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We formulate and implement Cyclic Density Functional Theory (Cyclic DFT) — a self-
consistent first principles simulation method for nanostructures with cyclic symmetries.
Using arguments based on Group Representation Theory, we rigorously demonstrate that
the Kohn-Sham eigenvalue problem for such systems can be reduced to a fundamental
domain (or cyclic unit cell) augmented with cyclic-Bloch boundary conditions. Analo-
gously, the equations of electrostatics appearing in Kohn-Sham theory can be reduced to
the fundamental domain augmented with cyclic boundary conditions. By making use of
this symmetry cell reduction, we show that the electronic ground-state energy and the
Hellmann-Feynman forces on the atoms can be calculated using quantities defined over
the fundamental domain. We develop a symmetry-adapted finite-difference discretization
scheme to obtain a fully functional numerical realization of the proposed approach. We
verify that our formulation and implementation of Cyclic DFT is both accurate and effi-
cient through selected examples.

The connection of cyclic symmetries with uniform bending deformations provides an
elegant route to the ab-initio study of bending in nanostructures using Cyclic DFT. As a
demonstration of this capability, we simulate the uniform bending of a silicene nanor-
ibbon and obtain its energy-curvature relationship from first principles. A self-consistent
ab-initio simulation of this nature is unprecedented and well outside the scope of any
other systematic first principles method in existence. Our simulations reveal that the
bending stiffness of the silicene nanoribbon is intermediate between that of graphene and
molybdenum disulphide — a trend which can be ascribed to the variation in effective
thickness of these materials. We describe several future avenues and applications of Cyclic
DFT, including its extension to the study of non-uniform bending deformations and its
possible use in the study of the nanoscale flexoelectric effect.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In recent decades, quantum mechanical calculations using Kohn-Sham Density Functional Theory (Kohn-Sham DFT)
(Hohenberg and Kohn, 1964; Kohn and Sham, 1965) have become the de facto workhorse of computational materials sci-
ence. The pseudopotential plane-wave method (Plane-wave DFT) — perhaps the most widely used implementation of the
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Kohn-Sham theory — is currently available in a number of mature software packages (Kresse and Furthmuller, 1996; Segall
et al., 2002; Giannozzi et al., 2009; Gonze et al., 2002). The Plane-wave DFT approach involves expanding the unknowns (e.
g., the Kohn-Sham orbitals and the electron density) into a linear combination of plane-waves1, and subsequently carrying
out various computations through the use of Fast Fourier Transforms (FFTs) to seamlessly switch between quantities ex-
pressed on real space grids and their plane-wave expansion coefficients. Due to the periodic nature of plane-waves, Plane-
wave DFT is well suited for the study of systems with translational symmetry. However, the study of structures which are
non-periodic may require the use of large computational supercells (Martin, 2004), thereby rendering the method in-
efficient for such problems.2

A vast number of materials systems of interest today are non-periodic, but are associated with other physical symmetry
groups. This includes for example, nanoclusters and molecules associated with point group symmetries, and helical na-
nostructures associated with screw transformation symmetries. The importance of such nanostructures associated with
alternative (non-periodic) symmetries cannot be overstated. For instance, they are anticipated to exhibit unprecedented
materials properties — particularly, collective properties such as ferromagnetism and ferroelectricity — in manners that are
otherwise unavailable in the bulk phase (James, 2006). Consequently, a substantial body of work has been devoted in recent
years to the theoretical framework and mathematical classification of such structures3 (James, 2006; Dayal et al., 2015).
Further, judicious use of the symmetries associated with these structures has been made in designing novel computational
methods – both at the level of atomistic simulations (Dumitrica and James, 2007; Dayal and James, 2010; Aghaei et al., 2012)
as well as electronic structure calculations (Banerjee, 2013; Banerjee et al., 2015).

While the study of electronic properties of nanostructures associated with various non-periodic physical symmetries is of
much scientific and technological interest in itself, an additional outcome of having access to computational methods specifically
designed to exploit the underlying physical symmetries is that these methods allow one to study the associated deformation
modes. In the setting of conventional Plane-wave DFT for example, the application of a homogeneous deformation to a periodic
system still results in a structure with translational symmetry, and therefore the deformed system can be easily accommodated
through a unit cell that has also been deformed in the samemanner. On the other hand, it is far more difficult to account for non-
homogeneous deformations such as bending and torsion in the periodic setting, whereby their study (Wei et al., 2012; Naumov
and Bratkovsky, 2011) is likely to involve various complications, inaccuracies and inefficiencies.

To the best of our knowledge, as far as atomistic systems are concerned, the connections between various physical
symmetry groups and specific non-homogeneous deformation modes appears first in James (2006). This idea has been
subsequently exploited for simulating the effects of bending deformations by means of cyclic symmetry groups (Dumitrica
and James, 2007; Zhang et al., 2011; Ma et al., 2015; Koskinen and Kit, 2010b, 2010, 2012; Kit et al., 2011b), and torsional
deformations by means of helical symmetry groups (Dumitrica and James, 2007; Zhang et al., 2008, 2009; Koskinen and Kit,
2010b; Kit et al., 2012, 2011, 2011b). A pervasive issue with these aforementioned works however, is that the simulations in
question have been carried out within the framework of interatomic potentials or tight binding methods (classical semi-
empirical or Density Functional Tight Binding (DFTB)). The failure of these more approximate models in simulating various
physical systems is well known (Ismail-Beigi and Arias, 2000; Hauch et al., 1999; Cocco et al., 2010; Koskinen and Mäkinen,
2009; Naumov and Bratkovsky, 2011) and it has been understood for some time that access to a systematic self-consistent
first principles simulation methodology would be highly desirable (Kit et al., 2011b; James, 2006; Banerjee, 2013). However,
such a computational methodology appears to have been out of reach prior to this work.4

In view of the above discussion, we formulate and implement Cyclic Density Functional Theory (Cyclic DFT) — a self-
consistent first principles simulation method for cyclic nanostructures.5 Cyclic symmetries are ubiquitous in various clusters
and molecular systems (Wikipedia, 2016; Hargittai and Hargittai, 2009; Willock, 2009; Go and Scheraga, 1973) (see Fig. 1 for
some examples), and therefore the present methodology can be used to study a large variety of nanostructures from first
principles in a systematic and efficient manner. Notably, even general point group symmetries associated with complex
nanosystems usually contain cyclic groups as proper subgroups (Altmann and Herzig, 1994), which extends the scope of the
various materials systems that can be studied with Cyclic DFT.6 Furthermore, due to the connections between cyclic sym-
metries with bending deformations in nanostructures (i.e., the idea that cyclic boundary conditions locally simulate the
behavior of a system subjected to uniform bending), Cyclic DFT makes it possible to carry out systematic ab-initio simu-
lations of nanostructures subjected to bending deformations. In particular, this opens up the possibility that electro-me-
chanical or other multi-physics coupling effects in nanostructures can be faithfully simulated from first principles by means
of this novel framework.
1 Plane-waves are functions of the form ·e k xi . They form eigenfunctions of translational symmetry operators.
2 Alternatives to Plane-wave DFT include real-space methods based on finite-differences (Castro et al., 2006; Kronik et al., 2006; Ghosh and Sur-

yanarayana; Ghosh and Suryanarayana, 2016) and finite-elements (Suryanarayana et al., 2010; J.E. Pask and Sterne, 2005; J. Pask and Sterne, 2005; Pask
et al., 2001; Motamarri et al., 2013). Although these methods allow non-periodic boundary conditions to be imposed more readily, their use in general
symmetry-adapted self-consistent first principles calculations has not been considered prior to this work.

3 In the mechanics of materials literature, such materials systems have been referred to as Objective Structures (James, 2006).
4 Indeed, as remarked in Kit et al. (2011b), a central difficulty has been to formulate an analog of plane-waves for non-periodic symmetries. This issue

has been subsequently addressed and resolved in Banerjee (2013).
5 The crystallographic restriction theorem (Senechal, 1996) prevents any periodic code — including all Plane-wave DFT codes — from making full use of

the symmetry of a general cyclic structure.
6 For example, the icosahedral group that is associated with many fullerenes contains a cyclic subgroup originating from a 5-fold rotational symmetry.



Fig. 1. Examples of cyclic structures from nanotechnology and chemistry. (a) Hydrogen passivated silicon quantum nanodot with 4-fold cyclic symmetry.
We thank Yunkai Zhou (Southern Methodist University) for providing us with the nanodot structure, (b) Pentaphosphaferrocene molecule with a 5-fold
symmetry: the atoms between the X axis and the line denoted as e can be rotated in steps of 72° and replicated to produce the entire structure and (c)
Alpha-cyclodextrin molecule with a 6-fold symmetry: the atoms between the X axis and the line denoted as e can be rotated in steps of 60° and replicated
to produce the entire structure.
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Broadly, the present contribution can be viewed as a particular flavor of so called Objective DFT (Banerjee, 2011, 2013),
i.e., a self-consistent first principles method for an atomistic or molecular system with a non-periodic symmetry
(i.e., an Objective Structure). While Objective DFT is far more general and even allows systems associated with non-Abelian or
non-compact symmetry groups to be simulated, it reduces to a particularly simple and efficient form for the case of cyclic
structures, as we show in this work. Furthermore, the aforementioned connection of cyclic symmetries with the efficient
simulation of bending deformations in nanostructures provides a compelling case as to why a thorough description of the
theoretical and practical aspects of Cyclic DFT is warranted. Finally, Cyclic DFT can easily be extended to study systems of
infinite extent (e.g., nanotubes, bending of nanosheets), which is beyond the scope of the spectral scheme originally pre-
sented in Objective DFT. This provides the motivation for the current work.
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One of the key theoretical steps involved in the formulation of Cyclic DFT is the symmetry cell reduction of the Kohn-
Sham equations posed on the entire cyclic structure to the fundamental domain (or cyclic unit cell) associated with the
cyclic symmetry group. In order to accomplish this task, we use tools from Group Representation Theory to rigorously
formulate and prove a Bloch theorem for cyclic structures (Theorem 2.6). In addition, we perform a symmetry cell reduction
of the electrostatics problem, the system's electronic ground-state free energy, and the Hellmann-Feynman forces on the
atoms. Consequently, on every iteration in the Self-Consistent Field (SCF) method (Slater, 1974), the reduction due to
symmetry is expected to result in computational savings that varies in direct proportion to the cyclic group order of the
system under study.7 An additional outcome of the Bloch theorem for cyclic structures is that it allows the Kohn-Sham
eigenvalues associated with the cyclic structure to be presented in a manner similar to that of traditional band diagrams for
periodic structures. As a result, the onset of instabilities and transitions in such systems can be more easily detected.

We develop a symmetry-adapted finite-difference method to discretize the equations of Cyclic DFT resulting from the
symmetry cell reduction. In addition to the systematic convergence properties and relative simplicity of this discretization
strategy, it allows bending in nanostructures to be simulated more efficiently by allowing us to place finite-difference nodes
only in regions of interest. Subsequently, we develop a completely functional numerical realization of the method using
state of the art algorithms. Numerical experiments and comparison with benchmark calculations allow us to establish the
accuracy and efficiency of our Cyclic DFT implementation. Further, these experiments reveal that the symmetry cell re-
duction not only results in the expected computational speed-up on every SCF step, but it also allows overall faster con-
vergence of the SCF fixed-point iteration. As a consequence of these computational savings, highly accurate first principles
simulations of cyclic systems containing many hundreds of atoms can be done quite routinely using even a serial im-
plementation of Cyclic DFT.

