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INDEX BOUNDS FOR CHARACTER SUMS WITH
POLYNOMIALS OVER FINITE FIELDS

DAQING WAN AND QIANG WANG

Abstract. We provide an index bound for character sums of polynomials over
finite fields. This improves the Weil bound for high degree polynomials with small
indices, as well as polynomials with large indices that are generated by cyclotomic
mappings of small indices. As an application, we also give some general bounds
for numbers of solutions of some Artin-Schreier equations and mininum weights
of some cyclic codes.

1. Introduction

Let g(x) be a polynomial of degree n > 0 and ψ : Fq → C∗ be a nontrivial additive
character. If g(x) is not of the form c + fp − f for some f(x) ∈ Fq[x] and constant
c ∈ Fq, then

(1)

∣∣∣∣∣∣
∑
x∈Fq

ψ(g(x))

∣∣∣∣∣∣ ≤ (n− 1)
√
q.

This is the case if the degree n is not divisible by p. The upper bound in Equation
(1) is well known as the Weil bound. In 1996, Stepanov [8] stated the following
problem for additive characters.

Problem 1. Determine the class of polynomials g(x) ∈ Fq[x] of degree n, 1 ≤ n ≤
q− 1 for which the upper bound (1) can be sharpened and the absolute value of the
Weil sum can be estimated non-trivially for n ≥ √q + 1.

It is well known that every polynomial g over Fq such that g(0) = b has the
form axrf(xs) + b with some positive integers r, s such that s | (q − 1). There
are different ways to choose r, s in the form axrf(xs) + b. However, in [1], the
concept of the index of a polynomial over a finite field was first introduced and any
non-constant polynomial g ∈ Fq[x] of degree n ≤ q − 1 can be written uniquely as
g(x) = a(xrf(x(q−1)/`)) + b with index ` defined below. Namely, write

g(x) = a(xn + an−i1x
n−i1 + · · ·+ an−ikx

n−ik) + b,
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2 DAQING WAN AND QIANG WANG

where a, an−ij 6= 0, j = 1, . . . , k. Let r be the lowest degree of x in g(x)− b. Then

g(x) = a
(
xrf(x(q−1)/`)

)
+ b, where f(x) = xe0 + an−i1x

e1 + · · ·+ an−ik−1
xek−1 + ar,

` =
q − 1

gcd(n− r, n− r − i1, . . . , n− r − ik−1, q − 1)
:=

q − 1

s
,

and gcd(e0, e1, . . . , ek−1, `) = 1. The integer ` = q−1
s

is called the index of g(x).
In particular, when k = 0, we note that any polynomial axr + b has the index
` = 1. From the above definition of index `, one can see that the greatest common
divisor condition makes ` minimal among those possible choices. The index of
a polynomial is closely related to the concept of the least index of a cyclotomic
mapping polynomial [3, 6, 9]. Let γ is a fixed primitive element of Fq. Let ` | (q−1)
and the set of all nonzero `-th powers be C0. Then C0 is a subgroup of F∗q of index
`. The elements of the factor group F∗q/C0 are the cyclotomic cosets of index `

Ci := γiC0, i = 0, 1, · · · , `− 1.

For any a0, a1, · · · , a`−1 ∈ Fq and a positive integer r, the r-th order cyclotomic
mapping f ra0,a1,··· ,a`−1

of index ` from Fq to itself (see Niederreiter and Winterhof in

[6] for r = 1 or Wang [9]) is defined by

(2) f ra0,a1,...,a`−1
(x) =

{
0, if x = 0;
aix

r, if x ∈ Ci, 0 ≤ i ≤ `− 1.

