an l-BFB palindrome, obtained

by concatenating all elements in B.

Claim 3. Let B be an l-block collection. There is a folding B′ of B such that |B′| =
|mod2(B)|+1.

Proof. Recall that B = mod2(B)+ 2
(1

2B
)
. Since all element counts in the collection

2
(1

2B
)

are even, mod2
(
2
(1

2B
))

= /0, and from Claim 2 it is possible to concatenate

all elements in 2
(1

2B
)

into a single l-BFB palindrome α . Thus, the collection B′ =

mod2(B)+α is a folding of B of size |mod2(B)|+1.

Claim 4. For every folding B′ of an l-block collection B, |mod2(B′)| ≥ |mod2(B)|.



61

Proof. Let β ∈mod2(B) be an l-block repeating an odd number of times m in B. There-

fore, β appears as a center of at least one element β ′ that occurs an odd number of times

in B′ (otherwise, β has an even number of distinct repeats as a substring of elements in

B′, in contradiction to the fact that m is odd). Hence, for each β ∈ mod2(B) there is a

corresponding unique element β ′ ∈mod2(B′), and so |mod2(B′)| ≥ |mod2(B)|.

The SEARCH-BFB(~n) algorithm described in Fig. 4.3 tries in each iteration l

to fold the block collection Bl+1 obtained in the previous iteration into an (l + 1)-BFB

palindrome collection of size nl . When nl ≥
∣∣mod2

(
Bl+1)∣∣+ 1, there always exists a

folding as required: Bl+1 maybe folded into a collection of size
∣∣mod2

(
Bl+1)∣∣+1 due

to Claim 3, and additional nl−
∣∣mod2

(
Bl+1)∣∣−1 empty strings may be added in order

to get a folding of size nl . On the other hand, when nl <
∣∣mod2

(
Bl+1)∣∣, no folding

as required exists, due to Claim 4. In the remaining case of nl =
∣∣mod2

(
Bl+1)∣∣, the

existence of an nl-size folding of Bl+1 depends on the element composition of Bl+1, as

exemplified next.

Consider the run of Algorithm SEARCH-BFB(~n) over the input count vector

~n = [1,3,2]. Here, k = 3, and the algorithm starts by initializing the collection B4 = /0.

In the first loop iteration l = 3, and the algorithm first tries to fold the empty collec-

tion B4 into a 4-BFB palindrome collection containing n3 = 2 elements. Since there

are no elements in B4 to concatenate, the only way to perform this folding is by adding

to B4 two empty strings, yielding the collection B′ = {2ε}, which after wrapping be-

comes B3 = {2CC̄} = {2β1}. In the next iteration l = 2, and B3 should be folded

into a collection B′ of size n2 = 3. Among the possibilities to perform this folding

are the following: B′a = {2β1,ε}, and B′b = {β1β1,2ε}, which after wrapping be-

come B2a = {2Bβ1B̄,BB̄} = {2β2,β3}, and B2b = {Bβ1β1B̄,2BB̄} = {β4,2β3}, re-

spectively. Note that
∣∣mod2

(
B2a)∣∣ = ∣∣mod2

(
B2b)∣∣ = 1. Nevertheless, it is possible

to fold B2a in the next iteration into the collection {β2β3β2} of size n1 = 1, while B2b

cannot be folded into such a collection. The reason is that the only concatenation of

all elements in B2b into a single palindrome is the concatenation β3β4β3, but since

top(β4) = top
(
BCC̄CC̄B̄

)
= 3 > 2 = top(BB̄) = top(β3), Claim 1 implies that this

concatenation is not a valid BFB palindrome.

In Appendix C, we define a property called the signature of a collection, and



62

Figure 4.3: An algorithm for the BFB count vector problem.

show how the exact minimum folding size depends on this signature. We also show

how to fold a collection in a manner that optimizes this signature, and guarantees for

valid BFB count vector inputs that the search algorithm finds an admitting BFB string.

4.4 Running time

For a count vector ~n = [n1, . . . ,nk], let N = ∑
1≤i≤k

ni be the number of segments

in a string corresponding to ~n. Let Ñ = ∑
1≤i≤k

logni denote a number proportional to

the number of bits in the representation of ~n, assuming each count ni is represented by

O(logni) bits. In Appendix C, we complete the implementation details of algorithms for

the decision, search, and distance variants of the BFB count vector problem, and show

these algorithms have the asymptotic running times of O(Ñ) (bit operations), O(N), and

O(NlogN) (under some realistic assumptions), respectively. For the decision and search

variants, these running times are optimal, being linear in the input (for the decision

variant) or output (for the search variant) lengths.

In practical terms, this has a significant effect on our ability to evaluate copy

number signatures of BFB when compared to the previous exponential-time algorithm

[36]. To determine if a count vector consistent with BFB is in fact strong evidence for



63

BFB, we have to check many count vectors. Analyzing the simulations we explain below

required testing tens of millions of different count vectors, so even a small improvement

in running time can have a large impact of the scope of analysis we can perform.

But, the running time improvement with the new algorithm is not small. For ex-

ample, a count vector that took 9 seconds with the previous algorithm can be processed

by the new algorithm in 1.2x10−5 seconds. A count vector that needed 148 seconds with

the old algorithm now completes in 1.9x10−5 seconds. A count vector that was aban-

doned after 30 hours with the old algorithm now takes only 8.1x10−6 seconds. Thus, the

improvement in running time is not of merely theoretical interest. The earlier algorithm

did not allow a thorough study of longer count vectors, while with the new algorithm

such a study is possible.

4.5 Detecting Signatures of BFB

We can now describe the two features we will use to determine if a chromosome

has undergone BFB. The first feature is based on the fold-back inversions that BFB pro-

duces. For a given region, we can find all the breakpoints identified by sequencing and

determine what proportion are fold-back inversions. We call this the fold-back fraction.

The second feature relies on our algorithm that solves the BFB count vector problems

we have posed. For a given contiguous pattern of copy counts, that is, a count vector,

we can find the distance to the nearest count vector that could be produced by BFB us-

ing the distance metric we defined above. We call this the count vector distance. For a

particular count vector, we define a score s that combines these two features:

s = λδ +(1−λ )(1− f ) (4.1)

Here, f refers to the fold-back fraction, δ refers to the count vector distance, and λ

refers to the weight we give to the count vector distance versus the fold-back fraction

when calculating the score. When λ = 1, we are only looking at count vector distance,

whereas when λ = 0, we are only using fold-back fraction and ignoring the count vec-

tors.



64

4.6 Results

To determine whether our two proposed features could identify BFB against the

complex backdrop of a cancer genome, we simulated rearranged chromosomes. Our

overall goal was to simulate cancer chromosomes that were highly rearranged yet had

not undergone BFB to see if evidence for BFB appeared in them, suggesting that using

such evidence would lead to false positives. Conversely, we also wanted to simulate

chromosomes whose rearrangements included BFB to determine if a proposed BFB sig-

nature was sensitive enough to identify BFB when it occurred. Since it is not clear how

to faithfully simulate cancer genome rearrangements, we used a wide range of simula-

tion parameters so we could understand how different assumptions affect the features’

ability to identify BFB.

We began with a pair of unrearranged chromosomes and then introduced 50 rear-

rangements to each. Each rearrangement was an inversion, a deletion, or a duplication.

Duplications were either direct or inverted and could be tandem or interspersed. The

type of each rearrangement was chosen from a distribution. In some chromosome pairs,

we imitated BFB by successively duplicating and inverting segments of one end of one

chromosome for each round of BFB. The number of BFB rounds varied from two to ten.

Then, we calculated the copy counts and breakpoints for the chromosome pair and intro-

duced error to the copy counts according to a random model and also randomly deleted

or inserted breakpoint observations. For each combination of rearrangement type dis-

tribution and number of BFB rounds, we simulated 5,000 chromosome pairs with BFB

and 15,000 without BFB. Complete details are in Appendix C.

We first examined the usefulness of count vector distance alone in identifying

BFB by setting λ = 1 in our score function (Eqn. 4.1). For each chromosome pair,

we found all contiguous count vectors of a given length and calculated their scores, as

described above and in Appendix C. We used the minimum score s over all of these

sub-vectors in the chromosome as a score for the whole chromosome. Then, for vary-

ing thresholds, we classified all chromosomes with a score lower than the threshold as

having been rearranged by BFB. The performance of this classification varied with the

parameters used to simulate the chromosomes, but typical results can be seen in Figure

4.4a. The solid lines show ROC curves for different count vector lengths for the simula-



65

Figure 4.4: Simulation and pancreatic cancer results. a) ROC curves for different count
vector lengths with and without fold-back fractions for the simulation of eight BFB
rounds and equally likely other rearrangements. b) Observed copy counts and copy
counts compatible with BFB on the short arm of chromosome 12 in pancreatic cancer
sample PD3641. The presence of fold-back inversions and the count vector’s consis-
tency with BFB suggests that this portion of chromosome 12 underwent BFB cycles.

tion with eight rounds of BFB and a distribution that yields roughly equal probabilities

of the other rearrangement types. Consistent with previous observations, short count

vectors that are perfectly consistent with BFB can be found in many chromosomes,

even if BFB did not occur. So, even with a score threshold of zero, they would still be

classified as consistent with BFB. For example, 63% of chromosomes without any true

BFB rearrangements in Figure 4.4a had a count vector of length six perfectly consistent

with BFB.

In contrast, examining longer count vectors produced a better classification. For

instance, setting the score threshold to .10, count vectors of length twelve could achieve

a true positive rate (TPR) of 67% and a false positive rate (FPR) of only 10%. However,

this performance must be considered in the context of an experiment seeking evidence

for BFB. Chromosomes that have undergone BFB are probably rare. If only one in

a hundred chromosomes tested underwent BFB, then a test with an FPR of even 1%

will produce mostly false discoveries. Achieving this FPR with count vectors of length

twelve with the chromosomes in Figure 4.4a would result in a TPR of only 16%. A more

appropriate target FPR for screening many samples, say .1%, could not be achieved with



66

count vectors alone.

Next, we incorporated fold-back inversions into the scoring function. We set

λ = .5, giving equal weight to fold-back fraction and count vector distance. ROC curves

using this approach are shown by dashed lines in Figure 4.4a. Incorporating fold-back

fractions into the scoring leads to better discrimination of chromosomes with and with-

out BFB rearrangements; the test in Figure 4.4a that combines count vectors of length 12

and fold-back inversions can achieve a TPR of 48% with an FPR of .1% by setting the

score threshold to .27. This suggests that it could detect BFB in a large dataset without

being overwhelmed by false discoveries.

Of course, these conclusions depend on our simulation resembling actual cancer

rearrangements and BFB cycles. A true specification of cancer genome evolution is

unknown and in any case varies from cancer to cancer. Recognizing this complication,

we repeated the analysis in Figure 4.4a for the different rearrangement distributions,

number of BFB rounds, and count vector lengths. For each combination, we recorded

the score threshold needed to achieve FPRs of .1%, 1%, and 5%, and the respective

expected TPRs. The full results are shown in Dataset S1 and ROC curves are shown

in Figures C.1-C.5. Generally, different simulations showed the same trends. Fold-

back inversions alone were better at identifying BFB than count vectors alone, but the

combination of both features provided the best classification. By examining a wide

range of simulation parameters, we illustrate how changes in assumptions about cancer

genome evolution and BFB influence the appropriateness and expected outcomes of

tests for BFB.

We applied our method to a publicly available dataset of copy number profiles

from 746 cancer cell lines [6]. We found three chromosomes with count vectors of

length 12 nearly consistent with BFB: chromosome 8 from cell line AU565, chromo-

some 10 from cell line PC-3, and chromosome 8 from cell line MG-63 (see Appendix

C). While the patterns of copy counts on these chromosomes do bear the hallmarks

of BFB, our simulations suggest that labeling chromosomes as having undergone BFB

based on these count vectors would lead to an FPR between 1% and 10%. Given that

thousands of chromosomes were examined, many of which were highly rearranged, the

consistency of these copy counts with BFB may be spurious.



67

We also applied our method to paired-end sequencing data from seven previously

published pancreatic cancer samples [9]. We estimated copy numbers from the reads and

used breakpoints as reported by the original investigators. We examined count vectors

of length 8 and chose a threshold score of .18, which would give an FPR of .1% based

on simulations where the non-BFB rearrangement types are roughly equally likely. We

identified two chromosomes that showed evidence for BFB, both from the same sample,

PD3641. The first was the long arm of chromosome 8. This chromosome was identified

by the original investigators as likely being rearranged by BFB. Our analysis suggests

that, barring rearrangements that differ significantly from any of our simulations, this

chromosome did indeed undergo BFB cycles. We also found evidence for BFB rear-

rangements from a count vector spanning ten megabases on the short arm of chromo-

some 12 (Figure 4.4b). Thus, we were able to recover evidence for BFB previously

identified by hand curation. And by combining count vector and fold-back analysis, we

found an additional strong BFB candidate that would not be apparent without modeling

and simulation.

4.7 Discussion

Some 80 years after Barbara McClintock’s discovery of the Breakage Fusion

Bridge mechanism, it is seeing renewed interest in the context of tumor genome evo-

lution. Recent publications have claimed, based on empirical observations of segmen-

tation counts and other features, that their data counts are “consistent with BFB”. The

main technical contribution of the chapter is an efficient algorithm for detecting if given

segmentation counts can indeed be created by Breakage Fusion Bridge cycles. That al-

gorithm turns out to be non-trivial, requiring a deep foray into the combinatorics of BFB

count vectors, even though its final implementation is straightforward and fast. Experi-

menting with the implementation reveals that in fact, (a) there is a big diversity of count-

vectors created by true BFB cycles not all of which are easily recognizable as BFB; and,

(b) at least for short count-vectors, it is often possible to create BFB-like vectors by

non-BFB operations. Thus, being “consistent with BFB”, and “caused by BFB” are not

equivalent. Fortunately, our results also suggest that using longer count vectors, and ad-



68

ditional information of fold-backs gives stronger prediction of BFB, even in the presence

of noise, and diploidy. While assembly of these highly rearranged genomes continues to

be difficult, recent advances in long single-molecule sequencing will provide additional

spatial information that will improve the resolving power of our algorithm. As more

cancer genomes are sequenced, including single-cell sequencing, the method presented

here will be helpful in determining the extent and scope of BFB cycles in the evolution

of the tumor genome.

4.8 Acknowledgements

This research was supported by grants from the National Institute of Health

(5RO1-HG004962, U54 HL108460) and the National Science Foundation (NSF-CCF-

1115206).

Chapter 4 (with Appendix C) was published in the Proceedings of the National

Academy of Sciences of the United States of America, 2013, S. Zakov, M. Kinsella,

and V. Bafna, “An algorithmic approach for breakage-fusion-bridge detection in tumor

genomes.” The dissertation author was a primary co-investigator and co-author of this

paper.



Chapter 5

Does Chromothripsis Have a

Distinguishing Signature?

5.1 Introduction

In a groundbreaking study 2011 study [72], Stephens et al. observed a pattern

of structural variation in a leukemia genome so atypical it presumptively revealed a

novel mechanism of chromosome rearrangement. Two features distinguish this varia-

tion pattern. First, the chromosome or chromosomal region in question has many clus-

tered breakpoints that suggest complex adjacencies rather than simple deletions or non-

overlapping tandem duplications. Second, the region oscillates between two or perhaps

three copy number states.

To further investigate this phenomenon, Stephens et al. sequenced several cell

lines with chromosomes that exhibited these features. One of these chromosomes was

chromosome 15 from SNU-C1, a colon cancer cell line. This chromosome has 239

breakpoints identified by paired-end sequencing (PES) and mostly oscillates between

two copy number states, two and four. Using simulations, Stephens et al. showed

that the progressive introduction of the breakpoints they observed would result in a

chromosome with many copy number states rather than just two. They hypothesized

that the peculiar rearrangement pattern was not the result of progressive rearrangements

but instead the result of the chromosome shattering followed by the random stitching

69



70

together of the resulting pieces. They termed this phenomenon “chromothripsis”.

To determine how widespread chromothripsis may be, Stephens et al. used the

progressive rearrangement simulation from SNU-C1 to conclude that a chromosome

with at least 50 breakpoints dominated by at most three copy number states was un-

likely to have been rearranged progressively and thus was likely to be a product of chro-

mothripsis. Using these criteria they searched copy number profiles and found 2-3% of

cancers have a chromosome that bears the hallmark of chromothripsis.

This is a striking result; it suggests a mechanism of cancer genome evolution

that contrasts starkly with previously described models. This discovery has generated

excitement and ongoing investigation. Subsequent studies have found evidence for chro-

mothripsis in multiple myeloma [47], medulloblastoma [63, 57], neuroblastoma [55],

and colorectal cancers [39] as well as the germline [38, 14]. Moreover in some studies,

chromothripsis has been associated with more aggressive cancers. Thus, it would appear

that a new source of human disease has been found, with potentially far-reaching effects

on our understanding and treatment [58] of cancer.

The great potential of chromothripsis cannot be realized unless it can be accu-

rately detected. It is unlikely that chromothripsis will ever be reliably observed directly,

so we will need to rely on the footprint that chromothripsis should leave in copy number

and breakpoint data. The characterization of this footprint is an open problem. While

Stephens et al. searched for chromosomes dominated by at most three copy number

states with at least 50 positions where copy number changes, subsequent works have

used more relaxed criteria. They have required fewer breakpoints per chromosome, such

as 20 [55], 10 [63, 57], or just a handful [14]. They also have not always required that

the number of unique copy states in a chromosome be limited to two or three [57, 55].

The validity of these footprints of chromothripsis rests on the idea that progres-

sive rearrangement cannot create such patterns. However, the evidence for this proposi-

tion is largely limited to the initial simulation work by Stephens. Chromothripsis is now

being investigated in different contexts than Stephens’ cell line simulations. Further-

more, the diversity of approaches used to identify chromothripsis means some groups

are likely over- or underestimating its prevalence. This, together with the potentially

great significance of chromothripsis, highlights the value of revisiting and extending the



71

simulation work that underlies current strategies for identifying chromothripsis.

In this chapter, we review the simulation approach that suggests that progres-

sive rearrangements cannot yield a chromosome with many breakpoints and few unique

copy number states. First, we explore whether changes to the implementation of the

simulation affects the validity of the footprint of chromothripsis. We show that a sub-

tle but consequential error in the original implementation of the simulation causes it to

understate the breakpoint and copy number patterns that can be achieved by progres-

sive rearrangement. We examine varying possible meanings of “breakpoint” and “copy

number state” and determine definitions that more closely correspond to experimental

results. Next, we show that progressive rearrangement with a preference for inversions

can produce chromosomes that bear the putative footprint of chromothripsis. Together

these issues suggest that, assuming the simulation approach is valid, more stringent cri-

teria must be used to identify chromothripsis and that the current literature overstates its

prevalence.

We then demonstrate that the simulation approach produces similar results

whether a chromosome is progressively rearranged or not. This undermines its abil-

ity to distinguish between chromothripsis and progressive rearrangement. Extending on

this finding, we demonstrate a method that finds plausible progressive rearrangements

that explain the breakpoints of particular chromosomes that appear to have undergone

chromothripsis. Finally, we offer a discussion of the significance of these findings for

the chromothripsis hypothesis.

5.2 Methods

5.2.1 Finding Chromosome Arrangements Consistent with

Observed Breakpoints

The input to the method is a set of breakpoints, {(Pos1, Strand1, Pos2, Strand2)

. . . }, where Pos1 and Pos2 correspond to the unexpectedly adjacent positions in the

chromosome and Strand1 and Strand2 give the orientations of the chromosome at each

position. If we collect each Pos1 and Pos2 from each breakpoint and sort them, we



72

get the locations of all breakpoint boundaries in the chromosome ordered from one end

of the chromosome to the other. We can consider the chromosomal intervals that lie

between subsequent breakpoint boundaries as the segments of the chromosomes that

end up being rearranged.

Our goal in to find an ordering of the segments such that the segment adjacen-

cies correspond to the observed breakpoints and that no chromosomal segment appears

more than once. To do this, we create a graph. The vertices of the graph are breakpoint

boundaries plus two additional vertices for the start and end of the chromosome. There

are two types of edges. The first type, “segment edges”, correspond to the chromosome

segments. The second type, “breakpoint edges”, correspond to the breakpoints. We

want a path through the graph that crosses as many breakpoint edges as possible with-

out crossing any segment edge more than once. The path must also correspond to a real

chromosome, so there are a number of other restrictions like two breakpoint edges can-

not be traversed in a row and the direction a segment edge can be traversed is determined

by the previous breakpoint or segment edge.

5.3 Results

5.3.1 Simulating Progressive Rearrangements

We will first summarize the simulation method. Consider a chromosome 100

bases long that undergoes chromothripsis, shattering into ten segments of ten bases,

which we label A through J. The segments come back together, but some are lost, some

are inverted, and the order is shuffled. Suppose the resulting arrangement of segments

is AE(-C)(-G)HI. If this chromosome is sequenced, it will reveal five breakpoints and

copy numbers that alternate between zero and one. The positions and orientations of the

breakpoints are shown in Table 5.1, and an illustration of the chromosome is shown in

Figure 5.1.

We can now step through the progressive rearrangement simulation used by

Stephens et al. The simulated chromosome begins intact, with no rearrangements (Fig-

ure 5.2a). Then, a random breakpoint is chosen from the set of observed breakpoints. In

this case, suppose the breakpoint between 20 and 70 is chosen. This breakpoint is now



73

Table 5.1: Breakpoint positions and orientations for rearranged chromosome in Figure

5.1.

Lower Position Orientation at

Lower Position

Higher Position Orientation at

Higher Position

10 + 40 +

30 + 50 -

20 - 70 -

60 - 70 +

80 + 90 +

introduced into the chromosome via one of three rearrangement types: inversion, dele-

tion, or tandem duplication. The observed orientation of the two ends of the breakpoint

is - -. So, an inversion cannot be used to create the breakpoint because that will result

in segments with orientations of + - or - +. A deletion between 20 and 70 will not work

because then the orientations would be + +. But, a tandem duplication between 20 and

70 will result in a breakpoint that, when read from 20 to 70, will have both segments in

reversed orientation. So, segments C through G are duplicated. Next, the rearrangement

between 30 and 50 is chosen. Using similar reasoning as above, this rearrangement is

introduced via an inversion of segments FGC. Note that this creates two breakpoints,

the observed breakpoint plus another one in opposite orientation. Then, two more re-

arrangements are introduced resulting in the chromosome in Figure 5.2e. The number

of breakpoints and copy number states in this chromosome would be recorded, and the

simulation would be repeated many times with different rearrangement orders and seg-

ment choices. It would also be stopped when varying numbers of breakpoints had been

introduced so that the relationship between the number of breakpoints and the number

of unique copy number states could be determined.

Stephens et al. graciously shared the code they used to produce their results. We

have reimplemented the method, applied it to chromosome 15 of SNU-C1, and repli-

cated their results (Figure 5.3a). The general trend, consistent with Stephens’ result, is

that the number of unique copy number states increases with the number of breakpoints.

A chromosome with 239 breakpoints and only two copy number states falls well outside



74

Figure 5.1: A hypothetical shattered chromosome.

of what was produced by the progressive simulation, and this is a key piece of evidence

that chromosome 15 of SNU-C1 is the result of chromothripsis rather than progressive

rearrangement. Moreover, based on the chart, it appears that a chromosome with at most

three copy number states and more than fifty, or perhaps even twenty, breakpoints also

falls outside of what can be achieved by progressive rearrangement.



75

Figure 5.2: A set of possible simulation steps.

5.3.2 Chromothripsis Footprint Criteria Depend on Subtle Simula-

tion Implementation Details

The above result is more meaningful if it is robust to changes in the implemen-

tation of the simulation. In this section, we alter the simulation in various ways to

determine if the proposed footprint of chromothripsis remains valid when assumptions

about progressive rearrangement are changed.

The first change we made to the simulation was a correction of a logic error that

caused some simulated inversions to behave like duplications. The details are in the sup-



76

plement, but the net effect was that some operations that ought to have preserved existing

copy numbers instead introduced up to two new copy number states to the chromosome.

When we corrected this, the chart of copy number states and breakpoints shifted down

(Figure 5.3b). This change in result does not affect inferences about chromosome 15 of

SNU-C1, since 239 breakpoints and only two copy number states is still well outside of

the simulated results. But, the simulated chromosomes now begin to encroach upon the

chromothripsis region of the graph. For example, the new simulation produced a chro-

mosome with 67 breakpoints and only 3 copy number states, which is consistent with the

footprint of chromothripsis even though the chromosome was rearranged progressively.

The next alteration was to the counting breakpoints and copy number states.

Thus far, we have been imprecise about the meaning of the breakpoint values on the

x-axes of our charts. This imprecision is also found in the literature, but there are in fact

multiple ways to count breakpoints on a chromosome. One way is to count the number

of times an abnormal adjacency appears. For example in the chromosome in Figure

5.2e, moving from left to right we find six such adjacencies: E(-C), (-C)(-G), (-F)D,

F(-G), (-F)D, and HJ. This counting method was used in Figures 5.3a and 5.3b. Another

way to count breakpoints is to consider how the breakpoints would be reported by a PES

experiment. This is similar to the previous method, except that if an abnormal adjacency

appears in the chromosome multiple times because of duplications, it will only appear

once in the sequencing results. So referring back to Figure 5.2e, the adjacency (-F)D

would only be counted once even though it appears in the chromosome twice. A third

way to count breakpoints is to consider how they will appear in a microarray or depth of

coverage experiment. This method counts breakpoints where copy number changes. The

copy numbers in the chromosome in Figure 5.2e from left to right are 1,2,3,4,3,1,0,1.

So, copy number changes seven times.

There are also multiple ways to count the number of copy number states in a

chromosome. The first we can call “strict”. With this method, we simply count the

number of copy number states observed in the chromosome, regardless of how much

of the chromosome is covered by any copy number state. In Figure 5.2e, there are five

copy states observed, zero through four. Another method, which we will call “relaxed”,

counts how many copy states are needed to cover some fraction of the chromosome.



77

If we use the fraction 90%, then the relaxed number of copy states in the chromosome

above is four because we can cover 90 bases using only four copy number states. Re-

laxed counting of copy states can be appropriate for identifying chromothripsis because

it allows us to find chromosomes that are dominated by two or three copy number states

but may have some small regions with other copy numbers because of subsequent alter-

ations or experimental error.

The simulation by Stephens et al. used strict copy number state counting and the

first breakpoint counting method, counting every unexpected adjacency even if dupli-

cated. In contrast, the breakpoints observed in chromosome 15 of SNU-C1 come from

PES, and the copy number state count of two was arrived at using relaxed counting.

Microarray results show that the chromosome has six copy number states using strict

counting [34].

We modified the simulation to use relaxed copy state counting that found how

many copy number states were needed to cover 95% of the simulated chromosome.

When this was combined with PES breakpoint counting, it produced the results in Fig-

ure 5.3c; when combined with microarray breakpoint counting, it produced Figure 5.3d.

Because of the changes in breakpoint counting, the simulations could no longer quickly

produce chromosomes with over 100 breakpoints. Both simulation also showed a con-

tinuation of the trend seen in Figure 5.3b with a narrowing separation between the sim-

ulated chromosomes and chromosomes bearing the footprint of chromothripsis. For

example, of the 414 chromosomes in Figure 5.3c with between 50 and 55 breakpoints,

16 (3.9%) were dominated by three or two copy number states. This suggests that in

a screen of many chromosomes, the proposed footprint of chromothripsis may produce

false discoveries.

