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Federated learning enables big data for rare
cancer boundary detection

A list of authors and their affiliations appears at the end of the paper

Althoughmachine learning (ML) has shown promise across disciplines, out-of-
sample generalizability is concerning. This is currently addressed by sharing
multi-site data, but such centralization is challenging/infeasible to scale due to
various limitations. Federated ML (FL) provides an alternative paradigm for
accurate andgeneralizableML, byonly sharingnumericalmodel updates. Here
we present the largest FL study to-date, involving data from 71 sites across 6
continents, to generate an automatic tumor boundary detector for the rare
disease of glioblastoma, reporting the largest such dataset in the literature
(n = 6, 314). We demonstrate a 33% delineation improvement for the surgically
targetable tumor, and 23% for the complete tumor extent, over a publicly
trained model. We anticipate our study to: 1) enable more healthcare studies
informed by large diverse data, ensuring meaningful results for rare diseases
and underrepresented populations, 2) facilitate further analyses for glio-
blastoma by releasing our consensus model, and 3) demonstrate the FL
effectiveness at such scale and task-complexity as a paradigm shift for multi-
site collaborations, alleviating the need for data-sharing.

Recent technological advancements in healthcare, coupled with
patients’ culture shifting from reactive to proactive, have resulted in a
radical growth of primary observations generated by health systems.
This contributes to the burnout of clinical experts, as such observa-
tions require thorough assessment. To alleviate this situation, there
have been numerous efforts for the development, evaluation, and
eventual clinical translation of machine learning (ML) methods to
identify relevant relationships among these observations, thereby
reducing the burden on clinical experts. Advances in ML, and parti-
cularly deep learning (DL), have shown promise in addressing these
complex healthcare problems. However, there are concerns about
their generalizability on data from sources that did not participate in
model training, i.e., “out-of-sample” data1,2. Literature indicates that
training robust and accurate models requires large amounts of data3–5,
the diversity of which affectsmodel generalizability to “out-of-sample”
cases6. To address these concerns, models need to be trained on data
originating from numerous sites representing diverse population
samples. The current paradigm for such multi-site collaborations is
“centralized learning” (CL), in which data from different sites are
shared to a centralized location following inter-site agreements6–9.

However, such data centralization is difficult to scale (and might not
even be feasible), especially at a global scale, due to concerns10,11

relating to privacy, data ownership, intellectual property, technical
challenges (e.g., network and storage limitations), as well as com-
pliance with varying regulatory policies (e.g., Health Insurance Port-
ability and Accountability Act (HIPAA) of the United States12 and the
General Data Protection Regulation (GDPR) of the European Union13).
In contrast to this centralized paradigm, “federated learning” (FL)
describes a paradigmwhere models are trained by only sharingmodel
parameter updates from decentralized data (i.e., each site retains its
data locally)10,11,14–16, without sacrificing performance when compared
to CL-trained models11,15,17–21. Thus, FL can offer an alternative to CL,
potentially creating a paradigm shift that alleviates the need for data
sharing, and hence increase access to geographically distinct colla-
borators, thereby increasing the size and diversity of data used to train
ML models.

FL has tremendous potential in healthcare22,23, particularly
towards addressing health disparities, under-served populations, and
“rare” diseases24, by enabling ML models to gain knowledge from
ample and diverse data that would otherwise not be available. With
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that in mind, here we focus on the “rare” disease of glioblastoma, and
particularly on the detection of its extent using multi-parametric
magnetic resonance imaging (mpMRI) scans25. While glioblastoma is
the most common malignant primary brain tumor26–28, it is still clas-
sified as a “rare” disease, as its incidence rate (i.e., 3/100,000people) is
substantially lower than the rare disease definition rate (i.e., <10/
100,000 people)24. This means that single sites cannot collect large
and diverse datasets to train robust and generalizable ML models,
necessitating collaboration between geographically distinct sites.
Despite extensive efforts to improve the prognosis of glioblastoma
patientswith intensemultimodal therapy, theirmedianoverall survival
is only 14.6 months after standard-of-care treatment, and 4 months
without treatment29. Although the subtyping of glioblastoma has been
improved30 and the standard-of-care treatment options have expan-
ded during the last 20 years, there have been no substantial
improvements in overall survival31. This reflects the major obstacle in
treating these tumorswhich is their intrinsic heterogeneity26,28, and the
need for analyses of larger and more diverse data toward a better
understanding of the disease. In terms of radiologic appearance,
glioblastomas comprise of three main sub-compartments, defined as
(i) the “enhancing tumor” (ET), representing the vascular blood-brain
barrier breakdown within the tumor, (ii) the “tumor core” (TC), which
includes the ET and the necrotic (NCR) part, and represents the sur-
gically relevant part of the tumor, and (iii) the “whole tumor” (WT),
which is defined by the union of the TC and the peritumoral edema-
tous/infiltrated tissue (ED) and represents the complete tumor extent
relevant to radiotherapy (Fig. 1b). Detecting these sub-compartment
boundaries, therefore, defines a multi-parametric multi-class learning
problem and is a critical first step towards further quantifying and
assessing this heterogeneous rare disease and ultimately influencing
clinical decision-making.

Co-authors in this study have previously introduced FL in
healthcare in a simulated setting15 and further conducted a thorough
quantitative performance evaluation of different FL workflows11 (refer
to supplementary figures for illustration) for the same use-case as the
present study, i.e., detecting the boundaries of glioblastoma sub-
compartments. Findings from these studies supported the superiority
of the FL workflow used in the present study (i.e., based on an aggre-
gation server10,14), which had almost identical performance to CL, for
this use-case. Another study32 has explored the first real-world fed-
eration for a breast cancer classification task using 5 sites, and
another16 used electronic medical records along with x-ray images
from 20 sites to train a classifier to output a label corresponding to
future oxygen requirement for COVID-19 patients.

This studydescribes the largest to-date global FL effort to develop
an accurate and generalizable ML model for detecting glioblastoma
sub-compartment boundaries, based on data from 6314 glioblastoma
patients from 71 geographically distinct sites, across six continents
(Fig. 1a). Notably, this describes the largest andmost diverse dataset of
glioblastoma patients ever considered in the literature. It was the use
of FL that successfully enabled our MLmodel to gain knowledge from
suchanunprecedenteddataset. The extendedglobal footprint and the
task complexity are what sets this study apart from current literature,
since it dealt with a multi-parametric multi-class problem with refer-
ence standards that require expert clinicians following an involved
manual annotation protocol, rather than simply recording a catego-
rical entry frommedical records16,32. Moreover, varying characteristics
of the mpMRI data due to scanner hardware and acquisition protocol
differences33,34 were handled at each collaborating site via established
harmonized preprocessing pipelines35–39.