Finally, as a demonstration of how Cyclic DFT enables the study of materials properties from first principles, we simulate
uniform bending deformations in a silicene nanoribbon and obtain its energy-curvature relationship. In particular, our
simulations allow us to obtain the bending stiffness of this material in the linear Euler–Bernoulli regime and to compare our
results with the bending stiffness of other two-dimensional materials that have been studied in the literature. The usage of
first principles approaches in the mechanics of materials brings with it the hope that these techniques will enable engineers
to understand the true atomistic dependence of constitutive laws. Our application of Cyclic DFT to directly evaluate the
bending stiffness can be broadly viewed in this light and it motivates us to carry out more sophisticated simulations of this
nature on other important nanomaterials systems in the near future.8

The rest of the paper is organized as follows.9 In Section 2, we present the mathematical underpinnings and symmetry-
adapted finite-difference discretization scheme that constitute Cyclic DFT. In Section 3, we verify the accuracy and efficiency
of Cyclic DFT, and then use it to study the uniform bending of a silicene nanoribbon. Finally, we provide concluding remarks
in Section 4.
2. Formulation

In this section, we describe the key aspects of Cyclic DFT. We begin by a formal discussion of cyclic groups and cyclic
structures in Section 2.1, and then discuss the Kohn-Sham theory for such structures in Section 2.2. Next, we show how
cyclic symmetry leads to an appropriate symmetry cell reduction of the Kohn-Sham problem in Section 2.3, and pose the
resulting equations on the fundamental domain in Section 2.4. Finally, we formulate a symmetry-adapted finite-difference
discretization scheme for solving the cell problem in Section 2.5.
2.1. Cyclic groups and cyclic structures

Let  denote a cyclic group of order N generated by the single element g, i.e.,

N= { … } ( )− g g g g, , , , . 10 1 2 1

Identifying N = =g g e0 as the group identity element, we see that the inverse element of ∈γ g is the element N ∈γ− g . A
7 Asymptotically, the reduction in computational cost is actually quadratic with respect to group order (Footnote 55).
8 Exploiting point group symmetries in ab-initio calculations has also been considered in the chemistry literature in the context of Linear Combination

of Atomic Orbitals (LCAO) methods (see Slater and Koster, 1954; Roothaan, 1960; Zicovich-Wilson and Dovesi, 1998a, 1998b; Atkins and Friedman, 2011, for
example). However, the focus of these works has been towards using symmetry-adapted basis functions for reducing the effort associated with the
computation of the multi-center integrals and the entries of the Hamiltonian matrix that appear in LCAO calculations. Thus, they differ in perspective from
our own approach which focuses on formulation and solution of symmetry-adapted cell problems instead. Additionally, in contrast to finite-difference
methods, it is usually non-trivial to systematically improve the quality of solution obtained via LCAO methods due to basis completeness issues. Finally, the
application of cyclic symmetries to the study of bending deformations in nanostructures does not appear to have been considered by chemists before.

9 The atomic unit system with = = = =
πϵ

m e1, 1, 1, 1e
1

4 0
, is chosen for the rest of the work, unless otherwise mentioned.
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physical realization of this abstract group10 can be obtained by considering a discrete group of rotations about a common
axis. Let ( )e e e, ,1 2 3 represent the standard basis of 3. Here, we form a faithful linear representation of  on 3 by using the
following rotation matrices about e3:

R N R

N N

N N

γ

πγ πγ

πγ πγ{ = … − } =

−

( )

γ γ

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
: 0, , 1 with

cos
2

sin
2

0

sin
2

cos
2

0

0 0 1

.

2

With this representation, the multiplication operation of the group simply becomes multiplication of the matrices Rγ . Henceforth,
we will identify a cyclic group of orderN by the collection of matrices shown in Eq. (2); we will use NΓ to denote the collection of
integers N{ … − }0, 1, , 1 ; and for any matrix R ∈γ  and set ⊂ S 3, we will use R ( )γ S to denote the set R{ ∈ }γ Sx x: .

Let ⊆  3 be an open set with a regular boundary which is invariant under the action of the group , i.e., for every Nγ Γ∈ ,
we have:

R ( ) = ( )γ  . 3

Then, the symmetry cell or fundamental domain or cyclic unit cell of  in  is a set ⊂  such that:

R⋃ ( ) =
( )γ

γ   ,
4

and for every Nγ γ Γ∈,1 2

R R γ γ( )⋂ ( ) = ≠ ( )γ γ   a set of Lebesgue measure 0, for . 51 2
1 2

Wewill denote the boundary surfaces common to the original domain and the fundamental domain by ∂ = ∂ ∩ ∂   0 , and

those that are unique to the fundamental domain by ∂ = ∂ ⧹∂    C 0 . For example, if  is a finite cylinder with axis e3, the
fundamental domain  will be a sector of the cylinder with angle Nπ2 / .

Consider a finite collection11 of distinct points12 ⊂ , which we will denote by { } =x k k
M

0, 1. These points are re-
presentative of atomic positions within the fundamental domain and will be referred to as the simulated points or simulated
atoms. A cyclic structure13  , is the group orbit of a given cyclic group  acting on the simulated atoms in :

R R= ⋃ ( ) = ⋃
( )γ

γ

γ

γ   x .
6k

k,
,

0,

We will represent a general atom of such a structure using the notation R=γ
γx xk k, 0, , Nγ Γ∈ . Further, we will denote the

nuclear charge14 of the atom at position ∈ x k0, by Zk. It follows from the cyclic symmetry of the structure that the atom at
the position R=γ

γx xk k, 0, (for any Nγ Γ∈ ) also has nuclear charge Zk.

2.2. Kohn-Sham problem for cyclic structures

A detailed formulation of the Kohn-Sham problem (Kohn and Sham,1965) as it applies to the computation of the electronic and
structural properties of a finite collection of atoms can be found in numerous references (e.g., see Banerjee et al., 2015; Sur-
yanarayana et al., 2010; Ghosh and Suryanarayana). In the present work, we are interested specifically in the first principles
simulations of cyclic structures  , , as have been defined in the previous subsection. For the sake of simplicity, we assume that the
system as a whole is charge neutral, i.e., there are a total of NNe electrons, where = − ∑ =

N Zk
M

ke 1 represents the number of
electrons in the fundamental domain.15 Consequently, we pose the Kohn-Sham equations in terms of NNs orbitals with >N N /2s e

and ≈N N /2s e .16 Additionally, we employ the local density approximation (LDA) (Kohn and Sham, 1965), thermalization via the
Fermi-Dirac smearing (Mermin,1965), the local pseudopotential approximation (Kohanoff, 2006), and the local reformulation of the
electrostatics (Suryanarayana and Phanish, 2014; Ghosh and Suryanarayana).
10 Also identifiable as an additive group of integers modulo N .
11 In a forthcoming contribution, we will consider the case in which  consists of an infinite number of points. This can be used for example, to

represent a structure such as a bent silicene sheet that is periodic in the e3 direction while having cyclic symmetry around the e3 axis.
12 For the sake of simplicity, we will assume that none of the points are at the origin, although this assumption is not really required as far as theory

and methods developed in this work are concerned.
13 Alternately, an objective structure generated by a cyclic group, using the terminology employed in the work of Banerjee (2013), Dayal et al. (2015).
14 Following usual convention adopted in ab-initio theories, we will consider nuclear charge to be negative and therefore the electronic charge to be

positive. Additionally, we will neglect the core charges and consider only the valence charges, consistent with the use of the pseudopotential
approximation.

15 The electrons are not physically restricted to be confined to the fundamental domain. This situation is analogous to the band theory of crystalline
solids (Reed and Simon, 1978; Defranceschi and Le Bris, 2000), where a fixed number of electrons are prescribed to be in the periodic unit cell, although the
electrons can be spatially delocalized over the infinite crystal.

16 In practical calculations, = +N N N/2s e extra, and = −N 10 20extra for typically used electronic temperatures (Zhou et al., 2014).
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In the aforementioned setting, the Kohn-Sham equations in  can be written as17:

Lρ ϕ λ ϕ ϕ ϕ δ( ) = 〈 〉 = ( )( )K , , , 7ai i i i j ij2

ρ ρ ρ( ) = − Δ + ( ) + ( ) ( ) K V Vwhere
1
2

, , 7bes , xc

N

∑ρ ϕ( ) = | ( )|
( )=

fx xwith 2 ,
7ci

N

i i
1

2
s

π
Δ ρ− = + ( )V band

1
4

. 7des

λ λ
σ

= +
−

( )

−⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟fHere, 1 exp ,

7ei
i f

1

N

N

∑λ =
( )=

f Nwith s.t. 2 .
7f

f
i

N

i
1

e

s

The corresponding boundary conditions are:

ϕ∈ ∂ ( ) = ( )x xfor , 0, 8ai

ρ ( ) = ( )x 0, 8b

∫ρ
ρ

( ( ) ) =
( ) + ( )

| − | ( )
 
  

 V
b

x
y y

x y
yand ,

,
d .

8c
es ,

,

Above, ρ is the electron density; ρ( )K is the Kohn-Sham operator with eigenvalues λi and eigenfunctions Hϕ ∈ ( )i
1 , com-

monly referred to as the Kohn-Sham orbitals; Ves is the electrostatic potential (J. Pask and Sterne, 2005; J.E. Pask and Sterne,
2005; Suryanarayana et al., 2010; Suryanarayana and Phanish, 2014), written as the solution to the Poisson problem in Eqs.
(7d) and (8c); Vxc is the exchange-correlation potential; NNs is the total number of states18; ≤ ≤f0 1i are the thermalized
orbital occupations arising from the Fermi-Dirac smearing (Eq. (7e)) with parameter s; λf is the Fermi level of the system,
determined by the solution of Eq. (7f),19 and N( ) = ∑ ∑ ( )γ γ=

−
=  b by y x, ,k

M
k k, 0

1
1 , is the total nuclear pseudocharge density,

with bk being the pseudocharge of the kth nucleus.20 Due to the finite extent of the system under study and its overall charge
neutrality, zero-Dirichlet boundary conditions are prescribed on the Kohn-Sham orbitals ϕi (Hoffmann-Ostenhof et al., 1980;
Ahlrichs et al., 1981; Banerjee et al., 2015; Suryanarayana et al., 2010). It therefore follows from Eq. (7c) that the electron
density ρ also obeys this boundary condition. The Dirichlet boundary conditions prescribed on Ves are obtained by ex-
pressing the solution of Eq. (7d) in terms of the Green's function of the Laplacian (Ghosh and Suryanarayana).21

The self-consistent solution of the Kohn-Sham problem described by Eqs. (7) and (8) leads to the electronic ground-
state22 for the cyclic structure  , . The nonlinear eigenvalue problem is typically solved using a fixed-point iteration with
respect to either the electron density ρ or the total effective potential
17 Henceforth, the space of square integrable functions on the domain  will be denoted by L ( )2 , while the Sobolev space of functions in L ( )2 whose
kth order weak derivatives also lie in L ( )2 will be denoted by H ( )k . The subspace ofH ( )1 functions that vanish on the boundary ∂ in the trace sense will
be denoted by H ( )0

1 . The space of k-times continuously differentiable functions that are compactly supported on  will be denoted by k( )Cc . In particular,
continuous functions with compact support on  will be denoted as ( )Cc

0 .
18 This can be thought of as choosing Ns states corresponding to the fundamental domain.
19 As a result, the electron density satisfies the constraint on the total number of electrons:

N∫ ρ ( ) =
( ) Nx xd .
9e

20 Each (· )γb x,k k, is a spherically symmetric smooth function that is compactly supported in a small ball centered at γx k, , with net enclosed charge Zk.
This implies that bk can be expressed using the ansatz η( ) = (| − |)γ γb x x x x,k k k k, , , where η (·)k is a smooth one-dimensional function that satisfies
η ( ) = ∀ >r r r0k k and ∫ η π( ) =r r Z4 dr

rk
k k0

2 . As a result, the total nuclear pseudocharge density satisfies the relation

N∫ ∑( ) =
( )=

  


b Zx x, d .
10k

M

k,
1

21 As explained later, the boundary conditions for Ves can be numerically evaluated by direct quadrature or through the use of cylindrical multipole
moments.