Finally, we altered the way the simulation chooses breakpoints to introduce into

the chromosome. In the original simulation, breakpoints were chosen uniformly ran-

domly without replacement, so each remaining breakpoint had an equal chance of being

introduced at each step. This may not correspond to biological reality as there may

be some preference for particular kinds of rearrangements. Specifically, a preference

for inversions over other rearrangement types could lead to chromosomes with many

breakpoints but few copy number states. To test this, we changed the simulation so



78

that inversions were twice as likely to be chosen at each step compared to deletions or

duplications. The results are in Figures 5.4a and 5.4b, using PES and microarray break-

point counting respectively. These results have many simulated chromosomes bearing

the footprint of chromothripsis. The large fraction of chromosomes with many break-

points and few copy number states (Table 5.2) indicates that some chromosomes that

appear to have undergone chromothripsis could also have been produced by progressive

rearrangement that favors inversions.

Table 5.2: Fraction of chromosomes in Figure 5.4a with few copy number states for

given breakpoint counts.

Breakpoint Range Fraction of Chromosomes With 2 or 3 Copy Number States

50-59 12.6%

60-69 7.4%

70-79 2.6%

80-89 0.8%

90-99 0.6%

The results in this section suggest that a more conservative threshold should be

used to identify chromothripsis in order to avoid false discoveries. If the minimum num-

ber of breakpoints were set at 100 rather than 50, much of the risk of false discovery we

have demonstrated above would be diminished. However, this threshold would also de-

crease the estimate of the prevalence of chromothripsis. When Stephens et al. screened

746 cancer cell line copy number profiles for chromosomes with over 50 breakpoints

and at most three copy number states, they found chromosomes from 18 cell lines that

met these criteria. With a threshold of 100 breakpoints, the number of cell lines drops

to 3. So based on this analysis, the true prevalence of chromothripsis may be less than

.5% rather than the original estimate of 2-3%.



79

5.3.3 Simulation Method Does Not Distinguish Between Progressive

Rearrangement and Chromothripsis

In the previous section, we discussed implementation details of simulations of

progressive rearrangements. We now turn our attention to the question of whether such

simulations can provide reliable evidence for chromothripsis at all. In order for an ex-

periment to provide information about a hypothesis, it has to produce different results

when the hypothesis is true than when it is false. In order for simulations to demon-

strate whether a chromosome could have been rearranged progressively, the simulations

should produce different results for progressively rearranged chromosomes and chro-

mosomes that have undergone chromothripsis.

The footprint of chromothripsis, many breakpoints with few unique copy states,

is unlikely to appear in a chromosome rearranged by progressive and overlapping tan-

dem duplications. However, it may appear in a chromosome rearranged by progressive

inversions and deletions. We simulated such a chromosome with only inversions and

deletions. The resulting breakpoints and copy numbers are shown in Figure 5.5. Even

though only two kinds of rearrangements were used, the chromosome shows the same

complex rearrangement pattern seen in chromosomes that have putatively undergone

chromothripsis.

We then applied the simulation method to the breakpoints of this chromosome

and recorded the results as we did in Figure 5.3b. The resulting distribution of break-

points and copy number states in Figure 5.6 is not different from Figure 5.3b even though

we know the chromosome was rearranged progressively. This result casts doubt on the

usefulness of the simulation method to detect chromothripsis. Rather than distinguishing

between chromosomes that shattered and chromosomes that were rearranged progres-

sively, it always report that chromosomes with many complex rearrangements and few

copy number states are the product of chromothripsis even when they are not.



80

5.3.4 Plausible Progressive Rearrangement Schemes Exist for Chro-

mosomes Bearing Footprint of Chromothripsis

Thus far, we have discussed in general whether some chromosomes that appear

to be the product of chromothripsis may actually have been progressively rearranged.

We now move from the general to the specific to see if we can find series of progressive

rearrangements that explain particular chromosomes that bear the footprint of chromoth-

ripsis. Stephens et al. singled out three chromosomes from three different cell lines for

extensive sequencing and analysis: chromosome 5 from TK10, chromosome 9 from

8505C, and chromosome 15 from SNU-C1. These chromosomes had 55, 77, and 239

breakpoints respectively and oscillated between two copy number states. We want to

find rearrangements that produce roughly the same breakpoints as were observed and

keep the number of copy states at two in each chromosome.

To do this, we searched for sequences of inversions and deletions that yielded

the breakpoints. By only using these two rearrangement types, we could guarantee that

the copy number of every segment in the chromosome was zero or one. We found these

sequences by first finding orderings of chromosomal segments with similar breakpoint

profiles to those observed experimentally. Then, we used a tool called GRIMM[75] to

find inversions and deletions that would create the orderings (see Methods). For each of

the three chromosomes, we were able to discover series of inversions and deletions that

yielded ∼95% of the experimentally observed breakpoints as well as some additional

breakpoints beyond what was observed (Table 5.3). Figure 5.7 illustrates the result for

chromosome 5 from TK10. Animations of the series of rearrangements for each of the

three chromosomes are in the supplement.

These series of progressive rearrangements raise potential alternative hypotheses

for the complex breakpoints and oscillating copy number states in these chromosomes.

Thus, while these chromosomes may have indeed undergone chromothripsis, the obser-

vations can also be explained using progressive rearrangements alone.



81

Table 5.3: The number of observed breakpoints.

Cell Line Experimental Breakpoints Covered Breakpoints New Breakpoints
TK10 55 52 12
8505C 77 74 19

SNU-C1 239 228 75

5.4 Discussion

It is notoriously difficult to make sense of many cancer genomes due to the

complexity of rearrangements. The proposal of the chromothripsis hypothesis was an

important step forward as a possible mechanism for the creation of this complexity.

Careful investigation of the phenomenon may deepen knowledge of structural variation

in cancers.

At the same time, the proposal of ‘shattering and subsequent reassembly’ of a

chromosome in a small number of cellular generations is truly extraordinary. The invo-

cation of chromothripsis to explain molecular data from cancer samples must be done

with great circumspection, and caution, even. The case for chromothripsis rests on the

argument that there are some variation patterns that progressive rearrangement cannot

achieve. But in this chapter, we have shown that progressive rearrangements can indeed

achieve patterns that, at first glance, would seem quite unlikely. We demonstrated that

a previously asserted footprint of chromothripsis may in fact encompass chromosomes

rearranged progressively, that simulations might always rule out progressive rearrange-

ment regardless of how the chromosome truly evolved, and that it is possible to find

progressive rearrangements that explain chromosomes that appear to be exemplars of

chromothripsis.

These results do not foreclose upon the chromothripsis hypothesis, of course.

But, they do underscore difficulty of making inferences about mechanisms in cancer.

Future work will likely refine the footprint of chromothripsis, but until then simply ex-

amining counts of breakpoints and copy states will provide only a limited understanding

of the mechanisms underlying complex rearrangements.



82

5.5 Acknowledgements

Chapter 5 is currently in submission, M. Kinsella, A. Patel, and V. Bafna, “Does

Chromothripsis Have a Distinguishing Signature”. The dissertation author was the pri-

mary investigator and author of this paper.



83

a. Results of directly reimplementing the sim-

ulation method of Stephens et al.

b. Results after fixing indexing issue for inver-

sions.

c. Results counting breakpoints as they would

appear from paired-end sequencing and count-

ing the number of copy number states needed

to cover 95% of the chromosome.

d. Results counting breakpoints as they would
appear from microarrays or depth of cover-
age and counting the number of copy num-
ber states needed to cover 95% of the chro-
mosome.

Figure 5.3: Charts of number of breakpoints versus number of copy number states for
simulated chromosomes. The shaded gray area indicates the boundaries of the footprint
of chromothripsis proposed by Stephens. The red dashed line shows the median number
of copy number states for given numbers of breakpoints. The green dashed lines show
an interval of copy number states that contains 99% of observations. The Gray region
shows the footprint of chromothripsis.



84

a. Result using paired-end sequencing break-
point counting.

b. Result using microarray breakpoint count-
ing.

Figure 5.4: Charts of breakpoints versus copy number states for simulations with an
overrepresentation of inversions.

Figure 5.5: Breakpoints and copy numbers of a chromosome simulated with progressive
inversions and deletions.



85

Figure 5.6: Counts of breakpoints and copy number states from a simulation based on
the chromosome in Figure 5.5



86

Figure 5.7: An illustration of the result of the series of inversions and deletions for
chromosome 5 of TK10. The top panel broadly shows the ordering of segments after re-
arrangement. The upper color bar shows all segments of the unrearranged chromosome
colored from blue to red. The lower color bar shows segments with the same coloring
after rearrangement. Note that some segments have been deleted so the chromosome is
shorter. The middle panel shows the breakpoints achieved by inversions and deletions,
and the lower panel shows the observed breakpoints.



Appendix A

Supplemental: Sensitive gene fusion

detection using ambiguously mapping

RNA-Seq read pairs

Table A.1: Frequency of ambiguously mapping read counts for various read lengths.

For each read length, 100,000 fusions were randomly generated. Then for each of these

fusions, 200 read pairs spanning the fusion site were generated. The number of read

pairs out of these 200 that mapped ambiguously was tabulated. Below is a table of the

frequency of ambiguous read pair counts for different read lengths.

Ambiguous

Read Count

(out of 200)

Read

Length

30

Read

Length

35

Read

Length

40

Read

Length

45

Read

Length

50

Read

Length

75

Read

Length

100

0 63,997 72,146 77,400 80,247 82,040 86,938 89,202

1 1,733 1,493 435 344 417 140 156

2 1,205 801 738 324 248 114 76

3 1,610 491 364 331 248 88 72

4 958 886 354 224 223 100 51

5 799 619 418 264 161 113 87

6 967 413 246 282 123 121 63

7 745 458 237 194 144 102 64

87



88

Table A.1 – Continued

Ambiguous

Read Count

(out of 200)

Read

Length

30

Read

Length

35

Read

Length

40

Read

Length

45

Read

Length

50

Read

Length

75

Read

Length

100

8 624 378 256 185 166 88 84

9 688 328 201 281 140 89 78

10 503 306 251 142 134 83 78

11 526 291 265 146 161 119 80

12 650 262 232 138 161 99 56

13 475 320 197 130 141 77 67

14 385 267 179 119 109 67 74

15 431 239 184 137 131 90 51

16 362 230 165 131 122 81 52

17 347 185 213 127 131 73 54

18 357 202 143 169 101 74 52

19 309 189 137 93 123 83 46

20 227 172 136 115 121 72 52

21 272 188 130 125 111 88 65

22 281 166 112 126 111 72 52

23 212 147 128 153 98 61 69

24 277 172 101 145 89 54 57

25 229 158 159 99 93 66 56

26 202 124 131 133 85 71 61

27 192 134 104 114 67 64 51

28 215 130 117 85 75 46 47

29 155 167 116 86 62 54 55

30 256 116 141 78 58 53 51

31 173 129 124 113 87 57 55

32 144 118 115 104 90 61 63

33 140 122 119 93 75 51 50

34 174 127 111 78 70 58 59



89

Table A.1 – Continued

Ambiguous

Read Count

(out of 200)

Read

Length

30

Read

Length

35

Read

Length

40

Read

Length

45

Read

Length

50

Read

Length

75

Read

Length

100

35 182 109 101 70 73 56 55

36 163 96 106 88 91 61 38

37 150 101 84 93 97 56 42

38 138 118 64 62 65 50 33

39 146 159 76 79 96 70 36

40 156 120 88 68 99 50 31

41 113 91 85 90 64 68 40

42 132 134 75 73 77 43 47

43 89 95 85 87 72 52 46

44 114 107 103 73 69 45 48

45 117 112 82 70 40 60 54

46 107 87 99 74 50 52 43

47 117 98 110 58 73 31 43

48 106 91 86 67 72 51 32

49 118 73 60 55 64 53 37

50 105 89 78 75 59 61 51

51 100 96 85 75 78 49 55

52 114 75 80 67 77 63 47

53 105 89 69 83 72 65 40

54 83 87 60 54 52 59 40

55 93 86 76 72 56 50 33

56 97 55 81 60 60 70 39

57 124 122 73 61 56 49 37

58 111 89 68 52 48 53 47

59 67 78 61 65 54 40 48

60 83 107 82 65 96 32 39

61 89 68 78 52 86 50 39



90

Table A.1 – Continued

Ambiguous

Read Count

(out of 200)

Read

Length

30

Read

Length

35

Read

Length

40

Read

Length

45

Read

Length

50

Read

Length

75

Read

Length

100

62 109 85 75 59 68 62 37

63 112 77 63 61 46 42 31

64 85 54 67 69 86 61 33

65 78 61 65 52 47 32 35

66 82 71 51 59 56 46 35

67 94 54 52 74 63 36 32

68 82 72 55 70 69 39 20

69 84 72 55 87 60 31 29

70 100 72 63 56 41 42 27

71 108 56 73 63 55 34 36

72 68 50 58 71 50 42 38

73 68 56 60 65 44 57 33

74 86 62 84 63 58 44 34

75 65 55 51 52 53 48 35

76 90 74 60 55 51 49 30

77 114 75 66 72 45 59 30

78 94 62 72 67 46 43 27

79 72 78 61 75 46 41 27

80 94 75 59 48 49 35 32

81 78 71 67 54 77 41 28

82 61 82 46 53 40 43 26

83 69 74 68 50 65 40 31

84 73 71 63 78 72 31 38

85 71 57 64 59 59 28 21

86 75 59 51 69 58 29 33

87 74 61 43 46 49 60 37

88 57 79 57 55 34 30 37



91

Table A.1 – Continued

Ambiguous

Read Count

(out of 200)

Read

Length

30

Read

Length

35

Read

Length

40

Read

Length

45

Read

Length

50

Read

Length

75

Read

Length

100

89 67 80 70 54 42 35 22

90 80 66 61 56 57 47 29

91 71 81 77 58 54 40 46

92 68 73 57 45 63 38 31

93 60 59 46 57 56 24 32

94 71 52 68 53 41 25 41

95 77 69 62 63 39 44 33

96 75 82 39 41 44 33 34

97 62 57 53 30 54 35 27

98 58 62 77 40 73 44 36

99 69 58 56 30 54 39 33

100 55 50 54 48 65 38 34

101 70 58 71 55 44 32 28

102 91 57 62 60 55 27 28

103 60 76 50 46 46 23 32

104 56 73 57 35 50 34 46

105 56 64 66 49 47 33 35

106 72 62 45 32 50 31 51

107 55 50 49 47 65 29 51

108 59 60 52 62 61 23 41

109 71 58 51 57 59 16 51

110 69 65 50 67 60 22 36

111 51 59 58 65 61 20 18

112 66 57 57 43 59 33 34

113 64 48 42 64 55 29 25

114 57 49 57 49 43 39 39

115 71 41 49 55 38 41 24



92

Table A.1 – Continued

Ambiguous

Read Count

(out of 200)

Read

Length

30

Read

Length

35

Read

Length

40

Read

Length

45

Read

Length

50

Read

Length

75

Read

Length

100

116 56 60 67 59 39 33 31

117 50 34 42 60 38 35 33

118 47 59 51 57 40 47 27

119 64 56 44 41 42 32 17

120 56 57 39 57 39 39 26

121 62 57 54 64 44 36 19

122 55 55 68 58 40 44 28

123 45 58 74 65 38 27 21

124 71 62 42 55 51 46 27

125 54 75 67 54 27 49 23

126 59 57 63 45 49 36 23

127 64 45 66 49 47 42 34

128 58 54 58 55 35 34 21

129 58 50 64 51 29 48 23

130 68 60 60 54 25 71 27

131 55 60 39 50 31 51 28

132 59 64 59 25 40 65 36

133 59 74 64 28 51 54 28

134 66 45 51 34 42 58 37

135 61 61 60 52 34 46 29

136 83 65 82 53 33 32 27

137 61 57 53 48 40 28 26

138 88 63 52 50 34 28 18

139 66 64 49 46 55 36 20

140 69 71 59 40 64 24 12

141 71 56 51 24 59 29 22

142 49 47 45 49 49 31 19



93

Table A.1 – Continued

Ambiguous

Read Count

(out of 200)

Read

Length

30

Read

Length

35

Read

Length

40

Read

Length

45

Read

Length

50

Read

Length

75

Read

Length

100

143 57 53 55 33 48 30 16

144 65 70 51 38 59 32 20

145 59 63 42 52 62 29 27

146 88 80 46 61 47 23 31

147 72 58 47 41 41 17 26

148 36 60 38 37 46 18 16

149 77 71 58 59 46 27 22

150 82 56 57 63 59 21 29

151 69 65 50 62 51 22 23

152 58 50 51 56 62 23 29

153 64 61 55 53 47 25 23

154 73 50 58 67 45 21 21

155 64 74 59 83 93 30 28

156 93 66 56 68 86 29 22

157 65 52 60 63 83 31 26

158 91 77 56 76 72 26 25

159 67 79 57 61 59 28 23

160 70 64 90 97 46 23 19

161 76 55 70 91 39 40 23

162 85 64 96 96 39 29 21

163 49 63 55 75 29 25 24

164 62 75 65 62 38 24 19

165 86 119 100 54 27 22 17

166 85 77 98 48 58 26 20

167 84 85 98 48 38 25 16

168 67 90 94 40 39 24 13

169 78 83 94 45 28 29 15



94

Table A.1 – Continued

Ambiguous

Read Count

(out of 200)

Read

Length

30

Read

Length

35

Read

Length

40

Read

Length

45

Read

Length

50

Read

Length

75

Read

Length

100

170 106 124 62 26 39 35 11

171 92 124 49 35 40 30 22

172 104 137 72 47 37 23 15

173 105 104 36 49 46 17 16

174 112 99 62 41 36 20 20

175 104 79 42 44 47 29 22

176 124 83 51 63 52 27 19

177 152 70 35 41 38 26 20

178 144 53 48 36 51 29 18

179 126 66 52 38 26 24 16

180 89 50 46 48 33 36 18

181 102 51 49 37 43 32 21

182 101 33 44 39 44 16 26

183 74 47 57 50 60 29 19

184 76 41 42 50 45 31 25

185 77 61 46 31 43 38 28

186 79 48 38 24 36 44 31

187 66 47 37 53 43 28 30

188 60 48 59 63 29 17 59

189 62 62 38 40 32 19 41

190 76 57 33 42 26 31 51

191 62 63 39 50 19 29 57

192 39 54 65 41 28 32 62

193 64 59 71 43 28 38 52

194 78 48 36 41 32 42 54

195 60 57 46 30 46 59 55

196 57 72 63 38 44 92 59



95

Table A.1 – Continued

Ambiguous

Read Count

(out of 200)

Read

Length

30

Read

Length

35

Read

Length

40

Read

Length

45

Read

Length

50

Read

Length

75

Read

Length

100

197 59 75 59 59 76 113 79

198 84 104 145 118 151 136 186

199 254 269 300 336 346 298 421

200 5,673 5,502 5,060 4,809 4,548 3,655 2,856

Figure A.1: Graph of ambiguously mapping read count frequency data above.

Table A.2: All gene fusions nominated by discordant read pairs in the simulated data.

Upstream Partner Downstream Partner

FOXO3B EIF3C

FOXO3B EIF3CL

FOXO3 EIF3C

FOXO3 EIF3CL



96

Table A.2 – Continued

Upstream Partner Downstream Partner

FRG1B LOC162632

FRG1B LOC220594

FRG1B USP32

FRG1B USP6

FRG1 LOC162632

FRG1 LOC220594

FRG1 USP32

FRG1 USP6

LOC283788 LOC162632

LOC283788 LOC220594

LOC283788 USP32

LOC283788 USP6

LOC642236 LOC162632

LOC642236 LOC220594

LOC642236 USP32

LOC642236 USP6

MAGED4B MBD3L2

MAGED4B MBD3L3

MAGED4B MBD3L4

MAGED4B MBD3L5

MAGED4 MBD3L2

MAGED4 MBD3L3

MAGED4 MBD3L4

MAGED4 MBD3L5

PSG10 PHB

PSG10 ZNF607

PSG11 PHB

PSG11 ZNF607

PSG1 PHB



97

Table A.2 – Continued

Upstream Partner Downstream Partner

PSG1 ZNF607

PSG2 PHB

PSG2 ZNF607

PSG3 PHB

PSG3 ZNF607

PSG4 PHB

PSG4 ZNF607

PSG5 PHB

PSG5 ZNF607

PSG6 PHB

PSG6 ZNF607

PSG7 PHB

PSG7 ZNF607

PSG8 PHB

PSG8 ZNF607

PSG9 PHB

PSG9 ZNF607

SMN1 CSAG1

SMN1 CSAG2

SMN1 CSAG3

SMN2 CSAG1

SMN2 CSAG2

SMN2 CSAG3



98

Ta
bl

e
A

.3
:U

na
m

bi
gu

ou
s

fu
si

on
re

su
lts

fr
om

m
el

an
om

a
an

d
U

H
R

da
ta

.I
n

ad
di

tio
n

to
th

e
am

bi
gu

ou
s

fu
si

on
s

re
po

rt
ed

in
th

e
re

su
lts

se
ct

io
n,

ou
r

m
et

ho
d

re
tu

rn
ed

m
an

y
un

am
bi

gu
ou

s
fu

si
on

s
as

w
el

l,
an

d
th

ey
ar

e
lis

te
d

be
lo

w
.

Fo
r

th
e

m
el

an
om

a
da

ta
,“

Pr
ev

io
us

ly

R
ep

or
te

d”
in

di
ca

te
s

w
he

th
er

th
e

fu
si

on
w

as
re

po
rt

ed
by

B
er

ge
re

ta
l.

N
ot

e
th

at
th

e
cr

ite
ri

a
B

er
ge

ru
se

d
fo

rr
ep

or
tin

g
w

as
di

ff
er

en
t

th
an

th
at

us
ed

he
re

.
Sp

ec
ifi

ca
lly

,B
er

ge
r

re
qu

ir
ed

a
re

ad
to

co
ve

r
th

e
fu

si
on

po
in

ta
nd

ex
cl

ud
ed

re
ad

-t
hr

ou
gh

s
pr

es
en

ti
n

ex
is

tin
g

da
ta

ba
se

s.
Fo

r
th

e
U

H
R

da
ta

,“
Pr

ev
io

us
ly

R
ep

or
te

d”
in

di
ca

te
s

w
he

th
er

M
ah

er
et

al
.

(2
00

9b
)

re
po

rt
ed

th
e

fu
si

on
.

T
he

U
H

R
da

ta

us
ed

in
th

is
st

ud
y

is
no

t
th

e
sa

m
e

as
us

ed
by

M
ah

er
,b

ut
bo

th
us

e
se

qu
en

ci
ng

of
U

H
R

.W
e

no
te

th
at

al
l

of
th

e
fu

si
on

s
re

po
rt

ed

by
B

er
ge

r
ar

e
pr

es
en

ti
n

ou
r

re
su

lts
an

d
ne

ar
ly

al
lo

f
th

e
re

ad
-t

hr
ou

gh
s.

T
he

re
ad

-t
hr

ou
gh

s
w

e
do

no
tr

ep
or

ta
re

C
D

K
2-

R
A

B
5B

,

PF
K

FB
4-

SC
O

T
IN

,F
O

X
R

E
D

-T
X

N
2,

an
d

C
11

or
f5

1-
C

11
or

f5
9.

T
he

fir
st

th
re

e
w

er
e

fo
un

d
bu

te
xc

lu
de

d
be

ca
us

e
co

ve
ra

ge
at

th
e

fu
si

on
si

te
w

as
le

ss
th

an
on

e-
tw

en
tie

th
ov

er
al

lc
ov

er
ag

e.
T

he
la

st
w

as
ex

cl
ud

ed
be

ca
us

e
it

lie
s

w
ith

in
an

in
tr

on
of

th
e

R
ef

Se
q

ge
ne

L
R

TO
M

T.

5’
G

en
e

C
hr

om
os

om
e

3’
G

en
e

C
hr

om
os

om
e

Su
pp

or
tin

g

R
ea

d
Pa

ir
s

Pr
ev

io
us

ly

R
ep

or
te

d

R
ea

d-

th
ro

ug
h

M
00

02
16

R
R

M
2

2
C

2o
rf

48
2

12
.0

N
o

Y
es

M
FG

E
8

15
H

A
PL

N
3

15
11

.0
N

o
Y

es

C
L

N
6

15
C

A
L

M
L

4
15

10
.0

N
o

Y
es

A
R

G
2

1
4

R
A

D
51

L
1

14
10

.0
N

o
N

o

K
C

T
D

2
17

A
R

H
G

E
F1

2
11

7.
0

Y
es

N
o

R
PL

7
8

E
E

F1
A

1
6

6.
0

N
o

N
o



99

Ta
bl

e
A

.3
–

C
on

tin
ue

d

5’
G

en
e

C
hr

om
os

om
e

3’
G

en
e

C
hr

om
os

om
e

Su
pp

or
tin

g

R
ea

d
Pa

ir
s

Pr
ev

io
us

ly

R
ep

or
te

d

R
ea

d-

th
ro

ug
h

T
SC

22
D

4
7

C
7o

rf
61

7
6.

0
N

o
Y

es

VA
X

2
2

A
T

P6
V

1B
1

2
5.

0
N

o
Y

es

M
G

A
T

5
2

L
O

C
15

11
62

2
4.

0
N

o
Y

es

H
SP

E
1

2
M

O
B

K
L

3
2

4.
0

N
o

Y
es

M
A

G
IX

X
PL

P2
X

3.
0

N
o

Y
es

N
D

ST
2

10
N

E
A

T
1

11
3.

0
N

o
N

o

M
E

D
20

6
U

SP
49

6
3.

0
N

o
Y

es

A
R

H
G

E
F1

2
11

C
16

or
f3

5
16

3.
0

N
o

N
o

G
LT

8D
4

3
PP

P4
R

2
3

3.
0

N
o

Y
es

Z
H

X
1

8
C

8o
rf

76
8

3.
0

N
o

Y
es

SP
P1

4
B

R
I3

B
P

12
3.

0
N

o
N

o

M
00

09
21

R
E

C
K

9
A

L
X

3
1

34
.0

Y
es

N
o

H
B

X
IP

1
O

R
2S

2
9

19
.0

N
o

N
o

C
15

or
f5

7
15

C
B

X
3

7
10

.0
N

o
N

o

H
E

R
C

2
15

M
T

M
R

15
15

8.
0

N
o

N
o

ST
Y

X
L

1
7

T
M

E
M

12
0A

7
6.

0
N

o
Y

es

ST
6G

A
L

N
A

C
69

A
K

1
9

6.
0

N
o

Y
es



100

Ta
bl

e
A

.3
–

C
on

tin
ue

d

5’
G

en
e

C
hr

om
os

om
e

3’
G

en
e

C
hr

om
os

om
e

Su
pp

or
tin

g

R
ea

d
Pa

ir
s

Pr
ev

io
us

ly

R
ep

or
te

d

R
ea

d-

th
ro

ug
h

SF
3A

2
19

A
M

H
19

5.
0

N
o

Y
es

ST
R

A
D

A
17

L
IM

D
2

17
5.

0
N

o
Y

es

T
IM

M
23

10
B

M
S1

P4
10

5.
0

N
o

N
o

A
PB

B
3

5
SR

A
1

5
4.

0
N

o
Y

es

B
T

B
D

8
1

K
IA

A
11

07
1

4.
0

N
o

Y
es

T
M

E
M

8B
9

T
L

N
1

9
4.

0
Y

es
N

o

A
SX

L
1

20
R

PL
35

9
3.

0
N

o
N

o

Z
N

F5
94

17
FL

J3
64

92
17

3.
0

N
o

N
o

PI
R

X
FI

G
F

X
3.

0
N

o
Y

es

E
SR

P1
8

D
PY

19
L

4
8

3.
0

Y
es

Y
es

PF
D

N
5

12
C

12
or

f1
0

12
3.

0
N

o
Y

es

M
T

R
F1

L
6

FB
X

O
5

6
3.

0
N

o
Y

es

B
B

S5
2

K
B

T
B

D
10

2
3.

0
N

o
Y

es

H
SP

E
1

2
M

O
B

K
L

3
2

3.
0

N
o

Y
es

N
PL

1
D

H
X

9
1

3.
0

N
o

Y
es

G
PA

T
C

H
3

1
G

PN
2

1
2.

