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Abstract

With the emergence of modern technology and availability of high frequency data, the study of func-

tional time series has become popular in recent years. One of the main goals of time series is to predict

the outcome of the future observations. Though methods of predicting a functional time series have been

explored in the literature, not much work has been done to obtain prediction error estimates. The first part of

the dissertation proposes several estimates of prediction errors in the functional time series context. Predic-

tion errors are necessary inputs for construction of prediction bands. This dissertation introduces methods

of getting prediction bands using the different functional prediction error estimates. The proposed methods

are evaluated based on simulation studies as well as real data applications.

A second important application of functional time series can be found in high-frequency finance, view-

ing the intra-day price movements as functions. Financial time series are characterized by volatility cluster-

ing, implying that large price movements tend to be followed by further large price movements and small

movements by small movements. The stochastic volatility model is a widely used multiplicative financial

model originally introduced to capture this form of heteroscedastic behavior for univariate financial time

series. Unlike the competitor GARCH models that depend on past volatility and past residuals, and also

aim at capturing the clustering tendency, the stochastic volatility process depends on the product of an in-

dependent noise sequence with a latent volatility sequence. When the observations are scalars or vectors,

stochastic volatility estimation is often performed within the state-space modeling framework. The second

part of the dissertation introduces the functional stochastic volatility model along with a method to estimate

the model parameters using the state-space modeling framework and evaluates the proposed methodology

on simulated data.
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CHAPTER 1

Introduction

This dissertation covers research on some advanced topics in functional time series. It consists of two

parts: the first part introduces a novel method for estimating the prediction error when forecasting the future

(function) value of a functional time series. The second part introduces the functional stochastic volatility

model which is an important quantity in the finance literature.

1.1. Introduction to estimation of prediction error for functional time series

Efron (2004) addressed the problem of estimation of prediction error in a signal plus independent and

identically distributed noise setting. Suppose the following holds:

y = µ+ ϵ

where ϵ represents i.i.d. noise and consider a model m(·) fitted to observations y = (y1, . . . , yn) which

produces the estimate µ̂ = m(y) = (µ̂1, . . . , µ̂n). The prediction error tries to estimate how well µ̂ will

predict a future observation. Efron’s paper considers squared error erri = (yi−µ̂i)2 and then discusses ways

of estimating the prediction error which is given by Σn
i=1erri+ covariance penalty. The covariance penalty

can be estimated parametrically under a Gaussian distribution of y giving rise to Stein’s Unbiased Risk

Estimate (SURE) or under a general parametric model giving rise to Mallow’s Cp estimate. Non-parametric

estimation of the covariance penalty has also been discussed using bootstrap methods.

When it comes to time series data, this method of estimating prediction error fails because the obser-

vations in time series have serial correlation and are not independent. A simple approach is to consider

the empirical estimate which attempts to get an estimate of Σn
i=1erri. More formally, let X1, . . . , Xn be

observations from a stationary univariate time series of the form

Xt = µt + ϵt

1
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where µt is the conditional mean of Xt given the past, where the past is the sigma-algebra generated by

X1, . . . , Xt−1 or the infinite past, and ϵt is mean zero, i.i.d. and independent of µt. Suppose a model

{µt(θ)} is fitted to the data. If θ̂s is the estimate of θ based on the first s observations, then the estimate of

µt is given by µt(θ̂s) and the residual is given by ϵt(θ̂s) = Xt − µt(θ̂s). The variance for predicting Xn+1

based on X1, . . . , Xn is the prediction error given by

PEn = E[ϵn+1(θ̂n)]
2

This can be estimated empirically from the sample without the covariance penalties. When n− k residuals

are available, the empirical estimate is given by

P̂E
emp

n =
1

n− k

n−1∑
t=k

ϵ2t+1(θ̂n)

However, Efron (2004) pointed out that this estimate is not good enough, because it uses the residuals based

on the dataset at hand but it does not measure how well µt(θ̂s) estimates a future observation. Rissanen

(1986), on the other hand, proposed an accumulated measure of errors which is given by Rissanen’s Ap-

proximate Prediction Error (APE)

P̂E
R

n =
1

n−m

n−1∑
t=m

ϵ2t+1(θ̂t)

where m = ⌊δn⌋ with 0 ≤ δ ≤ 1. Note that the parameters are re-estimated sequentially for each t in the

sum. This estimate uses the given dataset both to estimate and validate the parameters after each observation

is received. Since it computes the residuals for predicting observations at t + 1 based on X1, . . . , Xt, this

estimate is expected to perform better than the empirical estimate in terms of lowering the bias of the

empirical estimate. However, APE is not always a good estimate of the prediction error. If m is small, the

bias in estimating PEn might be significant. This is because for smaller m (δ close to 0), θ is estimated

based on a smaller history, so it is more biased. Whereas, when m is close to n (δ close to 1), the bias might

be small because θ is estimated based on a longer history, but the variance of the estimate might be high

because the APE estimator is obtained by summing over fewer observations.

Aue and Burman (2024) addressed these issues by designing modified versions of the empirical and

modified empirical estimates of the prediction error for univariate and multivariate time series. Their pro-

posed estimators are based on minimizing the expected bias E[PEn − P̂En] for the two estimators above.

2
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For the empirical estimate, an estimate of the expected bias was set up as

Cn(w) =
1

n−m

n−1∑
t=m

wt

(
ϵ2t+1(θ̂t)− P̂E

emp

t

)
where the weights {wt} are so chosen that the expected bias is minimized. The modified empirical estimate

was then given by

P̂E
ME

n (w) = P̂E
emp

n + Cn(w)

Similarly, Rissanen’s estimate is modified by using weighted averages of ϵ2t+1(θ̂t) instead of simple averages,

and is given by

P̂E
MR

n (v) =
1

n−m

n−1∑
t=m

vtϵ
2
t+1(θ̂t)

where the weights {vt} are again chosen so that the bias can be minimized. More specifically, the weights

are chosen by minimizing
∑n−1

t=m v
2
t subject to the constraints f0(v) = 1 and f1(v) = 1 where

fk(v) =
1

n−m

n−1∑
t=m

(n
t

)k
vt, k = 0, 1

and this term appears in the expected value of the Rissanen’s estimate. Simulation studies were conducted

based on different choices of weights for the modified estimates. These showed that the modified Rissanen’s

estimate had the smallest bias but the highest variance. The modified empirical estimate performed the best

among all the prediction error estimates maintaining a balance between the bias and the variance in the sense

that it is not significantly more biased than the other estimates but has the smallest variance.

With the emergence of modern technology and the availability of high frequency data, the study of

functional time series has become popular in recent years. The evolution of intra-day pollution curves, for

instance, is a classic example of a functional time series (see Figure (1.1) for reference).

Each curve Xk(t) has a discrete time index k referencing the day it was recorded and a continuous time

index t referencing intra-day time, rescaled to the unit interval [0, 1]. The temporal evolution across k gives

a functional time series object Xk(t) (see Section 4.7 for details). It is imperative now to not only develop

methods to model functional time series but also to predict them. This is because the quantification of the

uncertainty in prediction is important to assess the quality of the forecast. However, this problem is not

trivial since functions are infinite-dimensional and model estimation and prediction requires the estimation

of complex operators. Aue et al. (2015) provided an intuitive solution to this. They proposed that instead

3
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FIGURE 1.1. PM10 observations in Graz observed for 50 days

of dealing with infinite-dimensional functions, one can use the data to get the corresponding vectors of

functional principal components scores. With this step, the data is transformed to a multivariate time series

and any multivariate time series forecasting algorithm can be applied to get predictions. More formally and

to illustrate, consider a Functional AutoRegressive (FAR) model of order 1 given by

Xk = Ψ(Xk−1) + ϵk, k ∈ Z

where Xk = (Xk(t) : t ∈ [0, 1]) are functional time series observations and ϵk = (ϵk(t) : t ∈ [0, 1]) are

centered, independent and identically distributed innovations functions, Ψ is a bounded linear operator to

ensure a causal and stationary solution, and Z is the set of integers. Bosq (2000) proposed the one-step

ahead prediction of this series as X̃n+1 = Ψ̃Xn where Ψ̃ is an estimator of Ψ. The alternative methodology

proposed by Aue et al. (2015) uses the sample eigenfunctions to convert the infinite-dimensional functions

to finite-dimensional scores. It then uses any multivariate model to predict the scores and the predicted

functions can be obtained using the truncated Karhunen–Loève representation. The proposed algorithm is

conceptually simple and is not bound by an assumed underlying FAR structure as used for the illustration

above. The paper also shows that the one-step ahead predictors X̂n+1 from the above algorithm are asymp-

totically equivalent to the predictors X̃n+1 as obtained from Bosq (2000) for an underlying FAR(p) process.

4
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It also discussed how to select the optimal values of d, the reduced dimension, and the order p of the VAR

model, based on a functional version of Akaike’s final prediction error criterion.

Even though Aue et al. (2015) discuss how to get predictions for a functional time series, they did

not provide details on quantifying the prediction error. The first part of this dissertation defines prediction

errors for functional time series expanding on the ideas of the previous two papers. This work also defines

the corresponding estimates. Prediction errors are used to determine which models are reasonable to fit to

the data when the end goal is prediction of future observations. The estimation of prediction errors is also

important when constructing prediction bands. This research not only provides the estimates of prediction

error in the functional time series setting, but it also outlines the construction of point-wise prediction bands

for the functions.

1.2. Introduction to functional stochastic volatility

Volatility, a conditional standard deviation, is an important quantity in finance. It is useful for capturing

uncertainty in financial markets. Modeling volatility is important because it helps in forecasting the absolute

magnitude of returns and such forecasts are useful in risk management, derivative pricing and hedging,

trading strategies like market making and other financial activities (Engle and Patton (2000)).

Traditionally, volatility models are based on daily returns of an underlying asset. If Pt is the price of an

asset at time t, then the relative daily returns are calculated as

yt =
Pt − Pt−1

Pt

To model volatility, Engle (1982) proposed AutoRegressive Conditional Heteroscedastic (ARCH) models.

An ARCH(p) model is given by

yt = wth
1/2
t

ht = α0 + α1y
2
t−1 + · · ·+ αpy

2
t−p

where α0 > 0, αi ≥ 0 for i > 0, and wt is often assumed to be N(0, 1) . Hence, if we denote by Ft−1 the

information set available until time t− 1, then,

yt|Ft−1 ∼ N(0, ht)

5
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Here, the conditional standard deviation or volatility, ht, depends on the past p returns. Bollerslev (1986)

generalized this model by including both lagged returns and lagged volatility to explain the current volatility

which was the Generalized ARCH or GARCH model. A GARCH(p, q) model is given by

yt = wth
1/2
t

ht = α0 +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjht−j

where p ≥ 0, q > 0 and α0 > 0, αi ≥ 0, i = 1, · · · , p and βj ≥ 0, j = 1, · · · q. Both of these models are

endogenous, meaning they depend on their past values. There are various subvariants of GARCH processes,

some of which are discussed in Duan (1997) and Aue et al. (2006).

On the other hand, Taylor (1982) introduced an exogenous way of modeling volatility, given by what is

known as a stochastic volatility model. In its simplest terms, a Stochastic Volatility (SV) model of order 1

is given by

yt = e(
1
2
ht)εt

ht = ϕht−1 + ηt

where it is often assumed that εt ∼NID(0, 1); ηt ∼NID(0, σ2η) for t = 1, . . . , n and {εt} and {ηt} are

independent for all time points. Further, due to the log-volatility structure, positivity of the volatility is

ensured in this model.

Both (G)ARCH and SV models as introduced above are based on univariate time series of daily returns

of financial assets. With the advent of modern technology, the evolution of an asset price throughout the

day can be recorded and stored. Each price curve can be assumed to be a function. When observed over

different days, these curves form a functional time series. Hence, volatility curves can also be regarded

as functions and hence modeling techniques are required to model functional volatility. Hörmann et al.

(2013) and Aue et al. (2017) modeled functional volatility endogenously by proposing functional ARCH

(fARCH) and functional GARCH (fGARCH) models, respectively. Jang et al. (2021) proposed a functional

stochastic volatility model which was based on Bayesian estimation. The second part of the dissertation

aims to propose a new method to estimate a functional version of the stochastic volatility model based on

the state-space modeling framework which is an exogenous way of quantifying the volatility curves.
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1.3. Dissertation outline

The outline of the dissertation is as follows. Chapter 2 introduces the notions of functional data and

their important components. Chapter 3 introduces the important aspects of functional time series. Chapter

4 introduces the prediction error and its estimates for functional time series. This chapter also presents the

results for simulation studies as well as applications to real data sets, namely the annual temperature profiles

measured at different meteorological stations in Australia and daily pollution curves measured in Graz,

Austria. Chapter 5 introduces structure and estimation methods for a functional stochastic volatility model.

This chapter provides conditions for the existence of stationary solutions to the defining functional SV

equations, sets up an estimation procedure for the model parameters, and evaluates the proposed estimation

procedure on simulated data.
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CHAPTER 2

Functional data and its properties

A functional observation is a realization of a typically smooth random object that takes values in an

abstract function space. Functional data can arise in varied fields of study ranging from geophysics to

intraday financial data and climatology. The following figure shows daily maximum temperatures at a

meteorological station in Sydney Observatory Hill, Australia for three consecutive years. For each year, it

can be thought that an underlying smooth function is driving the observed data points. Each such curve

represents a single functional observation.

FIGURE 2.1. Example of functional data

Formally, a random element X is a functional variable if it takes values in a function space F , denoted

by X = (X(t) : t ∈ T ) where, typically, the set T represents the unit interval [0, 1]. Notice that functional

data is frequently observed in a time series context, where observations can be viewed as sampled from

some underlying continuous “time” process. However, T may not always represent time, for example, X(t)

8



could be the concentration of a pollutant at altitude t. The argument of functions, t, can also be bivariate,

for example, X(t) could represent the gray level of an image at a spatial location t ∈ T ⊂ R2.

There are many classes of function spaces. For example, it can be C[0, 1], the space of continuous

functions defined on the unit interval (see for example Dette et al. (2020)). Or it can be the more standard

choice L2[0, 1], the space of square-integrable functions on the unit interval. The convention here is to

consider F = L2[0, 1] = L2. This means that there is a probability space (Ω,A, P ) such that X : Ω → L2

is A-B-measurable, where B is the Borel σ-algebra generated by the open sets in L2. These technical aspects

of functional data are suppressed in the following.

2.1. Functional observations

A collection of n functional observations X1, . . . , Xn is called a functional data set. If the functions are

independent and identically distributed, they are called a functional random sample. The observations are

denoted by Xk(t) which corresponds to the k-th function at “time” t. Even though functions are assumed to

be continuously measured over t, practically, there are no continuous measurements. Hence, any realization

of a functional observationX is observed at discrete points t1, . . . , tK only, giving rise toX(t1), . . . , X(tK)

for some K. These discrete point measurements can be exact or contaminated with measurement errors. If

the sampling frequency is low, sparse functional data is obtained. On the other hand, if the sampling fre-

quency is high, Li and Hsing (2010) showed that densely sampled functional data gives the same theoretical

results as in the idealized continuous measurement case. Hence, it is important to imagine a continuous time

process (X(t) : t ∈ [0, 1]) in the background and it is possible to recoverX(t) from (X(tk) : k = 1, . . . ,K).

One might wonder about the difference between functional and multivariate data. Multivariate data are

considered as concurrently recorded observations involving more than one (type of) measurement, so inher-

ently they are discrete in nature. On the other hand, functions are typically observations of the same variable

but over a continuous “time” span. This, however, does not mean the observations are recorded for every

value of t, because that would result in storing an uncountable number of values. Rather, it is assumed that

there exists a function X that gives rise to the observed data. They are often assumed to be continuous and

differentiable which leads to the “smoothness” of the observations. This means that neighboring discrete

observations tend to be highly correlated which is a major difference between functional and multivariate

data. Functions also allow for the use of derivatives, a concept which is not available for multivariate data.

9

cite.dette2020functional
cite.dette2020functional
cite.li2010uniform
cite.li2010uniform


The other aspect where functional data differ from multivariate data is the sampling scheme. For multivari-

ate data, the data is observed at equidistant time intervals, otherwise it might lead to missing data related

problems for standard time series methodology. However, for functional (time series) data, irregular obser-

vation times are allowed. Overall, the usual multivariate approach ignores the information about the smooth

functional nature of the underlying data generating process. Functional data analysis on the other hand ex-

presses discrete observations from time series in functional form, representing the entire measured function

as a single observation. This representation aids in effective noise reduction of data through curve smooth-

ing and also has applications when observations are not recorded at regular time intervals. Functional data

analysis also helps to study important patterns and sources of variation in the data and develop appropriate

inference procedures.

2.2. Representation and smoothing

Suppose the interest is in analyzing the functional realization x = (x(t) : t ∈ [0, 1]). However, x is

not observable, but observations are only available for a noisy discrete version y(tk), k = 1, . . . ,K, where

t1, . . . , tK ∈ [0, 1]. Thus, the following model is postulated:

y(tk) = x(tk) + e(tk), k = 1, . . . ,K

The measurement errors e(t1), . . . , e(tk) can be zero. Recovering functional realizations x1, . . . , xn from

the discrete observations are done on an individual basis. To aid readability, from now on, we will represent

both the function X and its realization x as X . It will be clear from the context if X represents the function

or its realization.

There are some simple methods that might work in transforming discrete observations to functions. The

simplest of them is linear interpolation, which is joining adjacent points using straight lines. This method

can be useful if there is no measurement error because that guarantees that the observed values are true.