22 Following standard terminology (Le Bris, 2003), we will refer to the electronic ground state to mean the self-consistent solution of the Kohn-Sham
equations for a given set of nuclear positions.
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ρ ρ( ) = ( ( ) ) + ( ( )) ( ) V V Vx x x, , 11eff es , xc

and this is commonly referred to as the SCF method (Slater, 1974). In each iteration of this method, the Poisson problem in
Eqs. (7d) and (8c) needs to be solved to calculate Veff , and the lowest NNs eigenstates of the linearized Kohn-Sham operator:

H = − Δ + ( ) ( )V x
1
2 12eff

need to be determined to calculate ρ.23 The eigenfunctions of H are subjected to zero–Dirichlet boundary conditions,
consistent with the Kohn-Sham orbitals.

At the electronic ground-state, the system's free energy can be evaluated by means of a Harris-Foulkes (Harris, 1985;
Foulkes and Haydock, 1989) type functional (Ghosh and Suryanarayana)24:

N

N

N

∫ ∫

∫

∫

( )

( )

∑

∑ ∑

∑

λ ε ρ ρ ρ ρ

ρ

σ

( ) = + ( ( )) ( ) − ( ( )) ( )

+ ( ) − ( ) ( )

− ( ) ( )

+ + ( − ) ( − )
( )

γ
γ γ

=

=

−

=

=

 

 

   

    





f V

b V

b V

f f f f

x x x x x x

x x x x

x x x x x

2 d d

1
2

, , d

1
2

, , d

2 log 1 log 1 ,
13

i

N

i i

k

M

k k k k

i

N

i i i i

,
1

xc xc

, es ,

0

1

1
, ,

1

s

s

where the first term is the so called Kohn-Sham band energy; the second and third terms arise from the exchange-cor-
relation effects; the fourth and fifth terms arise due to electrostatic interactions and pseudocharge self energies, respec-
tively; and the last term represents the free energy associated with the electronic entropy of the system. The corresponding
Hellmann-Feynman force (Finnis, 2003; Parr and Yang, 1994; Martin, 2004) on the atom γx k,

25 can be written as (Sur-
yanarayana and Phanish, 2014; Ghosh and Suryanarayana)26:

∫ ( )= −
∂ ( )
∂

= ∇ ( ) ( ) − ( )
( )γ

γ γγ
   

  b V Vf
x

x x x x x x, , , d .
15k

k k k kx
,

,
, es , ,k,

The problem of determining the equilibrium geometry27 of the cyclic structure can be stated as solving the minimization
problem28:

R Nγ Γ( ) = ∈
( )

γ
γ

{ ∈ }γ
 

  
 

x xinf , subject to , for .
16

k k
x

, , 0,
k, ,

For every atomic configuration that arises during this geometry optimization procedure, the electronic ground-state needs
to be determined by solving the Kohn-Sham equations in Eqs. (7) and (8), after which the corresponding free energy and
atomic forces can be calculated using Eqs. (13) and (15), respectively.

2.3. Symmetry cell reduction of the Kohn-Sham problem for cyclic structures

We now describe how the underlying symmetry of cyclic structures can be utilized to perform a symmetry cell reduction
of the Kohn-Sham DFT problem described in the previous subsection to the fundamental domain.

2.3.1. Reduction of the electron density
A natural starting point is to make the assumption that the electron density ρ inherits the symmetry of the cyclic

structure. Thus, for (almost) every ∈ x and for Nγ Γ∈ , we may write29:
23 It is possible to calculate the electron density directly from H, without actually calculating the orbitals (e.g., see Suryanarayana, 2013a, 2013b;
Pratapa et al., 2015).

24 In some cases, it might be necessary to add a term ( ) Eoverlap , to the free energy expression in order to account for the possible overlaps of the
pseudocharges (Suryanarayana and Phanish, 2014; Ghosh and Suryanarayana).

25 More specifically, its nucleus.
26 If ( ) Eoverlap , is included in the free energy expression in Eq. (13), it becomes necessary to add the term

( ) = −
∂ ( )

∂ ( )
γ

γ

 E
f x

x 14
k

k
overlap ,

overlap ,

,

to the atomic force in order to account for possible overlaps of pseudocharges (Suryanarayana and Phanish, 2014; Ghosh and Suryanarayana).
27 In principle, an equilibrium geometry (i.e., a configuration in which the internal forces on the atoms are all zero) can be associated with a local

minimum, maximum or saddle point of the energy landscape. However, most applications in mechanics are usually concerned with energy minimizing
structures and we will also restrict our attention to such cases.

28 In practice, several local structural minima (and not just a single global minimum) may be involved in the energy landscape of a structure.
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Rρ ρ( ) = ( ) ( )γx x . 17

This assumption is very similar in nature to that commonly used in crystal lattice calculations, wherein it is assumed that
the electron density inherits the translational symmetry of the lattice (Defranceschi and Le Bris, 1997; Rhodes, 2010; Rohrer,
2001; Giustino, 2014). Analogous to that case, it is conceivable that period doubling (i.e., cyclic group order halving in our
case) charge density waves or Pierels instabilities (Peierls, 1955; Gruner, 2000; Kennedy and Lieb, 2004) can occur in the
system, leading to a structural transition and a breakdown of the assumption in Eq. (17). In such a case, a larger cyclic unit
cell that corresponds to a lower group order needs to be employed. However, the study of such instabilities, including the
detection of their onset as well as their physical consequences is beyond the scope of the present contribution and is a
compelling topic for future research.30

2.3.2. Reduction of the effective potential
Let us now consider the consequences of the cyclic group invariance of the electron density (i.e., Rρ ρ( ) = ( )γx x for Nγ Γ∈ )

on the effective potential. First we observe:

Proposition 2.1. The following conditions hold for the pseudocharges and the corresponding potentials for a cyclic structure:

1. For any Nγ Γ∈ , the nuclear pseudocharges (·)bk and the corresponding pseudopotentials (·)Vk obey the conditions:

R N( ) = ( ) ( )γ
γ−b bx x x x, , , 18k k k k0, ,

R N( ) = ( ) ( )γ
γ−V Vx x x x, , . 19k k k k0, ,

2. The total nuclear pseudocharge

N N

∑ ∑ ∑ ∑ η( ) = ( ) = (| − |)
( )γ

γ
γ

γ
=

−

= =

−

=

 
 

b bx x x x x, ,
20k
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k k,
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1

1
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0
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1
,

is invariant under .
Proof.

1. The radial symmetry of (·)bk implies that R RN( ) = ( )γ γ−b bx x x x, ,k k k k0, 0, , from which Eq. (18) follows. Next, using the
change of variables RN =γ− y z, we get:

R
R R R R

R R
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N

N
N

∫ ∫
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from which Eq. (19) follows.
2. We note that for any Nγ γ Γ∈, 1 , the rotation matrix RN γ− acting on the point R=γ

γx xk k, 0,1
1 produces the point

R=γ
γx xk k, 0,2

2 , with N Nγ γ γ= ( − + )mod2 1 . In this situation, if γ is held fixed while γ1 is allowed to cycle through the
elements of NΓ , γ2 also cycles through each element of NΓ , thus yielding the group orbit of x k0, under . Thus, we may
write for any Nγ Γ∈ :

R R R

R R R R
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where we have used the spherical symmetry of ηk to arrive at the third equality. □
29 As a consequence of Proposition 2.7, Eq. (17) can be interpreted as cyclic boundary conditions (on the surfaces ∂C ) applied to the electron density
when restricted to the fundamental domain.

30 It is likely however, that the cyclic band structure and cyclic phonon diagrams obtained from Cyclic DFT computations (Section 3.3) will be in-
strumental in the prediction of such instabilities.
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Next, we use the above result to show:

Proposition 2.2. The total effective potential

ρ ρ( ) = ( ( ) ) + ( ( )) V V Vx x x,eff es , xc

is invariant under .
Proof. It suffices to show that both the terms that constitute ( )V xeff are individually group invariant. The exchange-corre-
lation potential ρ( ( ))V xxc is invariant by virtue of the invariance of ρ ( )x . To show the invariance of the electrostatic potential,
we recall that it can be written as

∫ρ
ρ

( ( ) ) =
( ) + ( )

| − | ( )
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where we have used the change of variables R= γy z and the invariance of the Lebesgue measure under rotations to arrive at
the second equality. Further, we have used the invariance of ρ (Eq. (17)) and b (Eq. 20) to arrive at the third equality. □

As a consequence of the above results — specifically, the cyclic group invariance of ( ) b x, , and ρ( ( ) ) V x ,es , — the
Poisson problem in Eqs. (7d) and (8c) can be reduced to the fundamental domain, with cyclic boundary conditions on the
surfaces ∂C .

2.3.3. Reduction of the linear eigenvalue problem
We recall that in the every iteration of the SCF method, it is necessary to compute part of the spectrum associated with

the linearized Kohn-Sham operator:

H = − Δ + ( ) ( )V x
1
2

, 25eff

where the effective potential ( )V xeff has been evaluated from the electron density calculated during the previous SCF
iteration. Assuming that ( )V xeff is a continuous function,31 it can be shown that the operator H on L ( )2 , with domain

H HH( ) = ( ) ∩ ( ) Dom 2
0
1 , is an elliptic self-adjoint operator with a compact resolvent (Banerjee, 2013; Evans, 1998; Renardy

and Rogers, 2004; Kato, 1995). Therefore, H has an increasing sequence of real eigenvalues, with the associated
eigenfunctions32 forming an orthonormal basis of L ( )2 .

Let us assume that the electron density calculated during the previous SCF iteration is group invariant.33 It follows from
Proposition 2.2 that the effective potential ( )V xeff in the current SCF iteration is also group invariant. This leads us to the
following observation:

Proposition 2.3. With ( )V xeff continuous over  and group invariant, the operator H commutes with the action of the group  on
functions in L ( )2 , i.e., for any Nγ Γ∈ , if L L( ) → ( )γ  T : 2 2 is an operator such that R( )( )↦ ( )γ

γ −T f fx x1 , then for any function
H∈ ( )f Dom , we have H H=γ γT f T f .