The scientific contributions of thismanuscript canbe summarized
by (i) the insights garnered during this work that can pave the way for
more successful FL studies of increased scale and task complexity, (ii)
making a potential impact for the treatment of the rare disease of
glioblastoma by publicly releasing clinically deployable trained

consensus models, and most importantly, iii) demonstrating the
effectiveness of FL at such scale and task complexity as a paradigm
shift redefiningmulti-site collaborations, while alleviating the need for
data sharing.

Results
The complete federation followed a staged approach, starting from a
“public initial model” (trained on data of 231 cases from 16 sites), fol-
lowed by a “preliminary consensus model” (involving data of 2471
cases from 35 sites), to conclude on the “final consensus model”
(developed on data of 6314 cases from 71 sites). To quantitatively
evaluate the performance of the trainedmodels, 20% of the total cases
contributed by each participating site were excluded from the model
trainingprocess andused as “local validationdata”. To further evaluate
the generalizability of the models in unseen data, 6 sites were not
involved in any of the training stages to represent an unseen “out-of-
sample” data population of 590 cases. To facilitate further evaluation
without burdening the collaborating sites, a subset (n = 332) of these
cases was aggregated to serve as a “centralized out-of-sample” dataset.
The training was initiated from a pre-trained model (i.e., our public
initialmodel) rather than a random initialization point, in order to have
faster convergence of themodel performance40,41. Model performance
was quantitatively evaluated here using the Dice similarity coefficient
(DSC), which assesses the spatial agreement between the model’s
prediction and the reference standard for each of the three tumor sub-
compartments (ET, TC, WT).

Increased data can improve performance
When the federation began, the public initial model was evaluated
against the local validation data of all sites, resulting in an average
(across all cases of all sites) DSC per sub-compartment, of DSCET =
0.63, DSCTC= 0.62, DSCWT=0.75. To summarize the model perfor-
mancewith a single collective score, we then calculate the averageDSC
(across all 3 tumor sub-compartments per case, and then across all
cases of all sites) as equal to 0.66. Following model training across all
sites, the final consensus model garnered significant performance
improvements against the collaborators’ local validation data of 27%
(pET < 1 × 10−36), 33% (pTC < 1 × 10−59), and 16% (pWT < 1 × 10−21), for ET,
TC, and WT, respectively (Fig. 1c). To further evaluate the potential
generalizability improvements of the final consensusmodel on unseen
data,we compared itwith the public initialmodel against the complete
out-of-sample data and noted significant performance improvements
of 15% (pET < 1 × 10−5), 27% (pTC < 1 × 10−16), and 16% (pWT< 1 × 10−7), for
ET, TC, and WT, respectively (Fig. 1d). Notably, the only difference
between the public initial model and the final consensus model, was
that the latter gained knowledge during training from increased
datasets contributed by the complete set of collaborators. The con-
clusion of this finding reinforces the importance of using large and
diverse data for generalizable models to ultimately drive patient care.

Data size alone may not predict success
This is initially observed in our federated setting, where the com-
parative evaluation of the public initial model, the preliminary con-
sensus model, and the final consensus model, against the centralized
out-of-sample data, indicated performance improvements not directly
related to the amount of data used for training. Specifically, we noted
major significant (p < 7 × 10−18, Wilcoxon signed-rank test) perfor-
mance improvements between the public initial model and the pre-
liminary consensus model, as opposed to the insignificant (p > 0.067,
Wilcoxon signed-rank test) ones between the preliminary and the final
consensus model, as quantified in the centralized out-of-sample data
for all sub-compartments and their average (Fig. 2).

We further expanded this analysis to assess this observation in a
non-federated configuration, where we selected the largest collabor-
ating sites (comprehensive cancer centers contributing > 200 cases,
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and familiar with computational analyses), and coordinated indepen-
dentmodel training for each, starting from the public initialmodel and
using only their local training data. The findings of this evaluation
indicate that thefinal consensusmodel performance is always superior
or insignificantly different (pAverage = 0.1, pET = 0.5, pTC = 0.2, pWT=
0.06, Wilcoxon signed-rank test) to the ensemble of the local models
of these four largest contributing collaborators, for all tumor sub-
compartments (Fig. 2). This finding highlights that even large sites can
benefit from collaboration.

FL is robust to data quality issues
Data quality issues relating to erroneous reference annotations (with
potential negative downstream effects on output predictions) were
identified by monitoring the global consensus model performance
during training. However, only data quality issues that largely affected
the global validation score could be identified and corrected during
training. Those with more subtle effects in the global validation score
were only identified after the completion of the model training by
looking for relatively low local validation scores of the consensus

Fig. 1 | Representation of the study’s global scale, diversity, and complexity.
a The map of all sites involved in the development of FL consensus model.
b Example of a glioblastoma mpMRI scan with corresponding reference annota-
tions of the tumor sub-compartments (ET enhancing tumor, TC tumor core, WT
whole tumor). c, d Comparative Dice similarity coefficient (DSC) performance
evaluation of the final consensus model with the public initial model on the colla-
borators' local validation data (in c with n = 1043 biologically independent cases)
and on the complete out-of-sample data (in dwith n = 518 biologically independent
cases), per tumor sub-compartment (ET enhancing tumor, TC tumor core, WT
whole tumor). Note the box and whiskers inside each violin plot represent the true

min and max values. The top and bottom of each “box” depict the 3rd and 1st
quartile of each measure. The white line and the red ‘×’, within each box, indicate
themedian andmean values, respectively. The fact that these are not necessarily at
the center of each box indicates the skewness of the distribution over different
cases. The “whiskers” drawn above and below each box depict the extremal
observations still within 1.5 times the interquartile range, above the 3rd or below
the 1st quartile. Equivalent plots for the Jaccard similarity coefficient (JSC) can be
observed in supplementary figures. e Number of contributed cases per
collaborating site.
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model across collaborating sites. An example of such a quality issue
with erroneous reference labels (from Site 48) is shown in Fig. 3c.
Looking closer, local validation scores at Site 48 (Fig. 3b) are sig-
nificantly different (pET < 3 × 10−12, pTC < 3 × 10−12, pWT < 3 × 10−12, Wil-
coxon signed-rank test) than the average scores across the federation
(Fig. 3a). Significant differences were calculated by sample pairs for
each federated round, where a sample pair consists of the mean vali-
dation score over samples for Site 48 paired with those across all sites.
These local validation scores (Fig. 3b) indicate that the model is not
gaining knowledge from these local data, and their comparison with
the average scores across the federation (Fig. 3a) indicates that the
global consensus model performance is not adversely affected. This
finding supports the importance of robustness at a global scale.