However, they are not differentiable at the sampling times, hence they do not lead to smooth functions and

retain a lot of redundant information if the underlying data generating process is smooth. One might try to

use polynomial interpolation instead but that usually results in oscillatory functions.

The most popular approach is to represent functions by basis functions. A basis function system in the

function space F is a set of known functions ϕl which are orthogonal. Further, a linear combination of a

10



sufficiently large number L of these functions should be able to approximate any function defined in F . In

other words, basis function procedures represent a function x by a linear expansion

X(t) ≈
L∑
l=1

clϕl(t)

for L known basis functions. If the norm on F is denoted by ∥·∥F , then the idea is to make the norm-

difference between the function and its approximation using basis functions as close to zero as for suffi-

ciently large L. Thus, the basis is so chosen that

∥X −
L∑
l=1

cl,Lϕl∥F → 0 (L→ ∞)

Notice that the coefficients cl,L are also a function of L, the number of basis functions used to represent the

function X , hence, it is represented by double indices. However, for a fixed L, they can just be written as cl.

The idea is to fix L and then minimize

K∑
k=1

(
X(tk)−

L∑
l=1

clϕl(tk)

)2

with respect to the coefficients c1, . . . , cL. If K = L, then perfect fit is achieved. So, the goal is to have

L << K. It is also desirable that the basis functions are so chosen that they represent the characteristics

of the data. This will ensure that a sufficiently small L can reasonably well approximate the functional

observation X(t1), . . . , X(tK). It also ensures that the coefficients cl are easier to interpret and faster to

compute. However, it should be kept in mind that L is not pre-specified but chosen based on the data. If

the data is highly variable, a larger L might be needed in order to capture the entire information through the

basis system.

There are different choices for the set of basis functions, the simplest being the collection of monomials

that are used to construct power series,

1, t, t2, t3, . . . , tk, . . .

Other popular choices of bases include Fourier and B-Spline basis.
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2.2.1. Fourier basis. A Fourier basis is often chosen to represent functional data when the data shows

some periodicity. They are based on trigonometric functions given by

ψ2l(t) = cos(2πlt) and ψ2l+1(t) = sin(2πlt), l ∈ N0

where N0 is the set of non-negative integers. Notice that (ψl : l ∈ N0) form an orthogonal basis, however

they are not orthonormal. These can be easily made orthonormal by defining (ϕl : l ∈ N) where

ϕ0 = 1, and ϕl =
√
2ψl, l ∈ N0

The Fast Fourier Transform (FFT) makes it possible to compute the coefficients very efficiently when the

time points are equally spaced. The Fourier basis system is very useful for stable functions where there are

no strong local features and when the curvature of the functions remains consistent across the domain of the

function (Ramsay and Silverman (2005)).

2.2.2. B-Spline basis. The B-Spline basis is known for its computational efficiency and hence it is

perhaps the most popular method of approximating non-periodic functional data (Ramsay and Silverman

(2005)). Splines are polynomials of specified order, defined over sub-intervals, which are created by break-

ing the entire interval over which the function is defined into sub-parts. Adjacent polynomials join up

smoothly at the breakpoints, so that the function values are constrained to be equal at the junctions. A B-

Spline basis is based on convex combinations of spline functions of specific order. The degree of smoothness

of the splines at the knots or breakpoints can be chosen based on the data. This system of basis is flexible

and can be applied to a variety of data.

2.3. Estimation of the basis coefficients

Previously, we have seen that using the basis representation, any function x can be written as an approx-

imate linear combination of basis functions as

X(t) =
L∑
l=1

clϕl(t) = c′ϕ

where c = (c1, . . . , cL)
T and ϕ = (ϕ1(t), . . . , ϕL(t))

T . There are multiple ways to compute the coefficients

{cl}, some of them being listed here. The easiest way to do it is to get the ordinary least squares fit, obtained
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from minimizing the least square criterion, given by

SSE(y|c) =
K∑
k=1

(
y(tk)−

L∑
l=1

clϕl(tk)

)2

which can be written in matrix notation as

SSE(y|c) = (y −Φc)′(y −Φc)

where Φ is the K × L matrix containing the values ϕl(tk), that is Φ = (Φ1 : · · · : ΦL) with Φl =

(ϕl(t1), . . . , ϕl(tK))T . The value of c that minimizes the above SSE is given by

c = (Φ′Φ)−1Φ′y

So, the above describes an easy way to represent discrete observations as functions. Next we will look into

a few basic objects pertaining to functional data.

2.4. Basic objects

So far, we have stated a model for discrete and noisy observation of a functional variableX and covered

techniques to estimate a realization ofX . Now, it is assumed that the functionX can be observed directly. It

is assumed that the underlying function space is the Hilbert space L2, the details of which are now provided

(Gohberg et al. (2013)).

2.4.1. Hilbert space. Before defining what a Hilbert space is, we introduce what an inner product

space is. A vector space H is an inner product space such that there is a real number ⟨x, y⟩ satisfying the

following:

• ⟨x, y⟩ = ⟨y, x⟩

• ⟨αx+ βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩

• ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 iff x = 0

Note that here x, y and z are not random. This space induces a norm ∥x∥ =
√

⟨x, x⟩. Both the norm

and the inner product are continuous. This means that if there are elements (xn : n ∈ N) and (yn : n ∈ N)

such that ∥xn − x∥ → 0 and ∥yn − y∥ → 0, then ∥xn∥ → ∥x∥ and ⟨xn, yn⟩ → ⟨x, y⟩. There can be
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different types of norms defined for inner product spaces. For example, H can be Rd with the Euclidean

norm ⟨x, y⟩ = x1y1 + · · ·+ xdyd. When H = L2[0, 1], the L2-norm is defined as ⟨x, y⟩ =
∫ 1
0 x(t)y(t)dt.

If (xn : n ∈ N) is an element in the inner product spaceH , then xn converges in norm to x if ∥xn−x∥ →

0. Further, xn is a Cauchy sequence, if ∥xn − xm∥ → 0 as n,m → 0. A Hilbert space is an inner product

space H such that every Cauchy sequence converges in norm to a limit in H . Notice that, Rd and L2[0, 1]

are both examples of Hilbert spaces. A linear subspace S of H is closed if every converging sequence in S

has its limit in S.

Projection Theorem: Let S be a closed subspace of Hilbert space H and y ∈ H . Then there is unique

ŷ ∈ S such that

∥y − ŷ∥ ≤ ∥y − s∥

for all s ∈ S. Then ŷ is called projection of y onto S. ŷ is characterized by ⟨y − ŷ, s⟩ = 0 for all s ∈ S.

Let e1, . . . , en be elements of Hilbert space H such that ∥ei∥ = 1 and ⟨ei, ej⟩ = 0 for i ̸= j, then

e1, . . . , en are called orthonormal elements of H . If further S is the space spanned by e1, . . . , en, that is

S = sp{e1, . . . , en}, then the projection of y ∈ H onto S is given by

ŷ = α̂1e1 + · · ·+ α̂nen

where α̂i = ⟨y, ei⟩ are the Fourier coefficients.

A set S = (ei : i ∈ I) is an orthonormal set if eis are orthonormal, that is ∥ei∥ = 1 and ⟨ei, ej⟩ = 0

for i ̸= j, i, j ∈ I . An orthonormal set S is the basis of a Hilbert space H if H = sp S. A Hilbert space H

is separable if it has a countable orthonormal basis. Next comes an important result related to a separable

Hilbert space. If H is a separable Hilbert space with basis (ei : i ∈ N), then x =
∑∞

i=1⟨x, ei⟩ei for all

x ∈ H , that is,

∥x−
N∑
i=1

⟨x, ei⟩ei∥ → 0 (N → ∞)

2.4.2. Mean function. SupposeX is a random element defined on common probability space (Ω,A, P )

taking values in arbitrary separable Hilbert space H assumed to be A-B(H)-measurable, where B(H) is

Borel σ-algebra in H .

The mean function µ in L2 is defined as µ = E[X] = ((E[X])(t) : t ∈ [0, 1]) = (E[X(t)] : t ∈ [0, 1]).

For any Hilbert space H and X ∈ H , X is weakly integrable if there exists µ ∈ H such that E[⟨X, y⟩] =
14



⟨µ, y⟩ for all y ∈ H , and µ is the expectation (mean function) of X . In general, it is said that X ∈ Lp
H if

E[∥X∥p] < ∞. So, if X ∈ L1
H and H = L2, then (E[X])(t) = E[X(t)] almost everywhere on [0,1]. It is

natural to define the sample mean function based on observations X1, . . . , Xn as µ̂n(t) = 1
n

∑n
k=1Xk(t).

2.4.3. Covariance operator. Let X ∈ L2
H . The covariance operator C : H → H is defined as

C(y) = E[⟨X − E[X], y⟩(X − E[X])], y ∈ H

If H = L2, then C is a kernel operator given by

C(y)(t) =

∫ 1

0
c(t, s)y(s)ds, y ∈ L2

where c(t, s) is the covariance kernel given by

c(t, s) = E[{X(t)− µ(t)}{X(s)− µ(s)}]

If µ(t) = 0 for all t ∈ [0, 1], then c(t, s) simplifies to c(t, s) = E[X(t)X(s)] and C(y) = E[⟨X, y⟩, X].

The covariance kernel is symmetric, positive definite and describes all cross-covariances of the random

function X ∈ L2. The operator C is symmetric, because ⟨C(y), x⟩ = ⟨y, C(x)⟩ for all x, y ∈ H . It

is also non-negative definite because ⟨C(y), y⟩ ≥ 0 for all y ∈ H . Both properties follow from the fact

that ⟨C(y), x⟩ = ⟨E[⟨X, y⟩], x⟩ = E[⟨⟨X, y⟩X,x⟩] = E[⟨X, y⟩⟨X,x⟩]. The sample covariance operator

Ĉn : L
2 → L2 is given by

Ĉn(y) =
1

n

n∑
k=1

⟨Xk − µ̂n, y⟩(Xk − µ̂n) =

∫ 1

0
ĉn(., s)y(s)ds, y ∈ L2

where the sample covariance kernel is given by

ĉn(t, s) =
1

n

n∑
k=1

{Xk(t)− µ̂n(t)}{Xk(s)− µ̂n(s)}

2.5. Functional Principal Components

Functions are in principle infinite-dimensional objects. Hence, it is necessary to develop methods to

reduce dimensionality. Functional Principal Component Analysis (FPCA) is the most important of these

methods. Suppose H is a separable Hilbert space and X ∈ L2
H with E[X] = 0. Let (λl : l ∈ N) be the

decreasing eigenvalues of the covariance operatorC ofX and (ϕl : l ∈ N) be the corresponding orthonormal
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eigenfunctions that is ∥ϕl∥ = 1. Then, ξl = ⟨X,ϕl⟩ is defined as the lth functional principal component

score of X . When H = L2[0, 1], the covariance operator admits the spectral decomposition as

C(y) =
∞∑
l=1

λl⟨y, ϕl⟩ϕl, y ∈ L2

Notice that C(ϕl) = λlϕl. Then, any function X in L2 allows for the Karhunen–Loève representation

X =
∞∑
l=1

⟨X,ϕl⟩ϕl

Similar to multivariate case, Cov(⟨X,ϕl⟩, ⟨X,ϕl′⟩) = E[⟨⟨X,ϕl′⟩X,ϕl⟩] = ⟨C(ϕl′), ϕl⟩ which is equal to

λl if l = l′ or 0 if l ̸= l′. Notice that ϕ1 can be obtained from solving

ϕ1 = arg max{Var⟨X, y⟩ : y ∈ H, ∥y∥ = 1}

Similarly, ϕl can be obtained from solving

ϕl = arg max{Var⟨X, y⟩ : y ∈ H, ∥y∥ = 1, y⊥ϕ1, . . . , ϕl−1}

In practice, C is unknown, so are its eigenvalues λl and eigenfunctions ϕl. So, we need an estimator Ĉ

of the covariance operator C. The natural choice for Ĉ is given by

Ĉn(y) =
1

n

n∑
k=1

⟨Xk, y⟩Xk

From this estimate, sample eigenvalues λ̂l and sample eigenfunctions ϕ̂l are computed which serve as prox-

ies for λl and ϕl. Notice that Ĉn has at most n non-zero eigenvalues, so only a limited number of eigenvalues

and eigenfunctions can be estimated from a sample of size n.

The next question arises: how to compute the eigendecomposition of an arbitrary symmetric operator?

To answer this, let us assume that the functional observations have the form

Xk(t) =

L∑
l=1

dk,lϕl(t)
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where we note that (ϕl : l ∈ N) , the eigenfunctions also form an orthonormal basis system. Let us denote

X = (X1, . . . , Xn)
T , ϕ = (ϕ1, . . . , ϕL)

T and D = (dk,l) ∈ Rn×L. Then, we can write X = Dϕ. Also,

ĉn(t, s) =
1

n
XT (t)X(s) =

1

n
ϕT (t)DTDϕ(s)

Now, eigenfunctions of Ĉn must be in the span of ϕ1, . . . , ϕL. Let η be an eigenfunction of Ĉn with

eigenvalue ρ. Then we can write η(s) = ϕT (s)b for some b ∈ RL. Following this, we have,

Ĉn(η)(t) =

∫ 1

0
ĉn(t, s)η(s)ds

=

∫ 1

0

1

n
ϕT (t)DTDϕ(s)ϕT (s)bds

=
1

n
ϕT (t)DTDb

= ρη(t)

= ρϕT (t)b

noting that
∫ 1
0 ϕ(s)ϕ

T (s)ds = I by doing component wise integration. This leads to the matrix eigenvalue

problem (
1

n
DTD

)
b = ρb

Thus, we see that getting the eigenvalues of the sample covariance operator boils down to getting eigenvalues

of a matrix in the multivariate domain.
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CHAPTER 3

Functional Time Series

Until now, functional data Xk(t) was discussed in a general context, where,the “intra-day” argument t

need not necessarily be time. When functions are indexed in discrete time k, they represent functional time

series. The study of univariate and multivariate linear time series has been done extensively, with the avail-

ability of extensive theory of ARMA models, its extensions and ready-to-use computer packages. However,

when observations are functions, there is an increased complexity as functions are infinite-dimensional, and

the available theory and tools are more limited. In the literature, the focus was originally on special cases

like first-order functional Auto-Regressive (FAR(1)) models. For the FAR(1) model and for other models of

greater complexity, dimension reduction techniques are utilized through FPCA and using the auxiliary FPC

score vector time series for modeling using multivariate time series approach.

Linear dependence is the most important concept in univariate and multivariate time series. In the

functional context, this dependence is captured by autocovariance operators Ch(·) = E[⟨X0, ·⟩Xh], h ∈ Z.

However, for h ̸= 0, these are more complicated objects because they are not symmetric. Some common

linear functional time series models are listed below:

• Functional linear process:

Xk =

∞∑
j=0

Ψjϵk−j

• Functional moving average process:

Xk =

q∑
j=0

Θjϵk−j

• Functional autoregressive process:

Xk =

p∑
j=1

ΦjXk−j + ϵk
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Instead of dealing with prediction algorithms directly on the operator level, an easier way is to project

the functions onto their principal components and use the FPC scores for predictions, because vectors of FPC

scores will constitute a multivariate time series. But what happens to the linear dependence after projection?

Let us illustrate the effect with an example. Suppose we have a first-order functional autoregression model

Xk = ΦXk−1 + ϵk with

Φ(x) = a (⟨x, ϕ1⟩+ ⟨x, ϕ2⟩)ϕ1 + a⟨x, ϕ1⟩ϕ2, x ∈ H

where a ∈ (0, 1) and ϕ1, ϕ2 ∈ H are orthonormal basis functions. Further, assume that E[⟨ϵk, ϕ1⟩2] > 0

but E[⟨ϵk, ϕ2⟩2] = 0. Then it can be shown that the first FPC score time series satisfies

⟨Xk, ϕ1⟩ = a⟨Xk−1, ϕ1⟩+ a2⟨Xk−2, ϕ1⟩+ ⟨ϵk, ϕ1⟩

So, if we denote our new time series as ξk = ⟨Xk, ϕ1⟩ and ek = ⟨ϵk, ϕ1⟩, then it satisfies

ξk = aξk−1 + a2ξk−2 + ek

This shows that the projection of this FAR(1) process is a VAR(2) process. In general, if we assume that

all eigenvalues of Cϵ, the covariance operator of the innovation functions, are positive, then the following

relations hold between functional to vector time series dynamics:

• Projection of FMA(q) is VMA(q′) with q′ ≤ q

• Projection of FAR(p) is in general not VAR(p′) nor FMA(q′)

• Projection of FARMA(p, q) is in general not VARMA(p′, q′)

However, invertibility is preserved under projections onto FPCs.

