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Abstract: This work is aimed at the experimental characterisation of air quality and thermal profile
within an electric vehicle cabin, measuring at the same time the HVAC system energy consumption.
Pollutant concentrations in the vehicle cabin are measured by means of a low-cost system of sensors.
The effects of the HVAC system configuration, such as fresh-air and recirculation mode, on cabin air
quality, are discussed. It is shown that the PM concentrations observed in recirculation mode are
lower than those in fresh-air mode, while VOC concentrations are generally higher in recirculation
than in fresh-air mode. The energy consumption is compared in different configurations of the HVAC
system. The novelty of this work is the combined measurement of important comfort parameters
such as air temperature distribution and air quality within the vehicle, together with the real time
energy consumption of the HVAC system. A wider concept of comfort is enabled, based on the use
of low-cost sensors in the automotive field.

Keywords: electric vehicle; pollutant concentration; HVAC; Arduino sensors; vehicle energetics

1. Introduction

One of the major barriers to electric vehicle adoption is due to the limited amount of
energy stored in the batteries and needed for traction and auxiliary systems. While ICE
vehicles can rely on waste heat for winter requirements, an optimised thermal management
of heat loads and gains is crucial for BEVs, paving the way from heat disposal to heat
management [1].

Reducing the energy consumption of the HVAC system, as well as other auxiliary
systems, is of paramount importance in the era of migration to electric powered transporta-
tion; the major challenge being to achieve this while maintaining high levels of comfort
inside the cabin. On one hand, the best thermal management of the car’s cabin is obtained
by maximising the comfort level along with minimising electrical power demand [2–4]. On
the other hand, internal air quality (IAQ) related quantities inside the vehicle’s enclosure
are affected by outside weather conditions as well as by the heating, ventilation, and air
conditioning (HVAC) settings. From this perspective, every improvement of the cabin
thermal management must be IAQ aware [5–8].

As an example, choosing the intake air recirculation mode is recommended under
certain conditions to reduce energy use and increase driving range. Provided that energy
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benefits of the recirculation mode are undisputed, it should also be mentioned that it can
produce substantial benefits in relation to certain air contaminants, which are captured by
HVAC filters [9], but there are some downsides to consider: CO2 and VOC accumulation,
pollutant infiltration and odour problems. The United States Environmental Protection
Agency (EPA) released fuel credits to manufacturers adopting increased air recirculation in
2017; but cabin air quality, especially when air is recirculating, should be measured and
regulated to keep concentrations of certain pollutants below specific thresholds [10,11].

Research in the field of vehicle air quality is leading to new methods of testing and best
practices, but still a dedicated standard on performance indicators does not exist. Several
efforts have been made to define a standardised test method for interior air quality in the
automotive field [12], but this is still an open question. A possible approach to address this
issue relies on fractional air recirculation, demonstrating that a compromise is achievable
between the benefits of full recirculation and its side effects [13]. Other authors propose
approaches based on the use of a signal from environmental prediction services [14], and/or
on-board sensors [15] to trigger automatic climate control, even though there is still no clear
consensus on how to implement these techniques in the HVAC system’s control strategy.
Such an approach would require a trade-off between real time and integral I/O techniques,
the former leading to large uncertainties but faster, while the latter provide slower but
more stable results [16].

The Joint Research Centre of the European Commission and DG Service Environment
are pushing for advancement in this field by stimulating research improvements achieved
through the use of low-cost sensors. Although the data measured with these type of sensors
are less accurate than laboratory reference equipment, their use has grown greatly in recent
years, in applications concerning indoor air quality [17]. Their ease of use, coupled with
current scientific advancements [18–20], makes them suitable for real-time monitoring
applications. The road has therefore been opened for the employment of low-cost sensors
in the automotive sector, such as monitoring air quality inside the passenger compartment.

This paper describes a series of experiments on air quality and energy efficiency inside
the passenger compartment of an electric vehicle. The measurements were carried out
using a portable low-cost sensor system and reading the car’s On-Board Diagnostic bus
(OBD) [21]. In this work, the correlation between experimentally measured air quality
data and the energy spent by the HVAC system inside the vehicle cabin is investigated.
Concentrations of some pollutants in the vehicle cabin are measured by means of a low-cost
Arduino sensor-based system. The use of an open-source electronic platform like Arduino
allowed fast prototyping and simplified design of the system. In addition, it helped to relax
the constraint involved in the construction of hardware and software platforms for data
acquisition, following a path that has been outlined by many authors in literature [22–24].