FL benefits the more challenging tasks
The complexity of boundary detection drops when moving from
smaller to larger sub-compartments, i.e., from ET to TC, and then to
WT35–38. This is further confirmed here, as evidenced by the model’s
relative performance indicated by the local validation curves and their
underlying associated areas in Fig. 3.a. Since the current clinically
actionable sub-compartments are TC (i.e., considered for surgery) and
WT (i.e., considered for radiotherapy)42, performance improvements
of their boundary detection may contribute to the model’s clinical
impact and relevance.

Our findings indicate that the benefits of FL aremore pronounced
for the more challenging sub-compartments, i.e., larger performance
improvements for ET and TC compared to WT (Fig. 1c). Notably, the
largest and most significant improvement (33%, p < 7 × 10−60) is noted
for the TC sub-compartment, which is surgically actionable and not a
trivial sub-compartment to delineate accurately43,44. This finding of FL
benefiting the more challenging tasks rather than boosting perfor-
mance on the relatively easier task (e.g., thresholding the abnormal T2-
FLAIR signal for the WT sub-compartment) by gaining access to larger
amounts of good quality data holds a lot of promise for FL in
healthcare.

Optimal model selection is non-trivial
Using the performance of the global consensus model during training
across all local validation cases, two distinct model configurations
were explored for selecting the final consensus model. Analyzing the
sequence of consensus models produced during each federated
round, we selected four different models: the singlet, for which the
average DSC across all sub-compartments scored high, and three
independent models, each of which yielded high DSC scores for each
tumor sub-compartment, i.e., ET, TC, WT.We defined the collection of
these three independent consensus models as a triplet.

To identify the best model, 5 singlets and 5 triplets were selected
based on their relative performance on all local validation cases and

Fig. 2 | Generalizable Dice similarity coefficient (DSC) evaluation on ‘cen-
tralized’ out-of-sample data (n = 154 biologically independent cases), per
tumor sub-compartment (ET enhancing tumor, TC tumor core, WT whole
tumor) and averaged across cases. Comparative performance evaluation across
the public initial model, the preliminary consensus model, the final consensus
model, and an ensemble of single site models from collaborators holding > 200
cases. Note the box andwhiskers inside each violin plot, represent the truemin and
max values. The top and bottom of each “box” depict the 3rd and 1st quartile of

each measure. The white line and the red ‘×’, within each box, indicate the median
and mean values, respectively. The fact that these are not necessarily at the center
of each box indicates the skewness of the distribution over different cases. The
"whiskers'' drawn above and below each box depict the extremal observations still
within 1.5 times the interquartile range, above the 3rd or below the 1st quartile.
Equivalent plots for Jaccard similarity coefficient (JSC) can be observed in supple-
mentary figures.
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evaluated against the centralized out-of-sample data. Only small dif-
ferences are observed between the singlet and triplet models, and
these differences diminish as the sub-compartment size increases.
Comparing the means of singlet and triplet, the larger (and only sig-
nificant) performance improvement difference compared to the pub-
lic initial model is noted for the ET sub-compartment (improved
by < 3%, pET = 0.02), followed by TC (improved by < 1.4%, pTC = 0.09),
and then lastly WT (improved by < 1.1%, pWT = 0.2) (Tables S1 and S2).
However, the decision of using a singlet or a triplet model should also
rely on computational cost considerations, as triplets will be three
times more expensive than singlets during model inference.

Discussion
In this study, we have described the largest real-world FL effort to-date
utilizing data of 6314 glioblastoma patients from 71 geographically
unique sites spread across 6 continents, to develop an accurate and
generalizable ML model for detecting glioblastoma sub-compartment
boundaries. Notably, this extensive global footprint of the collabor-
ating sites in this study also yields the largest dataset ever reported in
the literature assessing this rare disease. It is the use of FL that suc-
cessfully enabled (i) access to such an unprecedented dataset of the
most common and fatal adult brain tumor, and (ii) meaningful ML
training to ensure the generalizability of models across out-of-sample
data. In comparison with the limited existing real-world FL studies16,32,
our use-case is larger in scale and substantially more complex, since it
(1) addresses a multi-parametric multi-class problem, with reference
standards that require expert collaborating clinicians to follow an
involved manual annotation protocol, rather than simply recording a
categorical entry frommedical records, and (2) requires the data to be
preprocessed in a harmonized manner to account for differences in
MRI acquisition. Since glioblastoma boundary detection is critical for
treatment planning and the requisite first step for further quantitative
analyses, themodels generated during this study have the potential to
make a far-reaching clinical impact.

The large and diverse data that FL enabled, led to the final con-
sensus model garnering significant performance improvements over

the public initial model against both the collaborators’ local validation
data and the complete out-of-sample data. The improved result is a
clear indication of the benefit that can be afforded through access to
more data. However, increasing the data size for model training
without considerations relating to data quality, reference labels, and
potential site bias (e.g., scanner acquisition protocols, demographics,
or sociocultural considerations, such as more advanced presentation
of disease at diagnosis in low-income regions45) might not always
improve results. Literature also indicates an ML performance stagna-
tion effect, where each added case contributes less to the model per-
formance as the number of cases increase46. This is in line with our
finding in the federated setting (Fig. 2), where performance improve-
ments across the public initial model, the preliminary consensus
model, and the final consensus model, were not directly/linearly rela-
ted to the amount of data used for training. This happened even
though the final consensus model was trained on over twice the
number of cases (and included 2 of the largest contributing sites—Sites
1 and 4) when compared to the preliminary consensus model. Further
noting that the preliminary federation model was already within the
intra- and inter-rater variability range for this use-case (20% and 28%,
respectively)47, any further improvements for the full federation con-
sensus model would be expected to be minimal35–38.