Proof. Since the function space ( )Cc
2 is dense in H( )Dom , it suffices to verify this result for ∈ ( )f Cc

2 . Using a change of
variables calculation, it can be shown that the Laplacian operator commutes with rotations, and therefore with the operators
Tγ. This combined with the group invariance of ( )V xeff establishes the required result. □

It can be shown that the collection of operators Nγ Γ{ ∈ }γT : form a faithful unitary representation34 of the group  on the
space L ( )2 (Banerjee, 2013). Proposition 2.3 shows that the operator H is left invariant by these representations, i.e., we may
write H H( ) =γ γ

−T T 1 . In order to exploit this invariance property for further analysis, it becomes natural to use tools from the
31 This is indeed true if ρ is continuous (Banerjee, 2013), as is evident from Eq. (11).
32 Although a finite cylinder has edges on its boundary, the eigenfunctions are expected to be at least H ( )2 regular since the domain is convex

(Grisvard, 2011).
33 This is indeed the case in Cyclic DFT, as shown in Section 2.3.4.
34 Each operator Tγ is unitary and together the collection Nγ Γ{ ∈ }γT : forms an identity preserving homomorphism of  on the carrier space L ( )2 . Since

the representation is faithful, the map R∋ ↦γ γ T is in fact an isomorphism.
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representation theory of finite groups (Banerjee, 2013; Folland, 1994; Barut and Raczka, 1986). We proceed to do so by first
noting the following result (see Theorem 2.3.18 of Banerjee, 2013, as well as Bossavit, 1986, 1993) stated here without proof:

Lemma 2.4. For Nν γ Γ∈, , let Nχ γ( ) =ν

π νγ
e

2 i
and let

N N

N N

N∑ ∑χ γ= ( ) =
( )

ν

γ
ν γ

γ

π νγ
γ

=

−

=

−
−P T T

1 1
e .

260

1

0

1 2 i

The operators νP are projection operators on L ( )2 , and the ranges of these projectors L( )= ( )ν ν V P 2 form closed, mutually

orthogonal subspaces of L ( )2 for different values of ν. The following direct sum decomposition holds:

L
N

( ) = ⊕
( )ν

ν

=

− V ,
27

2

0

1

and further ∈ νf V if and only if it obeys the condition:

R( ) χ γ( ) = ( ) = ( ) ( ) ( )γ
γ

ν
−T f f fx x x . 281

The complex scalars χ γ( )ν are the so called characters of the group , and the projectors νP are the associated Peter-Weyl
projectors (Folland, 1994). The range νV of each projector forms an invariant subspace of L ( )2 . A useful corollary of the above
result follows immediately by looking at the case ν¼0:

Corollary 2.5. For any given scalar function f on , the function R
N∑ ( )γ

γ
=
− f x0

1 is group invariant.

The condition H H( ) =γ γ
−T T 1 implies that the subspaces νV are invariant subspaces for the operator H as well. This allows

us to block-diagonalize H so that we may write:

H H
N

= ⊕
( )ν

ν

=

−
,

290

1

with each H H=ν νP denoting the projection of H onto the invariant subspace νV . As a result, the eigenstates of H may be
computed by solving each of the projected problems associated with H Nν Γ∈ν , . Consequently, the eigenfunctions of H obey
the cyclic-Bloch condition shown in Eq. (28). We may summarize this discussion and rigorously establish the result as
follows:

Theorem 2.6 (Cyclic Bloch Theorem). Given a potential ( )V xeff which is continuous on  and invariant under the cyclic group ,
there exists a basis of L ( )2 such that every eigenstate v of the operator H = − Δ + V1

2 eff obeys the following condition (for any
Nγ Γ∈ ):

R N( ) χ γ( ) = ( ) ( ) = ( ) ( )γ
ν

π νγ
−v v vx x xe , 301

2 i

for some Nν Γ∈ . Conversely, for every Nν Γ∈ , there exists at least one eigenvector of H obeying the above condition.

Proof. Since H commutes with each of the operators in Nγ Γ{ ∈ }γT : , and since the projectors νP introduced in Eq. (26) are
linear combinations of the operators in Nγ Γ{ ∈ }γT : , H also commutes with each of the projectors. This means that H leaves
the range νV of each of the projectors invariant. This is because if ∈ νf V , then =νP f f and further:

H H H( ) = ( ) = ( )ν νP f P f f , 31

which implies that H ∈ νf V . Note that this also implies that H leaves ( )ν ⊥V — the orthogonal complement of νV — invariant as
well. This can be easily checked by looking at the projection operator − ν P (with  denoting the identity operator on L ( )2 ),
which projects onto the orthogonal complement of νV .
The above conditions imply that H must have at least one eigenvector ∈ νv V for every Nν Γ∈ . To establish this (for any
Nν Γ∈ ), we first recall that the eigenvectors of H form a complete orthonormal basis set in L ( )2 . Since νV is a closed subspace

of L ( )2 , there exists an eigenvector v of H which is not completely orthogonal to νV . We write this eigenvector as = +v v v1 2

with ∈ ≠νv V v, 01 1 and ∈ ( )ν ⊥v V2 . Subsequently, we have:

H H λ λ= ( + ) = = ( + ) ( )v v v v v v , 321 2 1 2

which implies that H Hλ λ− = −v v v v1 1 2 2. Since H leaves both νV and its orthogonal complement invariant, the left hand side
of this expression lies in νV while the right hand side lies in ( )ν ⊥V . Since ∩ ( ) = { }ν ν ⊥V V 0 , it must be that H λ=v v1 1 and
H λ=v v2 2 and so, (possibly after an appropriate choice of basis of L ( )2 ) ∈ νv V1 and ∈ ( )ν ⊥v V2 are individual eigenvectors of H,
as required.35
35 We may now repeat this argument for the orthogonal complement of v1 within VV— since this subspace is also left invariant byN , an eigenvector of
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Next, we observe that by suitable choice of an orthonormal basis of L ( )2 , every eigenvector of H can be made to lie in one
of the subspaces νV . To see this, we note that since the decomposition of L ( )2 into the invariant subspaces νV is exhaustive
(Eq. (27)), every eigenvector of H either lies in one of the subspaces νV or it can be written as a linear combination of
eigenvectors from these subspaces. If the eigenstates of H are non-degenerate (i.e., there is no repeated eigenvalue), the
second option is ruled out as follows: writing the eigenvector as N= ∑ν ν ν=

−v c v0
1 , with ∈ ∈ν

ν
ν v V c, , a calculation similar to

the one in the previous paragraph shows that each individual component νv must be an eigenvector as well (since
∩ = { }ν ν′V V 0 for ν ν≠ ′). However, this would violate the orthogonality of the eigenvectors of H since 〈 〉 ≠νv v, 0 unless =νc 0.

In the presence of degeneracies,36 any linear combination of the degenerate eigenstates from different invariant subspaces is
still an eigenstate for H. In this case, we may choose the basis vectors of L ( )2 appropriately so that the individual eigenstates
from the different invariant subspaces (and not their linear combinations) are identified as the eigenvectors of H.
Finally, since every eigenvector v of H lies in one of the invariant subspaces νV , the condition in Eq. (30) can be simply

identified as the characterization of the subspaces presented in Eq. (28), thus establishing the theorem.37 □

We may use the Cyclic Bloch theorem to reduce the physical domain of the eigenvalue problem associated with H from 
to the symmetry cell . Roughly speaking, since every point in  can be obtained as the action of a rotation matrix Rγ (for
some Nγ Γ∈ ) acting on a point in the fundamental domain , it suffices to specify a function ∈ νf V (in particular, an
eigenvector ∈ νv V of H) using only the points within the fundamental domain, as long as boundary conditions consistent
with Eq. (28) are prescribed on ∂C . We summarize this result as follows:38

Proposition 2.7. Let ∈ ∂x C such that R ∈ ∂γ x C for some Nγ Γ∈ and39 let ( )cl. denote the (topological) closure of the
fundamental domain. A function H( )∈ ∩ ( )ν f V 0

1 if and only if the restriction of the function to ( )cl. , denoted by ˜ = | ( )f f cl. ,
satisfies

R Nχ γ˜ ( ) = ( ) ˜ ( ) = ˜( ) ∈ ∂ ( )γ
ν

π νγ− f f fx x x xe for . 33C
2 i

Proof. Since the function space ( )Cc
0 is dense inH ( )0

1 , it suffices to work with such functions. If ∈ ∩ ( )ν f V Cc
0 , then it obeys

Eq. (28) for all ∈ x and in particular on the surfaces ∂ ⊂ C . On the other hand, if f̃ is a continuous function defined over
the fundamental domain such that it obeys Dirichlet boundary conditions on ∂0 and the condition in Eq. (33) on ∂C for
some Nγ ν Γ∈, , we may define an extension f of f̃ to all of  as follows. For any ∈ y (such that y does not lie on the axis e3)
we may identify a point ∈ x and a rotation matrix R ∈γ 2 such that R= γy x2 . Then, we set

R N( ) = ( ) = ˜( ) ( )γ
π νγ−f f fy x xe , 34

2 i
2

2

and f¼0 on ∂. The function f defined this way is compactly supported on  and is continuous across each of the surfaces
R (∂ )γ 1 for any Nγ Γ∈1 , by virtue of Eq. (33). By the continuity of f̃ in the interior of, f is also continuous in the interior of
R ( )γ 1 . Thus, ∈ ( )f Cc

0 . Further, Eq. (34) implies that f obeys Eq. (28) and therefore by Lemma 2.4, ∈ νf V . This establishes
the sought result. □

As a consequence of the above result, the Cyclic Bloch Theorem may be reinterpreted to mean that the eigenstates of H
can be obtained by solving N independent eigenvalue problems associated with the operators Hν ( Nν Γ∈ ) over the fun-
damental domain. Each problem corresponds to a projection of the original problem to one of the subspaces νV , and
therefore it obeys zero-Dirichlet and cyclic-Bloch (Eq. (33)) boundary conditions on the surfaces ∂0 and ∂C , respectively.
Generically, each of these problems results in an infinite sequence of orthonormal eigenstates.

It is worth noting that Theorem 2.6 represents an extension of the Bloch theorem used in classical solid state physics
(Ashcroft and Mermin , 1976; Reed and Simon, 1978; Odeh and Keller, 1964) to cyclic structures. A further generalization of
this result to the case of structures with more complex symmetries (or Objective Structures) can be found in the first
author's thesis work (Banerjee, 2013, 2011). Theorem 2.6 appears in a somewhat more rudimentary form with certain key
details omitted in Sattlegger (2007). The gist of the result also appears in the physics literature (Koskinen and Kit, 2010a; Kit
et al., 2011a) — however, only in the context of tight binding and not Kohn-Sham DFT — wherein the derivation follows a
line of heuristic reasoning (aimed at guessing the correct extension of the classical Bloch Theorem), and therefore lacks the
(footnote continued)
N can be found in it. Proceeding in this fashion (i.e., considering the orthogonal complement within VV of the linear span of the eigenvectors found so far),
we can in fact show the existence of infinitely many eigenvectors of N in VVas long as the subspace VV is infinite-dimensional.

