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ABSTRACT OF THE DISSERTATION

Disease detection and monitoring

from plasma cell-free DNA

by

Shuo Li

Doctor of Philosophy in Bioinformatics

University of California, Los Angeles, 2020

Professor Xianghong Jasmine Zhou, Chair

With the noninvasiveness of sample collection and the comprehensiveness of the DNA pro-

file from various tissues, plasma cell-free DNA (cfDNA) has attracted enormous attention

for many applications, including disease-related marker identification, disease detection, and

disease monitoring. However, since cfDNA is a mixture of disease-related DNA in an over-

whelming pool of DNA from normal cells, the weak disease signal poses a major challenge

for these applications. Current methods usually employ traditional error suppression for

genomic DNA samples and deep sequencing on small panels, which limit their performance.

A fundamental and yet underdeveloped task for these applications is the precise and sensi-

tive calling of somatic single nucleotide variants (SNVs) from cfDNA. We present cfSNV, a

somatic SNV detection method designed specifically for cfDNA that incorporates multilayer

error suppression and hierarchical mutation calling. The accurate and sensitive identifi-

cation of disease-related markers can provide a reliable foundation for disease monitoring,

which is essential for assessing the effectiveness of treatment. We provide a novel cancer

monitoring approach, OncoMonitor, which comprehensively analyzes tumor mutations and
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sensitively detects minimal residual disease, cancer recurrence, secondary disease, and cancer

progression with longitudinal cfDNA samples. Further leveraging the information in cfDNA

samples, we developed a workflow using the microbiome composition in cfDNA for disease

detection, which provides complementary disease evidence to current human-origin cfDNA-

based methods. In summary, this work uses statistical methods and machine learning models

to address the current limitations in mutation detection and disease monitoring in cfDNA

and provide complementary information for disease detection.
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CHAPTER 1

Introduction

Plasma cell-free DNA (DNA) is a degraded DNA fragment released into the blood. These

DNA fragments are derived from dying human cells and microorganisms from different tis-

sues [GDP17] [LNZ16] [SJC15] [SJC15]. In particular, disease-related tissues, such as tumor

tissues, also release DNA to the bloodstream [GDP17] [SJC15]. Therefore, cfDNA comprises

a thorough profile of DNA from various body sites, including those that are representative

of diseases. With the noninvasiveness of sample collection and the comprehensiveness of

the DNA profile, cfDNA delivers the possibility of taking repeated blood samples and con-

sequently tracing the changes in cfDNA during the natural course of diseases or during

treatment [SHP11]. Given its great potential, cfDNA is treated as a possible surrogate for

invasive or time-consuming sample collection methods, and a wide range of applications have

been developed for disease diagnosis and monitoring, especially for cancer [ZBF18] [CLW18]

[KLC17] [LLK18] [FMP12] and infectious diseases [GSG16] [BTR19].

However, a major challenge for detecting the disease-related signal from cfDNA is the

often very low fraction of these DNA fragments from disease-related tissues in the over-

whelming pool of DNA from normal cells [ABW17]. To detect the signal, previous meth-

ods usually (1) rely on traditional error suppression strategies, which fail to accommodate

the cfDNA-specific properties, or (2) deep sequencing on small panels [NBT14] [CCL17]

[ABW17] [GSW15] [TWT16] [MCS19], which therefore limit the genomic coverage of these

methods. Due to the inter-individual and intra-individual differences in diseases, such as

tumor heterogeneity, focusing on small regions of the genome might naturally lead to over-

1



looking disease-related signals outside the targeted range. To address the aforementioned

limitations, we present a set of computational methods for analyzing medium-depth cfDNA

sequencing data covering a wide range of genomes (e.g., whole genome, whole exome, and

whole methylome). Our study mainly focuses on cancer and infectious diseases, such as sep-

sis. These methods incorporate a number of cfDNA-specific properties and thus enable (1)

the sensitive and accurate identification of tumor somatic single nucleotide variants (SNVs),

(2) a comprehensive analysis for cancer monitoring, and (3) the delivery of complementary

evidence for disease diagnosis (cancer and sepsis) from microbe-origin cfDNA.