To further assess these considerations, we coordinated indepen-
dent model training for the four largest collaborating sites (i.e., >200
cases) by starting from the same public initial model and using only
their local training data. The ensemble of these four largest site local
models did not show significant performance differences to the final
consensus model for any tumor sub-compartment, yet the final con-
sensus model showed superior performance indicating that even sites
with large datasets can benefit from collaboration. The underlying
assumption for these results is that since each of these collaborators
initiated their training from the public initial model (which included
diverse data from 16 sites), their independent models and their
ensemble could have inherited some of the initial model’s data diver-
sity, which could justify the observed insignificant differences (Fig. 2
and Supplementary Fig. 3). Though these findings are an indication

Fig. 3 | Per-tumor region (ET enhancing tumor, TC tumor core, WT whole
tumor) mean Dice similarity coefficient (DSC) over validation samples (with
shading indicating 95% confidence intervals again over samples). a At all par-
ticipating sites across training rounds showing that the score is greater for sub-
compartments with larger volumes. b For a site with problematic annotations (Site

48). The instability in these curves could be caused by errors in annotation for the
local validation data (similar to errors that were observed for a small shared sample
of data from this site). c Provides an example of a case with erroneous annotations
in the data used by Site 48. Equivalent plots for Jaccard similarity coefficient (JSC)
can be observed in supplementary figures.
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that the inclusion of more data alone may not lead to better perfor-
mance, it is worth noting that these four largest sites used for the
independent model training represent comprehensive cancer centers
(compared to hospitals in community settings) with affiliated sophis-
ticated labs focusing on brain tumor research, and hence were familiar
with the intricacies of computational analyses. Further considering the
aforementioned ML performance stagnation effect, we note the need
for generalizable solutions to quantify the contribution of collaborat-
ing sites to the final consensusmodel performance, such that future FL
studies are able to formally assess both the quantity and the quality of
the contributed data needed by the collaborating sites and decide on
their potential inclusion on use-inspired studies.

As noted in our results, due to the lack of such generalizable
solutions, we were only able to identify quality issues after the model
training. Specifically, we hypothesize that although Site 48 had data
quality issues, its effect on the consensus model performance was not
significant due to its relatively small dataset (n = 46)when compared to
the other collaborating sites. The curves of Fig. 3a indicate that the
global consensus model continues to consistently gain knowledge
from the federation as awhole during training, highlighting robustness
to such data quality issues. It remains unknown, however, how much
better the consensus model would have performed if sites with pro-
blematic data were excluded or if these specific problematic data at
Site 48 were excluded or corrected. These findings are aligned with
literature observations (on the same use-case)48, where a DL model49

trained on641 glioblastoma cases from8 sites produced higher quality
predictions on average than those created as reference standard labels
by radiology expert operators. Quality was judged by 20 board-
certified neuroradiologists, in a blinded side-by-side comparison of
100 sequestered unseen cases, and concluded that perfect or near-
perfect reference labels may not be required to produce high-quality
prediction systems. In other words, DL models may learn to see past
imperfect reference training labels. These findings provide the
impetus for further experimentation as they have implications for
future FL studies. Future research is needed to automatically detect
anomalies in the consensus model performance during training, par-
ticularly associated with contributions from individual sites.

There are a number of practical considerations that need to be
taken into account to set up a multi-national real-world federation,
starting with a substantial amount of coordination between each par-
ticipating site. As this study is the first at this scale and task complexity,
we have compiled a set of governance insights from our experience
that can serve as considerations for future successful FL studies. These
insights differ fromprevious literature that describes studies that were
smaller in scale and involved simpler tasks16,32. By “governance” of the
federation we refer both to the accurate definition of the problem
statement (including reference labels and harmonization considera-
tions accounting for inter-site variability), and the coordination with
the collaborating sites for eligibility and compliance with the problem
statement definition, as well as security and technical considerations.
For future efforts aiming to conduct studies of a similar global scale, it
would be beneficial to identify a solution for governance prior to
initiating the study itself.

The coordination began with engaging the security teams of
collaborating sites and providing them access to the source code of
the platform developed to facilitate this study. These security dis-
cussions highlighted the benefit of the platform being open-source,
making security code reviews easier. Resource gathering was then
carried out by identifying technical leads and assessing computa-
tional resources at each site. With the technical leads, we then
proceeded to test the complete workflow to further identify gaps in
the requirements, such as network configurations and hardware
requirements. We then proceeded with data curation and pre-
processing, and finally connected individual sites to the aggrega-
tion server to initiate their participation.

Following the precise definition of our problem statement35–38,
ensuring strict compliance with the preprocessing and annotation
protocol for the generation of reference standards was vital for the
model to learn correct information during training. To this end, we
instituted an extensively and comprehensively documented annota-
tion protocol with visual example representations and common
expected errors (as observed in the literature38,50) to all collaborators.
We have further circulated an end-to-end platform39 developed to
facilitate this federation, providing to each collaborating site all the
necessary functionalities to (i) uniformly curate their data and account
for inter-site acquisition variability, (ii) generate the reference stan-
dard labels, and (iii) participate in the federated training process.
Finally, we held interactive sessions to complement the theoretical
definition of the reference standards, and further guide collaborating
sites. Particular pain points regarding these administrative tasks
included managing the large volume of communication (i.e., emails
and conference calls) needed to address questions and issues that
arose, aswell as the downtime incurred in FL training due to issues that
had not yet been identified and were adversely affecting the global
model. Though we developed many ad-hoc tools for this workflow
ourselves (particularly for the data processing and orchestration
steps), many issues we encountered were common enough in retro-
spect (for example common Transport Layer Security (TLS) errors)
that mature automated solutions will address them. Many of these
automations will be use-case dependent, such as the MRI data cor-
ruption checks we used from the FeTS tool39. For these use-case-
dependent automation,moreassociated tools are expected tobecome
available as various domain experts enter into the FL community, while
somewill bemoregeneral purpose. As our inspectionof both local and
globalmodel validation scores wasmanual during our deployment, we
in retrospect see great value in automated notifications (performed at
the collaborator infrastructure to help minimize data information
leakage) to alert a collaborator (or the governor) when their local or
global model validation is significantly low. Such an alert can indicate
thepotential need to visually inspect example failure cases in their data
for potential issues. With continued efforts towards developing auto-
mated administration tools around FL deployments, we expect the
coordination for large FL deployments to become easier.