36 While it might be tempting to simplify the statement and proof of Theorem 2.6 by assuming lack of any degeneracies, examples appear to indicate
that degeneracies in the spectrum of H might generically appear (e.g., see Banerjee and Elliott, 2016). Thus, we find it useful to add the caveat that the
cyclic-Bloch boundary conditions (Eq. (30)) can be expected to hold for any eigenstate of H provided an appropriate choice of basis vectors of L ( )2 has been
made. We are grateful to the anonymous reviewer for pointing out this subtle issue to us.

37 The proof presented here is slightly different in technical details from that presented in Banerjee (2011), Banerjee (2013). In the latter case, a more
direct use of Schur's Lemma (Folland, 1994), as applied to the resolvent operator of the Hamiltonian was made.

38 It becomes necessary to work with functions inH ( )0
1 so that boundary conditions on ∂ can be interpreted in the trace sense. The eigenvectors of

H are actually more regular than functions in H ( )0
1 .

39 For the cylindrical geometries that we are considering, Nγ ∈ { − }0, 1, 1 .
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mathematical rigor adopted here.

2.3.4. Consistency of the SCF method after symmetry cell reduction
While performing the symmetry cell reduction of the linear eigenvalue problem, we have assumed that the electron

density calculated during the previous SCF iteration is group invariant. It is therefore important to ensure that the electron
density remains group invariant throughout the complete fixed-point iteration. To do so, we note that as a consequence of
the reduction achieved by the Cyclic Bloch Theorem, the electron density in any SCF iteration can be calculated using the
expression 40:

N

∑ ∑ρ ϕ˜( ) = | ˜ ( )|
( )ν

ν ν

=

−

=

fx x2 ,
35i

N

i i
0

1

1

2
s

where ϕ̃ ν
i are the eigenfunctions of Hν, and νfi are the corresponding occupations obtained using the Fermi-Dirac smearing.

An inspection of Eq. (35) reveals that the electron density calculated in any SCF iteration satisfies (for any Nγ Γ∈ ):

R R

N

N∑ ∑ ∑ ∑ρ ϕ ϕ ϕ ρ˜( ) = | ˜ ( )| = | ˜ ( )| = | ˜ ( )| = ˜( )
( )

γ

ν

ν ν γ ν π νγ ν ν ν

=

−

= =

−

=

f f fx x x x x2 2 e 2 .
36i
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i i
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i i
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N

i i
0

1

1

2

1

2 i
2

1

2
s s s

Thus, the extension of this density to the entire domain  is continuous and is group invariant. Consequently, it follows from
Proposition 2.2 and Theorem 2.6 that the Kohn-Sham Hamiltonian resulting from this density can once again be reduced to
the fundamental domain with the aid of the cyclic-Bloch boundary conditions. This ensures that SCF iterations remain
consistent provided one starts performing these iterations with an electron density that is group invariant. In principle, such
an electron density may be generated by considering any ρ′ ∈ ( )Cc

0 obeying N∫ ρ′( ) = Nx xd e and then constructing

N
R

N

∑ρ ρ( ) = ′( )
( )γ

γ

=

−

x x
1

.
37

0
0

1

It follows from Corollary 2.5 that the guess electron density ρ0 is group invariant, and therefore its restriction to the fun-
damental domain serves as a suitable starting point.

2.3.5. Reduction of the free energy and the atomic forces
Having performed a symmetry cell reduction of the self-consistent Kohn-Sham equations, we now express the cyclic

structure's free energy at the electronic ground-state, as well as the Hellmann Feynman forces on the atoms, in terms of
quantities defined over the fundamental domain.

To simplify the free-energy, we use the cyclic-Bloch reduction to rewrite the first (band energy) and last (electronic
entropy energy) terms of Eq. (13) as follows:

N

∑ ∑ λ=
( )ν

ν ν

=

−

=

E f2 ,
38i

N

i iband
0

1

1

s

N

( )∑ ∑σ= + ( − ) ( − )
( )ν

ν ν ν ν

=

−

=

E f f f f2 log 1 log 1 ,
39i

N

i i i ientropy
0

1

1

s

where λ ν
i are the eigenvalues of Hν at self-consistency. In addition, νfi are the corresponding occupations obtained using the

Fermi-Dirac smearing. The second, third, and fourth terms of Eq. (13) are integrals over the complete domain  with in-
tegrands that are group invariant. Consequently, they can be reduced to the fundamental domain as follows:

N∫ ∫ε ρ ρ ε ρ ρ( ( )) ( ) = ( ˜( )) ˜( )
( ) 

x x x x x xd d ,
40

xc xc

N∫ ∫ρ ρ ρ ρ( ( )) ( ) = ( ˜( )) ˜( )
( ) 

V Vx x x x x xd d ,
41

xc xc

N ( )∫ ∫( )ρ ρ( ) − ( ) ( ) = ˜( ) − ˜( ) ˜ ( )
( )
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, , d
2

, , d .
42
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To see how the fifth term in Eq. (13), i.e., pseudocharge self energy term:
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k k k kself ,
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, ,
40 Henceforth, a tilde will be used to denote that the quantity has been defined over the fundamental domain  .
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can be reduced to the fundamental domain, we recall Proposition 2.1 (part 1), to write:
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where the fourth equality is obtained by observing that each of the integrands in the previous expression are group in-
variant via Corollary 2.5. Note that, b̃k and

∼
Vk are the restriction of bk and Vk to the fundamental domain.

Next, we consider the reduction of the atomic forces. As a consequence of the frame indifference of the free energy
( )  , , the Hellmann-Feynman force on the atom located at R=γ

γx xk k, 0, is related to the force experienced by the cor-
responding atom ∈ x k0, within the fundamental domain  through the relation41:

R RN= ( ) = ( ) ( )γ γ−
γf f f , 45T

x x xk k k, 0, 0,

where

∫ ( )= ∇ ( ) ( ) − ( ) ( )
  b V Vf x x x x x x, , , d ,

46k k k kx 0, es , 0,k0,

and Ves is the solution of the Poisson problem in Eqs. (7d) and (8c) at the electron density associated with the (electronic)
ground-state. Therefore, it suffices to calculate the forces for only those atoms that are located within the fundamental
domain, the expression for which can be rewritten in terms of quantities expressed over the fundamental domain as fol-
lows:
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k0,

where the second equality is obtained by using cyclic boundary conditions:

R( ) = ( ) = ( )∼γ      V V Vx x x, , , ,es , es , es

and Proposition 2.1 (part 1).
2.4. Cyclic DFT: Kohn-Sham problem on the fundamental domain for cyclic structures

We now summarize the formulation of Cyclic DFT developed in the previous subsections. After the symmetry cell re-
duction depicted in Fig. 2, the Kohn-Sham equations on the fundamental domain  can be written as (for Nν Γ∈ )

L
N

ρ ϕ λ ϕ ϕ ϕ δ( ˜) ˜ = ˜ 〈 ˜ ˜ 〉 = ( )
͠ ν ν ν ν ν

( )K ; ,
1

, 48ai i i i j ij2

ρ ρ( ˜) = − Δ + + ( ˜) ( )
͠ ∼

K V Vwhere
1
2

, 48bes xc
41 This result is not restricted only to the case of Kohn-Sham DFT however – it holds for more general theories such as the many body Schrödinger
equation in Born-Oppenheimer quantum mechanics (Dumitrica and James, 2007).



Fig. 2. Schematic of cyclic unit cell reduction. (a) The original problem for the cyclic structure posed in the cylinder  . The orbitals and the electron density
are subjected to zero-Dirichlet boundary conditions on the surfaces S , S , S1 2 3. On these surfaces, the electrostatic potential is given by Eq. (8c). Note that
∂ = ∪ ∪ S S S1 2 3 in the notation of the text, (b) The symmetry cell reduction results in cyclic-Bloch boundary conditions for the orbitals and cyclic boundary
conditions for the density on the surfaces B , B1 2. Both the electron density and the orbitals are subjected to zero-Dirichlet boundary conditions on the
surfaces D , D , D1 2 3 and (c) Another view of the cyclic unit cell  and the cyclic cell reduction. Bottom surface D2 has not been shown. The electrostatic
potential obeys cyclic boundary conditions on the surfaces B , B1 2 and is given by Eq. (49f) on D , D , D1 2 3. Note that ∂ = ∪ ∪ D D D0

1 2 3, while ∂ = ∪ B BC
1 2

in the notation of the text.
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The corresponding boundary conditions on ∂ = ∂ ∪ ∂    C 0 are

R Nϕ ϕ∈ ∂ ˜ ( ) = ˜ ( ) ( )
ν γ

π νγ ν−x x xfor , e , 49aC
i i

2 i

Rρ ρ˜( ) = ˜( ) ( )γx x , 49b

R( ) = ( ) ( )∼ ∼γ  V Vx xand , , . 49ces es

ϕ∈ ∂ ˜ ( ) = ( )
νx xFor , 0, 49di

0

ρ̃( ) = ( )x 0, 49e
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| − | ( )
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γ
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=
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49f
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In each iteration of the SCF method in Cyclic DFT, the following linear eigenproblems (there areN of them, one for each ν):

Nϕ λ ϕ ν− Δ + ˜ = ˜ = … −
( )

∼ ν ν ν⎛
⎝⎜

⎞
⎠⎟V

1
2

, 0, 1, , 1,
50i i ieff

where

ρ ρ( ) = ( ˜( ) ) + ( ˜( )) ( )
∼ ∼ V V Vx x x, , 51eff es xc

need to be solved for the lowest Ns eigenvalues and corresponding eigenfunctions. The eigenfunctions are subject to the cyclic-
Bloch boundary conditions in Eq. (49a) and zero-Dirichlet boundary conditions in Eq. (49d). The symmetry cell reduced
electrostatic potential

∼
Ves is obtained by solving the Poisson equation in Eq. (48d) subject to the cyclic boundary conditions in

Eq. (49c) and Dirichlet boundary conditions in Eq. (49f).
At the electronic ground-state, the free energy per unit cell of the cyclic structure, i.e., the quantity N( ) = ( )͠     /, , can

be expressed in terms of quantities over the fundamental domain as:42
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The corresponding Hellmann-Feynman atomic force takes the form43:

N

( )∫∑= ∇˜ ( ) ( ) − ( )
( )

∼ ∼

γ
γ γ

=

−




b V Vf x x x x x x, , , d .
53

k k k kx
0

1

, es ,k0,

The problem of determining the equilibrium geometry44 of the cyclic structure as described by Eq. (16) can be re-
formulated as:

( )
( )

͠
{ ∈ }

 


inf .
54x k0,

Indeed, it follows from Eq. (45) that if the atoms in the fundamental domain are in equilibrium, so is every other atom in the
cyclic structure.

2.5. Symmetry-adapted finite-difference discretization

Having formulated the governing equations of Cyclic DFT, we now describe a discretization strategy. We fix  to be an
annular cylinder45 with axis e3, height H, inner radius Rin, and outer radius Rout. Let the cyclic structure have a symmetry group
of order N . It follows that the fundamental domain  is a sector of the annular cylinder with angle Nπ2 / . To ensure that the
42 If the term ( ) Eoverlap , is included in the expression in Eq. (13), it is also necessary to include a term of the form N( ) = ( )
∼   E E /overlap overlap , in Eq.