It is shown that r-th order cyclotomic mappings of index ` produce the polyno-
mials of the form xrf(xs) where s = q−1

`
. Indeed, the polynomial presentation is

given by

g(x) =
1

`

`−1∑
j=0

(
`−1∑
i=0

aiζ
−ji

)
xjs+r,

where ζ = γs is a fixed primitive `-th root of unity. On the other hand, as we
mentioned earlier, each polynomial f(x) such that f(0) = 0 with index ` can be
written as xrf(x(q−1)/`), which is an r-th order cyclotomic mapping with the least
index ` such that ai = f(ζ i) for i = 0, . . . , `−1. Obviously, the index of a polynomial
can be very small for a polynomial with large degree.

The concept of index of polynomials over finite fields appears quite useful. Re-
cently index approach was used to study permutation polynomials [10], as well as
the upper bound of value sets of polynomials over finite fields when they are not
permutation polynomials [5]. In this paper we first provide an index bound for
character sums of arbitrary polynomials.

Theorem 1.1. Let g(x) = xrf(x(q−1)/`) + b be any polynomial with index `. Let
ζ be a primitive `-th root of unity and n0 = #{0 ≤ i ≤ ` − 1 | f(ζ i) = 0}. Let
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ψ : Fq → C∗ be a nontrivial additive character. Then

(3)

∣∣∣∣∣∣
∑
x∈Fq

ψ(g(x))− q

`
n0

∣∣∣∣∣∣ ≤ (`− n0) gcd(r,
q − 1

`
)
√
q.

This implies that for many polynomials of large degree with small indices (for
which the Weil bound becomes trivial), we have nontrivial bound for the character
sum in terms of indices.

Moreover, we note that many classes of polynomials with large indices ` (e.g.,
` = q − 1) can be defined through cyclotomic cosets of smaller index d that is also
a divisor of q − 1. Indeed, in [10], we studied a general class of polynomials of the
form

(4) g(x) =
1

d

d−1∑
i=0

d−1∑
j=0

ζ−jixj(q−1)/dfi(x
(q−1)/d)Ri(x),

where fi(x) and Ri(x) are arbitrary polynomials for each 0 ≤ i ≤ d − 1 and ζ is a
primitive d-th root of unity. Here we abuse the notation and let C0 be a subgroup
of F∗q with index d and Ci = γiC0, i = 0, . . . , d− 1 be all cyclotomic cosets of index
d. Equivalently, g is defined by

(5) g(x) =

{
0, if x = 0;
aiRi(x), if x ∈ Ci, 0 ≤ i ≤ d− 1,

where ai = fi(ζ
i) for 0 ≤ i ≤ d− 1 and ζ is a primitive d-th root of unity. Without

loss of generality, we assume that each Ri(x) is a nonzero polynomial and fi(x) can
be a zero polynomial.

More generally, we obtain

Theorem 1.2. Let d | (q − 1) and g(x) ∈ Fq[x] be a polynomial defined by

g(x) =

{
0, if x = 0;
aiRi(x), if x ∈ Ci, 0 ≤ i ≤ d− 1,

where ai ∈ Fq, 0 6= Ri(x) ∈ Fq[x], Ri(0) = 0, and Ci is the i-th cyclotomic coset of
index d for 0 ≤ i ≤ d − 1. Let L = {0 ≤ i ≤ d − 1 | ai 6= 0} and n0 = d − |L|. If
the degree ri of each nonzero polynomial Ri(x) satisfies that gcd(ri, p) = 1 for each
i ∈ L and r = max{ri | i ∈ L}, then we have

(6)

∣∣∣∣∣∣
∑
x∈Fq

ψ(g(x))− q

d
n0

∣∣∣∣∣∣ ≤ (d− n0)r
√
q.

Moreover, if Ri(x) = xri for 0 ≤ i ≤ d− 1, then we have
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(7)

∣∣∣∣∣∣
∑
x∈Fq

ψ(g(x))− q

d
n0

∣∣∣∣∣∣ ≤ (d− n0) max
i∈L
{gcd(ri,

q − 1

d
)}√q.