In general, debugging issues with the inputted local data and
annotations ismore difficult during FL due to the level of coordination
and/or privacy issues involved, since thedata are always retained at the
collaborating site. We gained substantial experience during this effort
that went into further development of use-inspired but generalizable
data sanity-checking functionality in the tools we developed, towards
facilitating further multi-site collaborations.

Upon conclusion of the study, sites participating in the model
training process were given a survey to fill in regarding various aspects
of their experience. According to the provided feedback, 96% of the
sites found the comprehensive documentation on preprocessing and
data curation essential and thought that lack of such documentation
could have resulted in inconsistent annotations. Additionally, 92%
found the documentation relating to establishing secure connectivity
to the aggregation server easy to follow and essential to expedite
reviews by the related groups. Furthermore, 84% of the sites appre-
ciated the user-friendly interface of the provided tool and its asso-
ciated complete functionality (beyond its FL backend), and indicated
their intention to use it and recommend it for projects and data ana-
lysis pipelines beyond the scope of this study. To generate the refer-
ence standard labels for their local data, 86% of the collaborating sites
indicated that they used either the FeTS Tool39 (i.e., the tool developed
for this study), CaPTk51, or ITK-SNAP52, whereas the remaining 14%used
either 3D-Slicer53, the BraTS toolkit54, or something else. In terms of
hardware requirements at each site, 88% used a dedicatedworkstation
for their local workload, and the remaining 12% used either a con-
tainerized form of the FeTS tool or a virtual machine.
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Although data are always retainedwithin the acquiring site during
FL (andhenceFL isdefined asprivate-by-design), different security and
privacy threats remain55–57. These threats include attempted extraction
of training data information from intermediate and final models,
model theft, and submission of poisonmodel updates with the goal of
introducing unwanted model behavior (including incentivizing the
model to memorize more information about the training data in sup-
port of subsequent extraction, i.e., leakage). A number of technologies
can be used to mitigate security and privacy concerns during FL55–57.
Homomorphic encryption58, securemultiparty compute59, and trusted
execution environments (TEEs)60,61 allow for collaborative computa-
tions to be performed with untrusted parties while maintaining con-
fidentiality of the inputs to the computation. Differentially private
training algorithms62–64 allow for mitigation of information leakage
from both the collaborator model updates and the global consensus
aggregated models. Finally, assurance that remote computations are
executed with integrity can be designed for with the use of hardware-
based trust provided by TEEs, as well as with some software-based
integrity checking65. Each of these technologies comes with its own
benefits in terms of security and/or privacy, as well as costs and lim-
itations, such as increased computational complexity, associated
hardware requirements and/or reduced quality of computational
output (such as the reduction of model utility that can be associated
with differentially private model training). Further experimentation
needs to be done in order to best inform prospective federations as to
which technologies to use towards addressing their specific concerns
within the context of the collaborator infrastructure and trust levels,
depending on the use-case, the extent of the collaborating network,
and the level of trust within the involved parties. Our study was based
on a collaborative network of trusted sites, where authentication was
based on personal communication across collaborating sites and the
combination of TLS and TEEs were considered sufficient.

Althoughour studyhas the potential to become the baseline upon
which future ML research studies will be done, there is no automated
mechanism to assess inputted data quality from collaborators, which
could result inmodels trained using sub-optimal data. Additionally, we
used a single off-the-shelf neural network architecture for training, but
it has been shown thatmodel ensembles perform better for the task at
hand35–38, and it remains to be explored how such a strategy could be
explored in a federated study. Moreover, the instantiation of the fed-
eration involved a significant amount of coordination between each
site and considering the limited real-world FL studies at the time, there
were no tools available to automate such coordination and orches-
tration. These involved (i) getting interviewed by information security
officers of collaborating sites, (ii) ensuring that the harmonized pre-
processing pipeline was used effectively, (iii) clear communication of
the annotation protocol, and iv) testing the network communication
between the aggregator and each site. This amount of effort, if not
aided by automated tools, will continue to be a huge roadblock for FL
studies, and dedicated coordination and orchestration resources are
required to conduct this in a reproducible and scalable manner.

We have demonstrated the utility of an FL workflow to develop an
accurate and generalizable ML model for detecting glioblastoma sub-
compartment boundaries, a findingwhich is of particular relevance for
neurosurgical and radiotherapy planning in patients with this disease.
This study is meant to be used as an example for future FL studies
between collaborators with an inherent amount of trust that can result
in clinically deployable ML models. Further research is required to
assess privacy concerns in a detailed manner63,64 and to apply FL to
different tasks and data types66–69. Building on this study, a continuous
FL consortium would enable downstream quantitative analyses with
implications for both routine practice and clinical trials, and most
importantly, increase access to high-quality precision care worldwide.
Furthermore, the lessons learned from this study with such a global
footprint are invaluable and can be applied to a broad array of clinical

scenarios with the potential for great impact on rare diseases and
underrepresented populations.

Methods
The study and results presented in this manuscript comply with all
relevant ethical regulations and follow appropriate ethical standards in
conducting research and writing the manuscript, following all applic-
able laws and regulations regarding the treatment of human subjects.
Use of the private retrospective data collection of each collaborating
site has been approved by their respective institutional review board,
where informed consent from all participants was also obtained and
stored.

Data
The data considered in this study described patient populations with
adult-type diffuse glioma30, and specifically displaying the radiological
features of glioblastoma, scanned with mpMRI to characterize the
anatomical tissue structure25. Each case is specifically described by (i)
native T1-weighted (T1), (ii) Gadolinium-enhanced T1-weighted (T1Gd),
(iii) T2-weighted (T2), and (iv) T2-weighted-Fluid-Attenuated-Inver-
sion-Recovery (T2-FLAIR) MRI scans. Cases with any of these sequen-
ces missing were not included in the study. Note that no inclusion/
exclusion criterion applied relating to the type of acquisition (i.e., both
2D axial and 3D acquisitions were included, with a preference for 3D if
available), or the exact type of sequence (e.g., MP-RAGE vs. SPGR). The
only exclusion criterion was for T1-FLAIR scans that were intentionally
excluded to avoidmixing varying tissue appearance due to the type of
sequence, across native T1-weighted scans.