In Chapter 2, we present a new somatic SNV caller for cfDNA from cancer patients,

named cfSNV, which provides hierarchical mutation profiling and multilayer error suppres-

sion, including error suppression in read mates, site-level error filtration and read-level error

filtration. We validated the performance of cfSNV in both simulation data and real cancer

patient data. It achieves high precision and sensitivity in cfDNA samples that have both low

tumor purity and a highly heterogeneous clonal landscape. As an example application, in

this study, we demonstrate that applying cfSNV to cfDNA whole-exome sequencing (WES)

data allows a new promising biomarker (truncal-bTMB) for immunotherapy prognosis by si-

multaneously capturing both the tumor mutation burden and clonal structure information.

Compared to existing methods, cfSNV can dramatically reduce the required sequencing

depth for profiling given genomic regions, therefore reducing the sequencing cost and further

making WES of cfDNA a viable option.

In Chapter 3, we present a new cancer monitoring approach, OncoMonitor, based on

cfDNA standard WES data, which comprehensively monitors cancer by analyzing both the

mutations in pretreatment/surgical samples and those in newly emerging tumor clones. We

demonstrate that our method achieves a sensitive and specific detection of recurrence and

secondary disease in simulated plasma samples with low tumor fractions. Specifically, in

a cohort of non-small-cell lung cancer patients, we show that our method can detect com-

prehensive tumor changes for response prediction, which cannot be achieved by previous
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methods based only on mutations in pretreatment/surgical samples.

In Chapter 4, we present a workflow using the microbiome composition in cfDNA for

disease detection. With cfDNA sequencing, we trained a random forest model based on

the microbial composition of healthy individuals and patients. Specifically, as examples,

we focused on rapid sepsis diagnosis and noninvasive cancer detection. For rapid sepsis

diagnosis, we applied the workflow to cfDNA whole-genome sequencing (WGS) data from

sepsis patients and healthy individuals and evaluated the performance of the random forest

model. Then, we analyzed the co-occurrence network of the candidate pathogens and showed

the characteristics of the abundant pathogens, which could be further utilized to guide

therapies. For cancer detection, we applied the workflow to cfMethyl-seq data from cancer

patients and noncancer individuals and showed the ability of our workflow to discriminate

cancer and noncancer individuals and classify cancer patients with different tissues of origin.

We further validated the microbes with the top importance in the random forest model with

statistical tests and findings in previous studies.
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CHAPTER 2

Sensitive detection of tumor mutations from blood and

its application to immunotherapy prognosis

2.1 Introduction

Cell-free DNA (cfDNA) in blood has received enormous attention thanks to its clinical utility

as a surrogate for tumor biopsy, especially in cases where the latter is unavailable or insuf-

ficient [VYF14]. A tissue biopsy is invasive by nature, and is only extracted from a single

site. In contrast, cfDNA in blood can be obtained noninvasively, and provides a comprehen-

sive landscape of the heterogeneous genetic alterations in tumors. Hence, a wide range of

cfDNA-based applications have been developed to detect cancer [ZBF18] [CLW18] [KLC17]

[LLK18], locate tumors in the body [KLC17] [FMP12], select the best therapy [RAC19]

[GPK18], and monitor treatment [FMP12] [CVD17] [CCC18]. All these applications depend

upon an indispensable, yet underdeveloped task: precise and sensitive calling of somatic

single nucleotide variations (SNV) from cfDNA sequencing data. This task is challenging

to conventional SNV callers because somatic mutations in cfDNA generally have low allele

frequency. This property follows from the major hallmarks of cfDNA: (1) cfDNA is a mixture

of DNA fragments from both normal and tumor cells, and in most cancer patients the frac-

tion of tumor-derived cfDNA is extremely low (< 1% for most early-stage cancer patients

[ABW17] and < 10% even for some metastatic patients [CWF18]). Therefore, almost all

somatic mutations in tumor-derived cfDNA have much lower allele frequencies than in solid

tumors. (2) cfDNA comes from the entire volume of a tumor, and from every tumor present
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in a patient, so it provides complete information on clonal and subclonal mutations, while

subclonal mutations generally have lower allele frequencies than clonal mutations.