(52). This term can be expressed in terms of integrals over the fundamental domain, analogous to other the terms on the right hand side of Eq. (52).
43 It might be necessary to include the term ( )f x koverlap 0, — described earlier in footnote 26 — in Eq. (46) to account for possible overlaps of pseu-

docharges. This quantity can be expressed in terms of integrals over the fundamental domain, analogous to the other terms in Eq. (53).
44 Once again, this should be interpreted in the sense of computing local structural minima (i.e. local minima in the ground state electronic free energy

as the atomic positions are varied).
45 The use of an annular region enhances the efficiency of the discretization scheme not only due to reduced degrees of freedom, but also due to the

improved conditioning of the various matrices resulting from the discretization. In addition, it avoids the coordinate system singularity along the line r¼0,
which would otherwise require special treatment (see for e.g. Mohseni and Colonius, 2000; Lai, 2001).
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resulting discretization scheme is compatible with the cyclic symmetry of the system, we work in cylindrical coordinates
( ϑ )r z, , . In this setting46, the linear eigenproblems in Eq. (50) take the form:

ϕ ϕ ϕ ϕ
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with boundary conditions (Eqs. (49a) and (49d)):

N
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56i i
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ϕ ϕ ϕ ϕ˜ ( ϑ = ) = ˜ ( ϑ = ) = ˜ ( = ϑ ) = ˜ ( = ϑ ) = ( )
ν ν ν νr z r z H r R z r R z, , 0 , , , , , , 0. 57i i i iin out

Similarly, the Poisson equation in Eq. (48d) can be written as:
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with boundary conditions (Eqs. (49c) and (49f)):

N
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⎠V r z V r z, 0, ,

2
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V r R z r R z V r R z r R z, , , , , , , , , , 60es in in es out out

v v( ϑ = ) = ( ϑ = ) ( ϑ = ) = ( ϑ = ) ( )∼ ∼
V r z r z V r z H r z H, , 0 , , 0 , , , , , . 61es es

Above, v( ϑ )r z, , denotes the quantity obtained by evaluation of Eq. (49f) at the point with cylindrical coordinates ( ϑ )r z, , .
We discretize the equations of Cyclic DFT using the finite-difference method with a uniform grid spacing of Δr ,Δϑ andΔz

in the radial, angular and e3 directions, respectively. Specifically, we employ a finite-difference mesh that consists of the
points

= × × ( )ϑ    , 62R z

where R, ϑ , and z represent the nodes in the radial, angular and e3 directions, respectively, i.e.,

= { + Δ … + ( − )Δ = } ( ) R R r R N r R, , , 1 , 63R rin in in out

N
θ π θ= { Δϑ … ( − )Δ = − Δ } ( )ϑ ϑ N0, , , 1

2
, 64

= { Δ … ( − )Δ = } ( ) z N z H0, , , 1 , 65z z

and Nr, ϑN and Nz denotes the number of grid points in the corresponding directions. We index the nodes by the triplet of
natural numbers ( )ϑk k k, ,r z , with ∈ { … }k N1, 2, ,r r , ∈ { … }ϑ ϑk N1, 2, , and ∈ { … }k N1, 2, ,z z , so that the grid point with the
indices ( )ϑk k k, ,r z refers to the physical point ( ϑ ) ∈ϑ r z, ,k k kr z . While discretizing the governing equations, we represent the
values of the various fields involved by their values at the finite-difference nodes. This casts the infinite dimensional pro-
blem to one posed on a linear space of dimension ϑN N Nr z.

We express the various derivatives in Eqs. (55) and (58) using high-order finite-differences:
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46 In the notation introduced earlier, the points with cylindrical coordinates ( )∈ [ ] ϑ = ∈ [ ]r R R z H, , 0, 0,in out and
N( )∈ [ ] ϑ = ∈ [ ]πr R R z H, , , 0,in out
2

form the surfaces ∂C , while the points
N( )∈ [ ] ϑ ∈ [ ] =πr R R z, , 0, , 0in out
2 ,

N( )∈ [ ] ϑ ∈ [ ] =πr R R z H, , 0, ,in out
2 ,

N( )= ϑ ∈ [ ] ∈ [ ]πr R z H, 0, , 0,in
2 and

N( )ϑ ∈ [ ] ∈ [ ]πR z H, 0, , 0,out
2 form the surfaces ∂0 .
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where the s-coordinate represents any one of the r, ϑ or z-coordinates. The weights appearing in the above equations can be
written as (Suryanarayana and Phanish, 2014; Mazziotti, 1999):
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whereΔs denotes the mesh spacing along the s-coordinate. With these weights, the finite-difference expressions in Eqs. (66)
and (67) represent −n2 ordero accurate approximations, i.e., the error is (Δ ) s n2 o .

On approximating the derivatives using finite-differences, the eigenvalue equations in Eq. (55) take the form:
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During the application of the finite-difference stencils, any reference to grid points which do not lie in  is resolved by
using the discrete representation of the boundary conditions in Eqs. (56) and (57):
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Analogously, the Poisson equation in Eq. (58) can be written in discrete form as:
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with the discrete representation of the boundary conditions in Eqs. (59) and (61)being47:
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The values of v( ϑ )r z, , are computed by means of direct numerical quadrature or using a multipole expansion in cylindrical
coordinates (Cohl and Tohline, 1999; Wikipedia, 2009).

The evaluation of the electronic ground-state free energy via Eq. (52) and the atomic forces via Eq. (53) requires a recipe
for evaluating integrals over the fundamental domain. To this end, we employ the quadrature rule:
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47 For <k 1r or >k Nr r , the point rkr is used to denote the extension of the mesh in the radial direction, beyond the points Rin and Rout, respectively.
Thus, kr¼0 denotes points with radial coordinate − ΔR rin , while = +k N 1r r denotes points with radial coordinate + ΔR rout . Similar considerations hold in
the z-direction.
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The numerical evaluation of the gradient operator for computation of the atomic forces merits further consideration. Since
the derivation of Eq. (15) (and consequently, Eq. (53)) implicitly assumes that the gradient operator is expressed in Cartesian
coordinates (for e.g., see Ghosh and Suryanarayana), we need to express the Cartesian gradient in cylindrical coordinates so
that Eq. (53) can be evaluated by means of the finite-difference operators Dr, ϑD and Dz. For example, the computation of the
e1 component of the force requires application of the operator ∂

∂x
, or equivalently, (ϑ) − (ϑ) ≈ (ϑ) − (ϑ)∂

∂
∂
∂ϑ ϑD Dcos sin cos sin

r r .
Such an approach (Banerjee et al., 2016) results in the atomic forces being evaluated in Cartesian coordinates directly, which
is more convenient for atomic relaxation and molecular dynamics calculations.

We note that the Laplacian and Hamiltonian matrices resulting from the above discretization are non-Hermitian, even
though the infinite-dimensional operators from which they arise are Hermitian (i.e., self-adjoint). Having said this, each
matrix does approach a Hermitian matrix as the discretization is refined and/or the finite difference order no is increased.
This issue is well known in the literature (for example, in the context of adaptive coordinates Gygi and Galli, 1995; Castro
et al., 2006) and has been shown to not interfere with the quality of the solution obtained in practical electronic structure
calculations. In particular, the eigenvalues of the Hamiltonian matrix (Eq. (71)), which are required for computation of the
band energy (Eq. (52)), turn out to be real valued (or have vanishingly small imaginary parts that can be ignored) as
required.

An alternative discretization scheme to the one proposed above is the spectral method introduced in Banerjee (2013),
Banerjee et al. (2015) for cluster systems. This scheme — identical to the plane-wave method in many respects — is capable
of leveraging arbitrary point group symmetries. It is therefore capable of solving the equations of Cyclic DFT on the fun-
damental domain (Banerjee, 2013). However, the basis functions are global in nature (like plane-waves) and therefore the
approach is not well suited for simulating large bent structures in which the atoms may be located far from the origin.48 In
this respect, the localized nature of the proposed finite-difference approach (each node interacts with only a small set of
neighboring points) enables the degrees of freedom (i.e., grid points) to be judiciously expended close to regions of interest
while avoiding empty regions (i.e., grid points can be placed in regions close to a bent structure), thus improving the overall
efficiency of the discretization. With regards to accuracy, it has been shown that the use of high-order finite-difference
stencils within the pseudocharge formulation allows the systematic and accurate computation of total energies and forces
with minimal interference from numerical issues such as the egg-box effect (Ghosh and Suryanarayana; Ghosh and Sur-
yanarayana, 2016).

It is worth mentioning that an alternative real-space discretization to the one adopted here is that based on finite-
elements. In particular, the finite-element method allows various non-conventional domains, boundary conditions, and
geometries to be easily handled. Moreover, high-order finite-elements have been shown to be an efficient choice for per-
forming DFT calculations (J.E. Pask and Sterne, 2005; J. Pask and Sterne, 2005; Motamarri et al., 2013; Motamarri and Gavini,
2014). However, the relatively simple and easy-to-implement high-order finite-difference discretization employed in this
work is accurate and highly computationally efficient,49 which enables reliable mechanistic simulations (Section 3.3) to be
performed. Indeed, as suggested by the anonymous reviewer, investigating the efficacy of alternate real-space discretization
strategies (such as finite-elements and wavelets (Genovese et al., 2008)) in the present context is a worthy subject of future
work.

We mention in passing that even though the finite-difference discretization has been considered by several workers for
performing electronic structure calculations (Chelikowsky et al., 1994; Castro et al., 2006; Ghosh and Suryanarayana), to the
best our knowledge, the present work is the first to do so within the cylindrical coordinate system. This choice of coordinate
system presents its own challenges for the finite-difference method. For example, even in the Cartersian coordinate system
where the mesh is uniformly spaced, calculation of accurate atomic forces is challenging (Ono and Hirose, 1999; Bobbitt
et al., 2015). This and a number of such issues have been overcome in the formulation and implementation of Cyclic DFT so
as to enable the accurate and efficient evaluation of energies and forces, as verified in Section 3.2.
3. Results and discussion

3.1. Implementation of Cyclic DFT

We implement the strategies and algorithms developed in the previous section using the MATLAB software package. In
all the simulations, we utilize the pseudopotentials introduced in Huang and Carter (2008); Zhou et al. (2004), a smearing of
σ = 0.0862 eV (i.e., an electronic temperature of 1000 K), and the local density approximation (LDA) (Kohn and Sham, 1965)
with the Perdew-Wang parametrization (Perdew and Wang, 1992) for the correlation functional. In addition, we choose Rin,
Rout, and H such that all atoms are at least 10–12 Bohr away from the boundary ∂0 (i.e., the boundary on which Dirichlet
boundary conditions are applied), so as to allow sufficient decay of the orbitals and the electron density.50 Also, we employ
48 This issue can be handled by making suitable modifications in the radial basis functions.
49 This can be mainly attributed to the particularly compact representation of the Laplacian compared to other real-space alternatives for achieving the

accuracies desired in electronic structure calculations.
50 In Ghosh and Suryanarayana, it has been demonstrated that a vacuum of 10 Bohr is sufficient to achieve accuracy of 10�5 Ha/atom in the energy and



Fig. 3. Cyclic aluminum nanostructure with =M 3 and group order N = 12. The atoms within the fundamental domain are colored red.
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12th order accurate finite-differences (i.e., no¼6) for all our calculations. The local nature of the finite-difference scheme
results in the Laplacian and Hamiltonian matrices being sparse, and these are stored as such. In what follows, rather than
use the three discretization parameters Δr , Δϑ and Δz (or equivalently Nr, ϑN and Nz), we utilize a single parameter to
characterize the discretization: { }= Δ Δϑ Δ( + )h r zmax , ,R R

2
in out .