The HVAC system configuration regarding fresh-air recirculation mode of the intake
air are varied, while PM2.5 and VOC percentages are measured. HVAC air filter perfor-
mance is evaluated by making cabin air quality measurements with and without the filter
installed. The relation between consumed energy, HVAC system settings and pollutant
concentrations is obtained, in order to introduce an innovative approach to comfort mainte-
nance inside the car cabin. The novelty of this approach is a win-win perspective, aimed to
the concurrent optimisation of the two aspects for BEVs thermal control. The methodology,
based on low-cost sensors measurements and applied to a Nissan Leaf Acenta 40 kWh
MY2018, is general and applicable to other models of electric car, to show that the use of
these sensors for the control of the cabin can yield energy savings together with optimal air
quality and comfort levels.

2. Materials and Methods

In the following subsections, the integrated experimental setup and the low-cost
system of sensors are described in detail.
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2.1. Description of the Experimental Setup

To characterise the thermal profile and air quality inside the vehicle cabin, two tests
have been performed in outdoor parking conditions in the faculty parking lot with the
front of the car oriented south.

The temperature distribution within the vehicle cabin is obtained with a grid of 18
DS18B20 temperature sensors following the approach used in [25,26] to develop a thermal
model of a BEV cabin for energy consumption predictions [27]. The cabin has been ideally
divided into three slices horizontally: namely the top, middle and bottom levels, as shown
in Figure 1 from a lateral view.

Figure 1. Lateral view of the experimental setup.

On the grid, six sensors are placed for each plane: three in the front side and three in
the back side of the cabin. In addition, air quality related quantities have been measured
with low-cost sensors on a unique location in the cabin; near the gear shift knob together
with the acquisition system.

As external conditions can strongly affect the internal micro-climate [28], a second
acquisition system has been placed on the car roof. This is identical to the internal one,
except for the presence of a single temperature sensor only. The presence of the second
acquisition system is needed to characterise the environment outside the vehicle and
to facilitate inside/outside comparisons with data having the same structure and same
metrologic fingerprint.

The approach used in the study, conversely from the one used in ISO standards
regarding the interior air of road vehicles [29], does not rely on a vehicle test chamber. The
latter is well-documented and reliable, but not suitable for real-time operation and low-cost
equipment.

To have clearer insights on HVAC capabilities, an on-board diagnostic (OBD) Linux
platform was cleverly installed inside the car to directly retrieve and collect different
variables from the electronic control units [30]. Specifically, it was the iWave OBD-II: a
little device with an ARM Cortex-A7 processor embedded that runs a light Yocto Poky
Linux distribution. The iWave OBD-II can upload data via a 4G/LTE CAT4/CAT1 sim
modem, geolocate the device with a GPS receiver and it can transmit messages with the
Bluetooth Low Energy 4.2 module. Communicating via the OBD-II interface, the board
reads the HVAC power consumption, the power used by the auxiliary equipment (e.g.,
lights, infotainment, rear defroster etc.), and the power used by the heater. A fine-time
granularity monitoring of those parameters was necessary to correctly interpret how the
cabin air changes throughout the experiment.

The overall measured quantities are: air temperature ta, relative humidity RH, air
pressure pa, TVOC concentration CTVOC and PM2.5 concentration CPM. The temperature
is measured in 18 points as described above, while the other measurements are taken in
one point. The same quantities are measured also outside the cabin. Finally, the power
usage of the HVAC system is also logged. Table 1 lists the measured quantities and the
correspondent accuracy.
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Table 1. Measured quantities.

Variable (Unit)
Sensors Specifications

Description Manufacturer Model Accuracy (Offset + Gain)

ta(°C) Air temp. Maxim Integrated DS18B20 ±(0.5 ◦C + 1% mv a)
RH(%) Air rel. hum. Bosch BME280 ±(3%RH + 1%RH)
pa(hPa) Air pres. Bosch BME280 ±(1.5 hPa + 0.12 hPa)
TVOC(ppb) TVOC conc. Sensirion SGP30 ±(15% mv)
PM (µg/m3) PM2.5 conc. Sensirion SPS30 ±(10 µg/m3 + 10% mv)

Pi(kW)
Subsystem i iWave OBD/Linux ±(250 W)power usage

a mv = measured value.