We note that the conditions Ri(0) = 0 for 0 ≤ i ≤ d − 1 in the above theorem
are only used to normalize the polynomial in the proof. Moreover, a slightly looser

upper bound (d− n0)r
√
q instead of (d−n0)(dr−1)

d

√
q is presented in the result for the

sake of simplicity. In fact, without the restrictions on the values of Ri(x) at 0, we
still have the same bound as follows:

(8)

∣∣∣∣∣∣
∑
x∈F∗

q

ψ(g(x))− q − 1

d
n0

∣∣∣∣∣∣ ≤ (d− n0)r
√
q,

where the sum runs over all non-zero elements in Fq. Therefore we obtain nontrivial
bounds for polynomials defined by (5) if either each Ri(x) = xri is a suitable mono-
mial or each Ri(x) is a low degree polynomial. In Section 2, we prove our main
results. As a consequence, index bounds of the number of solutions of a certain
Artin-Schreier equation and minimum weights of some cyclic codes are derived in
Section 3.

2. Proof of theorems and some consequences

We note that Theorem 1.1 is a corollary of the second part of Theorem 1.2 when
d = ` and all ri’s are the same. Therefore it is enough to prove Theorem 1.2. Because
of the equivalence of equations (4) and (5), we prove the following equivalent result.

Theorem 2.1. Let g(x) = 1
d

∑d−1
i=0

∑d−1
j=0 ζ

−jixjsfi(x
(q−1)/d)Ri(x) for some d | (q−1)

and s = q−1
d

such that Ri(0) = 0 for 1 ≤ i ≤ d. Let ζ be a primitive d-th root of
unity and n0 = d − |L| where L = {0 ≤ i ≤ d − 1 | fi(ζ i) 6= 0}. Let ψ : Fq → C∗
be a nontrivial additive character. If the degree ri of each nonzero polynomial Ri(x)
satisfies that gcd(ri, p) = 1 for each i ∈ L and r = max{ri | i ∈ L}, then

(9)

∣∣∣∣∣∣
∑
x∈Fq

ψ(g(x))− q

d
n0

∣∣∣∣∣∣ ≤ (d− n0)r
√
q.

Moreover, if Ri(x) = xri for 0 ≤ i ≤ d− 1, then we have

(10)

∣∣∣∣∣∣
∑
x∈Fq

ψ(g(x))− q

d
n0

∣∣∣∣∣∣ ≤ (d− n0) max
i∈L
{gcd(ri,

q − 1

d
)}√q.
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Proof. We recall γ is a fixed primitive element of Fq and ζ = γ(q−1)/d be a primitive d-
th root of unity. Because d | (q−1), we must have gcd(d, p) = 1. For x ∈ Ci = γiC0,
write x = γiyd for some y ∈ F∗q and then g(x) = fi(ζ

i)Ri(γ
iyd). Let ai = fi(ζ

i). We
have ∣∣∣∣∣∣

∑
x∈Fq

ψ(g(x))− q

d
n0

∣∣∣∣∣∣ =

∣∣∣∣∣∣1d
d−1∑
i=0

1 +
∑
y∈F∗

q

ψ(fi(ζ
i)Ri(γ

iyd))

− q

d
n0

∣∣∣∣∣∣
≤

∣∣∣∣∣∣1d
∑
i∈L

1 +
∑
y∈F∗

q

ψ(fi(ζ
i)Ri(γ

iyd))

∣∣∣∣∣∣
+

∣∣∣∣∣∣1d
∑
i 6∈L

1− q +
∑
y∈F∗

q

ψ(fi(ζ
i)Ri(γ

iyd))

∣∣∣∣∣∣
=

1

d

∑
i∈L

∣∣∣∣∣∣
∑
y∈Fq

ψ(aiRi(γ
iyd))

∣∣∣∣∣∣ .
If all the degrees of polynomials Ri(x) are less than or equal to r, then the Weil

bound implies Equation (9). Indeed, because gcd(dri, p) = 1, we must have

1

d

∑
i∈L

∣∣∣∣∣∣
∑
y∈Fq

ψ(aiRi(γ
iyd))

∣∣∣∣∣∣ ≤ d− n0

d
(dr − 1)

√
q

≤ (d− n0)r
√
q.