0
N

o
Y

es

K
IA

A
12

67
17

L
R

R
C

37
A

17
2.

0
N

o
N

o

W
A

R
S2

1
N

O
T

C
H

2
1

2.
0

N
o

N
o



101

Ta
bl

e
A

.3
–

C
on

tin
ue

d

5’
G

en
e

C
hr

om
os

om
e

3’
G

en
e

C
hr

om
os

om
e

Su
pp

or
tin

g

R
ea

d
Pa

ir
s

Pr
ev

io
us

ly

R
ep

or
te

d

R
ea

d-

th
ro

ug
h

V
PS

45
1

PL
E

K
H

O
1

1
2.

0
N

o
Y

es

M
A

G
IX

X
PL

P2
X

2.
0

N
o

Y
es

L
O

C
72

86
13

5
SD

H
A

5
2.

0
N

o
N

o

T
R

IM
2

4
M

N
D

1
4

2.
0

N
o

Y
es

M
01

04
03

SM
G

5
1

PA
Q

R
6

1
12

.0
N

o
Y

es

PR
M

T
1

19
C

19
or

f7
6

19
7.

0
N

o
Y

es

R
PS

4Y
1

Y
R

PS
4X

X
5.

0
N

o
N

o

ST
Y

X
L

1
7

T
M

E
M

12
0A

7
5.

0
N

o
Y

es

SC
A

M
P2

15
W

D
R

72
15

5.
0

Y
es

N
o

C
L

N
6

15
C

A
L

M
L

4
15

5.
0

N
o

Y
es

L
O

C
72

81
90

10
SY

T
15

10
5.

0
N

o
N

o

H
AV

C
R

1
5

T
IM

D
4

5
5.

0
N

o
Y

es

R
PS

27
A

2
U

B
A

52
19

4.
0

N
o

N
o

SU
G

T
1P

9
N

O
L

6
9

4.
0

N
o

Y
es

SM
O

X
20

L
O

C
72

82
28

20
4.

0
N

o
Y

es

A
R

N
T

L
2

12
C

12
or

f7
0

12
4.

0
N

o
Y

es

R
R

M
2

2
C

2o
rf

48
2

4.
0

N
o

Y
es



102

Ta
bl

e
A

.3
–

C
on

tin
ue

d

5’
G

en
e

C
hr

om
os

om
e

3’
G

en
e

C
hr

om
os

om
e

Su
pp

or
tin

g

R
ea

d
Pa

ir
s

Pr
ev

io
us

ly

R
ep

or
te

d

R
ea

d-

th
ro

ug
h

A
N

K
R

D
39

2
A

N
K

R
D

23
2

3.
0

N
o

Y
es

H
SP

A
8

11
R

PS
11

19
3.

0
N

o
N

o

L
O

C
54

14
71

2
A

N
A

PC
1

2
3.

0
N

o
N

o

A
N

X
A

2
15

R
PL

6
12

2.
0

N
o

N
o

Z
N

F6
06

19
C

19
or

f1
8

19
2.

0
N

o
Y

es

N
O

N
O

X
R

PL
6

12
2.

0
N

o
N

o

U
N

Q
29

63
12

C
L

ST
N

3
12

2.
0

N
o

Y
es

A
B

C
B

8
7

A
C

C
N

3
7

2.
0

N
o

Y
es

H
O

X
D

11
2

H
O

X
D

10
2

2.
0

N
o

Y
es

U
B

X
N

2A
2

M
FS

D
2B

2
2.

0
N

o
Y

es

PO
L

A
2

11
C

D
C

42
E

P2
11

2.
0

N
o

Y
es

M
97

01
09

U
C

N
2

3
PF

K
FB

4
3

57
.0

N
o

Y
es

H
N

R
N

PU
1

N
C

R
N

A
00

20
1

1
15

.0
N

o
Y

es

C
L

R
12

C
L

E
C

2D
12

9.
0

N
o

Y
es

B
T

B
D

8
1

K
IA

A
11

07
1

7.
0

N
o

Y
es

SL
C

39
A

1
1

C
R

T
C

2
1

6.
0

N
o

Y
es

R
A

SS
F8

12
SS

PN
12

5.
0

N
o

N
o



103

Ta
bl

e
A

.3
–

C
on

tin
ue

d

5’
G

en
e

C
hr

om
os

om
e

3’
G

en
e

C
hr

om
os

om
e

Su
pp

or
tin

g

R
ea

d
Pa

ir
s

Pr
ev

io
us

ly

R
ep

or
te

d

R
ea

d-

th
ro

ug
h

M
98

04
09

C
D

K
2

12
R

A
B

5B
12

30
.0

Y
es

Y
es

U
C

N
2

3
PF

K
FB

4
3

24
.0

N
o

Y
es

T
L

K
2

17
L

O
C

10
02

88
06

91
15

.0
N

o
N

o

C
LT

C
17

T
M

E
M

49
17

14
.0

Y
es

Y
es

SL
C

39
A

1
1

C
R

T
C

2
1

13
.0

N
o

Y
es

A
B

C
B

8
7

A
C

C
N

3
7

9.
0

N
o

Y
es

A
R

PC
4

3
T

T
L

L
3

3
8.

0
N

o
Y

es

A
R

L
6I

P1
16

R
PS

15
A

16
7.

0
N

o
Y

es

G
C

N
1L

1
12

PL
A

2G
1B

12
7.

0
Y

es
N

o

SD
H

A
F2

11
C

11
or

f6
6

11
6.

0
N

o
Y

es

ST
Y

X
L

1
7

T
M

E
M

12
0A

7
6.

0
N

o
Y

es

M
R

PS
10

6
G

U
C

A
1B

6
5.

0
N

o
Y

es

O
T

U
D

6B
8

L
R

R
C

69
8

4.
0

N
o

Y
es

L
O

C
72

86
13

5
SD

H
A

5
4.

0
N

o
N

o

PO
L

A
2

11
C

D
C

42
E

P2
11

3.
0

N
o

Y
es

A
D

SL
22

SG
SM

3
22

3.
0

N
o

Y
es

C
C

D
C

15
11

SL
C

37
A

2
11

3.
0

Y
es

Y
es



104

Ta
bl

e
A

.3
–

C
on

tin
ue

d

5’
G

en
e

C
hr

om
os

om
e

3’
G

en
e

C
hr

om
os

om
e

Su
pp

or
tin

g

R
ea

d
Pa

ir
s

Pr
ev

io
us

ly

R
ep

or
te

d

R
ea

d-

th
ro

ug
h

C
L

R
12

C
L

E
C

2D
12

3.
0

N
o

Y
es

A
N

K
R

D
39

2
A

N
K

R
D

23
2

3.
0

N
o

Y
es

M
99

08
02

A
N

K
H

D
1

5
C

5o
rf

32
5

65
.0

Y
es

N
o

R
B

1
13

IT
M

2B
13

26
.0

Y
es

N
o

SM
G

5
1

PA
Q

R
6

1
12

.0
N

o
Y

es

L
R

R
FI

P1
2

R
B

M
44

2
6.

0
N

o
Y

es

T
PD

52
L

2
20

D
N

A
JC

5
20

5.
0

N
o

Y
es

O
R

51
B

4
11

H
B

E
1

11
4.

0
N

o
Y

es

W
R

B
21

SH
3B

G
R

21
3.

0
N

o
N

o

K
IA

A
14

67
12

E
M

P1
12

3.
0

N
o

N
o

R
PL

11
1

T
C

E
B

3
1

3.
0

N
o

Y
es

YA
R

S2
12

N
A

P1
L

1
12

3.
0

N
o

N
o

T
T

L
L

12
22

E
IF

1
17

3.
0

N
o

N
o

N
FX

1
9

M
T

R
N

R
2L

8
11

2.
0

N
o

N
o

M
98

09
28

H
O

X
D

4
2

H
O

X
D

3
2

9.
0

N
o

Y
es

N
A

IP
5

O
C

L
N

5
6.

0
N

o
N

o



105

Ta
bl

e
A

.3
–

C
on

tin
ue

d

5’
G

en
e

C
hr

om
os

om
e

3’
G

en
e

C
hr

om
os

om
e

Su
pp

or
tin

g

R
ea

d
Pa

ir
s

Pr
ev

io
us

ly

R
ep

or
te

d

R
ea

d-

th
ro

ug
h

SL
A

M
F9

1
IG

SF
9

1
2.

0
N

o
Y

es

M
99

05
14

U
C

N
2

3
PF

K
FB

4
3

19
.0

N
o

Y
es

N
A

D
SY

N
1

11
L

O
C

10
01

88
94

71
0

17
.0

N
o

N
o

PR
M

T
1

19
C

19
or

f7
6

19
16

.0
N

o
Y

es

C
O

L
7A

1
3

U
C

N
2

3
15

.0
N

o
Y

es

PA
C

SI
N

2
22

A
R

FG
A

P3
22

13
.0

N
o

Y
es

C
E

C
R

7
22

IL
17

R
A

22
10

.0
N

o
Y

es

X
R

C
C

1
19

E
T

H
E

1
19

10
.0

N
o

N
o

SL
C

39
A

1
1

C
R

T
C

2
1

9.
0

N
o

Y
es

G
A

L
N

T
8

12
K

C
N

A
6

12
8.

0
N

o
Y

es

W
D

R
35

2
T

T
C

32
2

8.
0

Y
es

Y
es

C
14

or
f1

33
14

C
14

or
f1

48
14

7.
0

N
o

Y
es

M
R

PL
20

1
C

C
N

L
2

1
6.

0
N

o
Y

es

C
7o

rf
50

7
C

O
X

19
7

6.
0

N
o

N
o

PT
PR

G
3

C
3o

rf
14

3
6.

0
Y

es
Y

es

D
M

PK
19

SI
X

5
19

6.
0

N
o

Y
es

SL
C

29
A

1
6

H
SP

90
A

B
1

6
6.

0
N

o
Y

es



106

Ta
bl

e
A

.3
–

C
on

tin
ue

d

5’
G

en
e

C
hr

om
os

om
e

3’
G

en
e

C
hr

om
os

om
e

Su
pp

or
tin

g

R
ea

d
Pa

ir
s

Pr
ev

io
us

ly

R
ep

or
te

d

R
ea

d-

th
ro

ug
h

G
PR

15
3

1
IC

M
T

1
6.

0
Y

es
N

o

C
7o

rf
68

7
E

FC
A

B
3

17
5.

0
N

o
N

o

PI
M

2
X

SL
C

35
A

2
X

5.
0

N
o

Y
es

U
SP

36
17

C
Y

T
H

1
17

5.
0

N
o

Y
es

N
D

U
FS

2
1

FC
E

R
1G

1
5.

0
N

o
Y

es

U
B

E
4A

11
A

T
P5

L
11

5.
0

N
o

Y
es

ST
Y

X
L

1
7

T
M

E
M

12
0A

7
4.

0
N

o
Y

es

PK
D

1
16

N
PI

P
16

4.
0

N
o

N
o

C
A

D
M

4
19

Z
N

F4
28

19
4.

0
N

o
Y

es

SH
C

1
1

PY
G

O
2

1
4.

0
N

o
Y

es

C
D

15
1

11
T

SP
A

N
4

11
4.

0
Y

es
Y

es

K
D

M
6B

17
T

M
E

M
88

17
4.

0
N

o
Y

es

B
C

L
2L

2
14

PA
B

PN
1

14
4.

0
N

o
Y

es

T
PD

52
L

2
20

D
N

A
JC

5
20

4.
0

N
o

Y
es

ST
6G

A
L

N
A

C
69

A
K

1
9

4.
0

N
o

Y
es

W
R

B
21

SH
3B

G
R

21
4.

0
N

o
N

o

SI
R

T
7

17
PC

Y
T

2
17

4.
0

N
o

Y
es

O
D

F3
B

22
T

Y
M

P
22

4.
0

N
o

Y
es



107

Ta
bl

e
A

.3
–

C
on

tin
ue

d

5’
G

en
e

C
hr

om
os

om
e

3’
G

en
e

C
hr

om
os

om
e

Su
pp

or
tin

g

R
ea

d
Pa

ir
s

Pr
ev

io
us

ly

R
ep

or
te

d

R
ea

d-

th
ro

ug
h

SN
X

8
7

FT
SJ

2
7

3.
0

N
o

N
o

PO
L

A
2

11
C

D
C

42
E

P2
11

3.
0

N
o

Y
es

PG
A

P1
2

C
2o

rf
66

2
3.

0
N

o
Y

es

L
M

C
D

1
3

N
A

G
-7

3
3.

0
N

o
Y

es

T
SE

N
34

19
R

PS
9

19
3.

0
N

o
N

o

C
L

R
12

C
L

E
C

2D
12

3.
0

N
o

N
o

SI
D

T
2

11
TA

G
L

N
11

3.
0

N
o

Y
es

C
8o

rf
58

8
K

IA
A

19
67

8
3.

0
N

o
Y

es

U
B

E
2J

2
1

FA
M

13
2A

1
2.

0
N

o
Y

es

C
U

E
D

C
1

17
M

R
PS

23
17

2.
0

N
o

Y
es

C
1R

L
12

C
1R

12
2.

0
N

o
Y

es

G
PR

15
5

2
C

IR
1

2
2.

0
N

o
N

o

50
1_

M
el

C
C

T
3

1
C

1o
rf

61
1

84
.0

Y
es

N
o

SL
C

12
A

7
5

C
11

or
f6

7
11

77
.0

Y
es

N
o

G
N

A
12

7
SH

A
N

K
2

11
36

.0
Y

es
N

o

FC
H

SD
2

11
P2

RY
6

11
21

.0
N

o
N

o

C
L

N
6

15
C

A
L

M
L

4
15

5.
0

N
o

Y
es



108

Ta
bl

e
A

.3
–

C
on

tin
ue

d

5’
G

en
e

C
hr

om
os

om
e

3’
G

en
e

C
hr

om
os

om
e

Su
pp

or
tin

g

R
ea

d
Pa

ir
s

Pr
ev

io
us

ly

R
ep

or
te

d

R
ea

d-

th
ro

ug
h

A
N

P3
2B

9
A

T
P5

I
4

5.
0

N
o

N
o

R
A

B
6A

11
E

Y
S

6
4.

0
N

o
N

o

M
A

N
B

A
4

U
B

E
2D

3
4

4.
0

N
o

N
o

R
B

B
P5

1
N

U
A

K
2

1
4.

0
N

o
N

o

D
U

S3
L

19
PR

R
22

19
3.

0
N

o
Y

es

C
15

or
f5

7
15

C
B

X
3

7
3.

0
N

o
N

o

FR
G

1
4

G
O

SR
1

17
3.

0
N

o
N

o

T
B

C
E

L
11

T
E

C
TA

11
2.

0
N

o
Y

es

C
L

R
12

C
L

E
C

2D
12

2.
0

N
o

Y
es

PA
R

P1
1

M
IX

L
1

1
2.

0
Y

es
N

o

M
eW

o

A
R

L
6I

P1
16

R
PS

15
A

16
10

.0
N

o
Y

es

M
E

T
T

L
10

10
FA

M
53

B
10

7.
0

N
o

Y
es

Z
N

F6
54

3
C

3o
rf

38
3

5.
0

N
o

Y
es

T
R

A
K

2
2

A
L

S2
C

R
12

2
4.

0
N

o
Y

es

U
B

A
2

19
W

T
IP

19
4.

0
N

o
Y

es

ST
Y

X
L

1
7

T
M

E
M

12
0A

7
3.

0
N

o
Y

es

FB
X

L
19

16
O

R
A

I3
16

3.
0

N
o

Y
es



109

Ta
bl

e
A

.3
–

C
on

tin
ue

d

5’
G

en
e

C
hr

om
os

om
e

3’
G

en
e

C
hr

om
os

om
e

Su
pp

or
tin

g

R
ea

d
Pa

ir
s

Pr
ev

io
us

ly

R
ep

or
te

d

R
ea

d-

th
ro

ug
h

C
O

R
O

1C
12

SE
L

PL
G

12
2.

0
N

o
Y

es

W
R

N
8

FI
B

P
11

2.
0

N
o

N
o

SE
M

A
4C

2
A

N
K

R
D

39
2

2.
0

N
o

Y
es

H
A

R
S

5
D

N
D

1
5

2.
0

N
o

Y
es

C
20

or
f2

9
20

M
AV

S
20

2.
0

N
o

Y
es

U
H

R

B
C

A
S4

20
B

C
A

S3
17

75
.0

Y
es

N
o

G
A

S6
13

R
A

SA
3

13
33

.0
Y

es
N

o

A
P3

D
1

19
JS

R
P1

19
16

.0
N

o
N

o

A
R

FG
E

F2
20

SU
L

F2
20

13
.0

Y
es

N
o

C
L

N
6

15
C

A
L

M
L

4
15

11
.0

N
o

Y
es

R
PS

6K
B

1
17

T
M

E
M

49
17

8.
0

Y
es

N
o

B
3G

A
T

3
11

G
A

N
A

B
11

7.
0

N
o

Y
es

B
C

R
22

A
B

L
1

9
7.

0
Y

es
N

o

R
R

M
2

2
C

2o
rf

48
2

7.
0

N
o

Y
es

A
D

C
K

4
19

N
U

M
B

L
19

6.
0

Y
es

Y
es

R
PL

P0
12

E
E

F1
A

L
7

4
6.

0
N

o
N

o

SY
T

L
2

11
PI

C
A

L
M

11
6.

0
N

o
N

o



110

Ta
bl

e
A

.3
–

C
on

tin
ue

d

5’
G

en
e

C
hr

om
os

om
e

3’
G

en
e

C
hr

om
os

om
e

Su
pp

or
tin

g

R
ea

d
Pa

ir
s

Pr
ev

io
us

ly

R
ep

or
te

d

R
ea

d-

th
ro

ug
h

R
PL

3
22

E
E

F1
A

L
7

4
5.

0
N

o
N

o

SI
D

T
2

11
TA

G
L

N
11

5.
0

N
o

Y
es

H
N

R
N

PU
L

2
11

C
11

or
f4

9
11

5.
0

N
o

N
o

G
C

N
1L

1
12

M
SI

1
12

5.
0

N
o

N
o

N
U

P2
14

9
X

K
R

3
22

5.
0

Y
es

N
o

C
C

D
C

12
3

19
PE

PD
19

4.
8

Y
es

N
o

TA
N

C
2

17
C

A
4

17
4.

0
N

o
N

o

E
E

F1
A

L
7

4
G

A
PD

H
12

4.
0

N
o

N
o

Z
FP

41
8

G
L

I4
8

4.
0

Y
es

Y
es

VA
M

P8
2

VA
M

P5
2

4.
0

Y
es

Y
es

H
N

R
N

PU
1

N
C

R
N

A
00

20
1

1
4.

0
N

o
Y

es

E
E

F1
A

L
7

4
E

E
F2

19
4.

0
N

o
N

o

L
IM

E
1

20
SL

C
2A

4R
G

20
4.

0
N

o
Y

es

SA
PS

3
11

D
PP

3
11

4.
0

N
o

N
o

SS
SC

A
1

11
FA

M
89

B
11

4.
0

N
o

Y
es

V
PS

72
1

T
M

O
D

4
1

3.
0

N
o

Y
es

SM
G

5
1

PA
Q

R
6

1
3.

0
N

o
Y

es

A
N

K
R

D
39

2
A

N
K

R
D

23
2

3.
0

Y
es

Y
es



111

Ta
bl

e
A

.3
–

C
on

tin
ue

d

5’
G

en
e

C
hr

om
os

om
e

3’
G

en
e

C
hr

om
os

om
e

Su
pp

or
tin

g

R
ea

d
Pa

ir
s

Pr
ev

io
us

ly

R
ep

or
te

d

R
ea

d-

th
ro

ug
h

R
PS

10
6

N
U

D
T

3
6

3.
0

N
o

Y
es

PO
L

A
2

11
C

D
C

42
E

P2
11

3.
0

Y
es

Y
es

M
R

PS
10

6
G

U
C

A
1B

6
3.

0
N

o
Y

es

SU
G

T
1P

9
N

O
L

6
9

3.
0

N
o

Y
es

C
T

N
N

B
IP

1
1

C
L

ST
N

1
1

3.
0

N
o

Y
es

V
IM

10
E

E
F1

A
L

7
4

3.
0

N
o

N
o

A
H

C
Y

L
1

1
C

FL
1

11
2.

0
N

o
N

o

C
B

FA
2T

3
16

L
O

C
39

07
48

16
2.

0
N

o
Y

es

TA
G

L
N

2
1

C
C

D
C

19
1

2.
0

N
o

Y
es

FK
B

P4
12

IT
FG

2
12

2.
0

N
o

Y
es

E
E

F2
19

E
E

F1
A

L
7

4
2.

0
N

o
N

o

E
E

F1
A

L
7

4
SN

D
1

7
2.

0
N

o
N

o

B
A

IA
P2

L
2

22
SL

C
16

A
8

22
2.

0
N

o
Y

es

L
O

C
44

24
54

X
E

N
O

1
1

2.
0

N
o

N
o

A
L

K
B

H
6

19
C

19
or

f4
6

19
2.

0
N

o
Y

es

PH
R

F1
11

D
R

D
4

11
2.

0
N

o
N

o

SP
N

16
Q

PR
T

16
2.

0
N

o
Y

es



112

GRHL2

SNTG1

Figure A.2: A short homologous sequence near the fusion site of GRHL2 and SNTG1.

A.1 Ambiguous fusion sequences.

Below is the sequence surrounding each fusion site for the ambiguous fusions

reported in the results.

A.1.1 HOMEZ-MYH6

CTCGGAGCGGCCGCACCGGGCAGCAACCCCACTCCCACTCGGAGGCCCCCTGCCCTCTCCCC

CACTTCCCCCCGGCCCATGGTGCGAGGCTGGGAGCCGCCGCCCGGGCTGGACTGC GGCCTCCCT

GGAGCACGAGGAGGGCAAGATCCTCCGGGCCCAGCTAGAGTTCAACCAGA

TCAAGGCAGAGATCGAGCGGAAGCTGGCAGAGAAGGACGAGGAGATGGA

ACAGGCCAAGCGCAACCACCAGCGGGTGGTGGACTCGCTGCAGACCTCCC

TGGATGCAGAGACACGCAGCCGCAACGAGGTCCTGAG

A.1.2 KIAA1267-ARL17A

GGGGAGTCTGATATTGAAGAGGAAGAACTGACCAGAGCTGATCCCGAGCAGCGTCATGTACC

CCTGAGACGCAGGTCAGAATGGAAATGGGCTGCAGACCGGGCAGCTATTGTCAGCCGCTGGAACTGG

CTTCAGGCTCATGTTTCTGACTTGGAATATCGAATTCGTCAGCAAACAGACATTTACAAACAGATAC

GTGCTAATAAG GTTTCTGTGTGGAGACAGTAGAATATAAAAATAACACCTTCG

CTGTCTGGGATGTTGGCAGCCACTTCAAAATCAGACCTCTGTGGCAGCATT

TTTTCCAGAACACAAAAGGTGCCAGAAGCCCAGGAAGCACACATCAAGGC

TCACTTGCCAGCGGGGTGCTGCCAATAAAATGTAGTCACGTGGAATTTGGA



113

ATGTGG

Note that this fusion sequence matches GenBank mRNA accession BC006271.1.

A.1.3 CPEB1-RPS17

GCCGACAGTAACTTTGTCCGGAGCCCATCTCAGAGGCTTGACCCCAGCAGGACGGTGTTTGT

CGGTGCTCTGCATGGAATGCTAAATGCTGAGGCCCTGGCAGCCATCTTGAACGACCTATTTGGTGGA

GTGGTGTATGCCGGGATTGACACAGATAAGCACAAGTATCCCATTGGTTCTGGTCGTGTGACTTTCA

ATAACCAACGGAGTTACCTGAAAGCAGTCAGCGCTGCTTTTGTGGAGATCAAAACCACCAAGTTCAC

AAAGAAGGTTCAGATTGACCCCTACCTAGAAGATTCTCTGTGTCATATCTGCAGTTCTCAGCCTGGT

CCTTTCTTCTGTCGAGATCAG GTTTCCTCTTTTACCAAGGACCCGCCAACATGGGC

CGCGTTCGCACCAAAACCGTGAAGAAGGCGGCCCGGGTCATCATAGAAAA

GTACTACACGCGCCTGGGCAACGACTTCCACACGAACAAGCGCGTGTGCG

AGGAGATCGCCATTATCCCCAGCAAAAAGCTCCGCAACAAGATAGCAGGT

TATGTCACGCATCTGATGAAGCGAATTCAGAGAGGCCCAGTAAGAGGTAT

CTCCATCAAGCTGCAGGAGGAGGAGAGAGAAAGGAGAGACAATTATGTTC

CTGAGGTCTCAGCCTTGGATCAGGAGATTATTGAAGTAGATCCTGACACTA

AGGAAATGCTGAAGCTTTTGGACTTCGGCAGTCTGTCCAACCTTCAGGTCA

CTCAGCCTACAGTTGGGATGAATTTCAAAACGCCTCGGGGACCTGTTTGAA

TTTTTTCTGTAGTGCTGTATTATTTTCAATAAATCTGGG

A.1.4 PPIP5K1-CATSPER2

GTCCAGGAAAGGCATCAGATGAACCAGACCGGGCATTGCAGACTTCACCCCAGCCTCCTGA

GGGCCCTGGCCTTCCGAGGAGATCACCCCTCATTCGTAACCGAAAAGCTGGTTCCATGGAGGTACTT

TCTGAGACTTCATCCTCGAGGCCTGGTGGCTACCGGCTCTTTTCATCTTCACGGCCACCCACAGAAA

TGAAGCAGAGTGGCCTAG ATCCTTCCCGCCAGAAGAAACTTGTATTGGGAGATCA

ACACCAGCTAGTGCGTTTCTCTATAAAGCCTCAGCGTATAGAACAGATTTC

ACATGCCCAGAGGCTGTTGAGCAGGCTTCATGTGCGCTGCAGTCAGAGGC

CACCT



Appendix B

Supplemental: Combinatorics of the

Breakage-Fusion-Bridge Mechanism

B.1 Proofs

Theorem 3: Algorithm CheckBFB checks if x is a BFB-string in O(n) time.

Proof. (Maximal Palindromes) A string is a BFB-string if and only if it can be formed

by an inverted prefix duplication from another BFB-string or it is the original string, x0.

An inverted prefix duplication forms an even palindrome at the beginning of a string.

CheckBFB finds such a palindrome and then, in effect, recurses on the string that ends

at that palindrome’s center. The Suffix Lemma guarantees that that string must be a

BFB-string if x is a BFB-string. If a string does not begin with a palindrome, and it is

not x0, then it is not a BFB-string.

We would like to describe an algorithm that finds the radius of the largest palin-

drome centered at each interstice in a string in linear time. We will, in fact, describe two.

The first lends itself to clear exposition and establishes that the problem can be solved

in linear time. The second lends itself to easier implementation and is the method we

used for results in this paper.

Our first algorithm has three steps and is similar to the algorithm described by

Gusfield [24].

1. Build a generalized suffix tree from the string and the reverse of the string, that

114



115

is, a suffix tree that contains both suffixes and prefixes of the string. As usual,

each leaf corresponding to a suffix beginning at position i is labeled i. Each leaf

corresponding to a prefix ending at i is labeled −i. It is well known this can be

done in linear time.

2. For each position in the string, i, find the lowest common ancestor of i and −i.

Using Tarjan’s algorithm, this can be done with linear preprocessing time and

constant query time [27].

3. Find the distance from the root to the LCA. This is the size of the largest com-

mon prefix ending and i and suffix starting at i and hence radius of the largest

palindrome.