To conquer these challenges in cfDNA data, some efforts have been made on the exper-

imental technologies and the computational error filtration to optimize the variant calling

on targeted deep-sequencing data [MAS19] [KMK18] [WDX20]. Despite the encouraging

progress, existing methods are not sufficiently equipped to handle this complicated scenario,

especially on the medium-coverage sequencing data such as whole-exome sequencing (WES).

Specifically, they are lacking in three aspects: (1) They do not automatically account for the

low fraction of tumor-derived cfDNA or variability due to the tumor clonal hierarchy in the

context of mutation calling, though clonality has been considered in other studies [ABW17].

A few SNV callers (e.g., MuTect [CLC13]) try to handle the issue of tumor impurity, but even

these cannot robustly and sensitively detect mutations with variant allele frequency (VAF)

< 5% [CLC13]. One mutation caller [DJB19] integrated clonal information to improve so-

matic mutation calling, but this method required extra user input of the clonal hierarchy.

(2) They rely on post-filtration steps that require reliable estimation of site-level statistics

(e.g. strand bias and averaged base quality). However, robust estimates are challenging to

obtain for low-frequency cfDNA mutations, due to insufficient variant supporting reads, and

become even more difficult for WES, which does not permit deep sequencing in terms of

sequencing cost. (3) They do not exploit two key features of cfDNA, namely short fragment

size (∼ 166 bp on average) and non-random fragmentation [JCC15] [JST18], which we prove

in this study to be very useful for enhancing the detection performance.

Therefore, we have developed a new cfDNA SNV caller named cfSNV. This is the first

algorithm to comprehensively address the cfDNA-specific challenges and opportunities men-

tioned above. Taking advantage of modern statistical models and machine learning ap-

proaches, cfSNV provides hierarchical mutation profiling and multi-layer error suppression,

including error suppression in read mates, site-level error filtration and read-level error filtra-

tion. It achieves high precision and sensitivity in cfDNA samples that have both low tumor
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purity and highly heterogeneous clonal landscape, even for medium-coverage sequencing

data such as WES, in a purely computational fashion without attachment to specific ex-

perimental technologies. In both simulated and real patient data, as shown in Figure 2.2,

cfSNV vastly outperforms existing tools, showing tens of times increase in sensitivity in

detecting mutations with low allele frequency while maintaining high precision. Up to now,

existing efforts on SNV detection in cfDNA rely on specifically designed experiments (e.g.

barcode-based sequencing [NBT14] [NLK16] [MAS19] [KMK18] [WDX20]) with ultra-deep

sequencing, which, therefore, are only effective on small gene panels. cfSNV can dramatically

reduce the required sequencing depth for profiling given genomic regions and therefore bring

down the cost by magnitudes, and further make the Whole-Exome Sequencing of cfDNA a

viable option. As an example application, in this study we demonstrate that applying cfSNV

to cfDNA WES data allows a new promising biomarker (truncal-bTMB) for immunotherapy

prognosis, by simultaneously capturing both the tumor mutation burden and clonal structure

information.

2.2 Results

2.2.1 cfSNV : A new computational framework for calling SNVs from cfDNA

We developed the cfSNV framework (Figure 2.1c) by introducing five new techniques (Figure2.1b)

into the standard SNV calling workflow (Figure 2.1a). Each of the five techniques either over-

comes a specific challenge of cfDNA or takes advantage of a specific feature of cfDNA. The

challenges and features are:

1. Short fragments : the fragment length distribution of cfDNA peaks at 166bp. Therefore,

paired-end sequencing (usually 150 bp for a read) usually results in a large fraction

of overlapping read mates, which can be used to suppress sequencing errors (Figure

2.1b(1) and Figure 2.1c(i)). This error-correction step is performed before the standard
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data preprocessing.