The publicly available data from the International Brain Tumor
Segmentation (BraTS) 2020 challenge35–37, was used to train the public
initial model of this study. The BraTS challenge35–38, seeking metho-
dological advancements in the domain of neuro-oncology, has been
providing the community with (i) the largest publicly available and
manually-curated mpMRI dataset of diffuse glioma patients (an
example of which is illustrated in Fig. 1b), and (ii) a harmonized pre-
processing pipeline51,70,71 to handle differences in inter-site acquisition
protocols. The public initial model was used to initialize the FL train-
ing, instead of a randomly generated initialization, as starting from a
pre-trained model leads to faster convergence41. The complete BraTS
2020 dataset originally included cases from sites that also participated
in this study as independent collaborators. To avoid any potential data
leakage, we reduced the size of the complete BraTS dataset by
removing cases acquired by these specific sites, resulting in a dataset
of 231 cases from 16 international sites, with varying contributing cases
across sites (Fig. 1e). The exact site IDs that construct the data of the
public initial model are: 47, 51, 55, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, and 71. Subsequently, the resulting dataset was split at a 4:1
ratio between cases for training (n = 185) and validation (n = 46).

The eligibility of collaborating sites to participate in the federa-
tion was determined based on data availability, and approval by their
respective institutional review board. 55 sites participated as inde-
pendent collaborators in the study defining a dataset of 6083 cases.
The MRI scanners used for data acquisition were from multiple ven-
dors (i.e., Siemens, GE, Philips, Hitachi, Toshiba), with magnetic field
strength ranging from 1T to 3T. The data from all 55 collaborating sites
followed amale:female ratio of 1.47:1 with ages ranging between 7 and
94 years.

From all 55 collaborating sites, 49 were chosen to be part of the
training phase, and 6 sites were categorized as “out-of-sample”, i.e.,
none of these were part of the training stage. These specific 6 out-of-
sample sites (Site IDs: 8, 11, 19, 20, 21, 43) were allocated based on their
availability, i.e., they have indicated expected delayed participation
rendering them optimal for model generalizability validation. One of
these 6 out-of-sample sites (Site 11) contributed aggregated a priori
data from a multi-site randomized clinical trial for newly diagnosed
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glioblastoma (ClinicalTrials.gov Identifier: NCT00884741,
RTOG082572,73, ACRIN668674,75), with inherent diversity benefiting the
intended generalizability validation purpose. The American College of
Radiology (ACR - Site 11) serves as the custodian of this trial’s imaging
data on behalf of ECOG-ACRIN, which made the data available for this
study. Following screening for the availability of the four required
mpMRI scans with sufficient signal-to-noise ratio judged by visual
observation, a subset of 362 cases from the original trial data were
included in this study. The out-of-sample data totaled 590 cases
intentionally held out of the federation,with the intention of validating
the consensus model in completely unseen cases. To facilitate further
such generalizability evaluation without burdening the collaborating
sites, a subset consisting of 332 cases (including the multi-site clinical
data providedbyACR) fromthis out-of-sampledatawasaggregated, to
serve as the “centralized out-of-sample” dataset. Furthermore, the
49 sites participating in the training phasedefine a collective dataset of
5493 cases. The exact 49 site IDs are: 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15,
16, 17, 18, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 44, 45, 46, 48, 49, 50, 52, 53, 54, 56, 59, 60. These cases were
automatically split at each site following a 4:1 ratio between cases for
training and local validation. During the federated training phase, the
data used for the public initial model were also included as a dataset
from a separate node, such that the contribution of sites providing the
publicly available data is not forgotten within the global consensus
model. This results in the final consensus model being developed
basedondata from71 sites over a total dataset of 6314 cases. Collective
demographic information of the included population is provided in
Table S3.

Harmonized data preprocessing
Once each collaborating site identified its local data, they were asked
to use the preprocessing functionality of the software platform we
provided. This functionality follows the harmonized data preproces-
sing protocol defined by the BraTS challenge35–38, as described below.
This would allow accounting for inter-site acquisition protocol varia-
tions, e.g., 3D vs. 2D axial plane acquisitions.

File-type conversion/patient de-identification. The respective
mpMRI scans (i.e., T1, T1Gd, T2, T2-FLAIR) of every case are down-
loaded onto a local machine in the Digital Imaging and Communica-
tions in Medicine (DICOM) format76–78 and converted to the
Neuroimaging Informatics Technology Initiative (NIfTI) file format79 to
ensure easier parsing of the volumetric scans during the computa-
tional process. The conversion of DICOM to NIfTI files has the benefit
of eliminating all patient-identifiable metadata from the header por-
tion of the DICOM format80,81.

Rigid registration. Once the scans are converted to the NIfTI format,
each volume is registered to a common anatomical space, namely
the SRI24 atlas82, to ensure a cohesive data shape ([240, 240, 155])
and an isotropic voxel resolution (1 mm3), thereby facilitating in the
tandem analysis of the mpMRI scans. One of the most common
types of MRI noise is based on the inhomogeneity of the magnetic
field83. It has been previously36 shown that the use of non-para-
metric, non-uniform intensity normalization to correct for these
bias fields84,85 obliterates the MRI signal relating to the regions of
abnormal T2-FLAIR signal. Here, we have taken advantage of this
adverse effect and used the bias field-corrected scans to generate a
more optimal rigid registration solution across the mpMRI
sequences. The bias field-corrected images are registered to the
T1Gd image, and the T1Gd image is rigidly registered to the SRI24
atlas, resulting in two sets of transformation matrices per MRI
sequence. These matrices are then aggregated into a single matrix
defining the transformation of each MRI sequence from its original
space to the atlas. We then apply this single aggregated matrix to

the NIfTI scans prior to the application of the bias field correction to
maximize the fidelity of the finally registered images.

Brain extraction. This process focuses on generating a brain mask to
remove all non-brain tissue from the image (including neck, fat, eye-
balls, and skull), to enable further computational analyses while
avoiding any potential face reconstruction/recognition86. For this step
we utilized the Brain Mask Generator (BrainMaGe)87, which has been
explicitly developed to address brain scans in presence of diffuse
glioma and considers brain shape as a prior, hence being agnostic to
the sequence/modality input.

Generation of automated baseline delineations of tumor sub-
compartment boundaries. We provided the ability to the collaborat-
ing sites to generate automated delineations of the tumor sub-
compartments from three popularmethods from the BraTS challenge,
using models trained using the challenge’s training data: (i)
DeepMedic49, (ii) DeepScan88, and (iii) nnU-Net89. Along with segmen-
tations from each method, label fusion strategies were also employed
to provide a reasonable approximation to the reference labels that
should bemanually refined and approved by expert neuroradiologists
to create the final reference labels. The label fusion approaches con-
sidered were i) standard voting90, (ii) Simultaneous Truth And Perfor-
mance Level Estimation (STAPLE)91,92, iii) majority voting93, and iv)
Selective and Iterative Method for Performance Level Estimation
(SIMPLE)94.