While this is indeed a linear time algorithm to find maximal palindromes, Tar-

jan’s algorithm is not considered to be particularly implementable. So, we implemented

another linear time algorithm that is similar to Manacher’s algorithm [50]. This algo-

rithm proceeds through each interstice in the string, from left to right. As each interstice,

is visited, pairs of characters at the boundary of the current known palindrome are tested

to see if that palindrome can be expanded. If it cannot, then the palindrome radius is

appended to the R array. Then, for each interstice to the right lying in the radius of this

palindrome, the corresponding maximal palindrome size for the interstice lying to the

left is checked. If the maximal palindrome to the left lies completely within the radius

of the current palindrome, then we know that the radius of the maximal palindrome to

the right is equal to the radius of the maximal palindrome on the left. If the maximal

palindrome on the left is a proper prefix of the current palindrome or it extends beyond

the radius of the current palindrome, then the corresponding palindrome on the right has

a radius that extends at least to the current palindrome’s radius.

Algorithm MaximalPalindromes

Input: String s

Output: Array of integers R, the maximal palindrome radii

1. i = 0

2. ` = 0

3. n = len(s)

4. while i + ` < n−1



116

5. do if s[i-`] = s[i+`+1]

6. then `++

7. continue

8. R.append(`)

9. c = 0

10. f oundSu f f ix = False

11. for 0≤ i′ < ` - 1

12. do if `− i′−1≤ R(i− i′−1)

13. then ` = `− i′−1

14. f oundSu f f ix = True

15. break

16. R.append(min(`− i′−1,R(i− i′−1))

17. c++

18. if not f oundSu f f ix

19. then ` = 0

20. i += c + 1

21. return R

Note that if the first if clause is true, then ` is incremented by one. If the inner

loop iterates all ` times, then ` is set to zero and i is increased by `+1. If the inner loop

finds a palindromic suffix and breaks, then ` is set to `− i′−1 and i is set to i+ i′+2. In

all three cases, i+ ` is incremented by one in each iteration of the outer loop. Therefore

the outer loop only iterates n times. The inner loop appends a value to R in iteration and

thus is called at most n−1 times. Thus, MaximalPalindromes is in O(n).

Finally, note that both algorithms presented above give us the radius of largest

palindrome measured from the center of the palindrome. The algorithm CheckBFB uses

the length of largest palindrome measured from its leftmost character to its center, so

we need to convert the R array we get from MaximalPalindromes to the P array used by

CheckBFB. This can easily be done in linear time:

Algorithm RtoP

Input: R array (palindrome radii)

Output: P array (palindrome lengths from left)



117

1. (∗ Instantiate P array to all zeroes ∗)
2. P = [0]*(R.length() + 1)

3. for 0 < i≤ R.length()

4. do P[i - R[i] + 1] = max(P[i - R[i] + 1], R[i])

5. pal_counter = 0

6. for 0 < i≤ P.length()

7. do pal_counter = max(P[i], pal_counter - 1, 0)

8. P[i] = max(P[i], pal_counter)

9. return P

RtoP reads through the R array once. Each time it finds a nonzero palindrome

radius, it updates the appropriate element in the P array. Then, it reads through the

P array once and updates each value so it is the maximum of its current value or the

appropriately decremented value for a palindrome that contains the element.

B.2 Applying BFB Rules

Some of the rules are “reductions" rather than simple tests if a count-vector ad-

mits a BFB schedule. This means that they show that a count-vector admits a BFB

schedule if (and sometimes only if) some set of simpler count-vectors all admit a BFB

schedule. We therefore apply these rules in a recursive fashion outlined below:

Algorithm ApplyRules

Input:~n a count-vector

Output: true if~n admits a BFB schedule, false if~n does not admit a BFB schedule, or

R a set of count-vectors such that ~n admits a BFB schedule iff every count-vector

in R does

1. if~n passes CountT hresholdRule return true

2. if~n fails RuleO f One, OddEvenRule, or DivByFourRule return false

3. ~o = OddReduction(~n)

4. if~o.length() =~n.length()

5. (∗ If the whole count-vector is odd ∗)



118

6. then return ApplyRules(~o)

7. else if not ApplyRules(~o)

8. then return false

9. ~f = FourReduction(~n)

10. if not ApplyRules(~f ) return false

11. ~p,~s = TwoReduction(~n)

12. if ~p or~s not empty

13. then if not ApplyRules(~p) or not ApplyRules(~s) return false

14. if ApplyRules(~p) and ApplyRules(~s) return true

15. else return ApplyRules(~p) ∪ ApplyRules(~s)

16. return~n

B.3 Analysis of BFB_Tree

Let I(v) denote the multiplicity of a node v that is independent, and 0 other-

wise. At step j of the algorithm, we must assign the n j nodes at the current level to the

independent nodes at level j− 1. Let n jv be the nodes assigned to node v. Then, all

assignments must satisfy ∑v I(v)n jv = n j. We start with nk = 1, and continue to the first

level where the number of nodes is more than one. Upto this point, there is a unique

assignment. For all subsequent levels j, the number of independent nodes at level j is at

most dn j
2 e, and except for the center node, each has a multiplicity of at least 2. The total

number of assignments at the level is bounded by(dn j
2 e+ b

n j−1
2 c−1

bn j−1
2 c

)
≤ 2

1
2 (n j−1+n j)

And the total number of trees considered is bounded by

∏
j

2
1
2 (n j−1+n j) ≤ 2∑ j n j = 2n

By definition, these assignments will satisfy mirror-symmetry, and the long-end prop-

erty is easily checked as well. However, checking all pair-symmetry constraints at level

j requires a single traversal of the tree.



119

However, the actual performance should be superior. The algorithm also requires

maintaining the count-vector I. Note that I(r) = 1 for the root node r. For other nodes v

with children v−`, . . . ,v`

I(v j) =


2I(v) −`≤ j < 0

I(v) j = 0

0 otherwise

Note that once a node is dependent (I(v) = 0), its descendants remain dependent. Fur-

ther, the multiplicity of the node is a power of 2, and is doubled each time an independent

node is a non-central child of its parent. As the multiplicities increase, the number of as-

signments decreases quickly, so that in practice, there will be very few valid assignments

after the first few levels.

Specifically, consider an input data-set with k+ 1 levels, a single node at level

k+1, and a maximum of m nodes at each of the k levels.

let It be the multiplicity of the left-most node at level t from a random assign-

ment. The long-ends property ensures that It 6= 0, Then,

It =

{
It+1 (* v is the only child of its parent*)

2It+1 (* otherwise*)

It is not hard to show that It almost doubles with each round, and reaches the maximum

value m after log2(m) rounds. Once It = n, for some t there is only one assignment

possible. Prior to that, the maximum number of assignments at each level is O(2m).

Therefore, the number of labeled trees with long-ends and mirror symmetry is bounded

by O(2m log2 m).



Appendix C

Supplemental:An algorithmic

approach for breakage-fusion-bridge

detection in tumor genomes

C.1 Properties of BFB Strings

In this section, we prove Claim 1 from Chapter 4. To do so, we first formulate

several auxiliary claims.

Observation 1. If α
BFB−→ β , β = β ′β ′′, and β ′′

BFB−→ β ′′γ , then α
BFB−→ βγ .

Call a string α an l-t-string if for the count vector~n(α)= [n1,n2, . . . ,nk], nr > 0 if

and only if l ≤ r≤ t. Thus, an l-t-BFB string is an l-BFB string α such that top(α) = t.

Denote by αl,t the consecutive genomic region αl,t = σlσl+1 . . .σt (when t < l, αl,t = ε),

and observe that l-t-BFB strings always start with the prefix αl,t .

Claim 5. Let l′, l, t be integers and αβ an l′-BFB string such that β is an l-t-string.

Then,

1. If β starts with the prefix αl,t , then αl,t
BFB−→ β (i.e. β is an l-t-BFB string).

2. If β ends with the suffix αl,t , then ᾱl,t
BFB−→ β̄ .

3. If β starts with the prefix ᾱl,t , then ᾱl,t
BFB−→ β .

120



121

4. If β ends with the suffix ᾱl,t , then αl,t
BFB−→ β̄ .

Proof. When t < l, αl,t = β = ε , and all four items in the claim are sustained in a

straightforward manner. Similarly, when αβ = αl′,t , then β = αl,t and again all four

items in the claim are sustained. Otherwise, t ≥ l and there are some ρ,γ such that

γ 6= ε , ργ is an l′-BFB string, and αβ = ργγ̄ . In particular, αl′,t is a proper prefix of

αβ . Assume by induction that the claim is sustained with respect to all proper prefixes

of αβ (from Lemma 2 in [36], all such prefixes are l′-BFB strings). Note that β , γ̄ , and

γγ̄ are all suffixes of αβ = ργγ̄ . Consider three cases: 1. β is a proper suffix of γ̄ , 2. β

is a proper suffix of γγ̄ and γ̄ is a suffix of β , and 3. γγ̄ is a suffix of β .

1. β is a proper suffix of γ̄ . In this case, γ̄ = γ ′β for some string γ ′ 6= ε , therefore

ργγ̄ = ρβ̄ γ̄ ′γ ′β . From the inductive assumption and the fact that ρβ̄ is a proper prefix

of ρβ̄ γ̄ ′ = ργ (which is in turn a proper prefix of αβ ), ρβ̄ sustains the claim. Therefore,

1. If β starts with the prefix αl,t , then β̄ ends with the suffix ᾱl,t , therefore αl,t
BFB−→ β .

2. If β ends with the suffix αl,t , then β̄ starts with the prefix ᾱl,t , therefore ᾱl,t
BFB−→ β̄ .

3. If β starts with the prefix ᾱl,t , then β̄ ends with the suffix αl,t , therefore ᾱl,t
BFB−→ β .

4. If β ends with the suffix ᾱl,t , then β̄ starts with the prefix αl,t , therefore αl,t
BFB−→ β̄ .

2. β is a proper suffix of γγ̄ and γ̄ is a suffix of β . In this case, there are some γ1

and γ2 such that γ1 6= ε , γ = γ1γ2, γγ̄ = γ1γ2γ̄2γ̄1 and β = γ2γ̄2γ̄1. Thus, αβ = ργγ̄ =

ργ1γ2γ̄2γ̄1 = ρβ̄ γ̄1. Here also, we get that ρβ̄ is a proper prefix of αβ , and similarly as

in the previous case the inductive assumption implies the correctness of the claim.

3. γγ̄ is a suffix of β . In this case, there is some γ ′ such that β = γ ′γγ̄ , and therefore

αβ = αγ ′γγ̄ . To show items (1) and (3) in the claim, assume that β starts with the prefix

φ such that either φ = αl,t or φ = ᾱl,t , respectively. It must be that φ is a prefix of γ ′γ ,

since the first character of γ̄ is the reverse of the last character of γ , and thus cannot

be included in φ . Therefore, from the inductive assumption and the fact that αγ ′γ is

a proper prefix of αγ ′γγ̄ = αβ (recall that γ 6= ε and therefore γ̄ 6= ε), φ
BFB−→ γ ′γ . By

definition, φ
BFB−→ γ ′γγ̄ = β , proving items (1) and (3) in the claim.



122

To show items (2) and (4) in the claim, assume that β ends with the suffix φ

such that either φ = αl,t or φ = ᾱl,t , respectively. Similarly as above, it must be that φ

is a suffix of γ̄ . Note that case (2) of this proof implies that φ̄
BFB−→ γ , and by definition

φ̄
BFB−→ γγ̄ . In particular, φ̄ is a prefix of γ , and therefore the string αγ ′φ̄ is a proper

prefix of αβ = αγ ′γγ̄ , and φ̄ is the suffix of the suffix γ ′φ̄ of αγ ′φ̄ . From the inductive

assumption, φ
BFB−→ φ γ̄ ′. Thus, from Observation 1, and the fact that φ is a suffix of γ̄ ,

we get that φ̄
BFB−→ γγ̄

BFB−→ γγ̄ γ̄ ′ = β̄ , and items (2) and (4) in the clam follow.

Claim 6. Let α be a BFB string, and let σβσ̄ be a substring of α such that β contains

no occurrences of σ or σ̄ . Then, β is a palindrome.

Proof. From Lemma 2 in [36], every prefix of α is a BFB string, and thus we may

assume without loss of generality that σβσ̄ is a suffix of α . We prove the claim by

induction over the length of α . Note that for getting a substring of the form σβσ̄ , α

must be of the form α = ργγ̄ , where γ 6= ε (since strings of the form αl,t cannot contain

both characters σ and σ̄ ). If γ̄ is a suffix of σβσ̄ , then γ̄ ends with σ̄ , and does not

contain any additional occurences of σ or σ̄ . Therefore, γ starts with σ , and it must be

that σβσ̄ = γγ̄ , and in particular β is a palindrome. Else, σβσ̄ is a suffix of γ̄ , therefore

σβ̄ σ̄ is a prefix of γ . In particular, the prefix ρσβ̄ σ̄ of ργ is a proper prefix of α (since

γ̄ 6= ε). Since ρ is a BFB string (Lemma 2 in [36]), the inductive assumption implies

that β̄ , and therefore β , is a palindrome.

Claim 7. Let α be a BFB string and γ a palindromic concatenation of l-blocks, such

that α contains ᾱl,tγαl,t as a substring and top(γ) = t ′ ≤ t. Then, γ is a convexed

l-palindrome.

Proof. By induction on the number of l-blocks composing γ . If γ is composed of zero

l-blocks, then γ = ε , which is a convexed l-palindrome by definition. Otherwise, γ is

of the form γ = β1β2 . . .βqβq+1βq . . .β2β1, where βi is an l-block for every 1 ≤ i ≤ q,

and βq+1 is an l-block in case γ is composed of an odd number 2q+ 1 of blocks and

βq+1 = ε in case γ is composed of an even number 2q of blocks. Let i be the minimum

index such that top(βi) = t ′. Observe that γ = γ ′γ ′′γ̄ ′, where γ ′ = β1β2 . . .βi−1 is a

concatenation of l-blocks such that top(γ ′) < t ′ (from the selection of i), and γ ′′ =

βi . . .βqβq+1βq . . .βi is a palindromic concatenation of l-blocks with top(γ ′′) = t ′. Since



123

γ ′′ is a substring of α , it is the suffix of some prefix α ′ of α . From Lemma 2 in [36],

α ′ is a BFB string. From the fact that γ ′′ starts with αl,t ′ (as αl,t ′ is a prefix of the

l-t ′-block βi), we get from Claim 5 that γ ′′ is an l-BFB string, and in particular it is an l-

BFB palindrome. In addition, observe that α contains ᾱl,t ′γ
′αl,t ′ = σ̄t ′ᾱl,t ′−1γ ′αl,t ′−1σt ′

as a substring. Since ᾱl,t ′−1γ ′αl,t ′−1 does not contain occurrences of σt ′ or σ̄t ′ , from

Claim 6, ᾱl,t ′−1γ ′αl,t ′−1, and in particular γ ′, is a palindrome. Thus, from the inductive

assumption, γ ′ is a convexed l-palindrome, and by definition γ = γ ′γ ′′γ̄ ′ = γ ′γ ′′γ ′ is a

convexed l-palindrome.

Claim 8. Let l, t ′, t be integers such that l, t ′ ≤ t. For every convexed l-t ′-palindrome γ ,

ᾱl,t
BFB−→ ᾱl,tγαl,t .

Proof. We prove the claim by induction on t ′. When t ′ < l, γ = ε is the only convexed

l-t ′-palindrome, and by definition ᾱl,t
BFB−→ ᾱl,tαl,t . Otherwise, t ′ ≥ l, and assume by

induction the claim holds for every l, t ′′, t such that t ′′ < t ′ ≤ t. By definition, γ is of

the form γ ′βγ ′, where γ ′ is a convexed l-t ′′-palindrome such that t ′′ < t ′, and β is an

l-t ′-BFB palindrome. From the inductive assumption, ᾱl,t
BFB−→ ᾱl,tγ

′αl,t , and therefore

ᾱl,t
BFB−→ ᾱl,tγ

′αl,t ′ . As β is an l-t ′-BFB palindrome, β is of the form β = αᾱ , where

α is an l-t ′-BFB string. In particular, αl,t ′
BFB−→ α , and from Observation 1 and the fact

that ᾱl,t
BFB−→ ᾱl,tγ

′αl,t ′ , we get that ᾱl,t
BFB−→ ᾱl,tγ

′α
BFB−→ ᾱl,tγ

′αᾱγ̄ ′αl,t = ᾱl,tγ
′βγ ′αl,t =

ᾱl,tγαl,t .

Finally, we turn to prove the correctness of Claim 1 from Chapter 4.

Claim 1. A string α is an l-BFB palindrome if and only if α = ε , α is an l-block,

or α = βγβ , such that β is an l-BFB palindrome, γ is a convexed l-palindrome, and

γ ≤t β .

Proof. By definition, if α = ε or α is an l-block, then α is an l-BFB palindrome. Thus,

it remains to show that when α is neither ε nor an l-block, α is an l-BFB palindrome if

and only if α = βγβ , such that β is an l-BFB palindrome, γ is a convexed l-palindrome,

and γ ≤t β . Let t = top(α).

Assume that α is an l-BFB palindrome which is neither ε nor an l-block. There-

fore, α is a concatenation of at least two l-blocks, and so α is of the form α = βγβ ,



124

such that β is an l-block and γ is some palindromic concatenation of l-blocks. Thus, β

must start with the prefix αl,t and end with the suffix ᾱl,t , and top(γ)≤ t = top(β ). In

addition, observe that ᾱl,tγαl,t is a substring of α , and from Claim 7, γ is a convexed

l-palindrome, proving this direction of the claim.

For the other direction, assume that α = βγβ , such that β is an l-BFB palin-

drome, γ is a convexed l-palindrome, and γ ≤t β . Therefore, top(β ) = t , and top(γ) =

t ′ ≤ t. Since β is an l-t-BFB string, it starts with the prefix αl,t , and being a palindrome

it ends with the suffix ᾱl,t . From Claim 8 and Observation 1, βγαl,t is an l-BFB string,

and applying again Observation 1, βγβ = α is an l-BFB string. Being a palindrome, α

is an l-BFB palindrome.

C.2 Algorithm SEARCH-BFB

This section completes the missing details in the description of Algorithm

SEARCH-BFB in Chapter 4. We describe the FOLD procedure, prove the correctness

of the algorithm, and analyze its running time.

C.2.1 Additional Notation and Collection Arithmetics

In order to give an implementation of the FOLD procedure, we first add notation

and definitions of some new entities, and observe related properties. For short, from

now on we simply say a “collection” when referring to an l-BFB palindrome collection

(in some cases we will explicitly indicate that the collection is an l-block collection). A

collection containing a single element β will be simply denoted by β , instead of {β}.
For two numbers t, t ′ and a collection B, B[t,t ′) denotes the sub-collection con-

taining all elements β in B such that t ≤ top(β ) < t ′. Denote B≥t = B[t,∞) and B<t =

B−B≥t = B[0,t). For a nonempty collection B, denote mint(B) = min
β∈B
{top(β )}, where

mint( /0) is defined to be ∞. Say that an element β ∈ B is minimal in B if top(β ) =

mint(B). The collection B = B′∩B′′ contains all elements appearing in both B′ and B′′,

where the count of each element β ∈ B equals to the minimum among the counts of

β in B′ and B′′. Say that B′ ⊆ B if B′ = B∩B′. Notations of the form ~a will denote

series ~a = a0,a1,a2, . . ., and ~ad denotes the prefix a0,a1, . . . ,ad of ~a. For an integer



125

m 6= 0, denote by dm the maximum integer d ≥ 0 such that m is divided by 2d . For

example, d8 = d−24 = 3, and d7 = 0. Observe that dm = 0 when m is odd, and otherwise

dm = 1+d m
2
. dm can also be understood as the index of the least significant bit different

from 0 in the binary representation of m, and in particular dm ≤ log2 m.

Observation 2. For two collections B,B′,

•
mod2(B+B′) = mod2(B+mod2(B′)) = mod2(mod2(B)+B′)

= mod2(mod2(B)+mod2(B′))

= mod2(B)+mod2(B′)−2(mod2(B)∩mod2(B′))

.

• For an integer i ≥ 0, mod2(B+ iB′) = mod2(B+B′) when i is odd, and

mod2(B+ iB′) = mod2(B) when i is even. In particular, mod2(B−B′) =

mod2(B−B′+2B′) = mod2(B+B′).

• For two integers t and t ′, mod2
(

B[t,t ′)
)
= (mod2(B))[t,t

′).

Definition 4. A convexed l-collection of order q is an l-BFB palindrome collection A of

the form A = {α1,2α1,4α2, . . . ,2q−1αq}, where αq <
t αq−1 <

t . . . <t α1.

A convexed l-collection of order q A = {α1, . . . ,2q−1αq} satisfies |A| = 2q−
1. In addition, A = /0 when q = 0, and when A 6= /0, mod2(A) = α1 and A

2 ≡
1
2A =

{α2,2α3, . . . ,2q−2αq} is a convexed l-collection of order q−1. It is possible to concate-

nate all elements in A to produce a convexed l-palindrome γA, where γA = ε if A = /0,

and otherwise γA = γ A
2
α1γ A

2
. In Fig. 2a, all 1-blocks besides the two repeats of β1 form

a convexed 1-collection A = {β2,2β3,4β4} of order 3, where γA = β4β3β4β2β4β3β4.

Observation 3. For a convexed l-collection A and an integer m, |mod2(mA) | = 0 if

either m is even or A = /0, and otherwise |mod2(mA) |= 1.

Claim 9. Let A = {α1, . . . ,2 j−1α j, . . . ,2r−1αr} and A′ = {α1, . . . ,2 j−1α j} be two con-

vexed l-collections (where A′ ⊆ A, and it is possible that A′ = /0). For every number t,

there is an integer x ≥ 0 and a convexed l-collection Â such that (A−A′)<t = 2xÂ. In

addition, if A′ 6= /0 then x > 0 and |Â|< |A|

Proof. First, note that A−A′ = {2 jα j+1, . . . ,2r−1αr}. Now, let x = j if top
(
α j+1

)
< t,

and otherwise let x be the maximum integer in the range j < x≤ r such that top(αx)≥



126

Table C.1: The decomposition and signature of the collection B = {2β1,β2,2β3,4β4}.
Here, r(B) = 3.

d Bd Ld Hd sd
0 {2β1,β2,2β3,4β4} β2 2β1 1
1 {β3,2β4} β3 /0 0
2 β4 β4 /0 0
3 /0 /0 /0 −1
4 /0 /0 /0 0
...

...
...

...
...

t. Then, (A−A′)<t = {2xαx+1, . . . ,2r−1αr} = 2x{αx, . . . ,2r−x−1αr}. Choosing Â =

{αx, . . . ,2r−x−1αr}, the claim follows.

Definition 5. Let B = {n1β1,n2β2, . . . ,nqβq} be an l-BFB palindrome collection. The

decomposition of B is a series triplet
〈
~B,~L, ~H

〉
, whose elements are recursively defined

as follows:

• B0 = B, and Bd = 1
2 (Bd−1−Ld−1−Hd−1) for d > 0.

• Ld = mod2(Bd).

• Hd = (Bd−Ld)
≥mint(Ld).

Denote by r(B) the minimum integer r such that Br = /0.

Table C.1 gives the decomposition of the collection B1 corresponding to Fig. 2a

in Chapter 4. In what follows, let B be a collection,
〈
~B,~L, ~H

〉
its decomposition, and

r = r(B).

By definition, Ld,Hd ⊆ Bd . It may be observed that the count of each element

in Ld is exactly 1 (by definition of the mod2(·) operation), i.e. mod2(Ld) = Ld , the

count of each element in Bd − Ld is even (since reducing Ld from Bd decreases by 1

the count of each element with an odd count in Bd), therefore the counts of all ele-

ments in Hd and in Bd − Ld −Hd are even (since nonzero counts in these collections

equal to the corresponding even counts in Bd−Ld), i.e. mod2(Bd−Ld) = mod2(Hd) =

mod2(Bd−Ld−Hd) = /0. In addition, every single occurrence of an element β ∈ Bd

(and in particular every β ∈ Hd or β ∈ Ld), corresponds to 2d repeats of β in B.



127

Definition 6. For a collection B,~t(B) =~t is the non-decreasing series of numbers whose

elements are given by t0 = ∞, and td = min(mint(Ld), td−1)) for d > 0.

The following observation may be easily asserted, in an inductive manner.

Observation 4. For a collection B and every integer d ≥ 0, Hd = (Bd−Ld)
≥td+1 , B<td =

2dBd , and B[td+1,td) = 2d(Ld +Hd).

Finally, we define the signature of a collection, which is derived from its decom-

position and will serve as an optimality measure implying the folding restrictions over

the collection.

Definition 7. The signature of B is a series~s =~s(B), where s0 = |L0|, and sd = |Ld|−
|Ld−1|− |Hd−1|

2 +max(sd−1,0) for d > 0.

The last column of Table C.1 shows the signature of the exemplified collection.

For two signatures ~s = s0,s1, . . . and ~s ′ = s′0,s
′
1, . . ., denote ~s <~s ′ if ~s precedes ~s ′ lexi-

cographically, i.e. there is some integer d ≥ 0 such that si = s′i for every 0≤ i < d, and

sd < s′d . Denote ~s ≤~s ′ if ~s <~s ′ or ~s =~s ′. We will show that signatures can serve as

an optimality measure for collections, where lower signature collections are always less

restricted than higher signature collection with respect to folding possibilities.

From now on, when discussing derived entities such a decompositions〈
~B,~L, ~H

〉
, signatures ~s, etc., we assume these entities correspond to the collection B

discussed in the same context without stating so explicitly. When several collections

are considered, these collections are annotated with superscripts (e.g. B′,B∗,B3, etc.),

which also annotate their correspondingly derived entities (e.g. L′d,~s
3, etc.).

Claim 10. For every d ≥ 0, |Ld| ≥max(sd,0) and |Bd|+ |Ld|− sd ≥max(sd,0).

Proof. We first show the first inequality in the Claim. For d = 0, s0 = |L0| ≥ 0 by

definition. Assume by induction |Ld′| ≥max(sd′,0) for every 0≤ d′ < d. Then, |Ld|=
sd + |Ld−1|+ |Hd−1|

2 −max(sd−1,0) ≥ sd +
|Hd−1|

2 ≥ sd . In addition, |Ld| ≥ 0, and so

|Ld| ≥ max(sd,0). The second inequality follows immediately from the first one, as

|Bd|+ |Ld|− sd ≥ |Bd| ≥ |Ld| ≥max(sd,0).

Claim 11. For r = r(B), sr = − |Br−1|+|Lr−1|
2 +max(sr−1,0) ≤ 0, and sd = 0 for every

d > r.



128

Proof. The inequality sr ≤ 0 follows immediately from Claim 10 and the fact that |Lr|=
0. In addition, since Br =

1
2(Br−1−Lr−1−Hr−1) = /0, we have that Hr−1 = Br−1−Lr−1,

and therefore sr = |Lr|− |Lr−1|− |Hr−1|
2 +max(sr−1,0) =− |Br−1|+|Lr−1|

2 +max(sr−1,0).

To show the second part of the claim, note that |Bd|= |Ld|= |Hd|= 0 for every

d ≥ r. This implies that for every d > r, sd = |Ld| − |Ld−1| − |Hd−1|
2 +max(sd−1,0) =

max(sd−1,0). Since we showed that sr ≤ 0, we have that sr+1 = max(sr,0) = 0, and

inductively it follows that that sd = 0 for every d > r.

Define the series ~∆ =~∆(B), where ∆0 = 0, and ∆d = ∆d−1 + 2d−1abs(sd−1) for

d > 0 (where abs(sd−1) is the absolute value of sd−1).

Claim 12. For every integer d ≥ 0,

|B|= 2d (|Bd|+ |Ld|− sd)+∆d ≥ 2d max(sd,0)+∆d.