2. Mixed nature: the cfDNA found in blood from cancer patients generally consists of

a small amount of tumor-derived cfDNA among an overwhelming majority of cfDNA

from normal cells. By incorporating the germline data of white blood cells (WBCs)

from the same subject, we can fit a joint-genotype model that precisely describes this

mixture. Specifically, we model the triplet (gT , gN , gW ) of genotypes, among which gT

and gN actually describes the mixed nature of cfDNA by representing the genotypes

of Tumor-derived cfDNA, Normal cfDNA respectively, while gW represents the geno-

type of the matched WBC DNA for the reference purpose. The modeling of cfDNA

is performed by first aggregating reads from mutation hotspots in order to robustly

estimate the fraction of tumor-derived cfDNA, which then serves as a parameter in the

joint-genotype model for the probabilistic deconvolution of tumor-derived and normal

reads in a specific locus. Note that the fraction of tumor-derived cfDNA is usually low,

therefore it cannot be precisely estimated at a single locus due to the limited tumor-

derived reads falling onto the locus. Aggregating reads of multiple potential mutation

loci allows more robust estimate of the tumor cfDNA fraction.

3. Heterogeneous clonal compositions : unlike tissue biopsies, a blood sample includes

DNA fragments from all tumor sites, so it covers the full range of clonal and subclonal

mutations [ABW17] [MDP15]. However, admitting a heterogeneous cfDNA clonal

composition poses a great challenge to existing methods. A statistical model capable

of fitting the data from clonal mutations, inevitably sacrifices accuracy for subclonal

mutations using the same parameters, which however has been practiced in all exist-

ing methods. To address this challenge, we can take advantage of the fact that the

mutations associated with a given clone have similar allele frequency in cfDNA. The

mutations are therefore naturally clustered according to the clonal hierarchy [ABW17]

[MDP15]. This fact permits us to develop a “divide-and-conquer” algorithm (Figure

2.1c(ii)) that first automatically groups the mutations of the highest and similar fre-
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quencies into a cluster, then estimates parameters that best fit the data of the cluster.

We then remove these detected mutations, and repeatedly perform the same operation

to identify the next most frequent mutation cluster. In other words, this algorithm in-

telligently and iteratively searches for the best parameters of the cfDNA joint-genotype

statistical model (Figure 2.1c(ii.a)) to detect and model the cluster of mutations with

the highest frequency in the cfDNA sample (Figure 2.1c(ii.b)), then removing its loci

and data. The process repeats, detecting the next most frequent mutation cluster

at each iteration (Figure 2.1c(ii.d)), until no more mutations are detected with confi-

dence. Therefore, we can profile the cfDNA mutation hierarchy in terms of mutation

frequencies.

4. Non-random fragmentation: cfDNA fragments have preferred start and end positions

[JST18], so true mutations could cluster at certain positions on the supporting reads.

Conventional tools which assume randomly fragmented genomic DNA tend to classify

mutation candidates with clustered positions on reads as misalignment artifacts, there-

fore eliminating them [CLC13]. Consequently, the true mutations in cfDNA samples

could be removed by this artifact filter in the conventional tools. We remove this arti-

fact filter to keep true cfDNA mutations, while building a new filter to jointly analyze

the positions of multiple nearby mutation candidates and precisely remove cfDNA mis-

alignment artifacts (Figure 2.1b(4) and Figure 2.1c(ii.c)). The new filter successfully

rescued 1 ∼ 16 mutations (median 6.8) per subject that would have been discarded by

conventional methods.

5. Confusion between sequence errors and low-frequency mutations : When the tumor-

derived cfDNA fraction is low, sequencing errors impair the detection sensitivity. We

get around the problem of low signal-to-noise ratio for individual alleles by developing

a machine learning approach to accurately distinguish true variants from sequencing

errors for individual reads. The algorithm exploits a variety of contextual information

from the region surrounding the target allele (Figure 2.1b(5) and Figure 2.1c(iii)) to
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provide an accurate prediction. The detailed workflow is illustrated in Figure 2.7 and

described in Methods.