Manual refinements towards reference standard labels. It was
communicated to all participating sites to leverage the annotations
generated using the automated mechanism as a baseline on which
manual refinements were needed by neuroradiology experts, follow-
ing a consistently communicated annotation protocol. The reference
annotations comprised the Gd-enhancing tumor (ET—label ‘4’), the
peritumoral edematous/invaded tissue (ED—label ‘2’), and the necrotic
tumor core (NCR—label ‘1’). ET is generally considered the most active
portionof the tumor, describedby areaswith both visually avid, aswell
as faintly avid, enhancement on theT1Gd scan. NCR is the necrotic part
of the tumor, the appearance of which is hypointense on the T1Gd
scan. ED is theperitumoral edematous and infiltrated tissue, definedby
the abnormal hyperintense signal envelope on the T2-FLAIR scans,
which includes the infiltrative non-enhancing tumor, as well as vaso-
genic edema in the peritumoral region35–38 (an illustration can be seen
in Fig. 1b).

Data splits. Once the data were preprocessed, training and validation
cohorts were created randomly in a 4:1 ratio, and the splits were pre-
served during the entire duration of the FL training to prevent data
leakage. The performance of every model was compared against the
local validation data cohort on every federated round.

Data loading and processing
We leveraged the data loading and processing pipeline from the
Generally Nuanced Deep Learning Framework (GaNDLF)95, to enable
experimentation with various data augmentation techniques. Imme-
diately after data loading, we removed the all-zero axial, coronal, and
sagittal planes from the image, and performed a z-score normalization
of the non-zero image intensities96. Each tumor sub-compartment of
the reference label is first split into an individual channel and then
passed to the neural network for processing. We extracted a single
random patch per mpMRI volume set during every federated round.
The patch size was kept constant at [128, 128, 128] to ensure that the
trained model can fit the memory of the baseline hardware require-
ment of each collaborator, i.e., a discrete graphics processing unit with
a minimum of 11 GB dedicated memory. For data augmentation, we
added random noise augmentation (μ =0.0, σ =0.1) with a probability
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of p =0.2, random rotations (90° and 180°, with the axis of rotation
being uniformly selected in each case from the set of coronal, sagittal,
and axial planes) each with a probability of p = 0.5, and a random flip
augmentation with a probability of p = 1.0 with equal likelihood of flips
across the sagittal, coronal, and axial planes.

The neural network architecture
The trainedmodel to delineate the different tumor sub-compartments
was based on the popular 3D U-Net with residual connections (3D-
ResUNet)97–101, an illustration of which can be seen in the Supplemen-
tary Fig. 1. The network had 30 base filters, with a learning rate of
lr = 5 × 10−5 optimized using the Adam optimizer102. For the loss func-
tion used in training, we used the generalized DSC score103,104 (repre-
sented mathematically in Eq. (1)) on the absolute complement of each
tumor sub-compartment independently. Such mirrored DSC loss has
been shown to capture variations in smaller regions better89. No
penalties were used in the loss function, due to our use of ‘mirrored’
DSC loss105–107. The final layer of the model was a sigmoid layer, pro-
viding three channel outputs for each voxel in the input volume, one
output channel per tumor sub-compartment. While the generalized
DSC score was calculated using a binarized version of the output
(check sigmoid value against the threshold 0.5) for the final prediction,
we used the floating point DSC108 during the training process.

DSC=
2∣RL� PM∣1
∣RL∣1 + ∣PM∣1

ð1Þ

where RL serves as the reference label, PM is the predicted mask,⊙ is
the Hadamard product109 (i.e., component-wise multiplication), and
∣x∣1 is the L1-norm110, i.e., the sum of the absolute values of all
components).

The Federation
The collaborative network of the present study spans 6 continents
(Fig. 1), with data from 71 geographically distinct sites. The training
process was initiated when each collaborator securely connected to a
central aggregation server, which resided behind a firewall at the
University of Pennsylvania. We have identified this FL workflow (based
on a central aggregation server) as the optimal for this use-case, fol-
lowing a performance evaluation11 for this very same task, i.e.,
detecting glioblastoma sub-compartment boundaries. As soon as the
secure connectionwas established, the public initial model was passed
to the collaborating site. Using FL based on an aggregation server
(refer to supplementary figures for illustration), collaborating sites
then trained the same network architecture on their local data for one
epoch, and shared model updates with the central aggregation server.
The central aggregation server received model updates from all col-
laborators, combined them (by averagingmodel parameters) and sent
the consensus model back to each collaborator to continue their local
training. Each such iteration is called a “federated round”. Basedonour
previously conducted performance evaluation for this use-case11, we
chose to perform aggregation of all collaborator updates in the pre-
sent study, using the federated averaging (FedAvg) approach14, i.e.,
average of collaborator’s model updates weighted according to col-
laborator’s contributing data. We expect these aggregation strategy
choices to be use-case dependent, by providing due consideration to
the collaborators’ associated compute and network infrastructure. In
this study, all the network communications during the FL model
trainingprocesswerebasedonTLS111, tomitigatepotential exposureof
information during transit. Additionally, we demonstrated the feasi-
bility of TEEs60,61 for federated training by running the aggregator
workload on the secure enclaves of Intel’s Secure Guard Extensions
(SGX) hardware (Intel® Xeon® E-2286M vPro 8-Core 2.4-5.0GHz
Turbo), which ensured the confidentiality of the updates being
aggregated and the integrity of the consensusmodel. TLSandTEEs can

help mitigate some of the security and privacy concerns that remain
for FL55. After not observing any meaningful changes since round 42,
we stopped the training after a total of 73 federated rounds. Addi-
tionally, we performed all operations on the aggregator on secure
hardware (TEE112), in order to increase the trust by all parties in the
confidentiality of the model updates being computed and shared, as
well as to increase the confidence in the integrity of the computations
being performed113.