Now, predictions in functional time series typically rely on estimation of the covariance operator of the

observations in the first step. The most often applied functional time series model is the FAR(1) model given

by

Xk = Ψ(Xk−1) + ϵk, k ∈ Z

where Xk = Xk(t) are functional time series observations and ϵk = ϵk(t) are centered, independent and

identically distributed innovations functions, Ψ is a bounded linear operator satisfying ∥Ψ∥L < 1 to ensure
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a causal and stationary solution, where the operator norm ∥·∥L for any operator A is given by

∥A∥L = sup
∥x∥≤1

∥A(x)∥

For an appropriately chosen d, Xk can be approximated as Xk =
∑d

l=1⟨Xk, ϕ̂l⟩ϕ̂l, where, λ̂1, . . . , λ̂d are

the first d sample eigenvalues and ϕ̂1, . . . , ϕ̂d are the corresponding sample eigenfunctions of the sample

covariance operator. In that case the estimator of Ψ is given by

Ψ̃n(y) ≈
1

n− 1

n∑
k=2

d∑
l=1

d∑
l′=1

λ̂−1
l ⟨y, ϕ̂l⟩⟨Xk−1, ϕ̂l⟩⟨Xk, ϕ̂l′⟩ϕ̂l′

This leads to the functional predictor X̃n+1 = Ψ̃Xn introduced in Bosq (2000). Beyond FAR(1), higher

order FAR processes can be studied, however, that involves estimation of a number of operators which can be

a complex process. On the other hand, Aue et al. (2015) proposed an alternative algorithm to get predictions

using methods based on FPC scores. This prediction technique utilizes univariate and multivariate prediction

methods and avoids estimating operators of functional time series directly. The three-step algorithm is as

follows:

• Step 1: Fix d and denote the empirical FPCs as xek,l = ⟨Xk, ϕ̂l⟩ where ϕ̂l represents the sample

eigenfunctions, l = 1, . . . , d. For k = 1, . . . , n, use the data X1, X2, . . . , Xn to compute the

vectors containing the first d FPC scores

Xe
k = (xek,1, . . . , x

e
k,d)

′

• Step 2: Fix h. Use Xe
1, . . . ,X

e
n to determine the h-step ahead prediction for Xe

n+h with an

appropriate multivariate algorithm:

X̂e
n+h = (x̂en+h,1, . . . , x̂

e
n+h,d)

′

• Step 3: Multivariate predictions are retransformed to functional object using the truncated Karhunen–

Loève representation

X̂n+h = x̂en+h,1ϕ̂1 + · · ·+ x̂en+h,dϕ̂d
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This algorithm gives the best linear predictor (in mean square sense) of the population FPC scores. Fur-

ther, it does not assume any underlying FAR(p) structure or any other functional time series specification.

The method is also flexible and any standard prediction algorithms like Durbin–Levinson or innovations

algorithms can be applied to get the predicted FPC scores. One can even explore alternative prediction al-

gorithms such as exponential smoothing and non-parametric predictions or can even incorporate covariates

in the prediction process. The accuracy and validity of the estimators obtained using FPC scores can be

summarized in the following. Let (Xk : k ∈ Z) be an FAR(p) process and denote by X̂n+1 the FPC score

one-step predictor and by X̃n+1 the standard one-step ahead predictor. Assume that a VAR(p) model is fit

to Xe
k = (xek,1, . . . , x

e
k,d)

′ by means of ordinary least squares, where xek,l = ⟨Xk, ϕ̂l⟩. Then, the resulting

predictor is asymptotically equivalent to the standard predictor:

∥X̂n+1 − X̃n+1∥ = OP

(
1√
n

)
Even though there has been some study on predicting a functional time series(such as Besse et al. (2000);

Antoniadis et al. (2006); Kargin and Onatski (2008); Hyndman and Shang (2009); Aue et al. (2015); Jiao

et al. (2023)), not much work has been done in estimating the prediction error. Studying prediction error

is important to assess how good the prediction is and also to provide a confidence statement regarding the

predictions. Further, in case the predictions are done using FPC scores, the prediction error can also give

some idea of the number of principal components required to transform the infinite-dimensional functions to

a finite-dimensional multivariate object. Chapter 4 aims to develop a methodology to estimate the prediction

error that builds on Aue and Burman (2024) in the functional time series context.
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CHAPTER 4

Prediction error in functional time series

As discussed in Chapter 1, the main idea of this chapter is to devise a strategy for the estimation of

prediction errors in functional time series data. The estimation entails both classical and modified estimates

extending the prediction issues for univariate and multivariate time series as addressed in Aue and Burman

(2024). The idea is to convert infinite-dimensional functions to finite-dimensional multivariate objects us-

ing the idea used in Aue et al. (2015) because it is not possible to estimate infinite-dimensional objects

nonparametrically without reducing the dimensions.

Suppose we have n functions, Xk, k = 1, . . . , n, that have been obtained from a functional stationary

time series of the form

Xk = µk + ϵk

where µk is the conditional mean function ofXk given the past and ϵk are the innovation functions with zero

mean, independent of µk. One can fit a functional time series model, such as an FAR process of order p to

this data to get the estimate of µk and thus the estimates of ϵk(t) that can be used to get the functional predic-

tion error estimates. However, this method is complex since it deals with infinite-dimensional functions. An

easier way is to get the FPC scores which are finite-dimensional. Thus, for a fixed D, we compute the FPC

scores ⟨Xk, ϕ̂j⟩ where ϕ̂1, . . . , ϕ̂D are the estimated eigenfunctions. The proportion of variance explained

by the FPCs can be computed for each j, j = 1, . . . , D, and an appropriate d << D can be chosen that

represents the multivariate data of the d-dimensional scores

(⟨Xk, ϕ̂1⟩, . . . , ⟨Xk, ϕ̂d⟩)T = (X∗
k,1, . . . , X

∗
k,d)

T

Now, the new observations can be written in the form

X∗
k = µ∗k + ϵ∗k
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Suppose a multivariate time series model {µ∗k(θ)} is employed to estimate {µ∗k}, where θ is the vector

of all the model parameters. For example a VAR of order 2 can be considered for µ∗k given by µ∗k(θ) =

α1X
∗
k−1 + α2X

∗
n−2, α1 and α2 being d × d matrices. It is to be noted that the underlying data generating

process might be different from the one fitted, so when it comes to prediction error, there are two sources.

Essentially, it is a bias-variance tradeoff, where the bias comes from model-misspecification and the variance

from the estimation procedure. If θ̂s is the estimate of θ based on the first s observations, then the estimate

of µ∗k is denoted by µ∗k(θ̂s) and the corresponding residual is denoted by

ϵ∗k(θ̂s) = X∗
k − µ∗k(θ̂s)

These residuals can now be used to estimate functional prediction error. The following section introduces

some notations and describes the above in greater formality.

4.1. Notations

All stationary functional time series that are stationary and in L2 allow for the Karhunen–Loève (KL)

representation

Xk =
∞∑
j=1

⟨Xk, ϕj⟩ϕj , k = 1, . . . , n

where (ϕj : j ∈ N) represents the underlying basis system of eigenfunctions of the covariance operator

associated with the functional time series.

For a fixed d, define ⟨Xk, ϕj⟩ = Xk(ϕj) ,Xk(ϕ1:d) = (⟨Xk, ϕ1⟩, . . . , ⟨Xk, ϕd⟩)T and ϕ1:d = (ϕ1(t), . . . ,

ϕd)
T . Then, we can write the KL representation as

Xk =
d∑

j=1

⟨Xk, ϕj⟩ϕj +
∞∑

j=d+1

⟨Xk, ϕj⟩ϕj

= Xk(ϕ1:d)
′ϕ1:d +Xk(ϕd+1:∞)′ϕd+1:∞

Now, we can fit a VAR model of order p to the d-dimensional scores Xk(ϕ1:d). Suppose, we fit a VAR(2)

model. Then the one step ahead forecast Xn+1 is given by

X̂n+1 = [α̂1Xn(ϕ1:d) + α̂2Xn−1(ϕ1:d)]
′ϕ1:d
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where α̂1 and α̂2 are d × d coefficient matrices of VAR(2) estimated based on n observations. Some

calculations show that,

Xn+1 − X̂n+1 = [Xn+1(ϕ1:d)− α̂1Xn(ϕ1:d)− α̂2Xn−1(ϕ1:d)]
Tϕ1:d

+Xn+1(ϕd+1:∞)Tϕd+1:∞

and then, taking the norm, we get,

∥Xn+1 − X̂n+1∥2 = ∥Xn+1(ϕ1:d)− α̂1Xn(ϕ1:d)− α̂2Xn−1(ϕ1:d)∥2

+ ∥Xn+1(ϕd+1:∞)∥2

Finally, the functional prediction error based on n observations can be defined as

(4.1) FPEn = E∥Xn+1 − X̂n+1∥2

Now, the value of d is so chosen that it explains a significant proportion of variance in the data. If chosen

appropriately, the term E∥Xn+1(ϕd+1:∞)∥2 should be close to 0, and more precisely, it depends on the

bias variance trade-off. Also for d fixed, this part can be ignored because it does not change for different

d-dimensional model fits. However, it plays a role when comparing prediction errors over a range of d.

Further, since the underlying basis system is unknown, this quantity will be difficult to estimate. So, for

computational purposes, the residual functions will be given by

ϵn+1(θ̂n) = [Xn+1(ϕ1:d)− α̂1Xn(ϕ1:d)− α̂2Xn−1(ϕ1:d)]
Tϕ1:d

where θ̂n is the estimate of θ from the data. Thus, the functional prediction error can be redefined as

FPEn = E∥ϵn+1(θ̂n)∥2(4.2)

= E∥Xn+1(ϕ1:d)− α̂1Xn(ϕ1:d)− α̂2Xn−1(ϕ1:d)∥2(4.3)
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4.2. Functional prediction error estimates

If we fit a VAR(p) model to the data, then n−p residuals will be available. Then, an empirical estimate

of FPEn is given by

(4.4) F̂PE
emp

n =
1

n− p

n−1∑
k=p

∥ϵk+1(θ̂n)∥2

where p ≤ k ≤ n − 1 and ϵk+1(θ̂n) are the in-sample residual functions. In particular, when a VAR(2)

model is fitted, the residual takes the form

ϵk+1(θ̂n) = [Xk+1(ϕ1:d)− α̂1Xk(ϕ1:d)− α̂2Xk−1(ϕ1:d)]
Tϕ1:d

Efron (2004) showed that the empirical estimate may not be a very good estimate of the prediction error

in regression models. Aue and Burman (2024) confirmed the same in univariate and multivariate time series.

We will analyze the functional time series setting in the following. For m = ⌊δn⌋ with 0 < δ < 1, the

functional version of Rissanen’s APE estimate of FPEn is defined as

(4.5) F̂PE
R

n =
1

n−m

n−1∑
k=m

∥ϵk+1(θ̂k)∥2

When m is small (δ close to 0), then the predictions are based on fewer observations, so bias in estimating

FPEn using F̂PE
R

n may not be small. On the other hand, ifm is close to n (δ close to 1), it may be unbiased

for FPEn but its variance might be high since the estimate is based on fewer residuals.

4.3. Proposed modified estimates of functional prediction error

Similar to the univariate case, the empirical estimate defined above is biased (Efron [2004]). It is also

explained in Chapter 1 and the previous section how the functional Rissanen estimate defined above is also a

biased estimate of prediction error. So, modified estimates are proposed to see if the biases can be reduced.

An estimate of the bias in estimating FPEn by F̂PE
emp

n is used to “correct” the empirical estimate. The

correction factor is given by

Cn(w) =
1

n−m

n−1∑
k=m

wk

(
∥ϵk+1(θ̂k)∥2 − F̂PE

emp

k

)
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Note that the correction factor is a weighted average of the bias when only k observations are used to predict

the (k + 1)th observation, m ≤ k ≤ n − 1. The weights are so chosen to estimate the expected bias

E(FPEn − F̂PE
emp

n ) well. Here, F̂PE
emp

k are the in-sample residual functions where the parameters are

based on the first k observations and are defined as

F̂PE
emp

k =
1

k − p

k−1∑
s=p

∥ϵs+1(θ̂k)∥2

Note that m = ⌊δn⌋ with 0 ≤ δ ≤ 1 and ϵk+1(θ̂k) are out of sample residual functions. Following similar

arguments as discussed in Aue and Burman (2024), the first-order bias correction is achieved by choosing

wk as w1k = n−1k. Consequently, the correction factor is given by

Cn(w1) =
1

n(n−m)

n−1∑
k=m

k
(
∥ϵk+1(θ̂k)∥2 − F̂PE

emp

k

)
and the modified empirical estimate is given by

(4.6) F̂PE
ME

n (w1) = F̂PE
emp

n + Cn(w1)

The original Rissanen estimate uses the simple average of ∥ϵk+1(θ̂k)∥2 to compute the prediction error.

The modified Risannen estimate uses the weighted average instead, which is given by

(4.7) F̂PE
MR

n (v) =
1

n−m

n−1∑
k=m

vk∥ϵk+1(θ̂k)∥2

where the weights are chosen following the approach discussed in Chapter 1, so that the estimator is first-

order unbiased. Here, the focus will be on the particular weights v1 as λ0 + λ1n
−1k where

λ1 =
ρ1 − 1

ρ−1ρ1 − 1
, λ0 = 1− ρ−1λ1

and

ρz =
1

n−m

n−1∑
k=m

(n
k

)z
Simulation studies in Section 4.5 show that the functional modified Rissanen estimate has lower bias but

higher variability compared to the corresponding modified empirical estimates.
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4.4. Extension to multiple step predictions

Until now the focus was on one step ahead prediction errors. Of course, sometimes it is useful to predict

observations for multiple steps. For example, one might be interested in seeing how the daily temperature

curves behave for the next seven days. This problem pertains to multi-step ahead predictions. Of course,

the quality of predictions is expected to deteriorate as we try to predict too far into the future. Hence, it

may be of interest to analyze the performance of longer term predictions, say, h-steps ahead. Following a

similar approach as for the 1-step ahead prediction error described above, multi-step prediction errors can

be defined. Notice that the optimal forecast of Xn+h based on observations Xs, s ≤ n, is given by the

conditional mean function

µ
(h)
n+h = E[Xn+h|Xs, s ≤ n]

Let us denote µ̂(h)k (θ̂s) as the estimated value of µ(h)k when the model is fitted based on the first s observa-

tions, where θ denote the vector of parameters of the model fitted to the scores of the functional data. Then,

the h-step ahead residual function is given by

ϵ
(h)
k (θ̂s) = Xk − µ̂

(h)
k (θ̂s)

where µ(h)k = E(Xk|Xs, s ≤ k−h). The multi-step true functional prediction error based on n observations

is then given by

(4.8) FPEn(h) = E∥ϵ(h)n+h(θ̂n)∥
2

4.4.1. Multi-step estimates of prediction error. If a VAR(p) model is fitted to the functional scores,

then the h-step ahead functional empirical prediction error estimate is given by

(4.9) F̂PE
emp

n (h) =
1

n− h− p+ 1

n−h∑
k=p

∥ϵ(h)k+h(θ̂n)∥
2

Similarly, the functional multi-step Rissanen estimate is given by

(4.10) F̂PE
R

n (h) =
1

n− h−m+ 1

n−h∑
k=m

∥ϵ(h)k+h(θ̂k)∥
2
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where m = ⌊δn⌋ with 0 < δ < 1. Also note that the parameters of the underlying model are updated for

each k. All the discussions for 1-step ahead predictions are valid for h-steps ahead predictions too and do

not require any special treatment. One needs to be just mindful when calculating the predictions and residual

functions because they depend on the underlying model fitted and the value of h.

4.4.2. Multi-step modified estimates. The modified h-step ahead empirical estimate is given by

(4.11) F̂PE
ME

n (w, h) = F̂PE
emp

n (h) + Cn(w, h)

where the form of the correction factor is similar to that of the one-step case. The weights {wk} satisfy the

condition

g1(w, h) =
1

n− h−m+ 1

n−h∑
k=m

k−1nwk = 1

to correct for the first-order bias. Clearly, choosing w1k = k/n satisfy the above condition and thus the

correction factor is given by

Cn(w1, h) =
1

n(n− h−m+ 1)

n−h∑
k=m

k
(
∥ϵ(h)k+h(θ̂k)∥

2 − F̂PE
emp

k (h)
)

where F̂PE
emp

k (h) is defined as

F̂PE
emp

k (h) =
1

k − h− p+ 1

k−h∑
s=p

∥ϵ(h)s+h(θ̂k)∥
2

The modified h-step ahead Rissanen estimate is given by

(4.12) F̂PE
MR

n (v, h) =
1

n− h−m+ 1

n−h∑
k=m

vk,h∥ϵ
(h)
k+h(θ̂k)∥

2

where the first-order bias correction is achieved by selecting weights {vk,h} such that f0(v, h) = 1, f1(v, h) =

1, where

fz(v, h) =
1

n− h−m+ 1

n−h∑
k=m

(n
k

)z
vk,h, z = 0, 1.

Recall that

ρz(h) =
1

n− h−m+ 1

n−h∑
k=m

(n
k

)z
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By choosing the weights v1,h as λ0(h) + λ1(h)n
−1k, simple calculations show first-order unbiasedness can

be achieved by choosing

λ1(h) =
ρ1(h)− 1

ρ−1(h)ρ1(h)− 1
, λ0(h) = 1− ρ−1(h)λ1(h)

All the discussions on choosing weights are similar to the one-step ahead case.

4.5. Simulation results

4.5.1. Simulations for one-step ahead predictions. Simulation studies were carried out in order to

assess the performance of the modified estimates of the functional prediction error for the one-step ahead

predictions. For any generic estimate F̂PEn of the true prediction error FPEn, the mean and standard

deviations of the difference F̂PEn−FPEn were obtained. The results presented here are for 500 simulation

runs. However, the true prediction error has been estimated based on 1500 simulation runs to achieve greater

accuracy. The following section gives the set-up for data generation.