Sensor performance is a device dependent issue that can be measured with various
qualifiers [31] and ideally addressed individually. In this study, the same approach for all
the measured quantities has been used. A sampling time of Ts = 10 s has been adopted.
The raw data from the acquisition system has been filtered with a moving mean over a
one minute period, this leads to a six-point moving mean. Subsequently, the filtered data
has been converted into time-stamped data in tabular form, and eventually re-sampled
and synchronised among the three acquisition systems. The data analysis process has been
performed using open-source tools, including Python 3.8 and several scientific computing
libraries (pandas, matplotlib, numpy and scipy above all) following the exploratory data
analysis (EDA) approach provided in [32].

2.2. Description of the Arduino-Based System of Sensors

Two independent measurement systems based on Arduino Mega 2560 were built for
the measurement of environmental parameters. The systems have an on-board real time
clock (RTC), a data logger on flash memory, a fan and a TFT display. The RTC clocks of the
two systems are constantly adjusted thanks to time data received from the GPS module.
This operation is implemented to facilitate the synchronization of signals from the three
acquisition systems.

The internal system is capable of measuring temperatures at 18 locations in the cabin
(Maxim Integrated DS18B20 probes). Moreover, the internal system can measure particulate
air matter (PM) concentration (Sensirion SPS30 sensor), air TVOC concentration (Sensirion
SGP30 sensor), air CO2 concentration (Winsen MH-Z19B non-dispersive infrared sensor),
concentration formaldehyde (Winsen ZE08 sensor), air temperature, relative humidity and
pressure (Bosch BME280 sensor), air flow velocity (hot wire analog sensor) and GPS position,
at a unique location. The external system, albeit sharing the same characteristics and using
the same sensors, it lacks of the 18-spots temperature measurement, the GPS receiver and
the air flow velocity sensor. Both systems are equipped with a fan that conveys air inside
the device enclosure, where CO2 and formaldehyde sensors are mounted, while the SPS30
sensor is equipped with its built-in fan. Both systems independently sampled data at 10-s
intervals. All digital sensors used in the measurement device include a microcontroller that
implements optimisation and self-calibration algorithms.

High-precision, easy-to-use DS18B20 sensors were used to measure temperatures
inside the cabin in 18 distinct positions; they have a typical accuracy of ±0.5 ◦C from
−10 ◦C to 85 ◦C and digitally transmit temperature data on a 1-Wire® bus. The use of
1-Wire protocol [33], together with the unique 64-bit serial code allows many sensors on
the same bus, thus reducing the cable length and allowing to uniquely associate a sensor
output with its position in the network through a serial-position coupling. Specifically, the
DS18B20 actual temperature is provided by a 12-bit analog to digital converter built-in in
the digital sensor, with a fine temperature resolution up to 0.0625 ◦C. Its operating range is
between −55 ◦C to +125 ◦C.

The BME280 is a high linearity and high accuracy combined temperature, humidity
and pressure digital sensor. Its pressure sensing mechanism is resistive, with an operation



Sensors 2022, 22, 543 5 of 16

range of 300 hPa to 1100 hPa, the temperature sensing principle is of the type diode-voltage
with a measurement range of −45 ◦C to 85 ◦C, the measurement principle behind humidity
is capacitive and its range is 0% to 100% [34]. It features an extremely fast response time τ63%
of 1 s, thus enabling a consistent oversampling if compared with the current application
time granularity of 1 min.

The sensing principle of SPS30 PM sensor is based on laser-scattering, and allows
mass concentration and number concentration sensing for particle sizes ranging from 1 µm
to 10 µm. As discussed in [20,35], the SPS30 is an optical particle counter (OPC) optimised
for PM2.5 and smaller particle analysis. Sensirion PM sensors are indeed calibrated using
regularly maintained and aligned high-end reference instruments (e.g., the TSI Optical
Particle Sizer Model 3330 or the TSI DustTrak™ DRX 8533) only for 2.5 µm particles size.
Moreover, as stated in the sensor specification sheet from the manufacturer, PM4 and PM10
outputs are not directly measured but estimated from smaller particle counts using typical
aerosol profiles. A miniaturized fan and a high efficiency particulate air (HEPA) filter
are included to reduce the optical part contamination; it also runs its fan at full speed
for 10 s every seven days as an automatic cleaning procedure. The mass concentration
measurement range is 0 µg/m3 to 1000 µg/m3.