Moreover, if Ri(x) = xri for 0 ≤ i ≤ d− 1, then g(x) = fi(ζ
i)γiriydri . Moreover, if

we replace y by yk such that gcd(dri, q − 1) = kdri + b(q − 1) and gcd(k, q − 1) = 1

in the sum
∣∣∣∑y∈Fq

ψ(ydri)
∣∣∣, we can reduce the degree of the monomial ydri in the

sum to gcd(dri, q − 1). Therefore, we obtain

1

d

∑
i∈L

∣∣∣∣∣∣
∑
y∈Fq

ψ(aiRi(γ
iyd))

∣∣∣∣∣∣
≤ 1

d

∑
i∈L

(gcd(dri, q − 1)− 1)
√
q

≤ d− n0

d
max
i∈L
{gcd(dri, q − 1)− 1}√q

≤ (d− n0) max
i∈L
{gcd(ri,

q − 1

d
)}√q.
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�

As a result, for any polynomial with index ` and vanishing order r at 0 such that
gcd(r, p) = 1, if both ` and gcd(r, q−1

`
) are small, we obtain a nontrivial bound for its

character sum. This provides a partial answer to Problem 1 because many of these
polynomials have large degrees which give the trivial Weil bound. For example, let
g(x) = x2(q−1)/3+1 + x(q−1)/3+1 + x over Fq with characteristic p > 3. Then the Weil
bound gives the trivial result. However, we note that g(x) has index ` = 3, n0 = 2,

and r = 1. By Theorem 1.1, we have
∣∣∣∑x∈Fq

ψ(g(x))− 2q
3

∣∣∣ ≤ √q.
Corollary 2.2. Let g(x) = xn + axr ∈ Fq[x] with a ∈ F∗q and q − 1 ≥ n > r ≥ 1.

Let ` = q−1
gcd (n−r,q−1) , t = gcd (n, r, q − 1), and u = gcd(n− r, `). Let ψ : Fq → C∗ be

a nontrivial additive character. If xn−r + a has a solution in the subset of all `-th
roots of unity of Fq, then

(11)

∣∣∣∣∣∣
∑
x∈Fq

ψ(xn + axr)− qu

`

∣∣∣∣∣∣ ≤ (`− u)t
√
q,

otherwise,

(12)

∣∣∣∣∣∣
∑
x∈Fq

ψ(xn + axr)

∣∣∣∣∣∣ ≤ `t
√
q.

Proof. First we note that gcd(r, q−1
`

) = gcd(r, gcd (n− r, q − 1)) = gcd (n, r, q − 1) =
t. Let ζ be a primitive `-th root of unity and n0 = #{0 ≤ i ≤ `−1 | (ζ i)n−r+a = 0}.
By Theorem 1.1 we have

(13)

∣∣∣∣∣∣
∑
x∈Fq

ψ(g(x))− q

`
n0

∣∣∣∣∣∣ ≤ (`− n0)t
√
q.

Suppose −a = γk for a fixed primitive element γ. If ζ i(n−r) = γk, then we have
i(n − r)s ≡ k (mod q − 1) where s = q−1

`
. This linear congruence has a solution

only if s | k. In this case, it reduces to i(n−r) ≡ k/s (mod `) and thus i(n−r) ≡ k/s
(mod `) has exactly u = gcd(n− r, `) solutions for i. Therefore, n0 = u if us | k and
n0 = 0 otherwise. Hence we obtain either

(14)

∣∣∣∣∣∣
∑
x∈Fq

ψ(xn + axr)− qu

`

∣∣∣∣∣∣ ≤ (`− u)t
√
q,

or

(15)