4.5.1.1. Set-up. Suppose ϵk represents a function generated by D Fourier basis, ϕ1, . . . , ϕD, for some

k. The ϵk serve as innovations to generate a functional MA(1) model given by

(4.13) Xk = ϵk +Θϵk−1

The k-th innovation function is given by

ϵk =

D∑
j=1

zjkϕj

where the coefficients of the innovation functions are given by the D x n matrix with elements (zjk) where

zjk ∼ N(0, σj), j = 1, . . . , D, n being the sample size and σj is the j-th element of the vector σ =

(σ1, . . . , σD)
′ where σj declines exponentially with j.

The kernel of the MA operator Θ is given by

θ(t, s) =

D∑
j=1

ajϕj(s)ϕj(t)

where the coefficients aj are so chosen that they decline rapidly with increasing j. This, along with the

structure of σ, ensures that the first few eigenvalues represent a significant proportion of variation of the

data generated.
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The scores ⟨Xk, ϕj⟩ in this set up can be directly computed as

(4.14) ⟨Xk, ϕj⟩ = zjk + ajzj,k−1

for j = 1, . . . , D, k = 1, . . . , n, and the eigenvalues of the covariance kernel of X are given by λj =

σ2j (1+a
2
j ), j = 1, . . . , D. Thus, it is evident that in this set up, it is enough to generate the zjk’s and choose

aj and σj appropriately.

4.5.1.2. The choice of parameters and model. Together with the Fourier basis, it is enough to generate

the σj and aj , j = 1, . . . , D, for simulation. A large value of D was considered in order to mimic an

approximation of infinite-dimensional functions. Here, D was chosen to be 21 for the simulations. Higher

values of D were also considered, such as D = 31 or D = 51. Since the results were comparable, only

those for D = 21 are reported in the following. The σ vector was chosen as σ = (1.5−j : j = 1, . . . , D)′

and the kernel coefficients are set as

aj =
1

(j + 1)1.5

Here, the sample size n was set as 100. Once the z’s are generated, the scores can be computed easily

using (4.14). These scores now represent a multivariate time series with D dimensions. The proportion of

variation explained by the j-th principal component can be calculated as

λj∑D
j=1 λj

It was found that the first d = 5 eigenvalues explained more than 95% of variation in the data. So, the scores

corresponding to the first 5 eigenvalues were now considered as the multivariate time series and a VAR(p)

process was fitted to the data. In general, if the MA(1) model is invertible, it can be represented as an infinite

AR model. Hence, a higher order VAR model was deemed appropriate in this case, and a VAR(2) model is

fitted to the d-dimensional scores for computational simplicity. However, a VAR(2) might not be the correct

model and some higher values of p could have been considered as better approximations. It is to be noted

then that the prediction error has sources of error coming from model misspecification as well.

4.5.1.3. Results. Once the predictions are made using a VAR(p) model with p = 2, the prediction

error and its estimates were calculated. The mean and standard deviations of the deviations of the estimates
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from the true prediction error were plotted for different choices of δ varying between 0.2 and 0.95. More

specifically, they were computed based on the following:

• Functional empirical estimates: F̂PE
emp

n − FPEn which does not depend on δ

• Functional Rissanen estimates: F̂PE
R

n − FPEn

• Functional modified empirical estimates: F̂PE
ME

n − FPEn with weights w1k = n−1k

• Functional modified Rissanen estimates: F̂PE
MR

n − FPEn with weights v1k = λ0 + λ1n
−1k

FIGURE 4.1. Simulation results with basis assumed to be known: the left panel showing
bias in estimating the true prediction error and the right panel showing the SD of the devia-
tions for Empirical Estimate (——), Modified Empirical Estimate (− ◦ − ◦ −), Rissanen’s
Estimate (−+−+−), Modified Rissanen’s Estimate (−×−×−)

From Figure 4.1, it is evident that the empirical estimate has the largest bias followed by Rissanen’s

estimate, as expected. The modified estimates are better at lowering the bias of the prediction error estimates.

The modified empirical estimates perform consistently well in terms of the lowest bias for all δ and their

standard deviations are also not significantly different from those of the empirical estimates, which have the

lowest standard deviation. Overall, considering the bias-variance trade-off, the modified empirical estimate

seems to perform the best in this case.

4.5.2. When the underlying basis is assumed to be unknown. Even though in simulations all the

parameters and basis system for functional data is known, one can assume that only the data is provided for
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analysis and the underlying basis that generated the functional data is not known. In that case, FPCA can be

performed on the data and the eigenfunctions thus obtained serve as the basis. The analysis remains exactly

the same, including the choice of the order of the VAR model. The choice of d is now based on the estimated

eigenvalues. The only difference lies in the residual functions which, if a VAR(2) is fitted, are now defined

as

ϵn+1(θ̂n) = [Xn+1(ϕ̂1:d)− α̂1Xn(ϕ̂1:d)− α̂2Xn−1(ϕ̂1:d)]
′ϕ̂1:d

where ϕ̂1, . . . , ϕ̂d are eigenfunctions from FPCA on mean centered observations.

FIGURE 4.2. Simulation results with basis assumed to be unknown: the left panel showing
bias in estimating the true prediction error and the right panel showing the SD of the devia-
tions for Empirical Estimate (——), Modified Empirical Estimate (− ◦ − ◦ −), Rissanen’s
Estimate (−+−+−), Modified Rissanen’s Estimate (−×−×−)

As seen in Figure 4.2, here also, an evident improvement in terms of lowering the bias is observed for

the modified estimates when compared to the empirical and Rissanen’s estimate. We observe a higher bias

and lower variance for δ close to 0 and the bias reduces and variance increases for δ close to 1. The modified

Rissanen’s estimate seem to have the lowest bias until δ ≈ 0.8, but its variance is consistently the highest

and increases further for δ > 0.8. Overall, it appears that the modified empirical estimate is consistently

performing the best in terms of estimating the true one-step ahead functional prediction error.
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FIGURE 4.3. Multi-Step Prediction Error bias (left) and standard deviations (right) for h =
1, 2, 3: Empirical (- - - - -), Modified Empirical (· · · · · · ), Rissanen (− · − · −), Modified
Rissanen (— — —)

33



FIGURE 4.4. Multi-Step Prediction Error bias (left) and standard deviations (right) for h =
4, 5, 6: Empirical (- - - - -), Modified Empirical (· · · · · · ), Rissanen (− · − · −), Modified
Rissanen (— — —)
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FIGURE 4.5. Multi-Step Prediction Error bias (left) and standard deviations (right) for h =
7, 8, 9: Empirical (- - - - -), Modified Empirical (· · · · · · ), Rissanen (− · − · −), Modified
Rissanen (— — —)

4.5.3. Simulations for multi-step ahead predictions. While estimating the multi-step prediction er-

ror, the last 10 observations were set aside so that the true prediction error can be computed based on 10-step
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ahead predictions. FPCA was implemented on n1 = n − 10 observations and a similar approach was fol-

lowed as described above to get the prediction error estimates.

FIGURE 4.6. Multi-Step Prediction Error bias (left) and standard deviations (right) for h
= 10: Empirical (- - - - -), Modified Empirical (· · · · · · ), Rissanen (− · − · −), Modified
Rissanen (— — —)

Figures 4.3-4.6 are displayed for h = 1, . . . , 10, where h is the number of steps ahead the forecasts

are computed. The modified Rissanen estimates become highly variable and highly biased for longer term

predictions and for too small or too big delta.

4.6. Application to real data: Australia temperature

To demonstrate the practical utility of prediction error estimators for functional data, the new methods

are applied to temperature data. Specifically, daily maximum temperature data measured on a number of

meteorological stations in Australia were considered to implement the functional prediction error estimates,

where the data corresponding to one year represents a function. The modeling of temperature dynamics

plays an important role in understanding the degree of temperature variations during every year. The accurate

prediction of future temperatures and the assessment of the corresponding prediction errors has thus direct

impact on policy and decision-making processes. Here, detailed results will be provided for the Sydney

Observatory Hill meteorological station and major results will be provided for Gayndah Post Office to avoid

repetitiveness. The first analysis is provided for the Sydney Observatory Hill meteorological station. Data

of this type was considered in other contexts in Aue et al. (2018), Aue and van Delft (2020) and Dette et al.

(2020).
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4.6.1. Sydney Observatory Hill. The observations are daily maximum temperatures (measured in de-

gree Celsius) recorded at Sydney Observatory Hill from 01 January 1859 to 31 December 2019. The data

was obtained from the Bureau of Meteorology, Government of Australia. Since the temperature curve for

each year represents a function, there are n = 161 functional observations, each constructed from discrete

daily observations observed at 365 points. For simplicity, for the leap years, the average of February 28 and

29 was calculated as the temperature for February 28 and February 29 temperature was removed. There

were 152 days where the maximum temperature data were unavailable of the Sydney Observatory Hill sta-

tion. These missing values were treated by mean imputation. For example, if the temperature was missing

for January 04 for the year 1960, then, the mean temperature for January 04 for all the other years was

imputed for the missing value. The data was then arranged in a 365 × 161 matrix form, where each column

corresponded to an observation with 365 points. The 161 column means corresponded to the trend over the

years, while the 365 row means corresponded to the seasonality effect.

FIGURE 4.7. Trend (column means) and Seasonality (row means) in Sydney Observatory
Hill Temperatures when arranged in a matrix form where each column corresponds to a
functional observation for a year.

There is an increasing trend over the years as seen in the left panel of Figure 4.7. This upward trend over

a significant time period might suggests a broader trend of climate change and global warming. Seasonality

is captured in the right panel of Figure 4.7. Since seasonality is the main driver for variation in temperature

within a year, the trend was removed from the data so that the data only captures the seasonal pattern. The

data was transformed into functions using 15 Fourier basis functions and least squares fitting using the fda

package available in the R statistical software was applied. The functions and their mean are shown in Figure

4.8. The 161 functions X1, . . . , X161 represent the annual temperature curves for the Sydney Observatory

Hill meteorological station. The mean function shows that the temperatures are higher at the beginning and
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end of the year whereas it is lower in the middle of the year. It essentially captures the seasonal effect of all

the functions and is the dominating component in the temperature functions. This sample mean or average

is an estimator of the population seasonal effect. Hence, we subtract the average sample seasonal effect and

prediction errors are calculated for the mean centered functions, which represent the random component in

the data.

The plot shows considerable variation of the functions, specially at the beginning and the end of the year

which represents summer months in Australia. This results in very wiggly sample eigenfunctions estimated

using FPCA. The eigenfunctions convey information on deviations from the mean function, which describe

the average seasonal behavior for any given year. Therefore, to examine the effect of the first three FPCs on

the mean curve of the centered functions, Figure 4.9 is plotted where a multiple chosen as the l-th empirical

eigenvalue λ̂l of the l-th empirical eigenfunction ϕ̂l was added to and subtracted from the estimated mean

curve of the centered observations for l = 1, 2, 3.

FIGURE 4.8. Sydney Observatory Hill Temperature Functions and their mean

Figure 4.9 shows that the eigenfunctions resemble the data and are more variable in the beginning and

end of the year. Upon investigating further, we see that there are two effects overlapping here. The first is
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that summer months are somewhat more variable than winter month, but not to such a large extent. The

second, and more important effect is the way functions were initially registered which resulted in increased

variability in the data extremes (the beginning and end of each year) and the first 5 empirical eigenvalues

only explaining 65% of the total variations present in the data. This motivates a new method of function

registration developed in this thesis which is described in the next subsection.

4.6.1.1. New method of registration of functions. The functions depicted in Figure 4.8 are wiggly espe-

cially around intraday time t = 0 and t = 1. While they are still continuous on [0, 1], if we are to collate

them year by year, we would introduce discontinuities, each time the old year ends and the new year starts.

This means that there was a jump in between December temperatures of the old year and the January tem-

peratures of the next year. When using functional data in this context, how the function behaves per year

is more important, because the major variations in the data is captured by the seasonal pattern each year.

However, such an approach implies that we lose the interpretation of temperature as a stochastic process

evolving over the years. The proposed new approach of function registration reconciles the two views by

ensuring an almost continuous evolution of the trajectories from one year to the next in the stochastic process

representation.

To deal with this, for k = 2, . . . , n − 1, the daily observations for the k-th year were concatenated

with the December observations of the (k − 1)-th year and the January observations of the (k + 1)-th year.

For k = 1, only the January temperatures of year 2 were concatenated. For k = n, only the December

temperatures of year n− 1 were concatenated. After registering extended functions based on concatenated

discrete daily observations using least square smoothing methods, a pruning step was applied so that each

function starts in January and ends in December for a given year. This was done using the funData

package available in the R statistical software. So the fda objects were converted to funData objects,

then the extractObs function was used to prune the functions and then they were transformed to an fda

object using 15 Fourier basis functions where each function has the domain [0, 1]. The resulting functions

are plotted in Figure 4.10 against the old functions to compare the performance of the new registration.

The functions obtained from the new registration method are less volatile and more smooth overall than the

functions obtained from the traditional registration method as shown in Figure 4.10.

Plotting the functions as a stochastic process in Figure (4.11), shows that continuity has been ensured

to a reasonable degree. Even though this is not pursued in the context of this dissertation, the new way
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FIGURE 4.9. Effect of First Three PC on the Mean of the centered functions: µ̂ + λ̂lϕ̂l
represented as ( ) and µ̂− λ̂lϕ̂l represented as ( ) along with the mean µ̂ ( )
for l = 1, 2, 3

of registering functional time series data should also have benefits if interest is in predicting when partial

knowledge of the future curve is available; see Jiao et al. (2023).
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FIGURE 4.10. Initial Functions and Modified Functions of Sydney Observatory Hill

The first 5 empirical eigenvalues explain around 75% variation in the data, which is clearly higher than

for the previous registration. Figure 4.12 shows the effect of the first 3 FPCs on the mean on the newly

registered functions. The eigenfunctions appear to be much more stable than before and hence, less wiggly.

The first principal component shows that if the temperatures are higher than normal in December (end of

the observation window), it will be higher than normal in January (start of the observation window) and vice

versa , indicating preservation of continuity. The second and third FPCs are compensating for the volatile

summer months. The second FPC shows that if the fall temperatures are higher than normal, so will be the

spring temperatures. Overall, it seems that the new method of function registration works well, hence, we

will proceed with the newly generated functions as our observations.
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FIGURE 4.11. 5 years of temperature curves after the new registration

4.6.1.2. Choosing the ‘best’ p and d. Unlike for simulated data, the optimal VAR order p to be fitted to

the scores of the functions is unknown. A small value of p might lead to a biased model. Similarly, a small

value of d might not explain a significant proportion of variance in the data. So, the choice of both p and d

depends on a bias-variance trade-off. Based on this principle, the optimal values of the VAR order p and the

reduced dimension d can be chosen based on the algorithm described in Aue et al. (2015). Their criterion

is based on minimizing the mean squared error (MSE) when a VAR(p) model is fitted to the d-dimensional

scores. It was shown in the paper that an approximate expression of one-step prediction error is given by

E∥Xn+1 − X̂n+1∥2 ≈
n− pd

n+ pd
tr(Σ̂Z) +

∑
l>d

λ̂l

where Z’s are the residuals of the VAR(p) model fitted and ΣZ = E[Z1Z
′
1] and Σ̂Z is its estimate.

∑
l>d λ̂l

represents the proportion of variance unexplained by the first d eigenvectors.

Using this algorithm, the ‘best’ values of p and d came out to be 2 and 3 respectively. This means that

the functional prediction error estimate is minimum when a VAR(2) model is fitted to three dimensional

scores. However, it is to be noted that unlike for simulated data, here, the true functional prediction error is

unknown, and hence the functional prediction error estimates could not be compared to the true prediction

error.

4.6.1.3. Prediction bands using FPE estimates. In the introduction in Section 1, it was mentioned that

a very useful application of prediction errors is to construct prediction bands. So, instead of comparing the
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FIGURE 4.12. Effect of First Three PC on the Mean of New Functions (right) as compared
to the Old Functions (left): µ̂+ λ̂lϕ̂l represented as ( ) and µ̂− λ̂lϕ̂l as ( ) along
with the mean µ̂ ( ) for l = 1, 2, 3

estimates to the true prediction error, one can get h step ahead prediction error estimates defined in Section

4.4 and use them to construct point-wise prediction bands.

Recall that for a fixed d, we defined Xk(ϕ1:d) = (⟨Xk, ϕ1⟩, . . . , ⟨Xk, ϕd⟩)T and ϕ1:d = (ϕ1, . . . , ϕd)
T .

Now, the h-step ahead future observation, using the truncated KL representation, can be written as

Xn+h =
d∑

j=1

⟨Xn+h, ϕj⟩ϕj

= Xn+h(ϕ1:d)
Tϕ1:d

Similarly, the h-step ahead predicted functions can be represented as
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X̂n+h = X̂n+h(ϕ1:d)
Tϕ1:d

Prediction bands were constructed based on Scheffe’s method (Scheffe (1969)) of simultaneous con-

fidence intervals. Let θ̂ ∼ Nd(θ,Σ) be the estimator of the parameter θ ∈ Rd, then a 100(1 − α)%

approximate simultaneous confidence interval for a linear combinations of θ, given by aT θ, a ∈ Rd is given

by

(4.15) aT θ̂ ±
√
χ2
d(1− α)

√
aTΣa

For a prediction interval, instead of Σ,Cov(θ̂−θ) is used. Taking θ = Xn+h(ϕ1:d) and θ̂ = X̂n+h(ϕ1:d), we

can define the pointwise prediction band for h-step ahead predictions using (4.15). In this case, a = ϕ1:d(t),

so the prediction band has to be evaluated for each t ∈ [0, 1]. Thus, the approximate simultaneous prediction

band for t ∈ [0, 1] can be written as

(4.16) X̂n+h(ϕ1:d)
Tϕ1:d(t)±

√
χ2
d(1− α)

√
ϕT1:d(t)Σϕ1:d(t)

Now, Σ here is given by

Σ = Cov(X̂n+h(ϕ1:d)−Xn+h(ϕ1:d)) = Cov(ϵ
(h)
n+h(ϕ1:d))

= E
(
[ϵ
(h)
n+h(θ̂n)(ϕ1:d)][ϵ

(h)
n+h(θ̂n)(ϕ1:d)]

T
)

This is exactly the same ϵ(h)n+h(θ̂n)(t) that was used to define the h-step ahead functional prediction error,

but instead of the norm of the scores, the covariance matrix of the scores is considered here.