Proof. The fact that 2d (|Bd|+ |Ld|− sd)+∆d ≥ 2d max(sd,0)+∆d follows from Claim

10. The equality |B|= 2d (|Bd|+ |Ld|− sd)+∆d is proven by induction on d. For d = 0,

since B0 = B, s0 = |L0|, and ∆0 = 0 by definition, we get that 20 (|B0|+ |L0|− s0)+∆d =

|B|. Now, assuming the claim holds for some d ≥ 0, we show it also holds for d′= d+1:

|B|= 2d (|Bd|+ |Ld|− sd)+∆d

= 2d (|Bd|+ |Ld|− sd− abs(sd))+∆d+1

= 2d (|Bd|+ |Ld|−2max(sd,0))+∆d+1

= 2d ((2|Bd+1|+ |Ld|+ |Hd|)+ |Ld|−2max(sd,0))+∆d+1

= 2d (2|Bd+1|+2|Ld+1|−2sd+1)+∆d+1

= 2d+1 (|Bd+1|+ |Ld+1|− sd+1)+∆d+1.

Conclusion 1. For every d≥ r = r(B) we have that |Bd|= |Ld|= 0, where from Claim 11

sd = 0 for d > r. Thus, Claim 12 implies that |B|=−2rsr +∆r = ∆d for every d > r.

Claim 13. Let B and B′ be two collections such that |B|= |B′|= n and~sr−1 =~s ′r−1 for

r = r(B). Then,~s≤~s ′.



129

Proof. Since~sr−1 =~s ′r−1, it follows that ∆r = ∆′r. From Conclusion 1, sr =
∆r−n

2r . From

Claim 12, s′r =
∆′r−n

2r + |B′r|+ |L′r| ≥ ∆r−n
2r = sr. If s′r > sr, then~s <~s ′ and the claim holds.

If s′r = sr, then in particular |B′r| = 0 and so B′r = /0. Thus, r(B′) ≤ r, and so for every

d > r we have that s′d = sd = 0, and~s ′ =~s.

C.2.2 Folding Increases Signature

This section is dedicated for proving the following claim:

Claim 14. Let B′ be a folding of an l-block collection B. If B 6= B′, then~s <~s ′.

The proof, given at the end of this section, is based on an observation that shows

how to present a general folding as a series of a special kind of elementary foldings, and

showing that such elementary foldings always increase the signature of the collection.

Definition 8. Let B′ be a folding of B.

• Say that B′ is a type I elementary folding if B′ is of the form B′ = B−m(2β +A)+

mα , where β is an l-block, A 6= /0 is a convexed l-collection, m > 0 is an integer

such that m(2β +A)⊆ B, and α = βγAβ is an l-BFB palindrome such that α /∈ B.

• Say that B′ is a type II elementary folding if ε /∈ B and B′ is of the form B′ =

B+mε .

Claim 15. Let B be a collection of l-blocks. For every folding B′ of B there is a sequence

of collections B0,B1, . . . ,B j, where B0 = B′, B j = B, and for every 0≤ i < j, Bi is a (type

I or II) elementary folding of Bi+1.

Proof. By definition, each element in a folding B′ of B is either an l-block from B,

a concatenation of several l-blocks from B, or ε . The sequence B0,B1, . . . ,B j is built

iteratively as follows.

Initiate B0 = B′, and i = 0. As long as Bi 6= B, we show how to compute Bi+1

given the collection Bi. The construction maintains the property that each computed

collection Bi is a folding of B. In the case where Bi contains some composite l-BFB

palindrome of the form α = βγAβ , let m be the count of α in Bi, and set Bi+1 = Bi−
mα +m(2β +A). We may assume A 6= /0, since when γA = ε we can choose A = ε .



130

Observe that Bi+1 is a folding of B (where the same sub-collection of l-blocks from B

which composes the m copies of α in Bi, composes the elements in the m repeats of

2β +A in Bi+1), and that Bi is a type I elementary folding of Bi+1. In addition, since

the number of l-blocks composing each element in A is less than the number of l-blocks

composing α , after a finite number of such modification there will be no more composite

palindromes in the collection.

In the case where Bi contains no composite palindrome, Bi is a folding of B

containing only l-blocks and 0 or more ε elements. If Bi contains no ε elements, then

Bi = B, and the process is completed choosing j = i. Else, for m the count of ε in Bi,

set Bi+1 = Bi−mε , and therefore Bi is a type II elementary folding of Bi+1. Note that

Bi+1 = B, completing the process for j = i+1.

Observe that the signature of a collection depends only in its decomposition,

and is independent in the manner the collection was obtained. Therefore, from the

above claim, in order to show that foldings necessarily increase signatures, it is enough

to show that each elementary folding increases the signature. In what follows, we give

several technical claims that will prove this property.

Claim 16. Let B,B′, and A be l-BFB palindrome collections and m > 0 an integer such

that B′ = B+mA. Then,

1. For every 0≤ i≤ dm, B′i = Bi +
m
2i A<ti .

2. For every 0≤ i < dm, L′i = Li (i.e. ~L′dm−1 =
~Ldm−1).

3. For every 0≤ i < dm, H ′i = Hi +
m
2i A[ti+1,ti).

Proof. B0 = B and t0 = ∞, therefore B′0 = B′ = B+mA = B0 +
m
20 A<t0 . Thus, the first

item in the claim holds for i= 0, and the two other items hold trivially for every 0≤ i< 0.

Assuming by induction that for some i < dm the first item holds for every 0 ≤
i′ ≤ i and the two other items hold for every 0≤ i′ < i, we show that (1) B′i+1 = Bi+1 +

m
2i+1 A<ti+1 , (2) L′i = Li, and (3) H ′i = Hi +

m
2i A[ti+1,ti).

We start by showing (2). Since i < dm, m
2i is even, and so L′i = mod2(B′i) =

mod2
(
Bi +

m
2i A<ti

) Obs.2
= mod2(Bi) = Li. In order to show (3), note that~L ′i =~Li implies

that t ′i+1 = ti+1, therefore H ′i
Obs.4
= (B′i−L′i)

≥t ′i+1 = (Bi +
m
2i A<ti−Li)

≥ti+1 =



131

(Bi−Li)
≥ti+1+ m

2i A[ti+1,ti) Obs.4
= Hi+

m
2i A[ti+1,ti). Finally, (1) is true since B′i+1 = 1

2(B
′
i−

L′i−H ′i )=
1
2(Bi+

m
2i A<ti−Li−Hi− m

2i A[ti+1,ti))= 1
2(Bi−Li−Hi)+

m
2i+1 (A<ti−A[ti+1,ti))=

Bi+1 +
m

2i+1 A<ti+1 .

Claim 17. Let B′ = B−m(2β +A)+mα be a type I elementary folding of B. Then,

∀0≤ i≤ dm, B′i = Bi−
m
2i (2β +A)<ti +

m
2i α

<ti, (C.1)

~L′dm−1 =~Ldm−1 (C.2)

∀0≤ i < dm, H ′i = Hi−
m
2i (2β +A)[ti+1,ti)+

m
2i α

[ti+1,ti). (C.3)

Proof. Let B′′ = B−m(2β +A). Therefore, B = B′′+m(2β +A), and B′ = B′′+mα .

From Claim 16,

1. For every 0 ≤ i ≤ dm, Bi = B′′i +
m
2i (2β +A)<ti , and B′i = B′′i +

m
2i α

<ti . Therefore,

B′i = Bi− m
2i (2β +A)<ti + m

2i α
<ti .

2. ~L′dm−1 =
~Ldm−1 =~L′′dm−1.

3. For every 0 ≤ i < dm, Hi = H ′′i + m
2i (2β +A)[ti+1,ti), and H ′i = H ′′i + m

2i α
[ti+1,ti).

Therefore, H ′i = Hi− m
2i (2β +A)[ti+1,ti)+ m

2i α
[ti+1,ti).

Claim 18. Let B,B′, and C be l-BFB palindrome collections, A a convexed l-collection,

and m and i two nonnegative integers, such that (a)~s ′i =~si, (b) t ′i+1≥ ti+1, (c) |L′i|+
|H ′i |

2 <

|Li|+ |Hi|
2 −|C|, (d) Bi+1∩C = /0, and (e) B′i+1 = Bi+1 +C−mA. Then, B <s B′.

Proof. We prove the claim by induction on the size of A. Let A = {α1, . . . ,2r−1αr},
and denote Ã = mod2(mA). Observe that Ã = α1 when A 6= /0 and m is odd, and other-

wise Ã = /0. In addition, observe that mod2(Bi+1 +C)
Obs.2
= mod2(Bi+1)+mod2(C)−

2(mod2(Bi+1)∩mod2(C))
(d)
= mod2(Bi+1)+mod2(C) = Li+1 +mod2(C). Therefore,



132

L′i+1 = mod2
(
B′i+1

) (e)
= mod2(Bi+1 +C−mA)

Obs.2
= mod2(Bi+1 +C)+mod2(mA)−2(mod2(Bi+1 +C)∩mod2(mA))

= Li+1 +mod2(C)+ Ã−2
(
(Li+1 +mod2(C))∩ Ã

)
Since (Li+1 +mod2(C))∩ Ã⊆ Ã, it follows that |L′i+1| ≥ |Li+1|+ |mod2(C) |+

|Ã|−2|Ã|= |Li+1|+ |mod2(C) |−|Ã|. Therefore, s′i+1 = |L′i+1|−|L′i|−
|H ′i |

2 +max(s′i,0)
(a),(c)
> |Li+1|+ |mod2(C) |−|Ã|−|Li|− |Hi|

2 + |C|+max(si,0) = si+1+ |mod2(C) |+ |C|−
|Ã|. As both s′i+1 and si+1 are integers, s′i+1 ≥ si+1 + |mod2(C) |+ |C|− |Ã|+ 1 ≥ si+1

(recall that |Ã| ≤ 1). When s′i+1 > si+1,~s <~s ′ and the claim follows. Otherwise, s′i+1 =

si+1, and there is a need to continue and examine positions grater than i + 1 in the

signatures of B and B′.

Note that for obtaining s′i+1 = si+1 we must have that C = /0 and Ã = Li+1∩ Ã =

α1, which implies that A 6= /0, m is odd, and L′i+1 = Li+1 +α1− 2α1 = Li+1−α1 (thus

α1 ∈ Li+1, and in particular top(α1)≥ mint(Li+1)≥ ti+2). Assuming by induction that

the claim holds for every B′′,B′′′,C′,A′, i′, and m′ sustaining requirements (a) to (e) and

|A′|< |A|, we show the claim also holds for B,B′,C,A, i, and m.

Now, since ~s ′i
(a)
=~si and s′i+1 = si+1, requirement (a) in the claim holds with re-

spect to i′ = i+1. In addition,

t ′i+2 = min(mint(L′i+1), t
′
i+1)≥min(mint(Li+1−α1), ti+1)

≥ min(mint(Li+1), ti+1) = ti+2,

thus requirement (b) also holds with respect to i′ = i+1. Furthermore,

H ′i+1
Obs.4
= (B′i+1−L′i+1)

≥t ′i+2 = (Bi+1−mA−Li+1 +α1)
≥t ′i+2

= (Bi+1−Li+1)
≥t ′i+2−mA≥t ′i+2 +α1

≥t ′i+2

=
(
(Bi+1−Li+1)

≥ti+2− (Bi+1−Li+1)
[ti+2,t ′i+2)

)
−mA≥t ′i+2 +α1

≥t ′i+2

= Hi+1− (Bi+1−Li+1)
[ti+2,t ′i+2)−mA≥t ′i+2 +α1

≥t ′i+2.

Since α1 ∈ A, the operation A−α1 yields a valid collection. In addition, note

that the count of each element in Bi+1−Li+1 is even, and since m is odd, Bi+1 contains

at least m copies of α1 (as mA⊆ Bi+1) and Li+1 contains exactly one copy of α1, Bi+1−



133

Li+1−(m−1)α1 is a valid collection, in which the count of each element is even. Denote

Ĉ = 1
2

(
(Bi+1−Li+1− (m−1)α1)

[ti+2,t ′i+2)
)
=

1
2

(
(Bi+1−Li+1)

[ti+2,t ′i+2)− (m−1)α1
<t ′i+2

)
. Now we can write

H ′i+1 = Hi+1− (Bi+1−Li+1)
[ti+2,t ′i+2)−mA≥t ′i+2 +α1

≥t ′i+2

= Hi+1−2Ĉ− (m−1)α1
<t ′i+2−mA≥t ′i+2 +α1

≥t ′i+2

= Hi+1−2Ĉ− (m−1)
(

α1−α1
≥t ′i+2

)
−mA≥t ′i+2 +α1

≥t ′i+2

= Hi+1−2Ĉ− (m−1)α1−m(A−α1)
≥t ′i+2

From the above |H ′i+1| ≤ |Hi+1| − 2|Ĉ|, and since |L′i+1| = |Li+1| − 1 we get

that |L′i+1|+
|H ′i+1|

2 ≤ |L′i+1| − 1+ |H
′
i+1|
2 + |Ĉ| < |L′i+1|+

|H ′i+1|
2 + |Ĉ|, and in particular

requirement (c) holds with respect to C′ = Ĉ, and i′ = i+ 1. Moreover, by definition

the top values of all elements in Ĉ are at least ti+2, and from Observation 4, Bi+2 =

1
2i+2 B<ti+2 , hence the top values of all elements in Bi+2 are lower than ti+2. Thus, Bi+2∩
Ĉ = /0, and requirement (d) holds with respect to C′ = Ĉ, and i′ = i+1.

From Claim 9, there is an integer x > 0 and a convex l-collection Â such that

|Â|< |A| and (A−α1)
<t ′i+2 = 2xÂ. Therefore,

H ′i+1 = Hi+1−2Ĉ− (m−1)α1−m(A−α1)
≥t ′i+2

= Hi+1−2Ĉ− (m−1)α1−m
(
(A−α1)− (A−α1)

<t ′i+2

)
= Hi+1−2Ĉ−mA+α1 +m(A−α1)

<t ′i+2

= Hi+1−2Ĉ−mA+α1 +m2xÂ,

and

B′i+2 =
1
2(B
′
i+1−L′i+1−H ′i+1)

= 1
2((Bi+1−mA)− (Li+1−α1)− (Hi+1−2Ĉ−mA+α1 +m2xÂ))

= 1
2(Bi+1−Li+1−Hi+1)+Ĉ−m2x−1Â

= Bi+2 +Ĉ−m2x−1Â.

Since x > 0, m2x−1 is an integer. Therefore, requirement (e) holds with respect

to C′ = Ĉ,A′ = Â, i′ = i+ 1, and m′ = m2x−1. From the inductive assumption and the

fact that |Â|< |A|, the claim follows.



134

Claim 19. Let B′ be a type I elementary folding of B. Then, B <s B′

Proof. By definition, B′ is of the form B′ = B−m(2β +A)+mα , where m > 0 is an

integer, α and β are l-BFB palindromes, and A = {α1, . . . ,2r−1αr} is a convexed l-

collection such that α = βγAβ . Let q ≥ 0 be the index such that β ∈ Lq +Hq. From

Observation 4, tq+1 ≤ top(β ) < tq, and therefore for every 0 ≤ i ≤ q and every α j ∈ A

we have that (?) top
(
α j
)
≤ top(α) = top(β ) < tq ≤ ti. Let d = dm. We consider two

cases: (1) q < d, and (2) q≥ d, and show for each case that B <s B′.

(1) q < d. In this case, condition (?) implies that for every 0 ≤ i < q, we have that

(2β +A)[ti+1,ti) =α [ti+1,ti) = /0. In addition (2β +A)[tq+1,tq) = 2β +A≥tq+1, α[tq+1,tq) =α ,

and (2β +A)<tq+1 = A<tq+1, α<tq+1 = /0. Thus, form Claim 17, we get that

B′q+1 = Bq+1− m
2q+1 A<tq+1 Clm.9

= Bq+1− m2x

2q+1 Â,

where m2x

2q+1 is a positive integer and Â is a convexed l-collection,
~L′q =~Lq,

~H ′q−1 = ~Hq−1,

H ′q = Hq− m
2q (2β +A≥tq+1)+ m

2q α.

Observe that ~L′q =~Lq and ~H ′q−1 = ~Hq−1 imply that ~s ′q = ~sq and ~t ′q+1 =~tq+1.

Also, observe that |H ′q| ≤ |Hq|− m
2q < |Hq|, therefore |L′q|+

|H ′q|
2 < |Lq|+

|Hq|
2 . Applying

Claim 18 with respect to entities B,B′,C = /0, Â, i= q, and m′= m2x

2q+1 , we get that B<s B′.

(2) q ≥ d. In this case, condition (?) implies that for every 0 ≤ i < d, we have that

(2β +A)[ti+1,ti) = α [ti+1,ti) = /0, and (2β +A)<td = 2β +A, α<td = α . Therefore, from

Claim 17,

B′d = Bd− m
2d (2β +A)+ m

2d α,

~L′d−1 =~Ld−1,

~H ′d−1 = ~Hd−1.

Again,~L′d−1 =
~Ld−1 and ~H ′d−1 =

~Hd−1 imply that~t ′d =~td and~s ′d−1 =~sd−1. De-

note m′ = m
2d , and observe that m′ is an odd nonnegative integer. Thus,

mod2(m′(2β +A)) Obs.2
= mod2(A) = α1, and mod2(m′α)

Obs.2
= α . Since α /∈ Bd −



135

m′(2β + A) ⊆ B (by definition of elementary folding), we get that

mod2(Bd−m′(2β +A))∩mod2(m′α) = /0. Consequentially,

L′d = mod2
(
B′d
)
= mod2(Bd−m′(2β +A)+m′α)

Obs.2
= Ld +α1−2(Ld ∩α1)+α.

Note that |L′d|= |Ld|+2−2|Ld∩α1|, and therefore s′d = |L′d|−|L′d−1|−
|H ′d−1|

2 +

max(s′d−1,0) = |Ld|+2−2|Ld ∩α1|− |Ld−1|− |Hd−1|
2 +max(sd−1,0) = sd +2−2|Ld ∩

α1|. When Ld∩α1 = /0, s′d = sd +2, and so~s <~s ′ and the claim follows. Else, Ld∩α1 =

α1, L′d = L′d −α1 +α , therefore s′d = sd , and there is a need to continue and examine

positions grater than d in the signatures of B′ and B.

In this remaining case ~s ′d = ~sd , thus requirement (a) in Claim 18 holds with

respect to B,B′ and i = d. In addition, α1 ∈ Ld , implying that td+1 ≤ mint(Ld) ≤
top(α1) ≤ top(β ), and so q = d. Moreover, t ′d+1 ≤ mint(L′d) ≤ top(α) = top(β ),

and t ′d+1 = min(mint(L′d), t
′
d) = min(mint(Ld−α1 +α), td)≥min(mint(Ld), td) = td+1,

hence requirement (b) in Claim 18 holds with respect to B,B′ and i = d. Now,

H ′d = (B′d−L′d)
≥t ′d+1

= ((Bd−m′(2β +A)+m′α)− (Ld−α1 +α))≥t ′d+1

= (Bd−Ld)
≥t ′d+1−2m′β +(m′−1)α−m′A≥t ′d+1 +α1

≥t ′d+1

=
(
(Bd−Ld)

≥td+1− (Bd−Ld)
[td+1,t ′d+1)

)
−2m′β +(m′−1)α

−m′A≥t ′d+1 +α1
≥t ′d+1

= Hd− (Bd−Ld)
[td+1,t ′d+1)−2m′β +(m′−1)α−m′A≥t ′d+1 +α1

≥t ′d+1.

Observe that each element in Bd−Ld has an even count, Bd contains at least m′

copies of α1 (since m′A ⊆ Bd), and Ld contains exactly one copy of α1, therefore Bd−
Ld−(m′−1)α1 is a valid collection in which each element has an even count (recall that

m′ is odd). Denote C = 1
2

(
(Bd−Ld− (m′−1)α1)

[td+1,t ′d+1)
)

=

1
2

(
(Bd−Ld)

[td+1,t ′d+1)− (m′−1)α
<t ′d+1
1

)
. Next, we can write



136

H ′d = Hd− (Bd−Ld)
[td+1,t ′d+1)−2m′β +(m′−1)α−m′A≥t ′d+1 +α1

≥t ′d+1

= Hd−2C− (m′−1)α
<t ′d+1
1 −2m′β +(m′−1)α−m′A≥t ′d+1 +α1

≥t ′d+1

= Hd−2C− (m′−1)
(

α1−α
≥t ′d+1
1

)
−2m′β +(m′−1)α−m′A≥t ′d+1 +α1

≥t ′d+1

= Hd−2C− (m′−1)α1−2m′β +(m′−1)α−m′(A−α1)
≥t ′d+1.

Since m′ ≥ 1 (being an odd nonnegative integer), we get that |H ′d| = |Hd| −
2|C|−2m′−m′

∣∣∣(A−α1)
≥t ′d+1

∣∣∣< |Hd|−2|C|. Therefore, |L′d|+
|H ′d |

2 < |Ld|+ |Hd |
2 + |C|,

and condition (c) of Claim 18 holds with respect to B,B′,C, and i = d. In addition,

Bd+1
Obs.4
= 1

2d+1 B<td+1 , and in particular the top values of all elements in Bd+1 are lower

than td+1. Since the top values of all elements in C are at least td+1, we have that

Bd+1 ∩C = /0, and condition (d) of Claim 18 holds with respect to B,B′,C, and i = d.

From Claim 9, there is an integer x > 0 and a convexed l-collection Â such that |Â|< |A|
and (A−α1)

<t ′d+1 = 2xÂ, and so

H ′d = Hd−2C− (m′−1)α1−2m′β +(m′−1)α−m′(A−α1)
≥t ′d+1

= Hd−2C− (m′−1)α1−2m′β +(m′−1)α−m′
(
(A−α1)− (A−α1)

<t ′d+1

)
= Hd−2C−2m′β +(m′−1)α− (m′A−α1)+m′2xÂ,

and

B′d+1 =
1
2(B
′
d−L′d−H ′d)

= 1
2((Bd−m′(2β +A)+m′α)− (Ld−α1 +α)

−(Hd−2C−2m′β +(m′−1)α− (m′A−α1)+m′2xÂ))

= 1
2(Bd−Ld−Hd)+C−m′2x−1Â

= Bd+1 +C−m′2x−1Â

Since x > 0, m′2x−1 is an integer. Therefore, requirement (e) in Claim 18 holds

with respect to B,B′,C, Â, i = d, and m′′ = m′2x−1, and the claim follows.

Claim 20. Let B′ = B+mε be a type II elementary folding. For d = dm, we have

1. ~s ′d−1 =~sd−1,



137

2. s′d = sd +1,

3. r′ = d +1.

Proof. Since the folding is elementary, ε /∈ B, and for every i≥ 0 we have ti > 0. There-

fore, ε<ti = ε and ε [ti+1,ti) = /0. From Claim 16, we get that

B′d = Bd +
m
2d ε,

~L′d−1 =
~Ld−1,

~H ′d−1 =
~Hd−1.

.

From~L′d−1 =
~Ld−1 and ~H ′d−1 =

~Hd−1, it follows that~s ′d−1 =~sd−1. Since m
2d is an

odd integer (by definition) and ε /∈ Ld ⊆ B, L′d = mod2
(
B′d
)
= mod2

(
Bd +

m
2d ε

)
Obs.2
=

mod2(Bd + ε)
Obs.2
= Ld + ε − 2(Ld ∩ ε) = Ld + ε . If d = 0 then s′d = |L′d| = |Ld|+ 1 =

sd + 1, and otherwise s′d = |L′d| − |L′d−1| −
|H ′d−1|

2 +max(s′d−1,0) = |Ld|+ 1− |Ld−1| −
|Hd−1|

2 +max(sd−1,0) = sd + 1. Finally, as ε ∈ L′d (and in particular r′ > d), it follows

that t ′d+1 = mint(L′t) = top(ε) = 0, B′d+1
Obs.4
= 1

2d+1 B<0 = /0, and so r′ = d +1.

Finally, we prove the main claim in this section.

Proof of Claim 14. The correctness of the claim follows immediately from Claims 15,

19, and 20.

C.2.3 The FOLD Procedure

Using the notation and definitions given in the previous sections, we now give

an explicit description of the FOLD procedure.

In general, it is easy to assert that when the precondition holds, the returned

collection B′ from the RIGHT-FOLD procedure is a folding of the input collection B,

where each one of the 2g copies of α in B′ is obtained by concatenating all elements in

A and two copies of β . Since a right-folding adds to the collection 2g copies of α while

reducing 2g repeats of the collection 2β +A of size 2+ 2r−g− 1 = 1+ 2r−g, the size

of the folded collection B′ has decreased by 2r with respect to the size of the original

collection B.



138

Right-folding Properties

In this section we show certain characteristics of right-foldings.

Claim 21. There is a right folding of a collection B if and only if sr < 0.

Proof. For the first direction of the proof, assume that there is a right folding B′ of B.

From Claim 10, |Lg| ≥max(sg,0). Since Hg 6= /0, we get that−|Lg|−
|Hg|

2 +max(sg,0)<

0. This, in turn, implies that sg+1 = |Lg+1| − |Lg| −
|Hg|

2 +max(sg,0) < |Lg+1|. If r =

g+1, then sr = sg+1 < |Lg+1|= 0, and the claim follows. Otherwise, Lg+1 6= /0, and in

particular −|Lg+1|−
|Hg+1|

2 +max(sg+1,0)< 0. Inductively, this shows that sr < 0.

For the second direction, assume that sr < 0. Assume that for some i< r we have

that −|Li| − |Hi|
2 +max(si,0) < 0, and that Hd = /0 and Ld 6= /0 for all i < d < r. Note

that this requirement holds for i = r−1, since −|Lr−1|− |Hr−1|
2 +max(sr−1,0) = |Lr|−

|Lr−1|− |Hr−1|
2 +max(sr−1,0) = sr < 0, and there are no integers d such that r−1 < d <

r. If Hi 6= /0, then also Li 6= /0 (since Li = /0 implies that mint(Li) = ∞, and by definition

Hi =(Bi−Li)
≥∞ = /0), and therefore the requirements for the existence of a right-folding

hold for g = i. Else, Hi = /0, and so −|Li|+max(si,0)< 0. This implies that Li 6= /0 and

that i 6= 0 (as |L0|= s0), and so |Li|>max(si,0)≥ si = |Li|−|Li−1|− Hi−1
2 +max(si−1,0),

and we get that −|Li−1|− Hi−1
2 +max(si−1,0)< 0. Inductively, for some i′ < r, it must

hold that Hi′ 6= /0, Hd = /0 for every i′ < d < r, and Ld 6= /0 for every i′ ≤ d < r, meeting

the requirements for the existence of a right folding for g = i′.

Throughout the remaining of this section, assume that B is a collection satisfying

the pre-condition in Procedure RIGHT-FOLD, and let B′ = B−2g(2β +A)+2gα be the

output of the procedure (where g, r, β , A = {α1, . . . ,2r−g−1αr−g}, and α are as defined

in the procedure). Note that when α /∈ B, B′ is also a type I elementary folding of B.

We later show that all right-foldings preformed in line 7 of the FOLD procedure are

elementary.

Claim 22. If B′ is an elementary folding of B, then

1. ~L′g−1 =
~Lg−1, and L′g = Lg−α1 +α .

2. ~H ′g−1 =
~Hg−1, and H ′g = Hg−2β .



139

3. For every g < i < r, L′i = Li−αi−g, and H ′i = Hi = /0.

4. B′r = Br = /0 (thus r′ ≤ r).

5. |B′|= |B|−2r.

Proof. We start by showing the first two items in the claim. Since β ∈ Hg
Obs.4
⊆ B<tg , it

follows that for every α j ∈A and every 0≤ i≤ g, top
(
α j
)
≤ top(α) = top(β )< tg≤ ti.