We generate the guess electron density at the start of the SCF iteration by summing the electron densities corresponding
to the isolated-atom Kohn-Sham solutions. Random numbers are used to generate the initial guess for the orbitals, which
are then orthonormalized for the purposes of stability. We use the Chebyshev polynomial filtered subspace iteration
(CheFSI) method (Zhou et al., 2006b, 2006a, 2014) (with filter orders of 80–120) for computing approximations to the Kohn-
Sham orbitals in each SCF iteration.51 As an alternative, we retain the option of using the Generalized Preconditioned Locally
Harmonic Residual (GPLHR)52 algorithm (Vecharynski et al., 2015). We solve the Poisson equation using the Generalized
Minimal Residual (GMRES) method (Saad and Schultz, 1986) with an incomplete-LU factorization based preconditioner
(Saad, 2003), while retaining the option of using the AAJ (Pratapa et al., 2016) and rPJ (Pratapa and Suryanarayana, 2015)
linear solvers.53 We use a relative convergence tolerance of −− −10 105 6 on the effective potential for convergence of the SCF
method, and accelerate it using the Periodic Pulay mixing scheme (Banerjee et al., 2016).

We perform all computations using a single node of the Mesabi cluster of the Minnesota Supercomputing Institute. Each
node of Mesabi has 24 Intel Haswell E5-2680v3 processors operating at 2.50 GHz and sharing 64-GB of RAM.

3.2. Verification studies for the accuracy and efficiency of Cyclic DFT

We now verify the accuracy and efficiency of Cyclic DFT. As the representative example, we choose a cyclic aluminum
nanostructure with =M 3 atoms in the fundamental domain and symmetry group order of N = 12, as shown in Fig. 3. The
atoms are positioned randomly within the fundamental domain such that the radial coordinates are between 11–13 Bohr
and z-coordinates are between 10–13 Bohr.

First, we confirm the convergence of the computed energy and atomic forces to plane-wave results determined using
ABINIT (Gonze et al., 2002) — a well-established and optimized code for performing DFT calculations. In ABINIT, we use a
(footnote continued)
10�5 Ha/Bohr in the forces for even polar systems like CO and H2O.

51 Due to the nature of the cylindrical coordinate system, all the finite-difference mesh points are not uniformly spaced. Consequently, the discretized
operators in this case are not as well conditioned as the operators arising from uniform grids in the Cartesian coordinate system. This makes it necessary to
employ relatively high Chebyshev polynomial filter orders here.

52 This method can be thought of as an analog of the LOBPCG algorithm (Knyazev, 2001) for the case of non-Hermitian matrices. Due to the ability of
this method to use preconditioners (based on incomplete LU factorization, for example) it becomes computationally advantageous to use this method
whenever the Hamiltonian is poorly conditioned. This can happen, for example, when studying a severely bent nanostructure since Rin is likely to be close
to 0 in this case. This will lead to excessive clustering of finite difference nodes near Rin, thus resulting in the poor conditioning. The use of CheFSI in this
case would involve very high filter orders, resulting in the repeated computation of the product of the Hamiltonian matrix with a block of vectors which
would make the calculation expensive. In contrast, the use of GPLHR, particularly in the early SCF iterations allows the overall computational cost to be kept
manageable. We would like to thank Eugene Vecharynski (Lawrence Berkeley National Lab) for his help with the use of the GPLHR method in Cyclic DFT.

53 These alternative solvers tend to produce better performance while dealing with poorly-conditioned problems (Pratapa et al., 2016; Pratapa and
Suryanarayana, 2015; Suryanarayana et al., 2016).



Table 1
Convergence of the energy and atomic forces computed by Cyclic DFT to the reference plane-wave result. The system under consideration is a cyclic
aluminum nanostructure with =M 3 and group order N = 12. The error in the energy denotes the absolute value of the difference and the error in the
atomic force denotes the maximum magnitude of the difference among all the atoms.

h (Bohr) Error in energy (μHa/
atom)

Error in atomic force (μHa/
Bohr)

1.00 6980 130,537
0.71 740 47,000
0.48 27 4300
0.39 12 658
0.30 4 93

Table 2
Computational time in seconds for various components in Cyclic DFT as a function of the group orderN chosen for symmetry reduction. The system under
consideration is a aluminum nanostructure with 12-fold cyclic symmetry. The Poisson time is for one solution with an initial guess that is identically zero.
The electron density and CheFSI times are for a representative iteration within the SCF method.

N Poisson Electron
density

CheFSI Energy Total
time

Atomic
forces

1 26.4 1.05 353 0.057 371 700
2 12.3 0.51 194 0.013 204 316
3 8.7 0.42 118 0.020 129 216
4 6.3 0.25 92 0.007 102 125
6 4.0 0.17 57 0.005 66 58
12 2.6 0.08 33 0.006 42 29

A.S. Banerjee, P. Suryanarayana / J. Mech. Phys. Solids 96 (2016) 605–631624
plane-wave energy cutoff of 20 Ha and a cubic supercell with edge of 40 Bohr, which results in energy and forces that are
converged to within 2.5�10�7 Ha/atom and 10�5 Ha/Bohr, respectively. In Cyclic DFT, we choose the dimensions of the
annular cylinder  to be H¼23 Bohr, =R 1 Bohrin , and =R 23 Bohrout . We present in Table 1 the error in computed energy
and atomic forces as the spatial discretization is refined. It is clear that there is systematic convergence in energy and forces
to the reference plane-wave result, with accuracies of even 10�4 Ha/atom and 10�4 Ha/Bohr being readily achieved. This
verifies the accuracy of Cyclic DFT in determining the electronic ground-state energy and atomic forces of cyclic structures.

Next, we investigate the efficiency of the symmetry cell reduction in Cyclic DFT. To do so, for the aforementioned cyclic
aluminum nanostructure, we consider unit cells where the sectors of the annular cylinder have angles that are 12, 6, 4, 3, 2,
and 1 times the angle of the fundamental domain (i.e., π/6).54 This translates to exploiting the cyclic symmetry reduction
from groups of order N = 1, 2, 3, 4, 6, and 12, respectively. For these cases, we present in Table 2 the computational time
taken by the various components of Cyclic DFT for h¼0.43 Bohr. We observe that there is significant reduction in the
computational time as the value of N is increased.55 The worse than linear reduction of some of the components within one
SCF iteration and the better than linear reduction of the atomic forces can be attributed to the use of inbuilt MATLAB
optimizations, as well as the scope for further improvement in the implementation. We note that the energy and atomic
forces obtained for the various group orders chosen above are identical to each other within 10�8 Ha/atom and
10�8 Ha/Bohr, respectively, further verifying the accuracy of Cyclic DFT.

As demonstrated in Table 3, the symmetry cell reduction also reduces the number of iterations required to achieve
convergence within the SCF method. A possible explanation for this phenomenon is as follows. In the CheFSI method
applied to the full problem (or a problem with reduced group order), the eigenvectors (and eigenvalues) of the linearized
Hamiltonian arising in every SCF iteration are calculated only approximately. Therefore, the eigenvectors (of the full pro-
blem, or a problem with reduced group order) do not exactly satisfy cyclic-Bloch boundary conditions on the fundamental
domain. Consequently, the electron density and the effective potential do not precisely satisfy cyclic boundary conditions on
the fundamental domain. This introduces low frequency error components into the SCF fixed-point iteration, which ne-
gatively impacts its convergence. Indeed, at the electronic ground-state, the eigenfunctions, electron density, and effective
potential all satisfy the desired boundary conditions on the fundamental domain, as verified by the nearly identical results
54 The 12-fold cyclic symmetry of the system allows us to choose 1, 2, 3, 4, 6, and 12-fold cyclic symmetry subgroups.
55 During the SCF iterations using CheFSI, the most computationally intensive step tends to be computation of the action of the discretized Hamiltonian

matrix on a block of vectors. It is easy to see that this step would stand to gain a speedup by a factor of N when a cyclic group of order N is used. This is
because the Hamiltonian is represented on a smaller physical domain resulting in a fewer number of grid points (i.e., a factor of N) while the total number
of electronic states involved (i.e., the number of states for every value of ν, times the number of values of ν) effectively remains the same. This trend is quite
apparent in column 4 of Table 2. However, for large enough systems, subspace diagonalization becomes the dominant cost within CheFSI, whereby the
reduction in cost due to symmetry is expected to scale quadratically with respect to group order. This is also the case for other eigensolvers such as GPLHR,
all of which asymptotically scale cubically with system size. Since subspace diagonalization can consume a significant portion of the computational time
during large scale electronic structure computations (Banerjee et al.), we anticipate that the quadratic speed up obtained by the cyclic group reduction can
result in a significant computational saving in large scale calculations.



Table 3
Number of SCF iterations as a function of the group order N. The system under consideration is a aluminum nanostructure with 12-fold cyclic symmetry.

N 1 2 3 4 6 12

SCF iterations 127 85 44 36 30 24

Fig. 4. Schematic for the silicene nanoribbon bending simulation using Cyclic DFT. The radius of the cyclic structure corresponds to the bending radius of
curvature κ�1. The atoms within the fundamental domain are colored red. (a) Silicene nanoribbon, (b) Top view of the cyclic structure generated using the
silicene nanoribbon and (c) Side view of the cyclic structure generated using the silicene nanoribbon.
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obtained for the various choices of group order. In contrast, directly enforcing the cyclic-Bloch boundary conditions on the
fundamental domain using the appropriate group order bypasses the above described issue and results in better SCF
convergence.

3.3. Application of Cyclic DFT to the bending of a silicene nanoribbon

Silicene56 is a two-dimensional allotrope of silicon consisting of atoms arranged in a buckled honeycomb lattice (Vogt
56 The silicon analog of graphene.



Fig. 5. Results for bending of a silicene nanoribbon of widthW¼20.79 Bohr and radius of curvature κ =− 17.49 Bohr1 . The cyclic structure has =M 8 atoms
in the fundamental domain and group order N = 15. (a) Electron density contours on ≈z 25 Bohr plane, (b) Cyclic band structure plot.
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et al., 2012). Silicene has fascinating electronic properties57 that include high charge mobility (Shao et al., 2013) and the
quantum spin Hall effect (Liu et al., 2011). Though there have been some electronic structure studies to understand the
effect of strains on the mechanical and electronic properties of silicene (Qin et al., 2012; Peng et al., 2013), they have been
restricted to uniform in-plane deformations.58 Using silicene as a representative example, we now show how Cyclic DFT can
be used for the first principles study of uniform bending in nanostructures. To the best of our knowledge, this is the first self-
consistent ab-initio simulation of such a nature.

The uniform bending simulation of a silicene nanoribbon in Cyclic DFT — shown schematically in Fig. 4 — proceeds as
follows. First, we determine the equilibrium configuration of an infinite silicene sheet, using which we generate a nanor-
ibbon of the desired width W. Next, depending on the desired bending curvature κ, we generate a cyclic structure with
radius κ�1 by ‘rolling’ the silicene nanoribbon. For this cyclic system, we determine the fundamental domain, the atoms
which belong to it, and the resulting group order. Finally, we compute the cyclic structure's electronic ground-state and
energy using the formulation described in Section 2. We note that the use of a cyclic structure is expected to provide an
accurate representation of pure bending,59 since it replicates the desired bending curvature locally, and furthermore, the
electronic interactions are short ranged (i.e., matter is near-sighted (Prodan and Kohn, 2005)).