However, Σ is unknown and has to be estimated by Σ̂ to get the prediction bands, where Σ̂ is based on

different FPE estimates as defined in Section 4.4. For example, based on F̂PE
emp

n (h), as given by equation

(4.9), it is given by

Σ̂emp(h) =
1

n− h− p+ 1

n−h∑
k=p

[ϵ
(h)
k+h(θ̂n)(ϕ1:d)] [ϵ

(h)
k+h(θ̂n)(ϕ1:d)]

T
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When it is based on F̂PE
R

n (h) (equation (4.10)), it is given by

Σ̂R(h) =
1

n− h−m+ 1

n−h∑
k=m

[ϵ
(h)
k+h(θ̂k)(ϕ1:d)] [ϵ

(h)
k+h(θ̂k)(ϕ1:d)]

T

Similarly, Σ̂ME(h) and Σ̂MR(h) can be defined. For illustration purpose, h = 1, 2 and 5 are chosen to

see the performance of 1-step, 2-steps and 5-steps ahead prediction errors in terms of their prediction bands.

The reason to choose such h values is to see the performance of the prediction error estimates for short

as well as medium term future. Here, α = 0.05 was chosen, so the bands are pointwise 95% prediction

bands. If the prediction bands contain the true observed function with certain confidence, then it can be

concluded that the functional prediction errors estimates are able to capture the uncertainty of predicting

future observations. In general, it is expected that the immediately next time point prediction for h = 1 will

be better, and hence the prediction error will be smaller but the prediction errors increase with increase in h.

While computing the modified empirical, Rissanen and modified Rissanen’s estimate, a choice of δ is

required. Here, δ = 0.6 is chosen since from the simulation studies, we have observed that the modified

empirical and modified Rissanen’s estimates have the smallest bias around such a δ and for a higher δ, the

variance of the estimates increases.
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FIGURE 4.13. One, two and five steps Prediction bands for mean centered Sydney Ob-
servatory Hill data: Empirical(—), Modified empirical (—), Rissanen (—) and Modified
Rissanen (—) along with the true functions (- - -)
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FIGURE 4.14. One, two and five steps Prediction bands for annual temperature profiles
of Sydney Observatory Hill: Empirical(—), Modified empirical (—), Rissanen (—) and
Modified Rissanen (—) along with the true functions (- - -)
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Figure 4.13 shows the prediction bands for 1, 2 and 5 steps along with the true function. The bands are

able to capture the variations in the mean centered data, since most of the observed functions are within the

bands. There is not much difference between the bands produced by the different FPE estimates. But all

the bands are wider at the ends, since the volatility, even though decreased after the new registration of the

functions, is still high at the beginning and the end of the year. The prediction bands can also be generated

for the annual temperature profiles instead of the mean centered functions by adding back the mean of the

functions that represents the seasonal component.

It is evident from Figure 4.14 that the temperature profile variations are well captured by the prediction

bands. Overall, we can conclude that for this dataset, there is no significant difference in the performances

of the different functional prediction error estimates, and the prediction bands produced by the estimates

produce reasonable ranges of future temperature profiles.

4.6.2. Gayndah Post Office. Gayndah was the second meteorological station whose data was selected

for analysis. The daily maximum temperatures in degree Celsius were recorded from January 1, 1894 to

December 31, 2008. There were 749 missing observations which were treated using mean imputation.

Temperature functions were obtained from the observations using the methods described in Section 4.6.1.

There were a total of 115 observations in this dataset.

FIGURE 4.15. Gayndah Post Office Temperature Functions and their mean

48



Figure (4.15) shows that these functions are very volatile throughout the year. The first 5 FPCs explain

about 71% of variations in the data. The new method of registrations reduces this variation to some extent

by making the functions less wiggly and more smooth as shown in Figure (4.16) and the first 5 FPCs explain

about 80% of the variations in the newly registered functions.

FIGURE 4.16. Initial Functions and Modified Functions of Gayndah Post Office

With the new registered data, the optimal values of both p and d came out to be 3. It means that we can fit

a VAR(3) model to 3-dimensional scores to get the optimal values of prediction error. Using those values of

p and d, FPE estimates are calculated. Using the FPE estimates, prediction bands are obtained like before

for h = 1, 2 and 5 steps ahead for the mean centered functions which are shown below. Figure (4.17) shows

the prediction bands for 1, 2 and 5 steps along with the true function. It shows that even though the bands

are able to capture the variations in the mean centered data, the prediction bands are wider to accommodate
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more volatile curves. Like before, the bands are more wider at the beginning and the end of the year, since

the functions are more volatile at those times.

FIGURE 4.17. One, two and five steps Prediction bands for mean centered Gayndah Post
Office data: Empirical(—), Modified empirical (—), Rissanen (—) and Modified Rissanen
(—) along with the true functions (- - -)
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The prediction bands are also generated for the annual temperature profiles.

FIGURE 4.18. One, two and five steps Prediction bands for annual temperature profiles of
Gayndah Post Office: Empirical(—), Modified empirical (—), Rissanen (—) and Modified
Rissanen (—) along with the true functions (- - -)
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It is evident that even though the temperature profiles for this meteorological station were much more

volatile, the prediction bands are able to capture the true data. There is also not much variation in the

prediction bands produced by different FPE estimates. Overall, we can conclude that this method works for

these annual temperature profiles from Australia.

4.7. Application to real data: Austria particulate matter concentrations

As a second application of the prediction error estimates on real data, daily curves of particulate matter

were considered with an aerodynamic diameter of less than 10µm, known as PM10. PM10 is routinely

measured in most of the major cities in the northern hemisphere, because its high concentration affects

health negatively and can cause respiratory and cardiovascular diseases.

There are many causes for high concentrations of particulate matter. The primary cause of high pollution

in urban environments is road traffic volume. In addition, strong winter temperature inversions magnify

these effects in the cold season. As a result, the limits set by authorities, for example, EU regulation can

frequently be violated. In order to meet regulations, prediction of particulate matter concentration levels is

an important tool, because it helps to judge whether measures, such as partial traffic regulation, have to be

implemented. But in order to accurately implement regulations, not only prediction is required but also a

measure is required that can determine how good the predictions are. As a result, measurement of prediction

error is important in this context. Data of this type has been considered by a number of authors, including

Stadlober et al. (2008), and Dienes and Aue (2014).

Here, the observations are recorded on a half-hourly basis in Graz, Austria, over one winter season, more

specifically from October, 2010 to March 2011. Thus, every day’s data can be considered as a function

measured at 48 discrete points throughout the day. A square root transformation was applied to the data

to stabilize the variance. Exploratory data analysis showed that the PM10 values were exceedingly high

around the New Year’s Eve, due to firework activities. The corresponding week’s data was removed from

the sample. Another adjustment was made due to lower volume of traffic during the weekends than on

weekdays and hence PM10 is expected to be lower on weekends. Thus, the data was centered and adjusted

for weekly seasonality by subtracting the corresponding day of the week average from each observation.

After the initial treatment, 48 observations from a single day were stacked into a vector and then trans-

formed into functional data using 10 B-spline basis functions and least squares fitting. Thus, 175 daily
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curves X1, X2, . . . , X175 were obtained, which are displayed in the upper left panel of Figure 4.19. The

figure also shows the effect of the first three FPCs on the mean curve obtained by adding to and subtracting

from the mean curve a multiple (here square root of the l-th eigenvalue) of the l-th empirical eigenfunction.

FIGURE 4.19. Transformed PM10 observations with overall mean function (top left panel),
effect of the first FPC (top right panel), effect of the second FPC (bottom left panel) and
effect of the third FPC (bottom right panel): µ̂+ λ̂lϕ̂l represented as ( ) and µ̂− λ̂lϕ̂l
represented as ( ) along with the mean µ̂ ( ) for l = 1, 2, 3

The top right panel shows that when the first FPC score is large (small) then a positive (negative) mean

shift occurs. The bottom left panel shows the effect of the second FPC which describes the intraday trend.

The third FPC in the bottom right panel whether the diurnal peaks are more or less pronounced. The data

(upper left panel) also shows that the variation in the daily pollution curves are high.
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FIGURE 4.20. One, two and five steps Prediction bands for PM10 data: Empirical(—),
Modified empirical (—), Rissanen (—) and Modified Rissanen (—) along with the true
functions (- - -)
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Here, the optimal p and d as described in Aue et al. (2015) came out to be p = 1, d = 7. The higher

value of d is attributed to the fact that since the variation is high in the dataset, higher number of eigenvalues

are required to explain such high variability. Hence, we would expect the prediction bands to be wide.

Prediction bands are computed based on the four different FPE estimates and δ = 0.6 due to the reason

mentioned in the Australia datasets. The bands are plotted along with the true function for h = 1, 2 and 5

steps.

Indeed, as seen in Figure 4.20, the 95% prediction bands are so wide for all the functional prediction

error estimates, that they contain the true curve with 100% certainty. The most narrow band is given by

the empirical estimate while the prediction bands produced by the other three estimates are similar for

h = 1, 2 and 5. And with increase in h, one becomes less certain about the future, hence the prediction band

widens further.

One might be curious here to see if the new method of registration of functions as described in the

previous section is useful here to reduce the variability in the data and tightening the prediction bands

thereafter. Here, the pollution curve for the k-th day is concatenated with last 2 hours’ observations (4

observed data) of the previous day and first 2 hours’ observations of the next day, k = 2, . . . , n − 1. For

k = 1 and k = n, only one sided concatenation is done. The following figure shows the functions after the

new registration. There is only a slight reduction in variation in the data, which is not very apparent from

the plots.

FIGURE 4.21. New and Old registration of functions from PM10 observations

55

cite.aue2015prediction
cite.aue2015prediction


Here, p = 4, d = 3 came out as the optimal values. It means a VAR(4) model needs to be fitted to the

3-dimensional scores. Using the new p and d, the prediction bands (Figure 4.22) are plotted.

FIGURE 4.22. One, two and five steps Prediction bands for newly registered PM10 data:
Empirical(—), Modified empirical (—), Rissanen (—) and Modified Rissanen (—) along
with the true functions (- - -)

56



Figure 4.23 shows that the new prediction bands are narrower than before, but yet, it is wide enough to

contain the true pollution curves 100% of the times. Here also, for all h, the empirical estimate is giving the

most narrow prediction band. For h = 1, the performances of the other three estimates are similar. However,

for h = 2 and 5, Rissanen’s estimate and modified empirical estimates perform similarly, while whereas the

widest prediction band is produced by the modified Rissanen estimate.

FIGURE 4.23. Comparison of one, two and five steps Prediction bands for old (left) and
new (right) registered PM10 data: Empirical(—), Modified empirical (—), Rissanen (—)
and Modified Rissanen (—) along with the true functions (- - -)
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4.8. Conclusion

This chapter introduced prediction error estimates for functional time series. It compared the perfor-

mances of the different estimates for one-step ahead predictions with the help of simulation studies. As

expected, the bias of the estimates decreases with increase in δ, whereas the variance increases. For practi-

cal purposes, a δ somewhere around 0.5 will have the optimal bias and variance. Overall, modified empirical

estimate seemed to perform the best in terms of bias-variance trade-off. Multi-step prediction error estimates

were also defined, which depended on the number of steps ahead the predictions were made.

The prediction error estimates were applied to annual temperature profiles for two meteorological sta-

tions in Australia as well as daily pollution curves in Graz, Austria. For the Australia temperatures, the

summer temperatures were more volatile, so there were a lot of variations at the beginning and end of each

year. A new method of function registration was thus introduced to handle such volatility as well as to

ensure continuity of functions from one year to the other to a reasonable extent.

This chapter also introduced methods to construct prediction bands utilizing the multi-step ahead pre-

diction error estimates. Unlike simulation, for real data, the true prediction error was unknown, hence the

performances of the different prediction error estimates were compared by constructing prediction bands.

We saw that there was not much difference in the prediction bands derived from different prediction error

estimates, and the bands were able to capture the different variations of future functions. However, the bands

tend to get wider for longer term predictions, because one would be more uncertain when trying to predict

more into the future. Similar behavior was observed if the data was more volatile, because the bands would

be wider to account for more volatile curves.

Overall, this chapter produced comprehensive analyses based on both simulation and real data on the

performances of the proposed prediction error estimates and it can be concluded that they do a satisfactory

job to estimate the prediction error for functional time series.
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CHAPTER 5

Structure and estimation of functional stochastic volatility

5.1. Financial time series and volatility

Financial time series analysis involves the study and interpretation of data points collected at successive

time intervals within the realm of finance. As understood from Taylor (2008) and Andersen et al. (2009),

these time series datasets play a crucial role in financial analysis, providing insights into the past perfor-

mance, trends, and fluctuations of various assets. Analyzing financial time series data is a fundamental

aspect of quantitative finance, enabling investors, analysts, and researchers to make informed decisions,

model market behaviors, and develop predictive strategies. The dynamic nature of financial markets and the

interdependencies among various economic factors make the study of financial time series both challenging

and essential for understanding the complexities of the global financial landscape.

However, there are some features distinguishing financial time series from other time series. For exam-

ple, financial markets experience volatility, representing the magnitude of price fluctuations within a given

period. Volatility clustering, where periods of high volatility tend to cluster together, is a prevalent fea-

ture in financial time series ( Shumway and Stoffer (2000)). This fluctuating volatility poses challenges in

predicting future price movements accurately. For a daily stock return series, this volatility is not directly

observable (Tsay (2005)), which adds another layer of uncertainty in modeling and estimating volatility.

There are other factors such as economic indicators, geopolitical events, investor sentiment and presence of

irregularities such as outliers and sudden spikes which require specialized statistical techniques and methods

to capture such complexities of financial time series. In this chapter, we are focusing on a particular method

of modeling volatility.

Volatility of an asset return is the conditional standard deviation of the underlying asset return. It mea-

sures the fluctuation in the price of a financial instrument over time. Volatility plays an important role in

risk management. It helps investors and portfolio managers understand the potential range of price move-

ments for an asset or a portfolio and calculate metrics like Value at Risk (VaR) to estimate potential losses
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in various market conditions (Bams et al. (2017)). It also plays a pivotal role in options pricing models like

the Black–Scholes model (Gong et al. (2010)). Investors consider volatility when constructing portfolios.

Modern portfolio theory emphasizes diversification to minimize risk. Volatility helps in selecting assets

with different risk profiles to achieve an optimal balance between risk and return (Bouchey et al. (2012)).

Furthermore, the volatility of past price series might have a significant impact on investors’ forecasting

behaviors (Lawrence and Makridakis (1989)).

Tsay (2005) listed a few characteristics of volatility that are crucial in developing models for volatility.

For example, volatility clusters are commonly seen in financial time series, that is, volatility may be high

for certain periods and low for some other periods. Another important feature is that volatility jumps are

rare. Volatility varies within some fixed range and does not diverge to infinity. Tsay (2005) also observed

that the log-return series may be serially uncorrelated but dependent. Volatility models attempt to capture

such dependence in the return series. One of the most popular methods of modeling the volatility was

proposed by Engle (1982) and is called the Autoregressive Conditional Heteroscedastic (ARCH) model

which assumes that the dependence in the log returns, can be described by a simple quadratic function

of its lagged values. Even though this is a simple and effective model, sometimes it takes higher-order

lags to capture the dependence structure. Bollerslev (1986) proposed an extension called the Generalized

ARCH (GARCH) model which incorporates not only the past squared returns but also past volatilities to

provide accurate volatility predictions. In a separate strand of related research, Taylor (1982) introduced

the Stochastic Volatility (SV) model. The main difference of this model from the previous ones is that

(G)ARCH models are endogenous, that is, they depend on past observations, whereas stochastic volatility

models are exogenous, that is, there is a random term that is not based on the past observations.

5.1.1. Univariate stochastic volatility model. As mentioned, stochastic volatility models add a sto-

chastic noise term to the equation of the volatility. To ensure positivity of the conditional standard deviation,

it uses a log-volatility structure. Let Pt be the price of an asset at time index t. Then the (relative) returns yt

are given by yt =
Pt−Pt−1

Pt−1
. A stochastic volatility model of order 1 is given by a set of two equations:

yt = µy + exp(
1

2
ht)εt

ht = γ + ϕht−1 + ηt

(5.1)
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where yt is the time series of asset returns with constant mean µy and time-varying variance exp(ht), and

it is typically assumed that εt ∼NID(0, 1); ηt ∼NID(0, σ2η) for t = 1, . . . , n, where NID stands for Normal

and independent. Additionally, {εt} and {ηt} are independent for all time points. It is usually assumed that

0 < ϕ < 1. It is to be noted that adding the innovation term ηt significantly increases the flexibility of the

model in describing the evolution of the volatility σt = exp(12ht). The stochastic time-varying variance

of yt conditional on the past Ft−1 is σ2t = E[(yt − µy)
2|Ft−1] = exp(ht), where Ft−1 is the set of past

observations as described in Chapter 1 . We note that yt is observable but ht is not. The first equation in

(5.1) involving yt is called the observation equation and the second equation in (5.1) involving ht is called

the state equation.