The SGP30 TVOC sensor is a digital “multi-pixel” gas sensor. It uses multiple sensors,
housed on a single metal-oxide gas sensor chip, placed on a thermally controlled hotplate.
Digital data output from the sensor includes raw measurements of ethanol and H2, and
calculated values of TVOC and equivalent CO2 via internal algorithm, such as automatic
baseline compensation of the measurement [18]. The TVOC data range from this sensor
is between 0 to 60,000 ppb. This sensor’s equivalent CO2 were disregarded due to its low
sensitivity to external pollutants and due to the absence of passengers in parking conditions.

The measurement system has been characterised both in winter and in summer con-
ditions. In the following sections, two typical conditions for winter and summer have
been chosen in order to characterise the HVAC system performance in heating and cooling
operations, respectively. Winter tests have been performed on 29 January 2021, while
summer test have been carried out from 14 July to 15 July 2021.

3. Results and Discussion

In this section, the combined measures of air quality and comfort parameters, together
with the energy consumption by the electric car are shown and discussed in different
seasons, in order to show the differences in relation to the operational mode for the air
conditioning. Moreover, an estimation of the filtration performances of the HVAC system
is given, by comparing the results corresponding to new and used filters. Ultimately, a
detailed treatment of high spatial resolution cabin air temperature profiles is provided in
the Supplementary Materials.

3.1. Measurements during Heating Operation

Two different test conditions have been investigated for the winter, starting from a
state of equilibrium with the external environment, obtained maintaining all systems off
and all doors opened for 15 min. Once the equilibrium was reached, the proper test was
performed while maintaining the heater on for one hour, and the set-point temperature
at its maximum of 30 ◦C, the fan speed was at its maximum (position 7), and all of the
windows and all the doors were closed. During the first test, the recirculation system
was off (meaning that the air ventilation system was in the fresh-air configuration), while
during the second test the recirculation system was on instead.

3.1.1. Fresh-Air Configuration

The temperature measured inside and outside the cabin keeping the fresh-air mode is
shown in Figure 2a. The air temperature inside the cabin is obtained by the average of the
air temperature measurements on the sensors placed on the grid shown in Figure 1, i.e.,
tint = tavg. The TVOC concentration measured inside and outside the cabin in fresh-air
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mode are shown in Figure 2b. It is shown that the TVOC concentration increases while the
HVAC system is working, even in the fresh-air mode. This effect is related to the presence
of sources of VOC inside the vehicle cabin and the build up phenomena during the HVAC
operation, as expected from the literature [29]. Figure 2c displays the PM2.5 concentration
measured inside and outside the cabin in fresh-air mode. The PM concentrations decrease
while the HVAC system is working due to the filtering activity of the HVAC filter. This
result ties with what is found in the literature [9]. For the case analysed, a filtration efficiency
of about η = 0.5 for PM2.5 is ascertained. The power usage of the HVAC system, with the
contributions of power used by auxiliary equipment, A/C system and PTC heater recorded
by the OBD system is shown in the stacked line plot in Figure 2d.

(a) (b)

(c) (d)

Figure 2. Results regarding the fresh-air mode. (a) Temperature inside (blue) and outside (red) the
cabin; (b) TVOC concentration inside (blue) and outside (red) the cabin; (c) PM2.5 concentration
inside (blue) and outside (red) the cabin; (d) power usage of the HVAC system.

3.1.2. Recirculation Configuration

Similar considerations can be made for the case with recirculation activated. From the
results shown in Figure 3 it is clear that the time to steady state is close to 20 min; again the
over-temperature issue remains significant. TVOC concentration reached a value similar to
the case without recirculation, but in a longer time with respect to the fresh-air mode. A
possible explanation for this behaviour could rely on the fact the source of VOCs inside
the cabin is compensated by an improved adsorption performance, as observed by [9].
The PM concentrations decrease to lower values with respect to the fresh-air mode, as
shown in Figure 3c. This result shows that the filtration performance is improved by the
recirculation mode. Figure 3d shows the power usage of the HVAC system. The figure



Sensors 2022, 22, 543 7 of 16

shows the contributions of auxiliary equipment, the A/C system and the PTC heater to the
overall power usage.