Therefore, from Claim 17 and the fact that d2g = g, we get that~L′g−1 =
~Lg−1 (and in par-

ticular~t ′g =~tg), ~H ′g−1 = ~Hg−1, and B′g = Bg− (2β +A)+α . Since mod2(2β +A) =

α1 ∈ Lg, we have mod2(Bg− (2β +A)) Obs.2
= mod2(Bg +α1)

Obs.2
= mod2(Bg) +α1−

2(mod2(Bg)∩α1) = Lg+α1−2(Lg∩α1) = Lg−α1. As α /∈ Lg+α1 (follows from α /∈
B), we get that L′g =mod2

(
B′g
)
=mod2(Bg− (2β +A)+α)

Obs.2
= mod2((Lg−α1)+α)

= Lg−α1 + α . By definition, α1 is a minimal element in Lg, therefore top(α1) =

mint(Lg), and so top(α1) ≤ mint(Lg−α1). In addition, top(α1) ≤ top(α), and there-

fore top(α1) ≤ min(mint(Lg−α1), top(α)) = mint(Lg−α1 +α) = mint(L′g). On the

other hand, top(β ) = top(α), and therefore mint(L′g) = mint(Lg−α1 +α) ≤ top(β ).

From the minimality of β in Hg, Hg = H≥top(β )
g = ((Bg−Lg)

≥mint(Lg))≥top(β ) = ((Bg−
Lg)
≥top(α1))≥top(β ) = (Bg−Lg)

≥max(top(α1),top(β )) = (Bg−Lg)
≥top(β ). Since top(α1)≤

mint(L′g) ≤ top(β ), we get that Hg = (Bg− Lg)
≥top(β ) ⊆ (Bg− Lg)

≥mint(L′g) ⊆ (Bg−
Lg)
≥top(α1) = Hg, and so (Bg − Lg)

≥mint(L′g) = Hg. In addition, β
≥mint(L′g) = β , and

(A−α1)
≥mint(L′g) = /0 (since for all i > 0, top(αi) < top(α1) ≤ mint(L′g)). Thus, we

get that H ′g = (B′g − L′g)
≥mint(L′g) = ((Bg − 2β − A + α)− (Lg − α1 + α))≥mint(L′g) =

(Bg−Lg)
≥mint(L′g)−2β

≥mint(L′g)− (A−α1)
≥mint(L′g) = Hg−2β , as required.

Next, we turn to show item 3 in the claim, which is relevant only for the case

where g < r− 1. We prove this item inductively for all g < i < r. Note that B′g+1 =

1
2(B
′
g−L′g−H ′g) =

1
2((Bg−2β −A+α)− (Lg−α1 +α)− (Hg−2β )) = 1

2((Bg−Lg−
Hg)− (A−α1)) = Bg+1− 1

2A. Now, assume that for some g < i < r, B′i = Bi− 1
2i−g A.

Note that αi−g ∈ Li, and in particular Li ∩αi−g = αi−g. Therefore, L′i = mod2(B′i) =

mod2
(
Bi− 1

2i−g A
) Obs.2

= mod2(Bi) + mod2
( 1

2i−g A
)
− 2(mod2(Bi) ∩ mod2

( 1
2i−g A

)
)

= Li + αi−g − 2(Li ∩ αi−g) = Li + αi−g − 2αi−g = Li − αi−g, as required. In addi-

tion, since mint(L′i) = mint(Li−αi−g)≥ mint(Li) = top(αi−g), we get that H ′i = (B′i−
L′i)
≥mint(L′i) = ((Bi− 1

2i−g A)−(Li−αi−g))
≥mint(L′i)⊆ (Bi−Li−( 1

2i−g A−αi−g))
≥mint(Li)⊆



140

Hi = /0, and so H ′i = /0, as required. Finally, it follows that B′i+1 = 1
2(B
′
i− L′i−H ′i ) =

1
2((Bi− 1

2i−g A)− (Li−αi−g)−Hi) = Bi+1− 1
2(

1
2i−g A−αi−g) = Bi+1− 1

2i+1−g A, as re-

quired for the next inductive step.

Item 4 in the claim follows from the fact that B′r = Br− 1
2r−g A = /0− /0 = /0, and

item 5 is obtained from the fact that |B′|= |B|−2g(2+ |A|)+2g = |B|−2g(2+2r−g−
1)+2g = |B|−2r.

Claim 23. If B′ is an elementary folding of B, then ~s ′r−1 =~sr−1 and s′r = sr + 1. In

addition, r′ ≤ r, where if s′r < 0 then r′ = r.

Proof. By definition 7, the values in the series~s′ depend only on sizes of collections in
~L′ and ~H ′. These sub-collection sizes may be inferred from Claim 22, and their assign-

ments in definition 7 imply the correctness of the claim in a straightforward manner.

Let β be a palindrome obtained by concatenating zero or more l-blocks.

If β is obtained by concatenating an odd number of blocks, β is of the form

β = β1β2 . . .βq−1βqβq−1 . . .β2β1 (where each βi is an l-block), whereas if β is

obtained by concatenating an even number of blocks it is of the form β =

β1β2 . . .βq−1βqεβqβq−1 . . .β2β1. Call βq or ε respectively the center of β , in these two

cases. Note that a center of an l-block β is β .

Definition 9. Say that an l-BFB palindrome collection B has unique centers if all ele-

ments in collections of the form Hd are l-blocks, and for every β ∈ Ld and β ′ ∈ L′d (for

some possibly equal integers d and d′) such that β 6= β ′, the centers of β and β ′ differ.

Claim 24. If B has unique centers then B′ is an elementary folding of B, and B′ has

unique centers.

Proof. To prove the folding is elementary, we need to show that α /∈ B. Note that

β ∈Hg, α1 ∈ Lg, top(α) = top(β ), and the center of α is the the center of α1. Assume

by contradiction that α ∈ B. Since top(α) = top(β ), Observation 4 implies that α ∈
Lg +Hg. Since α is not an l-block, α /∈ Hg. Since α1 and α have the same center, and

since α1 ∈ Lg and B has unique centers, it follows that α /∈ Lg, leading to a contradiction.

The fact that B′ has unique centers follows from the contents of collections in

the series~L′ and ~H ′, as given in Claim 22.



141

Claim 25. Let B be an l-BFB palindrome collection with unique centers. Then, for i =

−sr−min(sr−1,0), it is possible to produce a series of collections B0 = B,B1,B2, . . . ,Bi,

each collection B j obtained by applying an elementary right-foldings over the preceding

collection B j−1. In addition, for every 0≤ j ≤−sr,

• |B j|= |B|−2r j,

• ~s j
r−1 =~sr−1,

• s j
r = sr + j,

and for each −sr ≤ j ≤−sr−min(sr−1,0),

• r j ≤ r−1,

• |B j|= |B|+2r−1(sr− j),

• ~s j
r−2 =~sr−2,

• s j
r−1 = sr−1 + j+ sr.

Proof. From Claim 11, sr ≤ 0. Note that sr = −|Lr−1| − |Hr−1|
2 + max(sr−1,0) ≤

max(sr−1,0). When sr = 0, max(sr−1,0) ≥ 0, and so min(sr−1,0) = 0 and in par-

ticular −sr −min(sr−1,0) = 0 and the claim holds trivially. Otherwise, sr < 0, thus

−sr−min(sr−1,0)> 0, and we continue to assert the correctness of the claim.

In the remaining case, sr < 0, and from Claims 21, 24, and 23 there is an el-

ementary right-folding B1 of B0 = B with unique centers, such that ~s1
r−1 = ~sr−1 and

s1
r = sr +1. Note that r1 ≤ r, where s1

r < 0 implies that r1 = r. Similarly, it is possible to

apply a series of a total amount of x = −sr right-foldings B = B0,B1, . . . ,Bx, where for

every j < x we have that r j = r and rx ≤ r, and for every j ≤ x we have that~s j
r−1 =~sr−1

and s j
r = sr + j. Since each such a right-folding decreases the size of the collection by

2r elements, |B j|= |B|−2r j, hence the first part of the claim.

After performing x =−sr right-foldings, we get the collection Bx for which rx ≤
r,~s j

r−1 =~sr−1, s j
r = sr+x = 0, and |Bx|= |B|−2r+1x = |B|+2r+1sr. If−min(sr−1,0) =

0, then the second part of the claim follows immediately. Else, −min(sr−1,0) =

−min(sx
r−1,0)> 0, thus sx

r−1 = sr−1 < 0, and max(sx
r−1,0)= 0. Since 0= sx

r =−|Lx
r−1|−



142

|Hrx−1|
2 +max(sx

r−1,0) = −|Lx
r−1| −

|Hrx−1|
2 , it follows that Lx

r−1 = Hx
r−1 = /0, and there-

fore rx ≤ r−1. On the other hand, from Claim 11 and the fact that sx
r−1 6= 0 we get that

rx ≥ r−1, and thus rx = r−1. As above, it is possible to apply additional consecutive

y =−sx
r−1 =−sr−1 =−min(sr−1,0) right-foldings, where each such folding maintains

the signature values at positions 0 to r−2, increases by 1 the signature value at position

r− 1 with respect to the preceding collection in the series, and decreases the collec-

tion size by 2r−1. Hence, for −sr ≤ j ≤ −sr−min(sr−1,0), we have that r j ≤ r− 1,

|B j| = |Bx|− 2r−1( j− x) = |B|+ 2rsr− 2r−1( j+ sr) = |B|+ 2r−1(sr− j), ~s j
r−2 =~sr−2,

and s j
r−1 = sx

r−1 + j− x = sr−1 + j+ sr, as required.

Correctness of the FOLD Procedure

Throughout this section, B and n correspond to an l-block collection and an

integer given as an input to the FOLD procedure. When n 6= |B|, denote d′ = d|B|−n.

Claim 26. If there is a folding B′ of B of size n 6= |B|, then there is an integer 0≤ d ≤ d′

such that~s ′d−1 =~sd−1, s′d ≥ sd +1, and n≥ 2d max(sd +1,0)+∆d . In addition, if d < d′,

then s′d ≥ sd +2.

Proof. Assume there is a folding B′ of B of size n 6= |B|, and let d ≥ 0 be the integer

such that~sd−1 =~s ′d−1 and s′d ≥ sd +1 (whose existence is implied by Claim 14). Since

~sd−1 =~s ′d−1, it follows that ∆d =∆′d . Thus, n= |B′| Clm.12
= 2d(|B′d|+ |L′d|−s′d)+∆′d

Clm.12
≥

2d max(s′d,0)+∆′d ≥ 2d max(sd + 1,0)+∆d . In addition, |B| = 2d (|Bd|+ |Ld|− sd)+

∆d , therefore |B|− n = 2d (|Bd|+ |Ld|− sd−|B′d|− |L′d|+ s′d
)
. Since all parameters in

the right-hand side of the latter equation are integers, |B| − n divides by 2d , and in

particular d ≤ d′. Furthermore, if d < d′, then |B|−n
2d is even, and therefore |Bd|+ |Ld|−

sd−|B′d|− |L′d|+ s′d is also even. As |Bd|+ |Ld| is even, as well as |B′d|+ |L′d|, it follows

that s′d− sd has to be even. Since s′d > sd , it follows that s′d ≥ sd +2.

Claim 27. If there is a folding of B of size n then FOLD(B,n) returns such a folding B′,

and otherwise FOLD(B,n) returns “FAILED”. In addition, if n 6= |B| and FOLD(B,n)

has returned B′, then for the maximum integer 0 ≤ d ≤ d′ for which n ≥ 2d max(sd +

1,0)+∆d (whose existence is guaranteed by Claim 26),~s ′d−1 =~sd−1 and r′ ≤ d+1, and

if r′ = d +1 then s′d = sd +1 in case d = d′ and s′d = sd +2 in case d < d′.



143

Proof. When there is no folding of B of size n, then in particular n 6= |B|, and the proce-

dure does not halt at line 1. In addition, from Claim 26, the condition in line 4 does not

met, and the procedure returns “FAILED” in line 10 as required.

Else, there is a folding of B of size n, and we show that the procedure finds

such a folding sustaining the stated requirements. When |B|<= n, the FOLD procedure

halts by returning B+(n−|B|)ε in line 1, which is in particular a folding of B of size

n as required. In addition, if |B| < n, we have from Claim 20 that ~s ′d−1 =~sd−1, s′d =

sd + 1, and r′ = d + 1, thus the remaining requirements in the claim hold. Otherwise,

n < |B|, and from Claim 26 the condition in line 4 holds, therefore in line 5 of the FOLD

procedure, the value of the parameter d is selected to be the maximum integer in the

range 0≤ d ≤ d′ such that n≥ 2d max(sd +1,0)+∆d .

Let B0 = B+ 2dε be the value of the collection B′ after executing line 5. Thus

|B0|= |B|+2d , and from Claim 20, we have that

1. ~s0
d−1 =~sd−1,

2. s0
d = sd +1,

3. r0 = d +1.

From the proof of Claim 20 and the fact that B is an l-block collection it can be

seen that B0 has unique centers. From Conclusion 1, s0
d+1 =

∆0
d+1−|B

0|
2d+1 =

∆d+2dabs(sd+1)−|B|−2d

2d+1 . From Claim 25, the collection B0 can undergo a series of i right-

foldings producing the sequence B0,B1, . . . ,Bi, where i = −s0
d+1 −min(s0

d,0). The

size of the collection Bi according to Claim 25 is |Bi| = |B0|+ 2d(s0
d+1− i) = (|B|+

2d)+2d(2s0
d+1+min(s0

d,0)) = |B|+2d +2d
(

∆d+2dabs(sd+1)−|B|−2d

2d +min(sd +1,0)
)
=

∆d + 2d(abs(sd + 1)+min(sd + 1,0)) = ∆d + 2d max(sd + 1,0). From the condition in

line 4, n ≥ 2d max(sd + 1,0)+∆d = |Bi|, and in particular there exists some 0 ≤ j ≤ i

such that |B j| ≤ n. The sequence of right-foldings computed by the loop lines 6-7 is

a prefix of such a right-folding sequence (i.e. after x iterations of the loop, B′ = Bx),

where the loop terminates after j iterations for a minimal integer j such that |B j| ≤ n.

After executing line 8, B′ is a folding of B of size |B′|= |B j|+(n−|B j|) = n, and so the

output B′ of the procedure is a folding of B of size n, as required.



144

To complete the proof, we need to show that when n < |B|, ~s ′d−1 =~sd−1 and

r′≤ d+1, and if r′= d+1 then s′d = sd +1 in case d = d′ and s′d = sd +2 in case d < d′.

To do so, we consider two cases for the number of loop iterations j conducted by the

procedure. Note that j > 0, since in the first iteration we have that |B0|= |B|+2d > n.

1. 0 < j ≤−s0
d+1. In this case, Claim 25 and the loop termination condition imply that

n ≥ |B j| = |B0| − 2d+1 j = |B|+ 2d − 2d+1 j = |B|+ 2d(1− 2 j), and that n < |B j−1| =
|B|+2d(1−2( j−1)), therefore, 2 j−3 < |B|−n

2d ≤ 2 j−1. Note that when d = d′, |B|−n
2d

is odd, hence |B|−n
2d = 2 j−1, whereas when d < d′, |B|−n

2d is even, and |B|−n
2d = 2 j−2.

In the case where d = d′, |B j|= |B|+2d(1−2 j) = |B|−2d( |B|−n
2d ) = n, thus no ε

elements are added to the collection in line 8 of the procedure and the returned collection

is B′ = B j. From Claim 25, r′ = r0 = d + 1, and ~s ′d =~s0
d , i.e. ~s ′d−1 =~s0

d−1 =~sd−1 and

s′d = s0
d = sd +1, and the claim follows.

In the case where d < d′, |B j|= |B|+2d(1−2 j) = |B|−2d(2 j−2+1) = |B|−
2d( |B|−n

2d +1) = n−2d , thus after line 8 of the procedure the returned collection is B′ =

B j + 2dε . It may be asserted that ε is the unique minimal element in B0
d (as all other

elements are l-blocks with higher top values), and thus this element participates in the

right-folding that transforms B0 to B1. Therefore, for each 1 ≤ j′ ≤ j, ε /∈ B j′ , and in

particular B′ is a type II elementary folding of B j. From Claim 20, r′ = d + 1, ~s ′d−1 =

~s0
d−1 =~sd−1, and s′d = s0

d +1 = sd +2, hence the claim follows.

2. −s0
d+1 < j ≤ −s0

d+1−min(s0
d,0). In this case, Claim 25 and the loop termination

condition imply that n≥ |B j|= |B0|+2d(s0
d+1− j) = (|B|+2d)+2d(s0

d+1− j) = |B|+
2d(s0

d+1− j+1), and n < |B j−1|= |B|+2d(s0
d+1− j+2). Therefore, −s0

d+1 + j−2 <
|B|−n

2d ≤ −s0
d+1 + j− 1. Since |B|−n

2d is an integer, it follows that |B|−n
2d = −s0

d+1 + j−
1, therefore |B j| = n, and consequentially after line 8 of the procedure the returned

collection is B′ = B j. From Claim 25, r′ ≤ d, and ~s ′d−1 =~s0
d−1 =~sd−1, and the claim

follows.

Finally, we now prove the correctness of the FOLD procedure, as formulated by

Claim 28.

Claim 28. Let B be an l-block collection and let n≥ 0 be an integer. FOLD(B,n) returns

a folding B′ of B of size n if such a folding exists, and otherwise it returns “FAILED”.



145

In addition, for every l-block collection B∗ such that |B| = |B∗| and ~s(B) ≤~s(B∗), if

there is a folding B′∗ of B∗ of size n, then FOLD(B,n) returns a collection B′ such that

~s(B′)≤~s(B′∗).

Proof. Claim 27 proves the first statement in Claim 28, thus it remains to show that for

every l-block collection B∗ such that |B|= |B∗| and~s≤~s∗, if there is a folding B′∗ of B∗

of size n, then FOLD(B,n) returns a collection B′ such that~s ′ ≤~s ′∗.
First, note that when n = |B| = |B∗|, then in particular B∗ and B are minimum

signature n-size foldings of B∗ and B, respectively (Claim 14), and thus B ≤s B′∗ for

every n-size folding B′∗ of B∗. Since in this case FOLD(B,n) returns B, the claim

follows. Otherwise, n 6= |B|, and we first show that FOLD(B,n) returns a folding B′ of

B of size n if such a folding exists, and otherwise it returns “FAILED”.

In the reminder of this proof we assume that n 6= |B| = |B∗|, and note that d′ =

d|B|−n = d|B∗|−n. Since~s≤~s∗, either~s =~s∗, or~s <~s∗ and there is an integer i such that

~si−1 =~s∗i−1 and si < s∗i .

We first show that if is a folding B′∗ of B∗ of size n, FOLD(B,n) returns a folding

B′ of B of size n satisfying~s ′ ≤~s ′∗. In this case, Claim 26 states that there is an integer

0 ≤ d∗ ≤ d′ such that ~s ′∗d∗−1 =~s∗d∗−1, s′∗d∗ ≥ s∗d∗ + 1, and n ≥ 2d∗max(s∗d∗ + 1,0)+∆∗d∗ .

Consider two cases: (1) ~sd∗−1 =~s∗d∗−1, which occurs when ~s =~s∗ or when ~s <~s∗ and

i≥ d∗, and (2)~sd∗−1 <~s∗d∗−1, which occurs when~s <~s∗ and i < d∗.

(1)~sd∗−1 =~s∗d∗−1. In this case, n≥ 2d∗max(s∗d∗+1,0)+∆∗d∗ ≥ 2d∗max(sd∗+1,0)+∆d∗ .

Thus, when executing FOLD(B,n), the condition in line 4 is met and the algorithm does

not return “FAILED”. From Claim 27, FOLD(B,n) returns an n-size folding B′ of B,

such that for the maximum integer 0 ≤ d ≤ d′ for which n ≥ 2d max(sd + 1,0) +∆d

we have that ~s ′d−1 = ~sd−1 and r′ ≤ d + 1, and if r′ = d + 1 then s′d = sd + 1 in case

d = d′ and s′d = sd + 2 in case d < d′. By selection, d∗ ≤ d ≤ d′. If d∗ < d, then

~s ′d∗ =~sd∗ =~s∗d∗ <~s ′∗d∗ , and in particular ~s ′ ≤~s ′∗ and the claim follows. If d∗ = d, then

~s ′d−1 =~sd−1 =~s∗d−1 =~s ′∗d−1. If r′ < d + 1 then ~s ′ ≤~s ′∗ from Claim 13, and the claim

follows. If r′ = d +1, then s′d = sd +1 in case d = d′ and s′d = sd +2 in case d < d′. In

addition, from Claim 26, s′∗d ≥ sd +1 in case d = d′ and s′∗d ≥ sd +2 in case d < d′, thus

in both cases s′d ≤ s′∗d . If s′d < s′∗d then~s ′d <~s ′∗d , and in particular~s ′ <~s ′∗ and the claim

follows. If s′d = s′∗d then~s ′d =~s ′∗d , and from Claim 13~s ′ ≤~s ′∗ and the claim follows.



146

(2)~sd∗−1 <~s∗d∗−1. In this case, for i < d∗ we have that~si−1 =~s∗i−1 and si < s∗i . Now, n≥
2d∗max(s∗d∗+1,0)+∆∗d∗ ≥ ∆∗d∗ ≥ ∆∗i+1 = 2iabs(s∗i )+∆∗i ≥ 2i max(s∗i ,0)+∆∗i . Similarly

as before, Claims 13 and 27 can be applied to show that~s ′ ≤~s ′∗ .

C.2.4 Correctness of Algorithm SEARCH-BFB

Assuming there is a BFB string α∗ admitting the algorithm’s input count vector

~n, the BFB palindrome β ∗ = α∗ᾱ∗ admits the count vector 2~n. Let B∗k+1 = /0, B∗k,

B∗k−1, . . . ,B∗1 be the block collection series corresponding to the layers of β ∗ as de-

scribed in Chapter 4. Since Bk+1 = B∗k+1 = /0 (Bk+1 is initialized in line 1 of Algorithm

SEARCH-BFB), we have that~s(Bk+1) =~s(B∗k+1). Assume that for some 0≤ l ≤ k we

have that~s(Bl+1)≤~s(B∗l+1). Recall that the collection B∗l is obtained by the wrapping

of some folding B′∗ of size nl of B∗l+1. Since the wrapping operation does not change

element multiplicities and top values, it follows that ~s(B∗l) =~s(B′∗). From Claim 28,

the application of the FOLD procedure in the l-th iteration of the loop in lines 2-4 of the

algorithm returns a folding B′ of Bl+1 of size nl , where~s(Bl) =~s(B′)≤~s(B′∗) =~s(B∗l).

Inductively, the algorithm does not return “FAILED” in each one of the loop iterations,

and after the last iteration~s(B1)≤~s(B∗1). From the same arguments as above and since

B∗1 can be folded into the single palindrome β ∗, it follows that the application of FOLD

in line 4 of the algorithm does not fail, and returns a collection containing a single

palindrome β = αᾱ , where α is a BFB string admitting~n(α) =~n.

For the other direction of the proof, assume that the BFB algorithm returned

the string α . In this case, the series of collections Bk+1,Bk, . . . ,B1 satisfies that each

collection Bl is an l-block collection of size nl and is obtained by folding and wrapping

of the preceding collection in the series Bl+1. The final collection B1 is folded into a

single BFB palindrome β = αᾱ admitting the count vector 2~n, and therefore α is a BFB

string admitting~n.



147

C.2.5 Time Complexity of Algorithm SEARCH-BFB

Object Representation

The algorithm handles two types of objects: BFB palindromes, and BFB palin-

drome collections. BFB palindromes are further divided into three subtypes, who are im-

plemented separately: empty palindromes, l-blocks, and composite l-BFB palindromes

of the form βγβ (see Claim 1 in Chapter 4). Each BFB palindrome object contains

a filed maintaining the top value of the represented palindrome, allowing O(1) time

queries of this value. An empty palindrome is represented by an object containing only

the top value field (which always holds the value 0), and generating new such objects

take O(1) time. An l-block is implemented as an object containing, in addition to the

top-value field, a pointer to its internal (l + 1)-BFB palindrome. Given a pointer to

the internal (l +1)-BFB palindrome, generating new l-block objects take O(1) time by

copying the pointer, and setting the top value field to the top value of the pointed (l+1)-

BFB palindrome. A composite l-BFB palindrome βγβ is implemented by specifying

a pointer to the l-BFB palindrome β , and a list of l-BFB palindromes α1,α2, . . . ,αp

representing the convexed l-collection A such that γ = γA. Composite palindromes can

be generated in a time proportional to the order of their internal convexed l-collection

(where the top value field is set to be the top value of β ).

A collection B = {m1β1,m2β2, . . . ,mqβq} is implemented by an object contain-

ing a field which maintains the size |B| of the collection, and two doubly linked lists

maintaining the prefixes~Lr−1 and ~Hr−1 of the series~L and ~H in the decomposition of B,

where r = r(B). Note that for i≥ r, Li = Hi = /0. Each element Li or Hi is implemented

as a linked list of l-BFB palindromes ordered with nondecreasing top values (it is pos-

sible that an Hi list contains multiple repeats of identical elements). Thus, computing

mint(Li) or mint(Hi) and extracting minimal elements from such lists is done in O(1)

time. Generating an empty collection is done in O(1) time (where the two lists Lr−1 and

Hr−1 are empty), and duplicating or wrapping a collection B take at most O(|B|) time

(note that r−1≤ log |B|, since an element β ∈ Br−1 corresponds to 2r−1 repeats of β in

B, and that the total number of elements in all lists Li and Hi is at most |B|).



148

Type II Elementary Folding

Using the object representation described above, for a collection B such that

ε /∈ B and an integer m > 0, it is possible to compute a type II elementary folding

B′ = B+mε in O(|B|+m) time as follows. First, the number d = dm is computed.

Note that d ≤ logm (d can be defined as the index of the least significant bit different

from 0 in the binary representation of m), and may be computed in O(logm) time. B′ is

initialized by copying B, i.e. generating the list~L′r−1 and ~H ′r−1 (in O(|B|) time). Then, if

d ≥ r, empty collections L′i and H ′i are added to the prefixes of~L′ and ~H ′ for r ≤ i≤ d,

and a single ε element is added to L′d . Else, d < r, and a single ε element is added as

the first element in L′d (being of minimum top value among all elements in the list), and

elements from collections L′i and H ′i for i> d are moved into H ′d . This latter modification

is performed by first merging each L′i and H ′i lists for i > d to a single list ordered with

nondecreasing top values (in a linear time with respect to the number of elements in the

two lists), and then, with increasing index i, each merged list is added to the beginning

of H ′d , where 2i−d repeats of each element in the merged list of L′i and H ′i are added to

H ′d . In both cases where d ≥ r or d < r, it is possible to assert the modification updates

properly the representation of B′ to represent the collection B+2dε , that r(B′) = d +1,

and that total time required for the modification is at most O(|B|+d) = O(|B|+ logm).

Finally, additional m
2d − 1 repeats of ε are added to H ′d in O(m) time, where now it is

possible to assert that B′ properly represents the collection B+mε , and that the total

computation time is O(|B|+m).

Right-folding

In order to right-fold a collection B, the algorithm first gets pointers to the el-

ements Lr−1 and Hr−1, in O(r) time for r = r(B). Then, it starts traversing these lists

backward for i = r−1 down to g, inclusive, where g is the first encountered index such

that Hg 6= /0. For each such i, the algorithm extracts the first (minimal) element in the list

Li, and accumulates these elements in a list A. Finally, the algorithm extracts two copies

of the minimal element β in Hg, and uses β and A to construct the BFB palindrome

α = βγAβ . Then, α is inserted into Lg. As this procedure takes O(r) time and decreases

the size of the collection by 2r, any valid consecutive application of right-foldings over



149

B takes at most O(|B|) time.

The FOLD Procedure

Consider the application of the FOLD procedure on a collection

B = {m1β1,m2β2, . . . ,mqβq} and an integer n ≥ 0. If n ≥ |B|, the procedure applies

in line 1 a type II elementary folding in O(|B|+ n) time (Section C.2.5) and hults.