∣∣∣∣∣∣
∑
x∈Fq

ψ(xn + axr)

∣∣∣∣∣∣ ≤ `t
√
q.
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�

We remark that xn−r + a has a solution in the subset of all `-th roots of unity

of Fq if and only if (q−1)u
`
| k where k = logγ(−a) is the discrete logarithm of

−a. Otherwise, we have the index bound `t
√
q for binomials xn + axr. Because

t = gcd(n, r, q− 1) can easily achieve 1, our bound for many binomials is essentially
`
√
q. We note that if ` <

√
q − 1, then ` < q−1

`
≤ n− 1 and thus our bound `

√
q is

better than the Weil bound (n− 1)
√
q.

3. Some applications

In this section, we remark some applications of our index bound in counting the
numbers of solutions of some algebraic curves and the minimum weights of some
cyclic codes. Let g ∈ Fq[x] be a polynomial and let Ng,qm be the number of solutions
(x, y) ∈ F2

qm of an Artin-Schreier equation yq − y = g(x). Then

(16) Ng,qm =
∑
ψm

∑
x∈Fqm

ψm(g(x)),

where the outer sum runs over all additive character ψ of Fq and ψm(x) = ψ(Tr(x)),
and Tr denotes the trace from Fqm to Fq.

It is well known that if g has degree n with gcd(n, q) = 1, then the Weil bound
gives

(17) |Ng,qm − qm| ≤ (n− 1)(q − 1)qm/2.

Improving the Weil bound for the Artin-Schreier curves has received a lot of recent
attentions because of their applications in coding theory and computer sciences, see
[2] [4] [7] for more details.

As a consequence of our earlier results with the assumption that g has an in-
dex ` and vanishing order r at 0 such that gcd(r, p) = 1, we obtain the following
improvement in a different direction.

Corollary 3.1. Let g ∈ Fqm [x] be a polynomial with index ` and vanishing order r
at 0 such that gcd(r, p) = 1. Let n0 be defined as in Theorem 1.1 and Ng,qm be the
number of solutions (x, y) ∈ F2

qm of an Artin-Schreier equation yq − y = g(x). Then

(18)

∣∣∣∣Ng,qm − qm −
(q − 1)qm

`
n0

∣∣∣∣ ≤ (q − 1)(`− n0) gcd(r,
qm − 1

`
)qm/2.

In particular, we have the following corollary.

Corollary 3.2. Let g(x) = xn + axr ∈ Fqm [x] such that gcd(r, p) = 1. Let ` =
qm−1

gcd(n−r,qm−1) and t = gcd(n, r, qm − 1). Then the number of solutions Ng,qm of the

curve yq − y = xn + axr satisfies

(19) |Ng,qm − qm| ≤ (q − 1)`tqm/2,
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except the case when xn−r + a has a root in the set of `-th roots of unity in Fqm, in
which case, we have

(20)

∣∣∣∣Ng,qm − qm −
(q − 1)qm gcd(n− r, `)

`

∣∣∣∣ ≤ (q − 1)(`− 1)tqm/2,

We note that xn−r + a has a root in the set of `-th roots of unity in Fqm if and

only if (qm−1) gcd(n−r,`)
`

| k where k = logγ(−a) is the discrete logarithm of −a.
Finally we comment on some applications on cyclic codes. Let C be a cyclic

code of length N over Fq with gcd(N, q) = 1. Let Fqm be the splitting field of the
polynomial xN − 1 over Fq and Tr be the trace function from Fqm to Fq. Let β be
a primitive N -th root of unity. Fix a subset J of the set {0, 1, . . . , N − 1} and let
h(x) =