2.2.2 Validation of cfSNV on simulation data

To evaluate the performance of cfSNV in calling low-frequency somatic mutations, we tested

the method on simulated data. To generate the dataset, a set of predefined somatic SNVs

were added to the simulation data, the mixture of the cfDNA sequencing data from 8 cancer

patients (around 2200x, see section 2.4). To avoid the interference of the somatic muta-

tions and the germline mutations in individual cfDNA samples, we carefully removed reads

contained these mutations (see section 2.4). We used eight variant allele frequencies (VAF)

ranging from 0.1% to 8% for the SNVs, in order to simulate tumor heterogeneity in patients

plasma (see section 2.4). Mutations called at positions other than the ground-truth SNVs

were regarded as false positives. We compared cfSNV with two established SNV callers,

MuTect and Strelka2, which were designed for solid tumor tissue samples but have been

utilized in studies on cfDNA samples . The results of the test show that cfSNV far outper-

forms the two competing methods for all ground-truth mutations (Table 1a). Specifically,

cfSNV achieves much higher sensitivity (64.0%) than MuTect (20.3%), Strelka2 (25.6%),

and Strelka2 with disabled filters (32.7%), while maintaining very high precision (100.0%

vs. 99.2%, 100.0%, and 11.6% respectively). When looking at low-frequency mutations

specifically, the contrast between cfSNV and other methods is even stronger (Table 2.1b

and Figure 2.2a). In this sub-population, cfSNV detected 39.7% ∼ 74.6% of mutations with

VAFs of 0.1% ∼ 1% respectively, whereas most competing methods detected zero mutations.

Overall, without sacrificing precision, cfSNV showed 3.2 and 2.5 times increase in sensitivity

of all somatic SNVs, and 14.2 and 106.5 times increase in sensitivity of somatic SNVs with

allele frequency < 1% comparing to MuTect and Strelka2 respectively.
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2.2.3 Validation of cfSNV on patient data

Next, we tested the ability of cfSNV to call somatic mutations on patient data. We col-

lected WES data of samples obtained from six metastatic prostate cancer (castrate-resistant

prostate cancer, CRPC) and twelve metastatic breast cancer (MBC) patients [AHF17] (see

section 2.4). For each patient, we collected a metastatic tumor biopsy sample, a WBC sam-

ple, and two plasma cfDNA samples. The cfDNA samples were drawn at two different time

points after the patients were diagnosed as metastatic, with time gaps in the range 14 ∼ 138

days (Table 2.8). We compare the different SNV callers in terms of the confirmation rate,

defined as the fraction of mutations detected in one cfDNA sample that are also confirmed

to be present in either the matched tumor tissue or the other cfDNA sample. Following

a recent study [AHF17], we confirm the presence of a mutation by the number of variant

supporting reads from the raw sequencing data (i.e. supported by ≥ 3 variant reads, see

Methods) [AHF17]. The confirmed mutations in the matched tumor tissue are regarded

as true positives. As a single tumor biopsy sample cannot profile all tumor clones in a

metastatic cancer patient, we also regarded mutations present in both plasma samples but

absent in the tumor biopsy as true positives. Thus, this confirmation rate is basically the

same as the precision on the patient data. We performed the evaluation in the following two

steps. First, we tested the confirmation rate of cfSNV across different samples. We applied

cfSNV to the 18 cfDNA samples of the initial time point to obtain a baseline mutation

set for calculating the confirmation rate. We validated the truncal and branch mutations

detected. A mutation is defined as “truncal” if its VAF is above 60% of the average VAF of

the five most frequent mutations in the sample; otherwise, it is “branch” (Methods). Aver-

aged across all 18 subjects, 97.7% and 76.7% of truncal mutations are confirmed in the later

cfDNA sample and the tumor biopsy of the same subject, respectively. 93.2% and 62.1% of

branch mutations are confirmed in the later cfDNA sample and the tumor biopsy of the same

subject respectively (Figure 2.7). The confirmation rates are similar if we instead use muta-

tions detected in the 18 later cfDNA samples as a baseline (Figure 2.7, 96.5% and 78.6% for
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truncal mutations, 93.0% and 59.9% for branch mutations in the earlier cfDNA sample and

the tumor biopsy respectively). We observed that the larger the time gap between the two

blood draws, the lower the confirmation rate of branch mutations between the two cfDNA

samples (Pearsons correlation between the time gap and the confirmation rate = 0.57, p =

0.0003, see Figure 2.17 and Table 2.8). This trend was not observed for truncal mutations