Otherwise, given the series ~Lr−1 and ~Hr−1, it is possible to compute ~sr and ~∆r+1 in

O(r) = O(log(|B|)) time. Note that si = 0 for i > r, and ∆i = ∆r+1 for i > r+ 1. The

number d|B|−n satisfies d|B|−n ≤ max(log(|B|)+ log(n)). After computing~sr and ~∆r+1,

checking the condition in line 4, as well as computing the parameter d in line 5, can

be done in O(d|B|−n) time. The two type II elementary foldings in lines 5 and 8 take

O(|B|+ n) time (Section C.2.5), and the total time for right-folding applications in the

loop in lines 6-7 is O(|B|) (Section C.2.5). Thus, the total running time of the procedure

is O(|B|+n).

Overall Running Time

Let~n= [n1,n2, . . . ,nk] be the input vector for the algorithm. Denote N = ∑
1≤l≤k

nl ,

and note that N is the length of the output string α in case the algorithm does not return

“FAILED”. It is simple to assert that besides operations conducted within the FOLD

procedure, Algorithm SEARCH-BFB performs O(N) operations. For every 1 ≤ l ≤ k,

FOLD is called once by the BFB algorithm over the collection Bl+1 of size nl+1 and the

integer nl , and runs in O(nl+1 +nl) time (Section C.2.5). Summing the running time of

FOLD for l = k down to 1, its overall running time, as well as the overall running time

of Algorithm SEARCH-BFB, is O(N).

C.3 The Decision Variant

In this section, we describe a simplification of the SEARCH-BFB algorithm

which solves the decision variant of the BFB count vector problem. Essentially, this

algorithm applies similar steps to those of the search algorithm, yet instead of explicitly

maintaining collections B, the algorithm only maintains the signature~s of B. We assume



150

that the algorithm maintains explicitly only the prefix ~sr of ~s (for r = r(B)) as a linked

list, where for i > r the algorithm takes the value 0 whenever it needs using the value si.

The fact that the signature modifications applied by Procedure SIGNATURE-

FOLD yield identical signatures to those of the collections computed by Procedure

FOLD can be asserted from Conclusion 1 and Claims 20 and 25. It may also be asserted

that the total number of operations in all calls to Procedure ADD-EMPTY (lines 2, 7,

and 11 in Procedure SIGNATURE-FOLD), as well as the computation of ~∆dnB−n in

line 4, checking the condition in line 5, and computing d in line 6, is O(r(B)+ r(B′)) =

O(lognB+ logn). Besides these operations, Procedure SIGNATURE-FOLD applies ad-

ditional O(1) operations, hence its total running time is O(lognB + logn). Therefore,

the overall running time of Algorithm DECISION-BFB is

O

(
∑

0≤l≤k
(lognl+1 + lognl)

)
= O

(
∑

0≤l≤k
lognl

)
= O(Ñ), where Ñ is the number of

bits in the representation of the input vector ~n. A more involved amortized analysis,

omitted from this text, may show that the algorithm performs O(Ñ) bit operations, hence

being strictly linear with respect to its input length.

C.4 The Distance Variant

This section gives Algorithm DISTANCE-BFB for solving the distance variant

of the BFB count vector problem. As a matter of fact, the presented algorithm solves

the problem for every suffix~n l = [nl,nl+1, . . . ,nk] of the input vector~n = [n1,n2, . . . ,nk].

For a vector~n = [n1,n2, . . . ,nk] of length k and an integer m, denote by [m,~n] the

(k+1)-length vector [m,n1,n2, . . . ,nk]. The algorithm is generic and may work with any

vector distance measure δ , provided that for any equal-length three vectors~n,~n ′, and~n ′′

such that δ (~n,~n ′)≤ δ (~n,~n ′′), (1) δ (~n ′,~n ′) = δ (~n ′′,~n ′′) = 0≤ δ (~n,~n ′)≤ δ (~n ′,~n ′′)≤ 1,

and (2) for any pair of numbers m and m′, δ ([m,~n], [m′,~n ′]) ≤ δ ([m,~n], [m′,~n ′′]). For

some precision parameter 0 ≤ η < 1, the algorithm finds the exact solution for the dis-

tance variant of the BFB count vector problem for every suffix of the input vector for

which the solution is at most η , and returns the approximated solution 1 to suffixes for

which the solution is greater than η .

Similar to Algorithms SEARCH-BFB and DESCISION-BFB, Algorithm



151

DISTANCE-BFB runs k iterations on an input vector ~n = [n1,n2, . . . ,nk], indexed from

k down to 1. At the end of iteration l, the algorithm computes a collection Sl containing

elements of the form (~n i = [ni
l,n

i
l+1, . . . ,n

i
k],~s

i), where ~s i is the minimum signature of

an l-block collection Bi admitting the count vector ~n i, and δ (~n l,~n i) ≤ η . It is guaran-

teed that for every BFB count vector~n j = [n j
l ,n

j
l+1, . . . ,n

j
k] such that δ (~n l,~n j)≤ η and

every l-block collection B j admitting~n j, Sl contains a pair (~n i,~s i) such that δ (~n l,~n i)≤
δ (~n l,~n j) and~s i ≤~s j.

Consider the signature ~s of a collection B of size n. It is simple to show that

r(B) ≤ logn+ 1, and that −n < si ≤ n for every 0 ≤ i ≤ r. Therefore, ~s can be repre-

sented by O(log2 n) bits, and so the number of different signatures of collections of size n

is upper bounded by 2O(log2 n). In addition, under realistic assumptions, we may assume

that the number of different values n examined in line 6 of Algorithm DISTANCE-BFB

bounded by 2O(log2 nl), since this number should approximate the count nl (for exam-

ple, using the Poisson δ function described in Chapter 4, it is possible to show that

for every value of nl and ~n ′i and for n ≥ 20nl , δ (~n l, [n,~n ′i]) > 1− 10−6, thus choos-

ing η = 1−10−6 guarantees that the loop in lines 6-9 is being executed less than 20nl

times for every (~n ′i,~s i) ∈ Sl+1). Due to the condition in line 7, every possible sig-

nature ~s appears at most once in some pair in Sl , thus the size of Sl is bounded by

2O(log2 nl). It is straightforward to observe that the total number of operations in the loop

in lines 7-9 is also 2O(log2 nl), and so the total running time of the algorithm is bounded

by ∑
1≤l≤k

2O(log2 nl) ≤ 2O(log2 N) = NO(logN).

C.5 Chromosome simulation details

Each chromosome pair was modeled as two sequences of 100,000,000 ordered

bases. Then fifty rearrangement were introduced to each chromosome independently.

Each rearrangement type was chosen randomly from deletion, inversion, and duplica-

tion, according to a distribution. Thus, both balanced and unbalanced rearrangements

were used to simulate the chromosomes. If the chosen rearrangement was a duplication,

then it was decided whether or not the duplication would be tandem and whether or

not it would be inverted. Tandem duplications would be inserted adjacent to the orig-



152

inal chromosome segment, and inverted duplications would have the new duplicated

segment reversed with respect to the original segment.

Two rearrangement type regimes were used. In the first regime, referred to as

“evendup” in the supplemental data, each rearrangement was a duplication, inversion, or

deletion with probability .5, .25, and .25 respectively. Duplications had a 50% chance of

being tandem and, independently, a 50% chance of being inverted. In the second regime,

called “highdup” in the supplemental data, the probability of duplication, inversion, and

deletion were 7
11 , 2

11 , and 1
11 . The probability of a duplication being tandem or inverted

was .9 and .9. This second regime was created because in the first, fold-back inversions

occur infrequently. The second regime allowed us to examine tests for BFB when an

alternative mechanism is creating many fold-back inversions.

The size of each non-BFB rearrangement was chosen from a normal distribu-

tion bounded at zero with mean 10,000 and a variance of 10,000,000. Rearrangements

were introduced sequentially in each chromosome. For chromsomes in which BFB was

simulated, consecutive rounds of BFB were introduced after one of the fifty non-BFB

rearrangments. The number of BFB rounds varied from two to ten. Each BFB round

consisted of a prefix of the chromosome undergoing a tandem inverted duplication. The

size of the prefix was selected from a normal distribution with a mean of zero and a

standard deviation of one tenth of the length of the chromosome.

After each chromosome in the pair was rearranged, the copy numbers and break-

points were combined as one would expect from experimental evidence.

C.6 Cancer cell line results

We identified count vectors on three chromosomes from the 746 cancer cell lines

that were long and nearly consistent with BFB. The observed count vectors along with

the nearest count vector consistent with BFB are shown below.

Cell line: AU565 Tissue: bone

Chromosome 8 between 72.5 MB and 80.0 MB

Observed 4,8,14,10,8,14,9,13,7,12,9,7

Fit 4,8,14,10,8,14,9,13,7,13,9,7



153

Cell line: PC-3 Tissue: prostate

Chromosome 10 between 60 MB and 82 MB

Observed 6,10,14, 9,6,9,13,9,5,9,3,14

Fit 6,10,14,10,6,9,13,9,5,9,3,15

Cell line: MG-63 Tissue: bone

Chromosome 8 between 112 MB and 121 MB

Observed 10,6,8,14,11,14,9,8,13,9,13,9,7

Fit 10,6,8,14,11,15,9,9,13,9,13,9,7

C.7 ROC curves for varying simulation parameters

Below are the ROC curves, similar to those in Figure 4 of Chapter 4, for many

different simulation and test parameters.

C.8 Pancreatic cancer data analysis pipeline

Figure C.6 shows a graphical layout of the analysis.

C.9 Possible arrangement of segments on BFB

-rearranged chromosome 12



154

Procedure: FOLD(B,n)

Input: An l-BFB palindrome collection B and an integer n≥ 0.

Output: A minimum signature folding B′ of B such that |B′|= n, or the string “FAILD” if

there is no such B′.

1 If |B| ≤ n then return B+(n−|B|)ε .

2 Else

3 Let~s =~s(B) and~∆ =~∆(B).

4 If there exists 0≤ d ≤ d|B|−n such that n≥ 2d max(sd +1,0)+∆d then

5 Let d be the maximum integer sustaining the condition above. Set B′← B+2dε .

6 While |B′|> n do

7 Set B′← RIGHT-FOLD(B′).

8 Set B′← B′+(n−|B′|)ε .

9 Return B′

10 Else return “FAILED”

Procedure: RIGHT-FOLD(B)

Input: An l-BFB palindrome collection B.

Precondition: Let
〈
~B,~L, ~H

〉
be the decomposition of B, and r = r(B). There is an integer

0≤ g < r such that Hg 6= /0, Lg 6= /0, and for every g < i < r, Hi = /0 and

Li 6= /0.

Output: A folding B′ of B of size |B|−2r.

1 Let g be an integer as implied from the precondition (note that g is unique), β a minimal

element in Hg, A = {α1,2α2, . . . ,2r−g−1αr−g} a convexed l-collection such that

αi ∈ Lg+i−1 for each 1≤ i≤ r−g and α1 is a minimal element in Lg, and α = βγAβ .

2 Return the collection B′ = B−2g(2β +A)+2gα .



155

Algorithm: DECISION-BFB(~n)

Input: A count vector~n = [n1,n2, . . . ,nk].

Output: “TRUE” if~n is a BFB count vector, and “FAILED” if otherwise.

1 Set nk+1← 0 and~s k+1←~0.

2 For l← k down to 1 do

3 Apply SIGNATURE-FOLD(~s l+1,nl+1,nl). If this operation has failed, return

“FALSE”.

4 Otherwise, set~s l to be the returned value from the call to

SIGNATURE-FOLD(~s l+1,nl+1,nl).

5 Apply SIGNATURE-FOLD(~s1,n1,1). If this operation has failed, return “FALSE”, and

otherwise return “TRUE”.

Procedure: SIGNATURE-FOLD(~s,nB,n)

Input: The signature~s and size nB of an l-block collection B and an integer n≥ 0.

Output: The minimum signature~s ′ of a folding B′ of B such that |B′|= n, or the string

“FAILD” if there is no such B′.

1 If nB ≤ n then

2 return ADD-EMPTY(~s,nB,n−nB).

3 Else

4 Compute the prefix~∆dnB−n of~∆(B).

5 If there exists 0≤ d ≤ dnB−n such that n≥ 2d max(sd +1,0)+∆d then

6 Let d be the maximum integer sustaining the condition above.

7 Set~s ′← ADD-EMPTY(~s,nB,2d), and nB′ ← nB +2d .

8 If n≥ nB′ +2d+1s′d+1 then

9 Set s′d+1← s′d+1 +
⌈

nB′−n
2d+1

⌉
.

10 Set nB′ ← ∆d +2dabs(s′d)+2d+1abs(s′d+1).

11 Set~s ′← ADD-EMPTY(~s ′,nB′ ,n−nB′).

12 Else

13 Set s′d ← s′d +
nB′−n

2d +2s′d+1.

14 Set s′d+1← 0.

15 return~s ′.

16 Else return “FAILED”



156

Procedure: ADD-EMPTY(~s,nB,m)

Input: The signature~s and size nB of an l-BFB palindrome collection B containing no ε

elements, and an integer m≥ 0.

Output: The signature~s ′ of the folding B′ = B+mε of B.

1 If nB = m then

2 return~s

3 Else

4 Let d = dn−nB , and set the prefix~s ′d−1 to be the copy of the prefix~s ′d−1 of~s.

5 Set s′d ← sd +1.

6 Compute~∆ ′d = ∑
0≤i<d

2iabs(si).

7 Set s′d+1←
~∆d+2dabs(s′d)−n

2d+1 . // All values s′i for i > d +1 are implicitly

set to 0.

8 return~s ′.



157

Algorithm: DISTANCE-BFB(~n,η)

Input: A count vector~n = [n1,n2, . . . ,nk], and a precision parameter 0≤ η < 1.

Output: For every 1≤ l ≤ k, the algorithm reports the minimum distance δl of the suffix

~n l = [nl ,nl+1, . . . ,nk] of~n from a BFB count vector, in case this distance is at

most η .

// Collections of the form Sl contain pairs (~n ′i = [n′l ,n
′
l+1, . . . ,n

′
k],~s

i),

where ~s i is the minimum signature of an l-block collection Bi

admitting the count vector ~n ′i, and δ (~n l ,~n ′i)≤ η.

1 Set Sk+1 be a collection containing only the pair (~0,0).

2 For l← k down to 1 do

3 Set δl ← 1.

4 Set Sl ← /0.

5 For each (~n ′i = [n′l+1, . . . ,n
′
k],~s

i) ∈ Sl+1 do

6 For each n≥ 1 such that δ (~n l , [n,~n ′i])≤ η do

7 If SIGNATURE-FOLD(~n ′i,n′l+1,n) =~s, IS-PALINDROMIC(~s), and for all

(~n ′ j,~s j) ∈ Sl such that δ (~n l ,~n ′ j)≤ δ (~n l , [n,~n ′i]) it is true that~s <~n ′ j then

8 Add ([n,~n ′i],~s) to Sl .

9 Set δl ←min(δl ,δ (~n l , [n,~n ′i])).

10 Report δl .

Procedure: IS-PALINDROMIC(~s)

Input: The signature~s of an l-BFB palindrome collection B.

Output: “TRUE” if it is possible to concatenate all elements in B into a single l-BFB

palindrome, and “FALSE” otherwise.

1 Compute the prefix~∆r+1 of~∆(B) for r = r(B). // Note that |B|= ∆r+1

2 If there exists 0≤ d ≤ d∆r+1−1 such that 1≥ 2d max(sd +1,0)+∆d then return “TRUE”.

3 Else return “False”.



158

Figure C.1: ROC curves for simulations with 2 rounds of BFB. Clockwise from the

upper left, evendup background with no use of fold-back fraction, evendup background

using fold-backs, highdup background using fold-backs, highdup background with no

use of fold-back fraction.



159

Figure C.2: ROC curves for simulations with 4 rounds of BFB. Clockwise from the

upper left, evendup background with no use of fold-back fraction, evendup background

using fold-backs, highdup background using fold-backs, highdup background with no

use of fold-back fraction.



160

Figure C.3: ROC curves for simulations with 6 rounds of BFB. Clockwise from the

upper left, evendup background with no use of fold-back fraction, evendup background

using fold-backs, highdup background using fold-backs, highdup background with no

use of fold-back fraction.



161

Figure C.4: ROC curves for simulations with 8 rounds of BFB. Clockwise from the

upper left, evendup background with no use of fold-back fraction, evendup background

using fold-backs, highdup background using fold-backs, highdup background with no

use of fold-back fraction.



162

Figure C.5: ROC curves for simulations with 10 rounds of BFB. Clockwise from the

upper left, evendup background with no use of fold-back fraction, evendup background

using fold-backs, highdup background using fold-backs, highdup background with no

use of fold-back fraction.



163

Figure C.6: Graphical representation of the analysis performed with the pancreatic

cancer paired-end sequencing data.



164

Figure C.7: Plausible BFB cycles that could lead to the copy counts observed in chro-

mosome 12 of pancreatic cancer sample PD3641.



Bibliography

[1] P. Akiva, A. Toporik, S. Edelheit, Y. Peretz, A. Diber, R. Shemesh, A. Novik, and
R. Sorek. Transcription-mediated gene fusion in the human genome. Genome
Res., 16:30–36, Jan 2006.

[2] A. Ameur, A. Wetterbom, L. Feuk, and U. Gyllensten. Global and unbiased detec-
tion of splice junctions from RNA-seq data. Genome Biol., 11:R34, 2010.

[3] S. E. Artandi and R. A. DePinho. Telomeres and telomerase in cancer. Carcino-
genesis, 31:9–18, Jan 2010.

[4] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler.
GenBank. Nucleic Acids Res., 36:25–30, Jan 2008.

[5] M. F. Berger, J. Z. Levin, K. Vijayendran, A. Sivachenko, X. Adiconis, J. Maguire,
L. A. Johnson, J. Robinson, R. G. Verhaak, C. Sougnez, R. C. Onofrio, L. Ziaugra,
K. Cibulskis, E. Laine, J. Barretina, W. Winckler, D. E. Fisher, G. Getz, M. Meyer-
son, D. B. Jaffe, S. B. Gabriel, E. S. Lander, R. Dummer, A. Gnirke, C. Nusbaum,
and L. A. Garraway. Integrative analysis of the melanoma transcriptome. Genome
Res., 20:413–427, Apr 2010.

[6] G. R. Bignell, C. D. Greenman, H. Davies, A. P. Butler, S. Edkins, J. M. Andrews,
G. Buck, L. Chen, D. Beare, C. Latimer, S. Widaa, J. Hinton, C. Fahey, B. Fu,
S. Swamy, G. L. Dalgliesh, B. T. Teh, P. Deloukas, F. Yang, P. J. Campbell, P. A.
Futreal, and M. R. Stratton. Signatures of mutation and selection in the cancer
genome. Nature, 463(7283):893–898, Feb 2010.

[7] G. R. Bignell, T. Santarius, J. C. Pole, A. P. Butler, J. Perry, E. Pleasance,
C. Greenman, A. Menzies, S. Taylor, S. Edkins, P. Campbell, M. Quail, B. Plumb,
L. Matthews, K. McLay, P. A. Edwards, J. Rogers, R. Wooster, P. A. Futreal, and
M. R. Stratton. Architectures of somatic genomic rearrangement in human cancer
amplicons at sequence-level resolution. Genome Res., 17:1296–1303, Sep 2007.

[8] J. H. Bullard, E. Purdom, K. D. Hansen, and S. Dudoit. Evaluation of statistical
methods for normalization and differential expression in mRNA-Seq experiments.
BMC Bioinformatics, 11:94, 2010.

165



166

[9] P. J. Campbell, S. Yachida, L. J. Mudie, P. J. Stephens, E. D. Pleasance, L. A.
Stebbings, L. A. Morsberger, C. Latimer, S. McLaren, M. L. Lin, D. J. McBride,
I. Varela, S. A. Nik-Zainal, C. Leroy, M. Jia, A. Menzies, A. P. Butler, J. W. Teague,
C. A. Griffin, J. Burton, H. Swerdlow, M. A. Quail, M. R. Stratton, C. Iacobuzio-
Donahue, and P. A. Futreal. The patterns and dynamics of genomic instability in
metastatic pancreatic cancer. Nature, 467(7319):1109–1113, Oct 2010.

[10] P. Carninci. Is sequencing enlightenment ending the dark age of the transcriptome?
Nat. Methods, 6:711–713, Oct 2009.

[11] P. Carninci, T. Kasukawa, S. Katayama, J. Gough, M. C. Frith, N. Maeda,
R. Oyama, T. Ravasi, B. Lenhard, C. Wells, R. Kodzius, K. Shimokawa, et al. The
transcriptional landscape of the mammalian genome. Science, 309:1559–1563,
Sep 2005.

[12] A. M. Carr, A. L. Paek, and T. Weinert. DNA replication: failures and inverted
fusions. Semin. Cell Dev. Biol., 22(8):866–874, Oct 2011.

[13] N. P. Carter. Methods and strategies for analyzing copy number variation using
DNA microarrays. Nat. Genet., 39(7 Suppl):16–21, Jul 2007.

[14] C. Chiang, J. C. Jacobsen, C. Ernst, C. Hanscom, A. Heilbut, I. Blumenthal, R. E.
Mills, A. Kirby, A. M. Lindgren, S. R. Rudiger, C. J. McLaughlan, C. S. Baw-
den, S. J. Reid, R. L. Faull, R. G. Snell, I. M. Hall, Y. Shen, T. K. Ohsumi, M. L.
Borowsky, M. J. Daly, C. Lee, C. C. Morton, M. E. MacDonald, J. F. Gusella,
and M. E. Talkowski. Complex reorganization and predominant non-homologous
repair following chromosomal breakage in karyotypically balanced germline rear-
rangements and transgenic integration. Nat. Genet., 44(4):390–397, Apr 2012.

[15] D. Y. Chiang, G. Getz, D. B. Jaffe, M. J. O’Kelly, X. Zhao, S. L. Carter, C. Russ,
C. Nusbaum, M. Meyerson, and E. S. Lander. High-resolution mapping of copy-
number alterations with massively parallel sequencing. Nat. Methods, 6(1):99–
103, Jan 2009.

[16] R. de Cid, E. Riveira-Munoz, P. L. Zeeuwen, J. Robarge, W. Liao, E. N.
Dannhauser, E. Giardina, P. E. Stuart, R. Nair, C. Helms, G. Escaramis, E. Bal-
lana, G. Martin-Ezquerra, M. den Heijer, M. Kamsteeg, I. Joosten, E. E. Eichler,
C. Lazaro, R. M. Pujol, L. Armengol, G. Abecasis, J. T. Elder, G. Novelli, J. A.
Armour, P. Y. Kwok, A. Bowcock, J. Schalkwijk, and X. Estivill. Deletion of
the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for
psoriasis. Nat. Genet., 41(2):211–215, Feb 2009.

[17] R. A. DePinho and K. Polyak. Cancer chromosomes in crisis. Nat. Genet.,
36(9):932–934, Sep 2004.

[18] M. M. Deza and E. Deza. Encyclopedia of Distances. Springer, 2009.



167

[19] B. J. Druker, M. Talpaz, D. J. Resta, B. Peng, E. Buchdunger, J. M. Ford, N. B. Ly-
don, H. Kantarjian, R. Capdeville, S. Ohno-Jones, and C. L. Sawyers. Efficacy and
safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid
leukemia. N. Engl. J. Med., 344:1031–1037, Apr 2001.

[20] P. A. Edwards. Fusion genes and chromosome translocations in the common ep-
ithelial cancers. J. Pathol., 220:244–254, Jan 2010.

[21] G. J. Faulkner, A. R. Forrest, A. M. Chalk, K. Schroder, Y. Hayashizaki, P. Carn-
inci, D. A. Hume, and S. M. Grimmond. A rescue strategy for multimapping short
sequence tags refines surveys of transcriptional activity by CAGE. Genomics,
91:281–288, Mar 2008.

[22] K. A. Frazer, D. G. Ballinger, D. R. Cox, D. A. Hinds, L. L. Stuve, R. A. Gibbs,
J. W. Belmont, A. Boudreau, P. Hardenbol, S. M. Leal, S. Pasternak, D. A.
Wheeler, T. D. Willis, F. Yu, H. Yang, C. Zeng, Y. Gao, H. Hu, W. Hu, C. Li,
W. Lin, S. Liu, H. Pan, X. Tang, J. Wang, W. Wang, J. Yu, B. Zhang, Q. Zhang,
H. Zhao, H. Zhao, J. Zhou, S. B. Gabriel, R. Barry, B. Blumenstiel, A. Ca-
margo, M. Defelice, M. Faggart, M. Goyette, S. Gupta, J. Moore, H. Nguyen,
R. C. Onofrio, M. Parkin, J. Roy, E. Stahl, E. Winchester, L. Ziaugra, D. Alt-
shuler, Y. Shen, Z. Yao, W. Huang, X. Chu, Y. He, L. Jin, Y. Liu, Y. Shen,
W. Sun, H. Wang, Y. Wang, Y. Wang, X. Xiong, L. Xu, M. M. Waye, S. K. Tsui,
H. Xue, J. T. Wong, L. M. Galver, J. B. Fan, K. Gunderson, S. S. Murray, A. R.
Oliphant, M. S. Chee, A. Montpetit, F. Chagnon, V. Ferretti, M. Leboeuf, J. F.
Olivier, M. S. Phillips, S. Roumy, C. Sallee, A. Verner, T. J. Hudson, P. Y. Kwok,
D. Cai, D. C. Koboldt, R. D. Miller, L. Pawlikowska, P. Taillon-Miller, M. Xiao,
L. C. Tsui, W. Mak, Y. Q. Song, P. K. Tam, Y. Nakamura, T. Kawaguchi, T. Kita-
moto, T. Morizono, A. Nagashima, Y. Ohnishi, A. Sekine, T. Tanaka, T. Tsunoda,
P. Deloukas, C. P. Bird, M. Delgado, E. T. Dermitzakis, R. Gwilliam, S. Hunt,
J. Morrison, D. Powell, B. E. Stranger, P. Whittaker, D. R. Bentley, M. J. Daly,
P. I. de Bakker, J. Barrett, Y. R. Chretien, J. Maller, S. McCarroll, N. Patterson,
I. Pe’er, A. Price, S. Purcell, D. J. Richter, P. Sabeti, R. Saxena, S. F. Schaffner,
P. C. Sham, P. Varilly, D. Altshuler, L. D. Stein, L. Krishnan, A. V. Smith, M. K.
Tello-Ruiz, G. A. Thorisson, A. Chakravarti, P. E. Chen, D. J. Cutler, C. S. Kashuk,
S. Lin, G. R. Abecasis, W. Guan, Y. Li, H. M. Munro, Z. S. Qin, D. J. Thomas,
G. McVean, A. Auton, L. Bottolo, N. Cardin, S. Eyheramendy, C. Freeman, J. Mar-
chini, S. Myers, C. Spencer, M. Stephens, P. Donnelly, L. R. Cardon, G. Clarke,
D. M. Evans, A. P. Morris, B. S. Weir, T. Tsunoda, J. C. Mullikin, S. T. Sherry,
M. Feolo, A. Skol, H. Zhang, C. Zeng, H. Zhao, I. Matsuda, Y. Fukushima, D. R.
Macer, E. Suda, C. N. Rotimi, C. A. Adebamowo, I. Ajayi, T. Aniagwu, P. A. Mar-
shall, C. Nkwodimmah, C. D. Royal, M. F. Leppert, M. Dixon, A. Peiffer, R. Qiu,
A. Kent, K. Kato, N. Niikawa, I. F. Adewole, B. M. Knoppers, M. W. Foster, E. W.
Clayton, J. Watkin, R. A. Gibbs, J. W. Belmont, D. Muzny, L. Nazareth, E. Soder-
gren, G. M. Weinstock, D. A. Wheeler, I. Yakub, S. B. Gabriel, R. C. Onofrio,



168

D. J. Richter, L. Ziaugra, B. W. Birren, M. J. Daly, D. Altshuler, R. K. Wilson,
L. L. Fulton, J. Rogers, J. Burton, N. P. Carter, C. M. Clee, M. Griffiths, M. C.
Jones, K. McLay, R. W. Plumb, M. T. Ross, S. K. Sims, D. L. Willey, Z. Chen,
H. Han, L. Kang, M. Godbout, J. C. Wallenburg, P. L’Archeveque, G. Bellemare,
K. Saeki, H. Wang, D. An, H. Fu, Q. Li, Z. Wang, R. Wang, A. L. Holden, L. D.
Brooks, J. E. McEwen, M. S. Guyer, V. O. Wang, J. L. Peterson, M. Shi, J. Spiegel,
L. M. Sung, L. F. Zacharia, F. S. Collins, K. Kennedy, R. Jamieson, and J. Stew-
art. A second generation human haplotype map of over 3.1 million SNPs. Nature,
449(7164):851–861, Oct 2007.