The above model is an SV(1) model, since the volatility is described by an AR(1) model. Similarly, we

can also define an SV(p) model where the state equation is represented by an AR(p) process. The SV(p)

model is given by:

yt = µy + e(
1
2
ht)εt

(1− ϕ1B − · · · − ϕpB
p)ht = γ + ηt

(5.2)

Here, it is also assumed that all zeros of the polynomial 1 −
∑p

i=1 ϕiB
i are greater than 1 in modulus and

B is the back-shift operator. We will focus on the SV(1) model.

The basic SV model is multiplicative due to the product of two stochastic variables, that is yt − µy =

exp(12ht)εt. Estimating µy by its consistent estimator, the sample mean of yt, we define for t = 1, . . . , n,

ỹt = log(yt − ȳ)2 where ȳ = n−1
n∑

t=1

yt(5.3)

Given (5.1), yt can be modeled by

ỹt = κ1 + ht + ut

ht = γ + ϕht−1 + ηt

(5.4)

where ut = log(ε2t )− κ1 is distributed according to the centered logχ2 density with one degree of freedom.

The mean and variance of logε2t are given by κ1 and κ2 where κ1 ≈ −1.27 and κ2 = π2/2. The model in

(5.4) is linear and the observation disturbance has a non-Gaussian density. However, we may consider ut

61



to be a sequence of independent noise terms with mean zero and variance κ2 and then apply linear methods

to obtain estimators of ht that belong to the class of minimum mean squares linear estimators. If the metric

for estimation is chosen to be a Gaussian likelihood, then the approach is called quasi-maximum likelihood

analysis. Thus, model (5.4) remains valid with ut ∼ i.i.d. (0, κ2) and it falls under the framework of State-

Space models (Shumway and Stoffer (2000)).

5.1.2. State-space models. State space models provide a powerful framework for modeling and ana-

lyzing time series data by separating observed measurements from underlying unobserved (hidden) states

that evolve over time. They are widely used in various fields such as economics, engineering, finance, and

biology. This framework allows for efficient inference and forecasting by estimating the latent states given

the observed data.

State-space models or dynamic linear models were introduced by Kalman (Kalman, 1960; Kalman and

Bucy, 1961) as an application to primarily aerospace related research. The basic model is given by

y t = Atx t + v t

x t = Φx t−1 +w t

(5.5)

where the first equation is the observation equation and the second equation is the state equation which is

unobservable. The state equation determines the underlying process to generate the p × 1 state vector x t

from its past for time points t = 1, . . . , n. The observed data vector y t is q × 1 where q can be larger or

smaller than p. The additive observation noise v t is assumed to be a white noise and Gaussian with q × q

covariance matrix R. It is also assumed that the noise w t in the state equation are p × 1 independent and

identically distributed, zero-mean normal vectors with covariance matrix Q. In addition, it is assumed that

the process starts with a normal vector x 0 that has mean µ0 and covariance matrix Σ0. Further it is also

assumed that x 0, {w t}, {v t} are uncorrelated. Thus under this set up, we do not observe the state vector but

only a linear transformed version of it which is randomized by adding a noise. The model arose originally in

the space tracking setting, where the state equation defines the motion equations for the position or state of a

spacecraft with location x t and y t reflects information that can be observed from a tracking device such as

velocity. However, even though this framework adds flexibility, it also increases the difficulty in estimating

the parameters of the model, especially because the underlying state is hidden and unobserved. One common
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way to estimate the parameters is using the quasi-likelihood method via Kalman filtering which is explained

in the next subsection.

5.1.3. The Kalman filter. The goal of the state space modeling framework given in (5.5) is to get

estimators of the underlying unobserved state x t using the data available until time s given by Ys =

{y1, . . . ,ys}. When s < t, it is the problem of prediction, when s = t, the problem is called filtering

and when s < t, the problem of smoothing. Let us introduce the notations following Shumway and Stoffer

(2010):

(5.6) x s
t = E(x t|Ys)

and

(5.7) P s
t1,t2 = E{(x t1 − x s

t1)(x t2 − x s
t2)

′}

When t1 = t2 = t (say) in (5.7), then we can write P s
t for convenience. Here, we are focusing on the

filtering equations. These equations are derived based on Gaussian assumptions of the processes. Under

such assumptions, (5.7) is also the conditional error variance, that is,

P s
t1,t2 = E{(x t1 − x s

t1)(x t2 − x s
t2)

′|Ys}

This is because for any t and s, (xt − xs
t ) and Ys are orthogonal and uncorrelated. Under Gaussianity,

uncorrelated implies independent, hence the conditional distribution of (xt − xs
t ) given Ys is same as the

unconditional distribution of (xt − xs
t ).

This method is called filtering because x t
t is a linear filter of the observations y1, . . . ,y t that is

x t
t =

t∑
s=1

Bsys

for appropriately chosen p × q matrices Bs. The Kalman filter helps in specifying how to update the filter

from x t−1
t−1 to x t

t when a new observation y t is added to the data set without having to reprocess the entire

data.

Given the state space model in equation (5.5) with initial estimates x 0
0 = µ0 and P 0

0 = Σ0, we have for

t = 1, . . . , n,
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(5.8) xt−1
t = Φxt−1

t−1

(5.9) P t−1
t = ΦP t−1

t−1Φ
′ +Q

with

xt
t = xt−1

t +Kt

(
yt −Atx

t−1
t

)
,(5.10)

P t
t = [I −KtAt]P

t−1
t ,(5.11)

where

(5.12) Kt = P t−1
t A′

t

[
AtP

t−1
t A′

t +R
]−1

is called the Kalman gain. Thus, starting at x0
0 and P 0

0 , one can arrive, for any 1 ≤ t ≤ n, at xt−1
t−1 and

P t−1
t−1 . Then one can use (5.8) and (5.9) to do the prediction of the state for step t. Then, the prediction of the

observation yt is obtained as E (yt | Yt−1) = Atx
t−1
t . With this, using equation (5.10), the current state xt

t

is updated along with its covariance matrix P t
t . Predictions for t > n can be similarly obtained using (5.8)

and (5.9) with initial conditions x0
0 and Pn

n .

Thus, we saw that from this method, we also get the innovations or prediction errors given by

(5.13) ϵt = yt − E (yt | Yt−1) = yt −Atx
t−1
t

with the corresponding variance-covariance matrix

(5.14) Σt
def
= Var (ϵt) = Var

[
At

(
xt − xt−1

t

)
+ vt

]
= AtP

t−1
t A′

t +R

Under the assumption of Gaussian processes, the innovations are also independent, Gaussian with mean 0

and covariance Σt. Hence, a likelihood based method can be used to estimated the model parameters based

on (5.13).

5.1.4. Maximum likelihood estimation. Let us denote the vector of parameters of the state space

model defined in (5.5) by Θ = {µ0,Σ0,Φ, Q,R}, consisting of the initial mean µ0 and covariance matrix
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Σ0, the transition matrix Φ and the error covariance matrices Q and R. The maximum likelihood method is

derived based on the assumption that the initial state is normal, that is, x0 ∼ N(µ0,Σ0) and the errors {vt}

and {wt} are jointly normal and uncorrelated vector variables.

The likelihood is computed based on the innovations ϵt given in (5.13) by noting the fact that ϵ1, . . . , ϵn

are independent mean zero Gaussian random vectors, with covariance matrix given by

Σt = AtP
t−1
t A′

t +R

which can be denoted as Σt(Θ) to emphasize the dependence of the innovations on the model parameters.

Thus, ignoring the constants, the negative log-likelihood can be written as

(5.15) −lnLY (Θ) =
1

2

n∑
t=1

log|Σt(Θ)|+ 1

2

∑
t=1

ϵ′tΣt(Θ)−1ϵt

This likelihood is highly nonlinear and a complicated function of the model parameters. Hence iterative

optimization techniques like Newton–Raphson methods are implemented after fixing the initial state x0 to

minimize the negative log-likelihood and the estimates of the parameters Φ, Q,R are obtained by minimiz-

ing the negative log likelihood in an iterative way.

5.1.5. State-space model and stochastic volatility. We will now describe how the SV model described

in (5.4) is akin to the state-space framework described by (5.5). For that we note from (5.4), E(ht) = µh

(say) is µh = E(ỹt)− κ1 and γ = (1− ϕ)µh. Let us define, h∗t = ht − µh and y∗t = ỹt −E(ỹt). Then, we

can reformulate (5.4) as

y∗t = h∗t + ut

h∗t = ϕh∗t−1 + ηt

(5.16)

Thus, for all practical purposes, we can take ỹt − ¯̃yt as the mean centered observations and denote them

as our new observations y∗t , where ¯̃yt = n−1
∑n

t=1 ỹt and the new mean centered state h∗t . Under this

SV model, the parameter vector is given by Θ = (ϕ, ση)
′. However, real life data will not always have a

Gaussian noise (εt) for the observation equation. Hence, the variance of log(ε2t ) might not be κ2. Then, we

can have σε also as a parameter and the parameter vector becomes Θ = (ϕ, ση, σε)
′. This now corresponds

to the state space modeling framework described in (5.5), but instead of vectors, we have scalar observations

65



and state. That means, here, p = q = 1, At = 1,yt = y∗t ,xt = h∗t ,vt = ut,wt = ηt and Φ, Q,R are

not matrices but scalar valued parameters Φ = ϕ,Q = σ2η, R = σ2u. The only difference is the Gaussian

assumption of the observation noise ut which is not Gaussian, hence the likelihood method of estimation is

called the Quasi Maximum Likelihood Estimation. We can now show how Kalman filtering methods can be

used to estimate the model parameters given by Θ.

Let us assume the model set up given in (5.16). Let us further assume that for t = 1, . . . , n;ut ∼

i.i.d. N(0, σ2u) and ηt ∼ i.i.d. N(0, σ2η). The initial state h∗0 ∼ N(0, σ2η/(1 − ϕ2)), {ut}, {ηt}, h∗0 are all

independent. Since h∗t is a stationary AR(1) process, we can exploit the properties of AR(1) process to obtain

the initial estimates required for the Kalman filtering method. We know that the autocovariance function of

h∗t for lag j is

(5.17) γh(j) =
σ2η

1− ϕ2
ϕj , j = 0, 1, 2, . . .

Here, the goal is to investigate how the presence of observation noise ut affects the dynamics of the AR(1)

model of the state. Note that we have assumed 0 < ϕ < 1, hence both h∗t and y∗t are stationary, because the

observations are the sum of two independent stationary components. We then have,

(5.18) γy(0) = Var(y∗t ) = Var(h∗t + ut) =
σ2η

1− ϕ2
+ σ2u

and when j ≥ 1,

(5.19) γy(h) = Cov(y∗t , y
∗
t−j) = Cov(h∗t + ut, h

∗
t−j + ut−j) = γh(j)

Consequently, the ACF of the observations for j ≥ 1 is given by

(5.20) ρy(j) =
γy(h)

γy(0)
=

(
1 +

σ2u
σ2η

(1− ϕ2)

)−1

ϕj

For applying Kalman filtering, we need the initial estimates of the parameter vector Θ = (ϕ, ση, σε)
′

from the observations, which we can now get by utilizing the ACF structure of y∗t given in (5.19). Thus, we

have the initial estimate of ϕ(0) given by

(5.21) ϕ(0) = ρ̂y(2)/ρ̂y(1)
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and from (5.19) and (5.18), we get,

σ2
(0)

η =
(
1− ϕ(0)

2
)
γ̂y(1)/ϕ

(0)(5.22)

σ2
(0)

u = γ̂y(0)−
σ2

(0)

η(
1− ϕ(0)2

)(5.23)

Once we have the initial estimates, we can apply the Kalman filtering with Newton–Raphson methods to get

the model parameter estimates by minimizing the log-likelihood specified in (5.15). With this background,

we can now turn our attention to a functional version of the stochastic volatitlity model.

5.2. Functional stochastic volatility

With the advent of improved tools, modern technology enables the tracking of high frequency intra-day

price movements at tick-by-tick level. It is convenient to view the underlying stochastic process and its

volatility as a daily function. In such a set-up, where intra-day volatility movements are considered func-

tions, models are needed to capture the heteroskedasticity, as mentioned in Section 5.1, exhibited through

clustering tendency of the volatility. Modeling time-varying volatility is essential for accurate uncertainty

quantification in forecasting problems. Hörmann et al. (2013) proposed functional ARCH processes to cap-

ture heteroskedasticity, whereas Aue et al. (2017) approached the same problem by proposing a generalized

framework with a functional GARCH process. Both of these processes rely on modeling the conditional

volatility as a deterministic function of past data. Jang et al. (2021) proposed a functional version of the

stochastic volatility model, where the volatility functions are driven by their own stochastic process. How-

ever, this process was based on a Bayesian hierarchical time series framework. The subsequent sections of

this chapter propose an alternative approach to estimate a functional stochastic volatility model based on

Kalman filtering methods.

In this work, it is assumed that the observations are elements of a Hilbert Space H = L2[0, 1], which is

the set of measurable real-valued functions x defined on [0,1] satisfying
∫ 1
0 x

2(t)dt < ∞. It is a separable

Hilbert space with the inner product ⟨x, y⟩ =
∫
x(t)y(t)dt where for future reference the integral sign

without limits will denote integration over [0,1]. L(H) denotes the space of bounded linear operators on H .

5.2.1. Model. Let {ηi}i∈Z , {ϵi}i∈Z be two sequences of i.i.d. random functions defined on a Hilbert

Space H , independent of each other. A Functional Stochastic Volatility process {yi}i∈Z of order p, denoted
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by FSV(p) can be defined in terms of point-wise multiplication of two functions as

(5.24) yi = σiηi

(5.25) logσ2i = δ +

p∑
j=1

αj(logσ
2
i−j) + ϵi

where δ is a function of t ∈ [0, 1] and the integral operators αj for t ∈ [0, 1] are defined as

(5.26) (αjx)(t) =

∫ 1

0
αj(t, s)x(s)ds

where x is an arbitrary element in H . There are two time variables noted in (5.24) and (5.25). The one

labeled by the integer i often refers to trading day i, even though other time units are possible. The second

time variable is labeled by real valued t which without loss of generality takes values between [0,1]. This

variable is latent in (5.24) and (5.25) and it refers to intra-day time.

5.2.2. Existence of stationary solutions. Note that for i ∈ Z, if logσ2i is a strictly stationary process,

so are σi and yi. Let Zi = logσ2i , then (5.25) can be written in a state space form as

(5.27)

 Zi = δ + α1 (Zi−1) + . . .+ αp (Zi−p) + ϵi

Zi−j = Zi−j , j = 1, . . . , p− 1

Further, (5.27) can be written in vector form as

(5.28) Zi = δ +Ψ(Zi−1) + ϵi

where, Zi = (Zi, . . . , Zi−p+1)
T , δ = (δ, 0, . . . , 0)T and ϵi = (ϵi, 0, . . . , 0)

T . Further, Ψ ∈ H × · · · ×H is

defined as:


α1 α2 . . . . . . αp

IH 0 . . . . . . 0
...

...
. . .

...
...

0 0 . . . IH 0


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All 0’s in the above matrix denote zero-operators. Equation (5.28) is a FAR(1) process. We have the

following theorem.

THEOREM 5.2.1. There is a unique strictly stationary causal solution to (5.28) if there exists an integer

j0 such that ∥Ψj0∥ < 1. The solution is given by

(5.29) Zi =
∞∑
j=0

Ψj(δ + ϵi−j)

The series converges almost surely and in L2.

Proof: On subsequent iterations, we get,

Zi = δ +Ψ(Zi−1) + ϵi

= δ +Ψ[δ +Ψ(Zi−2) + ϵi−1] + ϵi

= δ +Ψ(δ) +Ψ2(Zi−2) + ϵi +Ψ(ϵi−1)

= . . .

=
N−1∑
j=0

Ψj(δ) +
N−1∑
j=0

Ψj(ϵi−j) +ΨN (Zi−N )

for some N ≥ j0. Now, as N → ∞, we have from Equation (5.29),

E∥Zi −
N−1∑
j=0

Ψj(δ + ϵi−j)∥2 = E∥ΨN (Zi−N )∥2

≤ ∥ΨN∥2LE∥Zi−N∥2

≤ ∥Ψj0∥
2N
j0
L E∥Zi−N∥2 → 0

since ∥Ψj0∥L < 1 and Zi−N ∈ L2.