∏
j∈J mβj(x) be the generator polynomial of C⊥, the orthogonal code of C,

where mγ(x) is the minimal polynomial of γ in Fqm . Then C consists of the words

ca(x) =
N−1∑
i=0

Tr(ga(β
i))xi,

where ga(x) =
∑

j∈J ajx
j and a = (aj)j∈J ∈ (Fqm)u with u = |J |. Here J is called

β-check set. The weight w(a) of ca(x) is given by N − z(a), with z(a) = #{i | 0 ≤
i ≤ N − 1, T r(ga(β

i)) = 0}. Let N1 be the number of solutions x ∈ Fqm of the
equation Tr(g(x)) = 0 and let N2 be the number of solutions (x, y) ∈ F2

qm of the
equation yq − y = g(x), where g(x) ∈ Fqm [x]. It is clear that N2 = qN1. Using
the classical Weil-Serre bound, Wolfmann [11] provided some general bounds for the
mininum weights of some cyclic codes. Here we can similarly give an index bound
for the minimum weights of some of these cyclic codes.

Let k be the integer such that Nk = qm − 1. The set of all N -th roots of unity
over Fq is also the set of k-powers of F∗qm . Therefore z(a) is the number of xk in F∗qm
such that Tr(ga(x

k)) = 0. Consider Ek = {x ∈ F∗qm | Tr(ga(xk)) = 0}. Obviously
Ek is the union of z(a) distinct classes modulo Gk, where Gk is the subgroup of
F∗qm of order k. Hence |Ek| = kz(a) = k(N − w(a)) = qm − 1 − kw(a). Let

N3 be the number of solutions x ∈ Fqm of the equation Tr(ga(x
k)) = 0. Then

N3 = |Ek| = qm − 1 − kw(a) if Tr(ga(0)) 6= 0 and N3 = |Ek| + 1 = qm − kw(a) if
Tr(ga(0)) = 0. Combining the above discussions with Equation (18), we obtain

Corollary 3.3. Let Fqm be the splitting field of the polynomial xN − 1 over Fq with
Nk = qm − 1 and β a primitive N-th root of unity over Fq. Let C be a cyclic code
of length N over Fq with J as β-check set. Let ζ be a primitive `-th root of unity. If
each nonzero member of J is prime to q and ga(x) =

∑
j∈J ajx

j = xrfa(x
(q−1)/`) + b

has index ` and vanishing order r at 0. Let n0 = #{0 ≤ i ≤ `− 1 | fa(ζ i) = 0}.
(a) If 0 ∈ J , then the weight w(a) of ca(x) satisfies∣∣∣∣w(a)− qm − qm−1

k
+

(q − 1)qm−1n0

k`

∣∣∣∣ ≤ (q − 1)(`− n0) gcd(r, q
m−1
`

)

kq
qm/2.
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(b) If 0 6∈ J then the weight w(a) of ca(x) satisfies∣∣∣∣w(a)− qm − qm−1 − 1

k
+

(q − 1)qm−1n0

k`

∣∣∣∣ ≤ (q − 1)(`− n0) gcd(r, q
m−1
`

)

kq
qm/2.

Therefore, if J = {r, r+ q−1
`
, . . . , r+ (`−1)(q−1)

`
} such that r > 0 and each member

of J is relatively prime to q, we can estimate an lower bound the minimum weight
of the corresponding cyclic code. Because 1 ≤ n0 ≤ `− 1 for all nonzero codewords
ga(x), we therefore obtain the weight of ca(x) is at least

w(a) ≥ qm − qm−1 − 1

k
− (q − 1)qm−1n0

k`
−

(q − 1)(`− n0) gcd(r, q
m−1
`

)

kq
qm/2

≥ qm − qm−1 − 1

k
− (q − 1)qm−1(`− 1)

k`
−

(q − 1)(`− 1) gcd(r, q
m−1
`

)

kq
qm/2

≥ (q − 1)qm−1

k`
−

(q − 1)(`− 1) gcd(r, q
m−1
`

)

kq
qm/2 − 1

k
.

Therefore the minimum weights of these cyclic codes are quite large when m is large.
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