(a) (b)

(c) (d)

Figure 3. Results regarding the recirculation mode. (a) Temperature inside (blue) and outside (red)
the cabin; (b) TVOC concentration inside (blue) and outside (red) the cabin; (c) PM2.5 concentration
inside (blue) and outside (red) the cabin; (d) power usage of the HVAC system.

3.1.3. Comparison between Fresh-Air and Recirculation Mode in Winter

The open-field tests conducted in this work have been chosen because representative
of the real operating conditions of the vehicle. On the other hand, the experiments have
been performed with no control on the environment outside the cabin, with repeatability
issues. In order to compare the experiments, the following dimensionless temperature
is defined:

t∗ =
tint − text

tset − text
(1)

where t∗ is the dimensionless temperature, tint is the air temperature measured inside
the cabin, text is the air temperature measured outside the cabin and tset is the set-point
temperature. It is worth to underline that when tint = text, dimensionless temperature t∗ is
equal to 0, while when tint = tset, then t∗ is equal to 1. These two key points represent two
relevant physical states, equilibrium with the external environment and fulfilment of the
set-point request, respectively. Figure 4a shows a comparison between the dimensionless
temperatures obtained for the two experiments.

It is noticeable that the dimensionless temperature obtained without recirculation is
always higher than the one obtained in the case of recirculation mode, thus suggesting
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that the over-temperature issue is more significant in this case. In addition, the set-point is
reached faster during the fresh-air mode than during the recirculation mode.

(a) (b)

Figure 4. (a) Dimensionless temperature profiles, comparison between fresh-air (solid line) and
recirculation (dashed line) mode. (b) Filtration efficiency, comparison between fresh-air (solid line)
and recirculation mode (dashed line).

The filtration efficiency of the vehicle can be defined using a black box approach, where
the vehicle cabin is considered as a system with an unknown filtration capacity, while inlet
(external) and outlet (internal) concentrations are known. The filtration efficiency is then
defined by

η = 1 − Cint
Cext

(2)

where Cint and Cext are the internal and external concentrations, respectively. Figure 4b
shows a comparison between the PM filtration efficiency obtained in the two regimes. The
figure shows that PM filtration efficiency with recirculation mode is almost double than the
one obtained with the fresh-air mode. It is also noticeable that the filtration efficiency does
never reach the ideal value of η = 1, suggesting that infiltration rate not equal to zero occur
even if the vehicle is parked.

An alternative method to get insights about IAQ of a vehicle cabin relies on a time
integrated inside/outside approach proposed in [12]. The associated index, the cabin air
quality index (CAQI), is defined as follows:

CAQI =

∫ t f
ti

Cint(t) dt∫ t f
ti

Cext(t) dt
(3)

where Cint is the internal concentration , Cext is the external concentration, ti is the start
time and t f is the stop time. Results based on this index for PM2.5 and TVOC are given in
Figure 5.

The figure shows that the CAQI indexes for PM2.5 and VOC obtained for the fresh-air
mode are much greater than the one obtained for the recirculation mode. Figure 6 shows the
comparison between the cumulative energy consumption in the two cases of recirculation
on and off, calculated as the approximate cumulative integral of Ptot = Paux + PAC + PHtr
via the trapezoidal method, in order to integrate numeric data rather than a functional
expression:

E =
∫ t f

ti

Ptot(t) dt ≈
t f − ti

2N

N

∑
n=1

(Ptot(tn) + Ptot(tn+1)) (4)

where ti is the start time, t f the final time and N+1 the number of samples available (equally
spaced). The total energy consumption obtained in the recirculation mode is about 3/4
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of the value obtained for in fresh-air mode. This result can explain what is shown in
Figures 2d and 3d. These figures show that the power usage from the HVAC system is
similar for the two modes in the first minutes of operation. However, when the effects of
recirculation become prevalent, the values of the HVAC power usage related to the two
modes differ considerably. In fact, while Ptot peaks at more than 4 kW in the first minutes
of operation in both modes, it varies significantly towards the end of the test.

(a) (b)

Figure 5. (a) CAQI for PM2.5 and (b) CAQI for TVOC.

Figure 6. Cumulative energy use, comparison between fresh-air (solid line) and recirculation (dashed
line) mode.