Now, for almost sure convergence, we have

∥Zi −
∞∑
j=0

Ψj(δ + ϵi−j)∥ = ∥ −
∞∑

j=N

Ψj(δ + ϵi−j) +ΨN (Zi−N )∥

≤ ∥
∞∑

j=N

Ψj(δ + ϵi−j)∥+ ∥ΨN (Zi−N )∥
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From the definition of operator norm, we have,

(5.30) ∥ΨN (Zi−N )∥ ≤ ∥ΨN∥L∥Zi−N∥ a.s.−−→ 0

since, due to stationarity, we have the sequence {∥Zi∥}i∈Z bounded almost surely. Further,

∥
∞∑

j=N

Ψj(δ + ϵi−j)∥ ≤
∞∑

j=N

∥Ψj(δ + ϵi−j)∥

≤
∞∑

j=N

∥Ψj∥L∥δ + ϵi−j∥

Now, ∥Ψj∥L < 1 after some j0. Also, ∥δ + ϵi−j∥ is bounded since δ and ϵi are elements of L2. Since

N ≥ j0, we have from Markov’s inequality, for all ξ > 0 and ∀i,

P (
∞∑

j=N

∥Ψj∥L∥δ + ϵi−j∥ > ξ) ≤ 1

ϵ
E(

∞∑
j=N

∥Ψj∥L∥δ + ϵi−j∥)

=
1

ϵ

∞∑
j=N

∥Ψj∥LE(∥δ + ϵi−j∥)

Since, ∥Ψj∥L → 0 exponentially fast, we have

P (
∞∑

j=N

∥Ψj∥L∥δ + ϵi−j∥ > ξ) → 0

which implies

P (∥
∞∑

j=N

Ψj(δ + ϵi−j)∥ > ξ) → 0

Therefore,
∞∑
i=1

P (∥
∞∑

j=N

Ψj(δ + ϵi−j)∥ > ξ) <∞

By the Borel–Cantelli Lemma, we have,

(5.31) ∥
∞∑

j=N

Ψj(δ + ϵi−j)∥
a.s.−−→ 0
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From (5.30) and (5.31), therefore, we get,

P (∥Zi −
∞∑
j=0

Ψj(δ + ϵi−j)∥ = 0) = 1

which proves almost sure convergence.

5.3. Quasi-maximum likelihood estimation (QML)

For simplicity, we will focus on lag-order 1 of the FSV(p) model defined in equation (5.25), which is

the FSV(1) model given by

(5.32) yi = σiηi

(5.33) logσ2i = δ + α(logσ2i−1) + ϵi

where it is typically assumed that ∥α∥L < 1 to assume stationarity. Higher-order lags can also be considered

but would involve additional computational challenges, for example the likelihood might be more difficult

to optimize. Hence the following method focuses on the lag-1 FSV model.

To further facilitate the estimation procedure, it is assumed that E(ϵi) = 0 and E(ηi) = 0. Since Equation

(5.32) is multiplicative, it can be redefined as

(5.34) logy2i = E(logη2i ) + hi + ξi

(5.35) hi = δ + α(hi−1) + ϵi

where ξi = logη2i −E(logη2i ) and hi = logσ2i . The statistical properties of ξi will depend on the distribution

of ηi. It can be illustrated in the following example.

EXAMPLE 5.3.1. If we assume that ηi = Wi(t) =
√
tXi, Xi ∼ N(0, 1), extending the work of Ruiz

(1994) to the continuous case. Then, logη2i (t) = log(t) + log(X2
i ). The mean and variance of log(X2

i )

are known to be ψ(12) − log(12) ≈ −1.27 and π2/2 respectively, where, ψ(·) is the Digamma function,

see Abramowitz and Stegun (1968). Under this set-up, the mean and variance of logη2i (t) is log(t) − 1.27
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and π2/2 and the QML can be carried out by treating ξi(t) ∼ N(0, π2/2). The actual form of ηi will be

explicitly mentioned in the simulation set up Section 5.4.

Since α is a linear operator, denoting m1(t) as the mean function of hi(t), (5.35) can be written as in

(5.36). Noting that expectation commutes with bounded operators (Hörmann and Kokoszka (2012)), we

obtain (5.37).

(5.36) hi −m1 = δ −m1 + α(m1) + α(hi−1 −m1) + ϵi

(5.37) δ −m1 + α(m1) = 0

Consequently, model (5.34) & (5.35) can be generalized as

(5.38) y∗i = h∗i + ξi

(5.39) h∗i = α(h∗i−1) + ϵi

where, y∗i = logy2i − E(logy2i ) and h∗i = hi − m1. The quantities E(logy2i ) and m1(t) needs to be

estimated from the data and will also depend on the form of ηi(t). In the above example (5.3.1), y∗i =

logy2i − log(t) + 1.27−m1 and the estimate of m1(t) is

m̂1(t) =
1

n

n∑
i=1

logy2i (t)− log(t) + 1.27

With those estimates, δ can be estimated as δ̂ = m̂1 − α̂(m̂1).Thus, the problem is reduced to estimation of

α and the variance of ϵi(t) and ξi(t) in equations (5.38) and (5.39).

5.3.1. Parametrization. Following Aue et al. (2017) and Cerovecki et al. (2019), we introduce an m-

dimensional class Φm = {ϕ1, ϕ2, . . . , ϕm} of orthonormal functions on [0,1] to represent α to approximate

the infinite-dimensional parameters. It is assumed that the integral kernel α(t, s) is an element of the span

of Φm × Φm, that is,

(5.40) α(t, s) =

m∑
k,l=1

ak,lϕk(t)ϕl(s)
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With this assumption regarding the integral kernel, the problem of estimating α is reduced to estimating

the set of real valued parameters {ak,l : k, l = 1, . . . ,m}. We then project y∗1, . . . , y
∗
n and h∗1, . . . , h

∗
n onto

Φm and define the m-dimensional vectors y(2)
i = (y

(2)
i,1 , . . . , y

(2)
i,m)T and h

(2)
i = (h

(2)
i,1 , . . . , h

(2)
i,m)T through

their entries y(2)i,k = ⟨y∗i , ϕk⟩ and h(2)i,k = ⟨h∗i , ϕk⟩ where ⟨·, ·⟩ denotes the inner product in L2. Therefore,

(5.38) and (5.39) can be reduced to:

(5.41) y
(2)
i = h

(2)
i + ξ

(2)
i

(5.42) h
(2)
i = Ah

(2)
i−1 + ϵ

(2)
i

where A is defined as 
a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...

am1 am2 . . . amm


We then use the quasi-likelihood estimation and Kalman filtering methods to get the estimates of A and the

covariance matrices of ξ(2)i and ϵ
(2)
i .

5.3.2. Estimation overview. Using the vector and matrix system, we can project the infinite-dimensional

functions to a finite-dimensional setting as in equations (5.41) and (5.42) using the basis representation. This

is akin to the state-space model for multivariate time series which can be used to develop a procedure for

the estimation of this functional time series.

Let y(2)
i in (5.41) be denoted by Yi for simplicity. The innovations are then defined as

(5.43) ζi = Yi − Pi−1Yi

where Pi is the orthogonal projection onto span{Yv : − ∞ < v ≤ i}. It is to be noted that the infinite

past is not available for practical purposess, so the span is defined on observations available until time i. Let

the variances of ϵ(2)i and ξ
(2)
i be Q and S, respectively. Then, based on (5.41) and (5.42), the parameter of

interest can be defined as θ = vec(A,Q, S) ∈ Θ. Let Vθ be the innovation variance. Then, the state-space

method allows conveniently to compute the quasi-likelihood under which ξ
(2)
i are Gaussian with mean 0

and variance S. The QML estimator θ̂ for the parameter θ based on the sample y (2) = (y
(2)
1 , . . . ,y

(2)
n ) is
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defined as

(5.44) θ̂ = argminθ∈ΘL(θ,y (2))

where

(5.45) L(θ,y (2)) =
1

n

n∑
i=1

[mlog(2π) + log|Vθ|+ ζTθ,iV
−1
θ ζθ,i]

The steps for optimizing the likelihood are:

• Select initial values for the parameters, say θ(0)

• Use Kalman filtering and the initial parameters, obtain a set of innovations {ζ̂(0)θ,i } and error vari-

ances {V̂ (0)
θ,i−1}, i = 1, . . . , n.

• Run one iteration of an optimization procedure with L(θ,y (2)) as the objective function to obtain

a new set of estimates, say θ(1).

• At iteration j, where j = 1, 2, . . . , repeat step 2 using θ(j) instead of θ(j−1) to obtain a new set of

innovations. Then repeat step 3 to obtain a new estimate θ(j+1).

• Stop when the estimates or the likelihood stabilize.

5.3.3. Consistency of the parameter estimates. Consistency of the parameter estimates can be proved

using the method described in Whittle (1953). Whittle showed that the least squares estimates obtained from

a multivariate stationary ARMA process are equivalent to the maximum likelihood estimates under Gaussian

innovations. Based on similar arguments, we will prove consistency of the parameter estimates in this state-

space framework.

THEOREM 5.3.1. The parameter estimates of FSV model obtained from transforming the functions into

a multivariate stationary state-space process with Gaussian noise is consistent.

Proof: For simplicity, let us denote equations (5.41) and (5.42) in the following way:

(5.46) Yi = Xi + Zi

(5.47) Xi = AXi +Ei
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where, Cov(Z) = S = ΣZ and Cov(E) = Q = ΣE . It can be shown that

Cov(Yi,Yi−h) = Cov(Xi,Xi−h), h ̸= 0

= Cov(Xi,Xi−h) + S, h = 0

Note that each Yi is an m-dimensional vector (Y1i, . . . , Ymi)
′ and each Xi is an m-dimensional vector

(X1i, . . . , Xmi)
′. Let us denote the cross-covariances of the observation and state by

(5.48)
γjk(h) = Cov(Yj,i+h, Yki)

γXjk(h) = Cov(Xj,i+h, Xki)

for j, k = 1, . . . ,m, i = 1, . . . , n. Then,

Cov(Yi,Yi−h) =


γ11(h) γ12(h) . . . γ1m(h)

...
...

. . .
...

γm1(h) γm2(h) . . . γmm(h)



=


γX11(h) γX12(h) . . . γX1m(h)

...
...

. . .
...

γXm1(h) γXm2(h) . . . γXmm(h)

 , h ̸= 0

=


γX11(0) + S11 γX12(0) + S12 . . . γX1m(0) + S1m

...
...

. . .
...

γXm1(0) + Sm1 γXm2(0) + Sm2 . . . γXmm(0) + Smm

 , h = 0

(5.49)

Thus, the spectral density of the process Y is given by

F Y
jk(ω) =

∞∑
h=−∞

γjk(h)e
iωh

=
∑
h̸=0

γXjk(h)e
iωh + [γXjk(0) + Sjk]

=

∞∑
h=−∞

γXjk(h)e
iωh + Sjk

= FX
jk (ω) + Sjk

(5.50)
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and the corresponding spectral density matrix is given by

FY (ω) =
(
F Y
jk(ω)

)
=
(
FX
jk (ω)

)
+ (Sjk)

= FX(ω) + S

(5.51)

Let fYjk(ω) be the empirical spectral density based on the sample covariances of Y = (Y1, . . . ,Yn)
′ and

fY (ω) =
(
fYjk(ω)

)
. Thus the spectral density matrix for a state-space process can be expressed in terms of

the spectral density matrix of an AR process perturbed by a constant matrix. Hence, we showed that even

though Whittle’s method was developed for a general ARMA process, which in this case is Xi, it can be

implemented to the state-space framework as well.

Under the assumption of Gaussian noise, the negative log-likelihood based on the innovations ζi =

Yi − Ŷi can be written as

(5.52) −2logl = (nm)log(2π) +
n∑

i=1

log|Vi−1|+
n∑

i=1

ζTi V
−1
i−1ζi

where Vi = E[ζi+1ζ
T
i+1] is the prediction error covariance matrix for Yi+1, i = 0, 1, . . . ,

n− 1. Let us also define a matrix D as

(5.53) D =


V0

. . .

Vn−1


Following the definition of Wilks (1932) of the total variance of a vector as the determinant of the

covariance matrix, Whittle termed the quantity |Vi−1| the total prediction variance, which gives a measure

of the total random variance entering the process at every step, say step i. It measures the random variation

injected intro the process since the last instant of time. Whittle expressed this total prediction variance in

terms of the spectral density matrix of the process as

(5.54) log|Vi−1| =
1

2π

∫ 2π

0
log|FY (ω)|dω
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where FY (ω) is given by equation (5.51). Therefore,

(5.55)
n∑

i=1

log|Vi−1| =
n

2π

∫ 2π

0
log|FY (ω)|dω

Also notice that

(5.56)
n∑

i=1

ζTi V
−1
i−1ζi =

n∑
i=1

(ζ∗i )
T ζ∗i =

n∑
i=1

m∑
j=1

(ζ∗ji)
2

where

ζ∗i = V
−1/2
i−1 ζi

Let us also define

Y∗
i = V

−1/2
i−1 Yi

such that

Y∗ =


Y∗

1

...

Y∗
n

 =


V

−1/2
0

. . .

V
−1/2
n−1



Y1

...

Yn

 = D−1/2Y

Then the corresponding population and sample spectral density matrix of Y∗ are given by

(5.57)
F∗(ω) = D−1/2FY (ω)(D−1/2)T

f∗(ω) = D−1/2fY (ω)(D−1/2)T

It is also easy to verify that ζ∗i and ζ∗k are uncorrelated for i ̸= k, since, ζi and ζk are uncorrelated. Whittle

showed that

(5.58)
n∑

i=1

m∑
j=1

(ζ∗ji)
2 =

n

2π

∫ 2π

0
tr[f∗(ω)F∗(ω)−1]dω

Now, using equation (5.57), we have

tr[f∗(ω)F∗(ω)−1] = tr[D−1/2fY (ω)(D−1/2)T
(
(D−1/2)T

)−1
FY (ω)−1(D−1/2)−1]

= tr[D−1/2fY (ω)FY (ω)−1D1/2]

= tr[D1/2D−1/2fY (ω)FY (ω)−1] (since tr(AB) = tr(BA))

= tr[f(ω)F(ω)−1]

(5.59)
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Using equations (5.55), (5.58) and (5.59) in the likelihood equation (5.52), we get

(5.60) −2logl = (nm)log(2π) +
n

2π

∫ 2π

0

[
log|FY (ω)|+ tr[f(ω)F(ω)−1]

]
dω

Whittle (1953) showed that the least square parameter estimates are obtained by minimizing equation (5.60)

which is the negative log-likelihood. Hence, the parameter estimates thus obtained are nothing but the MLEs

and any MLE is consistent. It is to be noted that even though Gaussian noise assumption might not valid

in this context, it may be reasonable to assume that since smooth functions of the whole empirical spectral

density estimate is consistent, and hence the estimates obtained of the FSV model are consistent.

5.4. Simulations

The estimation of the above FSV model was evaluated on simulated data. At first, the logarithm of the

stochastic volatility functions hi(t) = logσ2i (t) was generated for 0 < t < 1. As seen in equation (5.35), hi

follows an FAR(1) structure. In order to generate functions, the fda package is used. It is available in the

R statistical software. An underlying basis system of D basis functions {ϕ1, . . . , ϕD} is chosen where D

is sufficiently large so that it can reasonably mimic the infinite-dimensionality of functions. For generating

n functions h1, . . . , hn, we first note that each hi is the sum of three functions, δ, α(hi−1) and ϵi, each of

which can be represented as a linear combination of the underlying basis system. For example, δ can be

written as

δ =

D∑
k=1

dkϕk

for some non-random choice of dk, k = 1, . . . , D. Similarly, one can write for each i = 1, . . . , n,

α(hi−1) =

D∑
k=1

bkϕk

and

ϵi =
D∑

k=1

ckϕk

so that we can write

hi =

D∑
k=1

(dk + bk + ck)ϕk

The exact choice of parameters and basis will be provided in Section 5.4.2.
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For generating the coefficients {bk} and {ck}, firstly a D-dimensional vector is created represented by

σ = (σ1, . . . , σD)
′

where σj is a point-wise decreasing function of j = 1, . . . , D. Then, a D × D matrix, which represents

a D-dimensional operator in the function space, is created based on σ given by Ψ = (ψij)D×D where

ψij ∼ N(0, σiσj) represents elements from the product basis. This Ψ is then divided by the largest singular

value of Ψ to ensure the norm is 1. It is further multiplied by a constant less than 1 to ensure stationarity

of the FAR(1) model. This matrix is then multiplied with the D × 1 coefficient vector of hi−1 to obtain

the vector (b1, . . . , bD)′. The D coefficients of each of the ϵi, given by (c1, . . . , cD)
′ are generated such that

ck ∼ N(0, σk).

The innovation function of the observation equation (5.32), ηi is chosen to be a Brownian motion for

each day i, i = 1, . . . , n. At first, the Brownian motion for each intraday point j is generated for j =

1, . . . , T , where T is the number of intraday time points at which the functions are observed. They are given

by the following set of equations:

S0 = 0

Sj = Sj−1 + Zj ; Zj ∼ N(0, 1)

Bj =
1√
T
Sj

Then, these Bjs, which are nothing but the point-wise evaluations of the functions ηi are converted to

Brownian motion functions ηi for each day by registering them with a B-spline basis system. The resulting

functions are shown in Figure 5.1.

The σi functions in equation (5.32) are obtained from hi = logσ2i by transforming the functions. How-

ever, in R, there is no direct way to transform functions. To handle this problem, it was checked if trans-

forming the functions is same as transforming the pointwise evaluations of the the functions. The steps are

outlined below.

5.4.1. Transforming functions. First we note that, σi = e
1
2
logσ2

i = e(hi/2). Here, we are checking

whether transforming functions is equivalent to transforming the pointwise evaluations of the functions.
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FIGURE 5.1. Brownian Motion Functions

• The hi(t) = logσ2i (t) are generated as functions and evaluated at intraday time points t1, . . . , tT

given by hi(t1), . . . , hi(tT ).

• Then we can transform the pointwise evaluations as e(hi/2) to get σi(t1), . . . , σi(tT ).

• We can then convert them back as functions to obtain σi(t). Note that this is the potential functional

form of the stochastic volatility function.

• For a different set of intraday points s1, . . . , sT , we evaluate the function σi(t) to obtain σi(s1), . . . ,

σi(sT ).

• We can also get e(hi/2) evaluated at s1, . . . , sT by evaluating hi at s1, . . . , sT and taking the trans-

formation.