[23] T. R. Gingeras. Implications of chimaeric non-co-linear transcripts. Nature,
461:206–211, Sep 2009.

[24] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, May 1997.

[25] Y. Hahn, T. K. Bera, K. Gehlhaus, I. R. Kirsch, I. H. Pastan, and B. Lee. Finding fu-
sion genes resulting from chromosome rearrangement by analyzing the expressed
sequence databases. Proc. Natl. Acad. Sci. U.S.A., 101:13257–13261, Sep 2004.

[26] D. Hanahan and R. A. Weinberg. Hallmarks of cancer: the next generation. Cell,
144(5):646–674, Mar 2011.

[27] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13, May 1984.

[28] P. J. Hastings, J. R. Lupski, S. M. Rosenberg, and G. Ira. Mechanisms of change
in gene copy number. Nat. Rev. Genet., 10(8):551–564, Aug 2009.

[29] J. Hicks, A. Krasnitz, B. Lakshmi, N. E. Navin, M. Riggs, E. Leibu, D. Esposito,
J. Alexander, J. Troge, V. Grubor, S. Yoon, M. Wigler, K. Ye, A. L. Borresen-Dale,
B. Naume, E. Schlicting, L. Norton, T. Hagerstrom, L. Skoog, G. Auer, S. Maner,
P. Lundin, and A. Zetterberg. Novel patterns of genome rearrangement and their
association with survival in breast cancer. Genome Res., 16(12):1465–1479, Dec
2006.

[30] A. M. Hillmer, F. Yao, K. Inaki, W. H. Lee, P. N. Ariyaratne, A. S. Teo, X. Y.
Woo, Z. Zhang, H. Zhao, L. Ukil, J. P. Chen, F. Zhu, J. B. So, M. Salto-Tellez,
W. T. Poh, K. F. Zawack, N. Nagarajan, S. Gao, G. Li, V. Kumar, H. P. Lim,
Y. Y. Sia, C. S. Chan, S. T. Leong, S. C. Neo, P. S. Choi, H. Thoreau, P. B. Tan,
A. Shahab, X. Ruan, J. Bergh, P. Hall, V. Cacheux-Rataboul, C. L. Wei, K. G.
Yeoh, W. K. Sung, G. Bourque, E. T. Liu, and Y. Ruan. Comprehensive long-span
paired-end-tag mapping reveals characteristic patterns of structural variations in
epithelial cancer genomes. Genome Res., 21(5):665–675, May 2011.



169

[31] T. Horiuchi and T. Aigaki. Alternative trans-splicing: a novel mode of pre-mRNA
processing. Biol. Cell, 98:135–140, Feb 2006.

[32] Y. Hu, K. Wang, X. He, D. Y. Chiang, J. F. Prins, and J. Liu. A Probabilistic
Framework for Aligning Paired-end RNA-seq Data. Bioinformatics, Jun 2010.

[33] A. J. Iafrate, L. Feuk, M. N. Rivera, M. L. Listewnik, P. K. Donahoe, Y. Qi, S. W.
Scherer, and C. Lee. Detection of large-scale variation in the human genome. Nat.
Genet., 36(9):949–951, Sep 2004.

[34] Wellcome Trust Sanger Institute. SNP Array Based LOH and Copy Num-
ber Analysis SNU-C1 (Chromosome 15). http://www.sanger.ac.uk/cgi-
bin/genetics/CGP/cghviewer/CghViewer.cgi?action=DisplayChromosome
&chr=15&id=6800, 2012. [Online; accessed 6-March-2013].

[35] J. M. Kidd, G. M. Cooper, W. F. Donahue, H. S. Hayden, N. Sampas, T. Graves,
N. Hansen, B. Teague, C. Alkan, F. Antonacci, E. Haugen, T. Zerr, N. A. Yamada,
P. Tsang, T. L. Newman, E. Tuzun, Z. Cheng, H. M. Ebling, N. Tusneem, R. David,
W. Gillett, K. A. Phelps, M. Weaver, D. Saranga, A. Brand, W. Tao, E. Gustafson,
K. McKernan, L. Chen, M. Malig, J. D. Smith, J. M. Korn, S. A. McCarroll, D. A.
Altshuler, D. A. Peiffer, M. Dorschner, J. Stamatoyannopoulos, D. Schwartz, D. A.
Nickerson, J. C. Mullikin, R. K. Wilson, L. Bruhn, M. V. Olson, R. Kaul, D. R.
Smith, and E. E. Eichler. Mapping and sequencing of structural variation from
eight human genomes. Nature, 453(7191):56–64, May 2008.

[36] M. Kinsella and V. Bafna. Combinatorics of the breakage-fusion-bridge mecha-
nism. J. Comput. Biol., 19(6):662–678, Jun 2012.

[37] K. Kitada and T. Yamasaki. The complicated copy number alterations in chro-
mosome 7 of a lung cancer cell line is explained by a model based on repeated
breakage-fusion-bridge cycles. Cancer Genet. Cytogenet., 185:11–19, Aug 2008.

[38] W. P. Kloosterman, V. Guryev, M. van Roosmalen, K. J. Duran, E. de Bruijn,
S. C. Bakker, T. Letteboer, B. van Nesselrooij, R. Hochstenbach, M. Poot, and
E. Cuppen. Chromothripsis as a mechanism driving complex de novo structural
rearrangements in the germline. Hum. Mol. Genet., 20(10):1916–1924, May 2011.

[39] W. P. Kloosterman, M. Hoogstraat, O. Paling, M. Tavakoli-Yaraki, I. Renkens,
J. S. Vermaat, M. J. van Roosmalen, S. van Lieshout, I. J. Nijman, W. Roessingh,
R. van ’t Slot, J. van de Belt, V. Guryev, M. Koudijs, E. Voest, and E. Cuppen.
Chromothripsis is a common mechanism driving genomic rearrangements in pri-
mary and metastatic colorectal cancer. Genome Biol., 12(10):R103, 2011.

[40] M. Krause and D. Hirsh. A trans-spliced leader sequence on actin mRNA in C.
elegans. Cell, 49:753–761, Jun 1987.



170

[41] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome Biol.,
10:R25, 2009.

[42] J. LEJEUNE, R. TURPIN, and M. GAUTIER. [Chromosomic diagnosis of mon-
golism]. Arch. Fr. Pediatr., 16:962–963, 1959.

[43] B. Li, V. Ruotti, R. M. Stewart, J. A. Thomson, and C. N. Dewey. RNA-Seq gene
expression estimation with read mapping uncertainty. Bioinformatics, 26:493–
500, Feb 2010.

[44] H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads and calling
variants using mapping quality scores. Genome Res., 18:1851–1858, Nov 2008.

[45] X. Li, L. Zhao, H. Jiang, and W. Wang. Short homologous sequences are strongly
associated with the generation of chimeric RNAs in eukaryotes. J. Mol. Evol.,
68:56–65, Jan 2009.

[46] G. Lim, J. Karaskova, B. Beheshti, B. Vukovic, J. Bayani, S. Selvarajah, S. K.
Watson, W. L. Lam, M. Zielenska, and J. A. Squire. An integrated mBAND and
submegabase resolution tiling set (SMRT) CGH array analysis of focal amplifica-
tion, microdeletions, and ladder structures consistent with breakage-fusion-bridge
cycle events in osteosarcoma. Genes Chromosomes Cancer, 42(4):392–403, Apr
2005.

[47] F. Magrangeas, H. Avet-Loiseau, N. C. Munshi, and S. Minvielle. Chromothripsis
identifies a rare and aggressive entity among newly diagnosed multiple myeloma
patients. Blood, 118(3):675–678, Jul 2011.

[48] C. A. Maher, C. Kumar-Sinha, X. Cao, S. Kalyana-Sundaram, B. Han, X. Jing,
L. Sam, T. Barrette, N. Palanisamy, and A. M. Chinnaiyan. Transcriptome se-
quencing to detect gene fusions in cancer. Nature, 458:97–101, Mar 2009.

[49] C. A. Maher, N. Palanisamy, J. C. Brenner, X. Cao, S. Kalyana-Sundaram, S. Luo,
I. Khrebtukova, T. R. Barrette, C. Grasso, J. Yu, R. J. Lonigro, G. Schroth,
C. Kumar-Sinha, and A. M. Chinnaiyan. Chimeric transcript discovery by paired-
end transcriptome sequencing. Proc. Natl. Acad. Sci. U.S.A., 106:12353–12358,
Jul 2009.

[50] G. Manacher. A new linear time on-line algorithm for finding the smallest initial
palindrome of a string. J. Assoc. Comput. Mach., 22:346–351, July 1975.

[51] S. A. McCarroll, A. Huett, P. Kuballa, S. D. Chilewski, A. Landry, P. Goyette,
M. C. Zody, J. L. Hall, S. R. Brant, J. H. Cho, R. H. Duerr, M. S. Silverberg,
K. D. Taylor, J. D. Rioux, D. Altshuler, M. J. Daly, and R. J. Xavier. Deletion
polymorphism upstream of IRGM associated with altered IRGM expression and
Crohn’s disease. Nat. Genet., 40(9):1107–1112, Sep 2008.



171

[52] B. McClintock. The Production of Homozygous Deficient Tissues with Mutant
Characteristics by Means of the Aberrant Mitotic Behavior of Ring-Shaped Chro-
mosomes. Genetics, 23:315–376, Jul 1938.

[53] B. McClintock. The Stability of Broken Ends of Chromosomes in Zea Mays.
Genetics, 26:234–282, Mar 1941.

[54] F. Mitelman, B. Johansson, and F. Mertens. Fusion genes and rearranged genes as
a linear function of chromosome aberrations in cancer. Nat. Genet., 36:331–334,
Apr 2004.

[55] J. J. Molenaar, J. Koster, D. A. Zwijnenburg, P. van Sluis, L. J. Valentijn, I. van der
Ploeg, M. Hamdi, J. van Nes, B. A. Westerman, J. van Arkel, M. E. Ebus, F. Han-
eveld, A. Lakeman, L. Schild, P. Molenaar, P. Stroeken, M. M. van Noesel, I. Ora,
E. E. Santo, H. N. Caron, E. M. Westerhout, and R. Versteeg. Sequencing of neu-
roblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature,
483(7391):589–593, Mar 2012.

[56] A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold. Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 5:621–628,
Jul 2008.

[57] P. A. Northcott, D. J. Shih, J. Peacock, L. Garzia, A. S. Morrissy, T. Zichner,
A. M. Stutz, A. Korshunov, J. Reimand, S. E. Schumacher, R. Beroukhim, D. W.
Ellison, C. R. Marshall, A. C. Lionel, S. Mack, A. Dubuc, Y. Yao, V. Ramaswamy,
B. Luu, A. Rolider, F. M. Cavalli, X. Wang, M. Remke, X. Wu, R. Y. Chiu, A. Chu,
E. Chuah, R. D. Corbett, G. R. Hoad, S. D. Jackman, Y. Li, A. Lo, K. L. Mungall,
K. M. Nip, J. Q. Qian, A. G. Raymond, N. T. Thiessen, R. J. Varhol, I. Birol,
R. A. Moore, A. J. Mungall, R. Holt, D. Kawauchi, M. F. Roussel, M. Kool, D. T.
Jones, H. Witt, A. Fernandez-L, A. M. Kenney, R. J. Wechsler-Reya, P. Dirks,
T. Aviv, W. A. Grajkowska, M. Perek-Polnik, C. C. Haberler, O. Delattre, S. S.
Reynaud, F. F. Doz, S. S. Pernet-Fattet, B. K. Cho, S. K. Kim, K. C. Wang,
W. Scheurlen, C. G. Eberhart, M. Fevre-Montange, A. Jouvet, I. F. Pollack, X. Fan,
K. M. Muraszko, G. Y. Gillespie, C. Di Rocco, L. Massimi, E. M. Michiels, N. K.
Kloosterhof, P. J. French, J. M. Kros, J. M. Olson, R. G. Ellenbogen, K. Zitter-
bart, L. Kren, R. C. Thompson, M. K. Cooper, B. Lach, R. E. McLendon, D. D.
Bigner, A. Fontebasso, S. Albrecht, N. Jabado, J. C. Lindsey, S. Bailey, N. Gupta,
W. A. Weiss, L. Bognar, A. Klekner, T. E. Van Meter, T. Kumabe, T. Tominaga,
S. K. Elbabaa, J. R. Leonard, J. B. Rubin, L. M. Liau, E. G. Van Meir, M. Fouladi,
H. Nakamura, G. Cinalli, M. Garami, P. Hauser, A. G. Saad, A. Iolascon, S. Jung,
C. G. Carlotti, R. Vibhakar, Y. S. Ra, S. Robinson, M. Zollo, C. C. Faria, J. A.
Chan, M. L. Levy, P. H. Sorensen, M. Meyerson, S. L. Pomeroy, Y. J. Cho, G. D.
Bader, U. Tabori, C. E. Hawkins, E. Bouffet, S. W. Scherer, J. T. Rutka, D. Malkin,



172

S. C. Clifford, S. J. Jones, J. O. Korbel, S. M. Pfister, M. A. Marra, and M. D. Tay-
lor. Subgroup-specific structural variation across 1,000 medulloblastoma genomes.
Nature, 488(7409):49–56, Aug 2012.

[58] Ankita Patel, Patricia Hixson, Weimin Bi, Caroline Borgan, Marcus Coyle,
Danielle Freppon, David Vo, Jacqueline T. O’Hare, Patricia Luke, Chung-Che
Chang, and Sau Cheung. Is It Time for Arraycgh to Be the First Line Test for
Detection of Chromosome Abnormalities in Hematological Disorders-Example
Multiple Myeloma. BLOOD, 118(21):1091, NOV 18 2011. 53rd Annual Meet-
ing and Exposition of the American-Society-of-Hematology (ASH)/Symposium
on the Basic Science of Hemostasis and Thrombosis, San Diego, CA, DEC 10-13,
2011.

[59] S. Perner, P. L. Wagner, F. Demichelis, R. Mehra, C. J. Lafargue, B. J. Moss,
S. Arbogast, A. Soltermann, W. Weder, T. J. Giordano, D. G. Beer, D. S. Rickman,
A. M. Chinnaiyan, H. Moch, and M. A. Rubin. EML4-ALK fusion lung cancer: a
rare acquired event. Neoplasia, 10:298–302, Mar 2008.

[60] K. D. Pruitt, T. Tatusova, and D. R. Maglott. NCBI reference sequences (RefSeq):
a curated non-redundant sequence database of genomes, transcripts and proteins.
Nucleic Acids Res., 35:D61–65, Jan 2007.

[61] P. Rajan, D. J. Elliott, C. N. Robson, and H. Y. Leung. Alternative splicing and
biological heterogeneity in prostate cancer. Nat Rev Urol, 6:454–460, Aug 2009.

[62] A. Rajkovic, R. E. Davis, J. N. Simonsen, and F. M. Rottman. A spliced leader
is present on a subset of mRNAs from the human parasite Schistosoma mansoni.
Proc. Natl. Acad. Sci. U.S.A., 87:8879–8883, Nov 1990.

[63] T. Rausch, D. T. Jones, M. Zapatka, A. M. Stutz, T. Zichner, J. Weischenfeldt,
N. Jager, M. Remke, D. Shih, P. A. Northcott, E. Pfaff, J. Tica, Q. Wang, L. Mas-
simi, H. Witt, S. Bender, S. Pleier, H. Cin, C. Hawkins, C. Beck, A. von Deim-
ling, V. Hans, B. Brors, R. Eils, W. Scheurlen, J. Blake, V. Benes, A. E. Kulozik,
O. Witt, D. Martin, C. Zhang, R. Porat, D. M. Merino, J. Wasserman, N. Jabado,
A. Fontebasso, L. Bullinger, F. G. Rucker, K. Dohner, H. Dohner, J. Koster, J. J.
Molenaar, R. Versteeg, M. Kool, U. Tabori, D. Malkin, A. Korshunov, M. D. Tay-
lor, P. Lichter, S. M. Pfister, and J. O. Korbel. Genome sequencing of pediatric
medulloblastoma links catastrophic DNA rearrangements with TP53 mutations.
Cell, 148(1-2):59–71, Jan 2012.

[64] R. Redon, S. Ishikawa, K. R. Fitch, L. Feuk, G. H. Perry, T. D. Andrews, H. Fiegler,
M. H. Shapero, A. R. Carson, W. Chen, E. K. Cho, S. Dallaire, J. L. Freeman, J. R.
Gonzalez, M. Gratacos, J. Huang, D. Kalaitzopoulos, D. Komura, J. R. MacDon-
ald, C. R. Marshall, R. Mei, L. Montgomery, K. Nishimura, K. Okamura, F. Shen,



173

M. J. Somerville, J. Tchinda, A. Valsesia, C. Woodwark, F. Yang, J. Zhang, T. Zer-
jal, J. Zhang, L. Armengol, D. F. Conrad, X. Estivill, C. Tyler-Smith, N. P. Carter,
H. Aburatani, C. Lee, K. W. Jones, S. W. Scherer, and M. E. Hurles. Global vari-
ation in copy number in the human genome. Nature, 444(7118):444–454, Nov
2006.

[65] T. Santarius, J. Shipley, D. Brewer, M. R. Stratton, and C. S. Cooper. A census
of amplified and overexpressed human cancer genes. Nat. Rev. Cancer, 10:59–64,
Jan 2010.

[66] J. Sebat, B. Lakshmi, D. Malhotra, J. Troge, C. Lese-Martin, T. Walsh, B. Yamrom,
S. Yoon, A. Krasnitz, J. Kendall, A. Leotta, D. Pai, R. Zhang, Y. H. Lee, J. Hicks,
S. J. Spence, A. T. Lee, K. Puura, T. Lehtimaki, D. Ledbetter, P. K. Gregersen,
J. Bregman, J. S. Sutcliffe, V. Jobanputra, W. Chung, D. Warburton, M. C. King,
D. Skuse, D. H. Geschwind, T. C. Gilliam, K. Ye, and M. Wigler. Strong associa-
tion of de novo copy number mutations with autism. Science, 316(5823):445–449,
Apr 2007.

[67] J. Sebat, B. Lakshmi, J. Troge, J. Alexander, J. Young, P. Lundin, S. Maner,
H. Massa, M. Walker, M. Chi, N. Navin, R. Lucito, J. Healy, J. Hicks,
K. Ye, A. Reiner, T. C. Gilliam, B. Trask, N. Patterson, A. Zetterberg, and
M. Wigler. Large-scale copy number polymorphism in the human genome. Sci-
ence, 305(5683):525–528, Jul 2004.

[68] S. Selvarajah, M. Yoshimoto, O. Ludkovski, P. C. Park, J. Bayani, P. Thorner,
G. Maire, J. A. Squire, and M. Zielenska. Genomic signatures of chromosomal
instability and osteosarcoma progression detected by high resolution array CGH
and interphase FISH. Cytogenet. Genome Res., 122(1):5–15, 2008.

[69] N. Shimizu, K. Shingaki, Y. Kaneko-Sasaguri, T. Hashizume, and T. Kanda. When,
where and how the bridge breaks: anaphase bridge breakage plays a crucial role in
gene amplification and HSR generation. Exp. Cell Res., 302:233–243, Jan 2005.

[70] E. Shtivelman, B. Lifshitz, R. P. Gale, and E. Canaani. Fused transcript of abl and
bcr genes in chronic myelogenous leukaemia. Nature, 315:550–554, 1985.

[71] J. Skarda, N. Amariglio, and G. Rechavi. RNA editing in human cancer: review.
APMIS, 117:551–557, Aug 2009.

[72] P. J. Stephens, C. D. Greenman, B. Fu, F. Yang, G. R. Bignell, L. J. Mudie, E. D.
Pleasance, K. W. Lau, D. Beare, L. A. Stebbings, S. McLaren, M. L. Lin, D. J.
McBride, I. Varela, S. Nik-Zainal, C. Leroy, M. Jia, A. Menzies, A. P. Butler, J. W.
Teague, M. A. Quail, J. Burton, H. Swerdlow, N. P. Carter, L. A. Morsberger,
C. Iacobuzio-Donahue, G. A. Follows, A. R. Green, A. M. Flanagan, M. R. Strat-
ton, P. A. Futreal, and P. J. Campbell. Massive genomic rearrangement acquired



174

in a single catastrophic event during cancer development. Cell, 144(1):27–40, Jan
2011.

[73] R. E. Sutton and J. C. Boothroyd. Evidence for trans splicing in trypanosomes.
Cell, 47:527–535, Nov 1986.

[74] G. W. Tam, R. Redon, N. P. Carter, and S. G. Grant. The role of DNA copy number
variation in schizophrenia. Biol. Psychiatry, 66(11):1005–1012, Dec 2009.

[75] G. Tesler. Efficient algorithms for multichromosomal genome rearrangements.
Journal of Computer and System Sciences, 65(3):587–609, 2002.

[76] S. A. Tomlins, D. R. Rhodes, S. Perner, S. M. Dhanasekaran, R. Mehra, X. W. Sun,
S. Varambally, X. Cao, J. Tchinda, R. Kuefer, C. Lee, J. E. Montie, R. B. Shah,
K. J. Pienta, M. A. Rubin, and A. M. Chinnaiyan. Recurrent fusion of TMPRSS2
and ETS transcription factor genes in prostate cancer. Science, 310:644–648, Oct
2005.

[77] C. Trapnell, L. Pachter, and S. L. Salzberg. TopHat: discovering splice junctions
with RNA-Seq. Bioinformatics, 25:1105–1111, May 2009.

[78] T. Walsh, J. M. McClellan, S. E. McCarthy, A. M. Addington, S. B. Pierce,
G. M. Cooper, A. S. Nord, M. Kusenda, D. Malhotra, A. Bhandari, S. M. Stray,
C. F. Rippey, P. Roccanova, V. Makarov, B. Lakshmi, R. L. Findling, L. Si-
kich, T. Stromberg, B. Merriman, N. Gogtay, P. Butler, K. Eckstrand, L. Noory,
P. Gochman, R. Long, Z. Chen, S. Davis, C. Baker, E. E. Eichler, P. S. Meltzer,
S. F. Nelson, A. B. Singleton, M. K. Lee, J. L. Rapoport, M. C. King, and J. Sebat.
Rare structural variants disrupt multiple genes in neurodevelopmental pathways in
schizophrenia. Science, 320(5875):539–543, Apr 2008.

[79] Z. Wang, M. Gerstein, and M. Snyder. RNA-Seq: a revolutionary tool for tran-
scriptomics. Nat. Rev. Genet., 10:57–63, Jan 2009.

[80] Wellcome Trust Sanger Institute. Cancer Gene Census. http://cancer.
sanger.ac.uk/cancergenome/projects/census/, March 2013.

[81] J. Yu, J. Yu, R. S. Mani, Q. Cao, C. J. Brenner, X. Cao, X. Wang, L. Wu, J. Li,
M. Hu, Y. Gong, H. Cheng, B. Laxman, A. Vellaichamy, S. Shankar, Y. Li, S. M.
Dhanasekaran, R. Morey, T. Barrette, R. J. Lonigro, S. A. Tomlins, S. Varambally,
Z. S. Qin, and A. M. Chinnaiyan. An integrated network of androgen receptor,
polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Can-
cer Cell, 17:443–454, May 2010.

[82] J. Yu, J. Yu, R. S. Mani, Q. Cao, C. J. Brenner, X. Cao, X. Wang, L. Wu, J. Li,
M. Hu, Y. Gong, H. Cheng, B. Laxman, A. Vellaichamy, S. Shankar, Y. Li, S. M.
Dhanasekaran, R. Morey, T. Barrette, R. J. Lonigro, S. A. Tomlins, S. Varambally,

http://cancer.sanger.ac.uk/cancergenome/projects/census/
http://cancer.sanger.ac.uk/cancergenome/projects/census/


175

Z. S. Qin, and A. M. Chinnaiyan. An integrated network of androgen receptor,
polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Can-
cer Cell, 17:443–454, May 2010.

[83] I. G. Yulug, A. Yulug, and E. M. Fisher. The frequency and position of Alu re-
peats in cDNAs, as determined by database searching. Genomics, 27:544–548, Jun
1995.


	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	The Scale of Genetic Variation
	Detecting Structural Variations
	Algorithmic Challenges in Structural Variation Detection

	Sensitive gene fusion detection using ambiguously mapping RNA-Seq read pairs
	Introduction
	Methods
	Discovery of Putative Fusions
	Mapping to Augmented Reference
	Model of Paired-End RNA-Seq Data
	Expectation Maximization
	Calculating Mappings to Fusion Junctions

	Results
	Fusion Transcripts Generate Ambiguous Reads
	Resolving Ambiguous Simulated Fusions
	Application to a Prostate Tissue Transcriptome Data
	Discovery of Novel Ambiguous Fusions

	Discussion
	Acknowledgements

	Combinatorics of the Breakage-Fusion-Bridge Mechanism
	Introduction
	Formalizing the BFB Schedule
	Algorithms for BFB
	Results
	Discussion
	Acknowledgements

	An algorithmic approach for breakage-fusion-bridge detection in tumor genomes
	Introduction
	High-throughput evidence for BFB
	Breakpoints
	Copy counts
	Formalizing BFB
	Handling experimental imprecision
	The BFB Count Vector Problem

	Outline of the BFB Count Vector Algorithms
	Properties of BFB palindromes
	Required conditions for folding

	Running time
	Detecting Signatures of BFB
	Results
	Discussion
	Acknowledgements

	Does Chromothripsis Have a Distinguishing Signature?
	Introduction
	Methods
	Finding Chromosome Arrangements Consistent with Observed Breakpoints

	Results
	Simulating Progressive Rearrangements
	Chromothripsis Footprint Criteria Depend on Subtle Simulation Implementation Details
	Simulation Method Does Not Distinguish Between Progressive Rearrangement and Chromothripsis
	Plausible Progressive Rearrangement Schemes Exist for Chromosomes Bearing Footprint of Chromothripsis

	Discussion
	Acknowledgements

	Supplemental: Sensitive gene fusion detection using ambiguously mapping RNA-Seq read pairs
	Ambiguous fusion sequences.
	HOMEZ-MYH6
	KIAA1267-ARL17A
	CPEB1-RPS17
	PPIP5K1-CATSPER2


	Supplemental: Combinatorics of the Breakage-Fusion-Bridge Mechanism
	Proofs
	Applying BFB Rules
	Analysis of BFB_Tree

	Supplemental:An algorithmic approach for breakage-fusion-bridge detection in tumor genomes
	Properties of BFB Strings
	Algorithm SEARCH-BFB
	Additional Notation and Collection Arithmetics
	Folding Increases Signature
	The FOLD Procedure
	Correctness of Algorithm SEARCH-BFB
	Time Complexity of Algorithm SEARCH-BFB

	The Decision Variant
	The Distance Variant
	Chromosome simulation details
	Cancer cell line results
	ROC curves for varying simulation parameters
	Pancreatic cancer data analysis pipeline
	Possible arrangement of segments on BFB-rearranged chromosome 12

	Bibliography