3.2. Measurements during Cooling Operation

Two different test conditions have been investigated starting from a state of equilibrium
with the external environment, obtained by maintaining all systems off and all doors opened
for 15 min. Once the equilibrium was reached, the proper test was performed while
maintaining the A/C on for one hour, the set-point temperature at its minimum of 16 ◦C,
the fan speed at its maximum (position 7), and all windows and all doors closed. During
the first test, the recirculation system was off (that means that the air ventilation system was
in fresh-air configuration), while during the second test the recirculation system was on.

3.2.1. Fresh-Air Configuration

All the experiments confirm that the cooling system is not capable of reaching a quasi-
steady state condition in about 60 min, i.e., the temperature reached by the air inside the
cabin is far from the set-point temperature value.
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Figure 7a shows the temperature measured inside and outside the cabin keeping
the fresh-air mode. Like for the winter operation, the air temperature inside the cabin is
calculated as the mean value of the 18 temperature readings for each timestamp.

Figure 7b shows TVOC measured inside and outside the cabin in fresh-air mode. The
figure reports that the TVOC concentration is higher than that of the external air at the
beginning, but decreases while the HVAC system operates. The lowest concentration is
reached, despite the fluctuation on the outside. This behaviour can be explained with a
drop of temperature inside the cabin combined with fresh-air mixing, thus reducing the
emission from the internal sources.

(a) (b)

(c) (d)

Figure 7. Results regarding the fresh-air mode. (a) Temperature inside (blue) and outside (red) the
cabin; (b) TVOC concentration inside (blue) and outside (red) the cabin; (c) PM2.5 concentration
inside (blue) and outside (red) the cabin; (d) power usage of the HVAC system.

Figure 7c reports plots of the PM2.5 concentration measured inside and outside the
cabin in fresh-air configuration. This result appears to be in contrast with the results shown
by [9], i.e., the cabin filter is not able to lower the PM concentration inside the car with a
steady state filtration efficiency η = 0 to 0.2. Here we need to consider that the value of
PM2.5 concentrations measured were extremely low and under the sensor precision for
that particle size range (±10 µg/m3).

Figure 7d shows the power usage of the HVAC system. The figure shows the contri-
butions of power used by auxiliary equipment and A/C system; with PTC heater power
being indeed equal to zero in cooling operation.
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3.2.2. Recirculation Configuration

As for the previous case with recirculation activated, time to steady state is close to
20 min of operation, while the over-temperature issue is still significant. TVOC concentra-
tion shows a different trend. Despite external concentration peaks at the end of the test,
the internal one remains quite low. As for PM values, they follow a completely different
trend; it is quite clear from Figure 8c how the filtration performance is improved by the
recirculation mode, even with absolute values well within the precision range as is the
previous test. Figure 8d shows the power usage of the HVAC system, with the contributions
of power used by auxiliary equipment and A/C system recorded by the OBD system.

(a) (b)

(c) (d)

Figure 8. Results regarding the recirculation mode. (a) Temperature inside (blue) and outside (red)
the cabin; (d) TVOC concentration inside (blue) and outside (red) the cabin; (c), PM2.5 concentration
inside (blue) and outside (red) the cabin; (d) power usage of the HVAC system.

3.2.3. Comparison between Fresh-Air and Recirculation Modes in Summer

Experiments in cooling as well as heating mode have been performed in real parking
conditions with no control on the environment outside the cabin, repeatability issues are
worsen by the increased contribution of solar load in summer. In order to compare the
experiments, a temperature adimensionalisation is performed according to Equation (1).
Figure 9a shows a comparison between the dimensionless temperatures obtained for the
two experiments.

It is noticeable that the value of dimensionless temperature obtained with recirculation
is always higher than the one obtained in the fresh-air case, thus suggesting that the cabin
approaches better the set-pot in the first case.



Sensors 2022, 22, 543 12 of 16

The filtration efficiency of the vehicle can be defined again using a black box approach,
where the vehicle cabin is considered as a system with an unknown filtration capacity, while
inlet (external) and outlet (internal) concentrations are known, according to Equation (2).
Figure 9b shows a comparison between the two cases. The PM filtration efficiency with
recirculation mode is well over the one with the fresh-air mode. It is also noticeable that as
for the winter case the filtration efficiency never does reach the ideal value of η = 1, but
it is even lower indeed. This trend can be explained with η being a function of particle
size [9], but also of particle concentration itself. As shown for the winter case, another
way to investigate cabin performance on airborne pollutants is provided by Equation (3).
Figure 10 reports the CAQI trend for PM2.5 and TVOC in fresh-air and recirculation, the
latter being less prone to build up of pollutants during operation.