• We then compute

(5.61) ∆ =

√√√√ 1

n ∗ T

n∑
i=1

T∑
j=1

(
σi(sj)− e

1
2
(hi(sj))

)2
If this quantity is negligible, we conclude that functions can be transformed using pointwise eval-

uations.

Once we get the σi, we can easily obtain the observation functions yi as

yi = σiηi
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This serves as the functional observations on which estimation procedure needs to be carried out. Once

the above functions are obtained, the linearized functions (equation (5.34)) can be easily obtained which

subsequently leads to equation (5.38). Notice that in equation (5.38), y∗i depends on the mean function of hi

given by m1. So, after plugging in the estimate of m1, equation (5.38) reduces to

(5.62) ỹi = logy2i −
1

n

n∑
i=1

logy2i = h∗i + ξi

So, we use the left-hand side of equation (5.62) as our observations based on which the estimation is done.

5.4.1.1. Dimension reduction. As discussed in Section 5.3.1, it can be assumed that a class of orthonor-

mal function serves as the underlying basis system for the observed functions. One common way to obtain

such a basis from the data is to consider the eigenfunctions obtained from applying FPCA. It is to be noted

that FPCA based estimation is not covered by our theory. We choose the first m eigenfunctions as the basis

where the first m eigenvalues explain a significant proportion of variance in the data. Let us denote this

basis system as Γm = {γ1, . . . , γm}. In this system, the integral kernel α(t, s) are elements of Γm × Γm

and can be expressed as

(5.63) α(t, s) =
m∑

k,l=1

a∗k,lγk(t)γl(s)

We then project ỹ1, . . . , ỹn and h∗1, . . . , h
∗
n onto Γm and define the m-dimensional vectors

Yi = (y
(2)
i,1 , . . . , y

(2)
i,m)T

and

Xi = (h
(2)
i,1 , . . . , h

(2)
i,m)T

through their entries y(2)i,k = ⟨ỹi, γk⟩ and h(2)i,k = ⟨h∗i , γk⟩. Yi now represents an m-dimensional multivariate

time series which can be placed into the state-space modeling framework. Hence Kalman-filtering methods

as described in Lütkepohl, 2005; Shumway and Stoffer, 2000 can be applied to carry out the optimization

steps of the likelihood function (equation (5.45)) in the estimation process as mentioned above in Section

2.2.

5.4.2. Choice of parameters for simulations. The logarithm of the stochastic volatility functions hi

are generated using D = 31 basis functions. The D dimensional σ vector is chosen as σ = (σ1, . . . , σD)
′
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where

σj = 1.5−j , j = 1, . . . , D

which is a decreasing function of j. The FAR(1) operator is multiplied with a coefficient of 0.8 to ensure

stationarity of the functions generated. The delta function coefficients were chosen such that the norm of

the coefficient vector is smaller than 0.01. The use of the Fourier basis produced a realistic version of the

log-volatility functions as seen in Figure 5.2. The ∆ defined in Section 5.4.1 came out to be 2.33 ∗ 10−14

which is almost 0. This proves that we can take transformations of the pointwise evaluations of functions to

transform the functions. Thus, the functions σi were obtained by point-wise transforming observed hi.

FIGURE 5.2. Log-volatility functions generated using Fourier basis

Once the linearized functions are obtained as given in equation (5.62), FPCA was applied on them. The

first five resulting eigenvalues explained around 90% of variations in the data, hence m was chosen to be 5.

In other words, Kalman filtering will be applied to 5-dimensional vectors.

5.4.2.1. Getting initial estimates. Recall equations (5.46) and (5.47)

Yi = Xi + Zi

Xi = AXi +Ei
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where Yi = (y
(2)
i,1 , . . . , y

(2)
i,m)T and Xi = (h

(2)
i,1 , . . . , h

(2)
i,m)T are m-dimensional vectors representing a mul-

tivariate time series. Also recall from Section 5.3.2 that the optimization of this state-space likelihood using

Kalman filtering requires some initial parameter estimates. The choice of the initial estimates can greatly

impact the optimization of the log-likelihood equation (5.45) and good initial estimates will ensure accurate

estimates coming out of maximizing the log-likelihood.

Computing the covariance at lag 0 of the above equations lead to

(5.64) ΣY (0) = ΣX(0) + S

(5.65) ΣX(0) = AΣX(0)AT +Q

It can be shown that the cross-covariances of the observations are functions of cross-covariances of the state.

More specifically:

ΣY (1) = Cov(Yi,Yi−1)

= AΣX(0)
(5.66)

Similarly,

ΣY (2) = A2ΣX(0)

Thus, we have,

AΣY (1) = ΣY (2)

So, we need an A that minimizes the norm difference

∥AΣY (1)− ΣY (2)∥2F

and the minimizer of this is given by

Ã = ΣY (2)ΣY (1)
T
(
ΣY (1)ΣY (1)

T
)−1
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Finally, the initial estimate of A is given by

(5.67) Âini = k
Ã

λ1(ÃÃT )

where 0 < k < 1 and this ensures that the norm of the initial estimate is less than 1. For our simulation, k

is chosen to be 0.8 since that was the norm of the FAR(1) operator for generating the functions. Now, from

equation (5.66), we get

ΣX(0) = A−1ΣY (1)

and hence

Σ̃X(0) = Â−1
iniΣY (1)

Note that, ΣX(0) needs to be symmetric and positive definite, since it is a covariance matrix. However,

Σ̃X(0) need not be symmetric and postive definite. To make it so, the following is chosen as an estimate of

ΣX(0):

Σ̂X(0) =
(
Σ̃X(0)Σ̃X(0)T

)1/2
But this estimate had very large eigenvalues which can be a problem in getting estimates of ΣZ from equation

(5.64). Hence, the initial estimate of ΣX(0) was chosen to be

(5.68) Σ̂Xini(0) =
Σ̂X(0)

λ1((Σ̂X(0))

where λ1((Σ̂X(0)) is the largest eigenvalue of Σ̂X(0)Σ̂X(0)T . Finally, following from equations (5.64) and

(5.65), the initial estimates of S and Q are given by

(5.69) Ŝini = ΣY (0)− Σ̂Xini(0)

(5.70) Q̂ini = Σ̂Xini(0)− ÂiniΣ̂Xini(0)Â
T
ini

5.4.3. Estimation results. Recall that here we are trying to estimate three m×m matrices, the AR(1)

coefficient matrix A and the covariances of ϵ(2)i and ξ
(2)
i given by Q & S, respectively. In order to check

how close the estimated matrices are to the true matrices, we considered a number of metrics. For anym×m

matrix B = (bij) and its estimate B̂ = (b̂ij), the following gives an overview of the metrics:
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• Mean Squared Error (MSE):

1

m2

m∑
i=1

m∑
j=1

(bij − b̂ij)
2

• Root Mean Squared Error (RMSE):

√
MSE =

√√√√ 1

m2

m∑
i=1

m∑
j=1

(bij − b̂ij)2

• Mean Absolute Error (MAE):

1

m2

m∑
i=1

m∑
j=1

|bij − b̂ij |

• Frobenius norm:

∥B − B̂∥F

where ∥B∥F =
√∑m

i=1

∑m
j=1 b

2
ij

• Relative Frobenius norm:
∥B − B̂∥F

∥B∥F
• Max norm:

∥B − B̂∥M

where ∥B∥M = max
ij

|bij |

• Relative Max norm:
∥B − B̂∥M

∥B∥M
• Spectral norm:

∥B − B̂∥2

where ∥B∥2 =
√
λ1 where λ1 is the largest singular value of B

• Relative Spectral norm:
∥B − B̂∥2

∥B∥2
These metrics were then computed for different scenarios. It is to be noted that the parameters A and Q

are coming from the observation equation and S is from the state equation of the state-space process. If the

85



amount of variation explained by the state equation relative to the variation in the noise of the observation

equation is high, then the signal is considered high. If the reverse is true, it is considered that the signal

is low and noise is high. So we would expect A and Q will be estimated well when the signal is high as

compared to noise, however, we would expect S to be estimated well if signal is low and noise is high in

the data. See below for more details. It was also shown in Section 5.3 that the estimates are consistent. So,

we will show how the metrics changes as we increase the sample size. Let us analyze the metrics in these

aspects.

5.4.3.1. Metrics for low signal. As mentioned in Section 5.4.2, infinite-dimensional functions were

reduced to m = 5 dimensional vectors using FPCA. For m = 5, we had a total of 55 parameters, 25 for A

and 15 each for Q and S since they are symmetric.

Since number of parameters was high, a higher sample size was considered so that the parameters can

be estimated well. Here, a size of n = 1300 functions was used for estimation.

FIGURE 5.3. Histograms of all metrics for A: low signal

Parameter estimates were obtained using methods discussed in Section 5.3.2. In this case, we are min-

imizing the negative log-likelihood iteratively to get the parameter estimates. The initial estimates for the

optimization were obtained as described in Section 5.4.2.1.
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We computed the metrics mentioned above for 100 different samples and plotted the histograms of the

metrics to see the range of their values across different samples. The following figures show the histograms

of the various metrics for the three parameters, A, Q and S.

FIGURE 5.4. Histograms of all metrics for Q: low signal

FIGURE 5.5. Histograms of all metrics for S: low signal
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From Figures 5.3 to 5.5, it can be seen that the MSE, RMSE and MAE values are small for all three

parameters. However, in terms of the relative measures, the parameter S has a smaller value compared to

those of A and Q. That means, S is getting estimated better than the other two parameters. In order to

consolidate the results across all samples, we decided to calculate the median for all metrics, because the

median is not impacted by outliers. These values are given in Table 5.1.

Table 5.1 indicates that A and Q tend to have larger values of the metrics than S. Further, the relative

measures of A and Q are larger than the regular measure. For example, relative Frobenius norm is larger

than Frobenius norm, which indicates that the denominator of the relative measure is small. Since the

denominator is the norm of the true parameter, it also indicates that the true parameter values are also small,

providing a reason why estimation is difficult in this setting.

TABLE 5.1. Accuracy of the parameter estimates: low signal

Metric A Q S

MSE 0.0665 0.0325 0.0292

RMSE 0.2579 0.1803 0.1707

MAE 0.1991 0.1072 0.1059

Relative Frobenius norm 1.4329 1.8153 0.4509

Frobenius norm 1.2897 0.9013 0.8537

Relative Spectral norm 1.3419 1.8171 0.4643

Spectral norm 1.0608 0.8144 0.7682

Relative Max norm 1.0226 1.5163 0.3296

Max norm 0.5802 0.6273 0.5567

From equation (5.64), it is evident that the total variation in the observations can be attributed to the

variation coming from the underlying state equation and the variation from the observation noise. Upon

computing the trace of the covariance matrix of the observations Y, it came out to be around 4.2, whereas,

the trace of the covariance matrix of the true state functions reduced to m dimensions was around 1.0, and

the trace of the covariance matrix of the observation noise is around 3.2, which explains that the signal in

this case is low and most of the variation in the observations are coming from the observation noise. As a
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result, the parameters corresponding to the noise, S was getting estimated well, whereas the ones related to

the state equation, A and Q were not getting estimated that well. Hence, we looked for ways to increase the

signal to noise ratio, so that the majority of the variation in the observations can be explained by the state

equation.

5.4.3.2. Metrics for high signal. A high signal was achieved by increasing the variability of the state

functions. When FPCA was done on the newly simulated observations, it was found that the first three

eigenvalues were sufficient in explaining around 90% variations in the data, which is intuitive because in-

creasing the signal will increase the signal to noise ratio. This indicates that the the major source of variation

in the observations is the underlying state equation and not the observation noise, so fewer eigenvalues are

sufficient to explain the majority of variation in the data. So for this case, we decided to reduce the functions

to m = 3 dimensional scores. Now each of the three parameters are 3 × 3, so we have a total of p = 21

parameters. As a result, we don’t need a sample size as big as n = 1300. Keeping a similar n/p ratio which

will keep the relative degrees of freedom in estimation at a similar level to that of the low signal case, we

chose n = 500 for the estimation in this case when m = 3.

FIGURE 5.6. Histograms of all metrics for A: high signal

89



FIGURE 5.7. Histograms of all metrics for Q: high signal

FIGURE 5.8. Histograms of all metrics for S: high signal
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Similar to the low signal case, the metrics for the three parameters were obtained for about 100 different

samples and the histograms were plotted. From Figures 5.6 – 5.8, we see that MSE, RMSE and MAE are

small for all parameters. It is also seen that the parameters related to the signal,A andQ, are more accurately

estimated than in the low signal case. In fact, most of the relative measures of A are around 0.5 and that

of Q are between 0.2 and 0.3. The relative measures of S are somewhat larger, which is expected, because

now the signal to noise ratio is higher.

Like before, the median metrics values are computed which are given in the Table 5.2. From the table,

we see that the estimates are close to the true parameters for all three matrices. Specifically the MSE values

are very small for all parameters indicating that the error in estimation of parameters in this case is lower.

TABLE 5.2. Accuracy of the parameter estimates: high signal

Metric A Q S

MSE 0.0189 0.6383 0.5557

RMSE 0.1375 0.7989 0.7454

MAE 0.0963 0.6324 0.6121

Relative Frobenius norm 0.4740 0.3028 1.2347

Frobenius norm 0.4124 2.3968 2.2363

Relative Spectral norm 0.5025 0.2659 1.0231

Spectral norm 0.3830 1.9221 1.7541

Relative Max norm 0.4993 0.2381 0.9148

Max norm 0.3121 1.6145 1.3343

The median relative norm of A is around 0.5 and that of Q is around 0.3, which is intuitive, since

these are the parameters associated with the underlying state equation which contributes to the majority of

variation in the data. Even the relative norms of S are smaller than the absolute norms. However, the norms

of S are higher now, because S is the covariance matrix of the observation noise. This analysis indicates the

overall effectiveness of the process in estimating the parameters.

5.4.3.3. Variation with sample size. We have proved consistency of our parameter estimates in Section

5.3. That means, as the sample size n increases, the estimates will be closer to the true parameter values.
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Since the metrics described in Section 5.4.3 are based on the error in estimation, it implies that the metrics

will be decreasing as n increases.

Here, we focus on the high signal case. The following table shows the values of the above metrics after

running the estimation procedure using the initial estimates defined above for different sample sizes when

m = 3.

TABLE 5.3. Metrics for Different Parameters and Sample Sizes

A Q S

n = 300 n = 750 n = 1500 n = 300 n = 750 n = 1500 n = 300 n = 750 n = 1500

MSE 0.1889 0.0112 0.0083 0.8675 0.5802 0.5596 0.6806 0.6059 0.4998

RMSE 0.4347 0.1059 0.0909 0.9314 0.7617 0.7481 0.8250 0.7784 0.7070

MAE 0.3081 0.0746 0.0678 0.8198 0.6078 0.6346 0.7192 0.6764 0.5820

Relative Frobenius 1.5190 0.3659 0.3134 0.3755 0.2952 0.2896 1.3640 1.3163 1.2000

Frobenius 1.3040 0.3178 0.2727 2.7942 2.2851 2.2443 2.4750 2.3351 2.1209

Relative Spectral 1.9199 0.4043 0.3885 0.3244 0.2652 0.2447 1.2026 1.0527 1.0655

Spectral 1.2926 0.2730 0.2631 2.1424 1.8809 1.7268 1.9766 1.6991 1.7147

Relative Maxnorm 1.9548 0.4713 0.4826 0.2166 0.1628 0.1626 1.0532 0.7488 0.7453

Maxnorm 0.9387 0.2162 0.2214 1.4213 1.1452 1.1427 1.6432 1.1638 1.1318

From the table, we see that indeed the values of the metrics go down as n increases, however, they are

not going down too fast. This indicates empirically that the estimates are consistent.

5.5. Conclusion

This chapter provided a structure of a functional stochastic volatility model, where the intra-day volatil-

ity could be considered as a function. It proved that there exists a strictly stationary and causal solution to

the volatility process. Stochastic volatility models form an exogenous way of modeling volatility in finance,

where the process does not depend on the past observation but an underlying stochastic process.

The methods of estimation of model parameters were introduced leveraging the state-space frame-

work and Kalman filtering methods, where the returns were observed, whereas the underlying volatility

was unobserved. This method is an easier alternative to the Bayesian Hierarchical time series methods of

estimation available in the literature. The main principle is to reduce the infinite-dimensional functions
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to finite-dimensional objects using FPCA and implementing the multivariate state-space framework using

quasi-likelihood and Kalman filtering techniques. Detailed outline were provided on how to choose the

initial estimates required for iteratively maximizing the likelihood numerically.

The effectiveness of the estimation methods were supported through empirical studies. The estimation

method was proved to be effective in terms of smaller error when the amount of variation explained by

the state equation was high relative to the variation in the noise of the observation equation yielding a high

signal to noise ratio. However, one should keep in mind that the methods might be prone to a relatively larger

error when the signal to noise ratio is low. Consistency of the parameter estimates were proved theoretically

following the methods proposed by Whittle and were also proved empirically.

Thus, in conclusion, as long as the signal to noise ratio is high in the data, this chapter provides an effec-

tive method of estimating the parameters of a functional stochastic volatility model. The model parameters

pertaining to the observation equation are estimated better than those in the state equation, if the signal to

noise ratio is low.
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Alexander Aue, István Berkes, and Lajos Horváth. Strong approximation for the sums of squares of aug-

mented GARCH sequences. Bernoulli, 12(4):583–608, 2006.

Alexander Aue, Diogo Dubart Norinho, and Siegfried Hörmann. On the prediction of stationary functional
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