We followed a staged approach for the training of the global
consensus model, starting from a preliminary smaller federation
across a subset (n = 35) of the participating sites to evaluate the
complete process and resolve any initial network issues. Note that
16 of these 35 sites were used to train the public initial model, and
used in the preliminary federation as an aggregated dataset. The
exact 19 site IDs that participated in the training phase of the pre-
liminary federation, as independent sites are: 2, 3, 9, 14, 22, 23, 24,
27, 28, 29, 31, 33, 36, 37, 41, 46, 53, 54, and 59. The total data held by
this smaller federation represented approximately 42% (n = 2471) of
the data used in the full federation. We also trained individual
models (initialized using the public initial model) using centralized
training at all sites holding >200 training cases, and performed a
comparative evaluation of the consensus model with an ensemble
of these “single site models”. The per voxel sigmoid outputs of the
ensemble were computed as the average of such outputs over the
individual single-site models. As with all other models in this study,
binary predictions were computed by comparing these sigmoid
outputs to a threshold value of 0.5. The single-site model ensemble
utilized (via the data at the single site) approximately 33% of the
total data across the federation.

Model runtime in low-resource settings
Clinical environments typically have constrained computational
resources, such as the availability of specialized hardware (e.g., DL
acceleration cards) and increased memory, which affect the runtime
performance of DL inference workloads. Thus, taking into considera-
tion the potential deployment of the final consensus model in such
low-resource settings, we decided to proceed with a single 3D-ResU-
Net, rather than an ensemble of multiple models. This decision
ensured a reduced computational burden when compared with run-
ning multiple models, which is typically done in academic research
projects35–38.

To further facilitate use in low-resource environments, we have
provided a post-training run-time optimized114 version of the final
consensus model. Graph level optimizations (i.e., operators fusion)
were initially applied, followed by optimizations for low precision
inference, i.e., converting the floating point single precisionmodel to a
fixed precision 8-bit integer model (a process known as
“quantization”115). In particular, we used accuracy-aware
quantization116, where model layers were iteratively scaled to a lower
precision format. These optimizations yielded run-time performance
benefits, such as lower inference latency (a platform-dependent
4.48× average speedup and 2.29 × reduced memory requirement
when compared with the original consensus model) and higher
throughput (equal to the 4.48 × speedup improvement since the
batch size used is equal to 1), while the trade-off was an insignificant
(pAverage < 7 × 10−5) drop in the average DSC.

Clinically-deployable consensus models. To further encourage the
reproducibility of our study, and considering enhancing the potential
impact for the study of the rare disease of glioblastoma, we publicly
released the trained models of this study. We specifically released the
final singlet and triplet consensus models, including the complete
source code used in the project. Taking into consideration the
potential deployment of thesemodels in clinical settings, we refrained
from training an ensemble of models (as typically done in academic
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research projects35–38), due to the additional computational burden of
running multiple models. Furthermore, to facilitate use in low-
resource environments, we also provide a post-training run-time
optimized114 version of the final consensus model that obviates the
need for any specialized hardware (such as DL acceleration cards) and
performs insignificantly different from the final consensus model
when evaluated against the centralized out-of-sample data.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets used in this study, from the 71 participating sites, are not
made publicly available as a collective data collection due to restric-
tions imposed by acquiring sites. The public initial model data from
16 sites are publicly available through the BraTS challenge35–38 and are
available fromhttps://www.med.upenn.edu/cbica/brats2020. Thedata
from each of the 55 collaborating sites were neither publicly available
during the execution of the study, nor shared among collaborating
sites or with the aggregator. They were instead used locally, within
each of the acquiring sites, for the training and validation of the global
consensus model at each federated round. The anatomical template
used for co-registration during preprocessing is the SRI24 atlas82 and is
available from https://www.nitrc.org/projects/sri24.

Source data are provided with this paper. Specifically, we provide
the rawdata, the associated python scripts, and specific instructions to
reproduce the plots of this study in a GitHub repository, at: github.
com/FETS-AI/2022_Manuscript_Supplement. The file ‘SourceData.tgz’,
in the top directory holds an archive of csv files representing the
source data. The python scripts are provided in the ‘scripts’ folder
which utilize these source data and save ‘.png’ images to disc and/or
print latex code (for tables) to stdout. Furthermore, we have provided
three sample validation cases, from the publicly available BraTS data-
set, to qualitatively showcase the segmentation differences (small,
moderate, and large) across the final global consensus model, the
public initial model, and the ground truth annotations in the same
GitHub repository.

Code availability
Motivated by findability, accessibility, interoperability, and reusability
(FAIR) criteria in scientific research117, all the code used to design the
Federated Tumor Segmentation (FeTS) platform118 for this study is
available through the FeTS Tool39 and it is available at github.com/
FETS-AI/Front-End. The functionality related to preprocessing (i.e.,
DICOM to NIfTI conversion, population-based harmonized pre-
processing, co-registration) and manual refinements of annotation is
derived from the open-source Cancer Imaging Phenomics Toolkit
(CaPTk, github.com/CBICA/CaPTk)51,70,71. The co-registration is per-
formed using the Greedy framework119, available via CaPTk51,70,71, ITK-
SNAP52, and the FeTS Tool39. The brain extraction is done using the
BrainMaGe method87, and is available at github.com/CBICA/
BrainMaGe, and via GaNDLF95 at github.com/mlcommons/GaNDLF.
To generate automated annotations, DeepMedic’s49 integration with
CaPTk was used, and we used the model weights and inference
mechanism provided by the other algorithm developers (DeepScan88

and nnU-Net89 (github.com/MIC-DKFZ/nnunet)). DeepMedic’s original
implementation is available in github.com/deepmedic/deepmedic,
whereas the one we used in this study can be found at github.com/
CBICA/deepmedic. The fusion of the labels was done using the Label
Fusion tool120 available at github.com/FETS-AI/LabelFusion. The data
loading pipeline and network architecture were developed using the
GaNDLF framework95 by using PyTorch121. The data augmentation was
done via GaNDLF by leveraging TorchIO122. The FL backend developed
for this project has been open-sourced as a separate software library,

to encourage further research on FL123 and is available at github.com/
intel/openfl. The optimization of the consensus model inference
workload was performed via OpenVINO124 (github.com/
openvinotoolkit/openvino/tree/2021.4.1), which is an open-source
toolkit enabling acceleration of neural network models through var-
ious optimization techniques. The optimizations were evaluated on an
Intel Core® i7-1185G7E CPU@ 2.80GHz with 2 × 8GBDDR4 3200MHz
memoryonUbuntu 18.04.6OSandLinuxkernel version 5.9.0-050900-
generic.
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