(a) (b)

Figure 9. (a) Dimensionless temperature profiles, comparison between fresh-air (solid line) and
recirculation (dashed line) mode. (b) Filtration efficiency, comparison between fresh-air (solid line)
and recirculation mode (dashed line).

(a) (b)

Figure 10. (a) CAQI for PM2.5 and (b) CAQI for TVOC.

Figure 11 shows the comparison between the cumulative energy consumption in the
two cases of recirculation on and off, calculated as the approximate cumulative integral of
Ptot = Paux + PAC via the trapezoidal method as done in the winter case with Equation (4).
The total energy consumption obtained in the recirculation mode on is about 4/5 of
the value obtained for the fresh-air mode. This result can explain what is shown in
Figures 7d and 8d. These figures show that the power usage from the HVAC system is
similar for the two modes in the first minutes of operation. However, when the effects of
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recirculation become prevalent, the HVAC power usage related to this mode decreases after
about 20 min, even though the difference is less prominent than in winter operation.

Figure 11. Cumulative energy use, comparison between fresh-air mode (solid line) and recirculation
(dashed line) mode.

3.3. Effect of Filter Conditions on Filtration Performance

In this section we report some results regarding the filtration performances of the Leaf
cabin filter (Figure 12). In detail we performed two tests in summer operating conditions
manipulating the filter. First, we performed the experiment without the filter. Then, a
second experiment was performed after installing a brand-new filter. Figure 12a shows
that the presence of the filter has an effect of filtration efficiency, lowering its value from
80% to 60%. The figure shows that even without a filter the recirculation mode provides a
sort of filtration. This result suggests that part of the filtration is made by the filter and part
is given by other devices in the HVAC system, i.e., a fraction of the pollutants is captured
by the evaporator fins, or by the ducts between the cabin and the evaporator. Curves for
fresh-air mode show filtration efficiency around zero for both the cases (no filter and with a
filter), with more fluctuations for the case without a filter. Then, the presence of the filter
does not improve the air quality within the cabin both by using a filter and by not using it.

(a) (b)

Figure 12. Filtration efficiency, comparison between fresh-air mode (solid line) and recirculation
(dashed line) mode, with (a) no cabin filter installed and (b) with brand new cabin filter installed.
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4. Conclusions

In this paper, a characterisation of the air quality within the cabin of a battery electric
vehicle (BEV), together with real time measurements of HVAC system energy consumption
has been presented. The temperature, PM, and VOC concentrations have been measured
by means of a low-cost Arduino-based system of sensors. Comparisons between the air
quality obtained in the cabin during different configuration modes of the air-ventilation
system have been carried out.

The results show that, while PMs are filtered, VOCs concentrations increase during
operation in recirculation mode. At the same time, the HVAC energy consumption in
recirculation mode is about 70% of the energy consumption measured in fresh-air mode
during heating operation. In the cooling operation, the HVAC energy consumption in
recirculation mode is about 80% of the energy consumption measured in fresh-air mode.

Recirculation mode is found to be the best choice for BEVs, both for reducing some
pollutants concentrations and for saving energy. The use of a new filter can improve the
filtration efficiency in recirculation mode.

The methodology presented in this paper, applied to a Nissan Leaf Acenta 40 kWh,
can be easily extended to other vehicles. This approach is very important for BEVs, as the
parameters analysed are crucial for these vehicles. In fact, the air quality is strongly related
to air-circulation modes, such as the fresh-air or recirculation modes. The recirculation
mode should be chosen for energy saving in order to extend the BEV drive range, but a
fresh-air mode is needed in some cases to ensure low concentrations of pollutants within
the cabin. Control systems should consider these results in order to manage the HVAC
system operation in a win-win approach for BEVs.
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BEV Battery Electric Vehicle
HVAC Heating, Ventilation and Air Conditioning
A/C Air Conditioning
PTC Positive Temperature Coefficient
IAQ Internal Air Quality
OBD On-Board Diagnostic
MY Model Year
I/O Inside/Outside
NTC Negative Temperature Coefficient
PM Particulate Matter
VOC Volatile Organic Compounds
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