We first use the above procedure to determine the electronic ground-state of a silicene nanoribbon of width
W¼20.79 Bohr with bending radius of curvature κ =− 17.49 Bohr1 . The corresponding cyclic structure has =M 8 atoms in
the fundamental domain and group order N = 15. We present the results obtained by Cyclic DFT in Fig. 5. Specifically, in
Fig. 5(a), we present the contours of the electron density on the ≈z 25 Bohr plane. In Fig. 5(b), we present the cyclic band
structure plot60 for this system, i.e., the eigenvalues λ ν

i for = …i 1, 2, , 20 and Nν = … −0, 1, 1. From this figure,61 we can
see that there is a negligible bandgap for the bent system. In addition, the system appears to be electronically stable. An
analogous plot of the phonon eigenvalues can be used to study the structural stability of such systems, and can therefore be
used to predict the onset and modes of instabilities.62 This is a worthy topic of research and is currently being pursued by
the authors.

Next, we use Cyclic DFT to study the variation of the silicene nanoribbon's bending energy b with its curvature κ.
We define the strain energy due to bending at a given κ to be the difference between the free energy of two configurations—
flat silicene nanoribbon63 (i.e. κ →− 01 ) and the cyclic silicene nanostructure with radius of curvature κ�1. For this study,
we choose a silicene nanoribbon of width W¼20.79 Bohr and bending radii of
κ =− 14.05, 17.49, 27.87, 34.80, 52.14, 69.50, and 83.39 Bohr1 . The corresponding cyclic structures have =M 8 atoms in the
fundamental domain and cyclic group orders ofN = 12, 15, 30, 45, 60, and 72, respectively. In order to be able to accurately
calculate the bending energy, we choose all the parameters within Cyclic DFT so as to achieve an overall accuracy of
10�5 Ha/atom in the energy. Anticipating Euler-Bernoulli type bending behavior, we plot the bending energy b so calcu-
lated as a function of κ�2 in Fig. 6. We observe that b is proportional to κ�2 — consistent with Euler-Bernoulli bending64 —
57 Just like graphene, silicene has a linear dispersion relation and is semi-metallic.
58 This is because the commonly used plane-wave approaches are restricted to periodic boundary conditions, i.e., translational symmetry.
59 For small enough curvatures.
60 Analog of the traditional band structure plot for systems with translational symmetry.
61 Disregarding the ν¼0 point, the symmetry of the curves about a vertical line passing through the point ν¼7.5 can be explained in terms of the

theoretical framework presented in Banerjee and Elliott, 2016.
62 See Aghaei et al. (2012) for examples of phonon-band structure diagrams in nano systems with helical symmetries, computed using empirical inter-

atomic potentials.
63 The free energy is computed using ABINIT.



Fig. 6. Bending energy as a function of the curvature for a silicene nanoribbon of width W¼20.79 Bohr.
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with the predicted bending modulus being 32.6 eV/atom Å2. It is worth noting that at the electronic level, we find that there
is no noticeable bandgap opening in the silicene nanoribbon for the aforementioned bending curvatures.

On normalizing the calculated bending stiffness with the surface area (Nikiforov et al., 2014; Jiang et al., 2013), we obtain
a value of D¼6.16 eV, which lies between the values of 1.45 eV and 9.61 eV that have been obtained in the literature for
graphene (Nikiforov et al., 2014; Kudin et al., 2001) and molybdenum disulphide (Jiang et al., 2013), respectively. To get an
intuitive understanding of this observation, we recall that according to continuum theories of bending, there is usually a
strong influence of the effective cross section on the bending stiffness of a material specimen. Due to the presence of out of
plane atoms in a single layer relaxed silicene structure, it is likely that this material has an effective thickness65 that is
intermediate when compared to the planar single atomic layer graphene structure and the three atomic layer molybdenum
disulphide structure, thus leading to a similar trend in the bending stiffness in these three materials. On similar lines, we
comment that due to the overall similarities in structure between the buckled silicene geometry studied here and the
puckered phosphorene structures studied in the literature (Zhang and Jiang, 2015; Yang et al., 2015), the bending stiffness of
these two materials turns out to be quite similar (i.e., our value of 6.16 eV for silicene vs. the values of 4.88–7.99 eV obtained
for phosphorene in the literature (Zhang and Jiang, 2015)).

We should mention in passing that our simulations do not involve actual relaxation of the atoms in the bent geometry.
This is representative of practical scenarios where the movement of the atoms is constrained, e.g. when substrates are
utilized to impart the desired strain state (Kerszberg and Suryanarayana, 2015; Ding et al., 2010). Additionally, relaxation
effects appear to be unimportant in systems subjected to low curvatures (Zhang et al., 2011; Nikiforov et al., 2014). Edge
effects and/or out of plane atomic displacements are likely to influence the mechanical behavior when atomic relaxations
are allowed in systems subjected to large curvatures — particularly so, when the arrangement of atoms within the fun-
damental domain is more complicated than the relatively simple nanoribbon geometry considered here. We hope to in-
vestigate these effects in future work.

Finally, it is worth pointing out that the silicene nanoribbon bending simulations as described above would be extremely
challenging to perform — if not practically impossible — with existing conventional first principles techniques (especially
when large values of the radius of curvature are involved), even if high performance computing resources are used. In
contrast, our serial MATLAB implementation of Cyclic DFT enables these studies to be carried out conveniently within a few
hours of simulation wall time, thus demonstrating the utility of the approach.
64 For a majority of the data points in Fig. 6, the straight line fit replicates the simulation data to accuracies of over 98%.
65 If one assumes that continuum shell theory is applicable in the present setting, we have the following relation for the effective thickness (Shen-

derova et al., 2002):

ν= ( − )
( )

t
D

Y
12 1 ,

80

2

where Y is the in-plane Young's modulus, and ν is the Poisson's ratio. On substituting the values of D, ν, and Y for silicene into the above expression, we
obtain ∼t 0.4 nm, which is in good agreement with the values that have been typically employed in literature (Pei et al., 2014; Peng et al., 2013). We note
that the effective thickess is sometimes also referred to as the intrinsic finite thickness (Zhang and Jiang, 2015).
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4. Conclusions and future directions

In this work, we have presented the theoretical foundations as well as the numerical formulation and implementation of
Cyclic DFT — a self-consistent first principles simulation method for nanostructures with cyclic symmetries. The Cyclic DFT
methodology allows us to exploit the cyclic symmetry in a systematic and efficient manner. Additionally, it enables us to
probe the behavior of various nanosystems under uniform bending deformations and therefore to directly obtain the as-
sociated materials properties from first principles. We have demonstrated these capabilities of Cyclic DFT through bending
simulations of silicene nanoribbons.

With the foundational work on Cyclic DFT complete, we now briefly touch on future extensions and applications:

� Extending the range of applicability of Cyclic DFT: We are currently implementing accurate norm conserving pseu-
dopotentials (Hamann et al., 1979; Troullier and Martins, 1991) and more elaborate exchange-correlation functionals
(Perdew et al., 1996a, 1996b) into Cyclic DFT. We are also developing a well-optimized, large-scale parallel implementa-
tion in C/Cþþ . Among other attractive parallelization features of Cyclic DFT, we are making use of the attribute that the
N eigenvalue problems associated with the different values of Nν Γ∈ can be solved independent of one another. This
lends itself to an embarrassingly parallel implementation of Cyclic DFT. Together, these developments are going to allow
us to study a wide variety of materials systems using Cyclic DFT and to reach large system sizes by making effective use of
high performance computing resources.

� Mechanistic simulation studies of low-dimensional nanomaterials under bending deformations: Single layers of low
dimensional nanomaterials such as graphene, silicene, germanene, phosporene and hexagonal boron nitride (both rib-
bons and sheets), as well as their multi-layered counterparts have risen to scientific prominence in recent years due to
their unique material properties (T. Xu et al., 2013; M. Xu et al., 2013; Butler et al., 2013). Cyclic DFT provides a natural
means of studying the effect of uniform bending deformations on such materials and understanding their mechanical
behavior through ab-initio atomic relaxation and molecular dynamics simulations (Marx and Hutter, 2009).
An extension of Cyclic DFT to study non-uniform bending in low-dimensional nanomaterials can be effectively
accomplished by appealing to coarse-gaining ideas developed previously for the study of crystal defects using DFT
(Suryanarayana et al., 2013; Ponga et al., 2016). The general idea is to treat non-uniform bending as a defect which breaks
the cyclic symmetry of the system. Therefore, coarse-graining may be achieved by considering the non-uniformly bent
structure to be under uniform bending locally. Such an approach has already been developed for atomistic systems
(Hakobyan et al., 2012) using quasicontinuum type (Tadmor et al., 1996) ideas. We anticipate that it may be also carried
out at the level of electronic structure calculations.

� Investigation of multi-physics coupling in nanosystems: Since Cyclic DFT is a true first principles simulation metho-
dology, it allows for the possibility of investigating the effect of bending deformations on electronic, magnetic, transport and
optical materials properties in nanosystems of interest. The study of electronic properties of two-dimensional nanoma-
terials systems under deformations has received much scientific attention in recent years (Naumov and Bratkovsky, 2011;
Kerszberg and Suryanarayana, 2015; Johari and Shenoy, 2012). In line with this, the investigation of (for example) whether
an electronic band gap can be introduced in existing two dimensional materials or nanotubes by subjecting them to
bending deformations is a topic worthy of further research. Importantly, there is also the tantalizing possibility that some
novel nanomaterial might develop a significant magnetization or polarization in the cyclic unit cell when subjected to a
bending deformation. Such materials, if discovered, are likely to have a profound impact on the design of future sensors or
energy conversion technologies. We anticipate that such studies can be conveniently accomplished using Cyclic DFT.
On these lines, we also find it worthwhile to mention the possible use of Cyclic DFT in studying the nanoscale flexoelectric
effect (Deng et al., 2014; Ahmadpoor and Sharma, 2015; Kalinin and Meunier, 2008; Nguyen et al., 2013; Dumitrică et al.,
2002). Conventional first principles calculations of flexoelectric coefficients (Hong and Vanderbilt, 2013; Ponomareva et al.,
2012; Hong et al., 2010) have usually relied on Plane-wave DFT. The computation of the polarization in the periodic unit cell
of an infinite crystal involves both theoretical and computational complications (King-Smith and Vanderbilt, 1993; Resta
and Vanderbilt, 2007; Spaldin, 2012; Resta, 1994). Additionally, since simulation of the flexoelectric effect, by definition,
requires inhomogeneous strains to be imposed on the system under study, the setup of the simulation is further
complicated (M. Xu et al., 2013; T. Xu et al., 2013; Chandratre and Sharma, 2012). In contrast, estimation of the flexoelectric
coefficient (for example, of a nanoribbon) using Cyclic DFT naturally addresses these two issues since the system being
simulated is of finite extent (which is likely to help in bypassing the difficulties of computing polarization) and
inhomogenous strains can be introduced via uniform bending of the nanoribbon.
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