(Pearsons correlation between the time gap and the confirmation rate = 0.08, p = 0.651,

see Figure 2.17 and Table 2.8). This observed trend implied that the mutation landscape of

cfDNA could change with time, especially for branch mutations. Second, we compare cfSNV

with competing methods (MuTect and Strelka2 ) on the same samples in terms of the confir-

mation rate. Although these metastatic plasma samples with a high tumor fraction (ranging

from 13% to 79%) are not the best scenario to demonstrate the power of cfSNV (as majority

of mutations have VAF > 10%, see Figure 2.19), still cfSNV outperformed both methods,

achieving the highest precision (confirmation rate) in 33 out of 36 samples (Figure 2.3a).

For the remaining 3 samples, cfSNV s precision was only marginally lower than the highest

precision (by 0.2%, 0.9%, and 1.2%). In fact, the lower the VAF of mutations, the more

power exhibited by cfSNV compared to other methods (Figure 2.2b). Strikingly, at VAF

of 1%, 3%, and 5%, cfSNV yielded 100.0%, and 8.4% higher precision and identified +∞,

9.9, and 1.8 times more confirmed mutations than MuTect(no mutations detected below 2%

using default MuTect); cfSNV yielded 82.4%, 53.6%, abd 39/4% higher precision and identi-

fied 31, 5.8, and 3.9 times more confirmed mutations than Strelka2 (Figure 2.3b and Figure

2.2b). Across all VAF range, on average cfSNV yielded 5% and 14% higher precision (Figure

2.3a) and detected 1.6 and 2.0 times more confirmed mutations (Figure 2.3a), respectively,

demonstrating an overall higher precision and sensitivity. Note that all three methods have

consistently higher confirmation rates in the second plasma sample than the matched tumor

tissue sample, implying that plasma cfDNA offers a more comprehensive coverage of tumor

mutations than a single tumor biopsy for metastatic cancer patients. Therefore, whenever

multifocal sampling of tumors from a metastatic cancer patient is infeasible, cfDNA is a
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viable alternative to obtain comprehensive mutation profiles.

2.2.4 Experimental analysis of five new techniques

Here, we quantitatively assess how each of the five new techniques impacts the performance

of cfSNV.

1. Suppression of sequencing errors using overlaps of read mates. The pair-end

sequencing of cfDNA results in significant overlaps in the read mates. For example,

in 95% of 59 cfDNA samples collected from Adalsteinsson et al. [AHF17], > 50% of

read mates overlap (Figure 2.9 and Table 2.7). Our result shows that using overlap-

ping read pairs, combined with a machine learning approach (see point (v) below and

Figure 2.1b(5)), can greatly facilitate the detection of true mutations while rejecting

sequencing errors. Specifically, we compare the models with and without using the

overlapping read information, the AUC performance averaged across 36 independent

test datasets (cfDNA samples from Adalsteinsson et al. [AHF17]) shows significant

improvement (one-sided Wilcoxon rank sum test p-value = 3.38e-8, Figure 2.9).

2. Enhance mutation detection by the joint-genotype model that allows for

cluster-focused mutation calling. As aforementioned, a model cannot use the

same parameter to best fit both clonal and subclonal mutations that have distinct

allele frequencies. We therefore introduce the “divide-and-conquer” strategy to first

train the model to detect only mutations of the cluster with the highest frequency, and

then remove loci of these detected mutations, and repeat the same procedure for the

next most frequent mutation cluster. The key component of this iterative process is our

joint-genotype model that supports the cluster-focused mutation calling. Specifically,

the model has a parameter of describing how frequent the mutation cluster is (denoted

as θ) and this parameter allows the model to best fit the data of only those mutations

in this cluster, not all the mutations of the heterogeneous landscape. Therefore, we as-
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sess the model by answering two questions: (1) Can θ estimated by our method reflect

the VAFs of the mutations in the most frequent mutation cluster? We designed three

experiments to answer this question, using simulated data with synthetic mutations,

simulation data obtained by mixing real sample data with a known dilution ratio, and

real cfDNA data. In the first experiment, we generated sequencing data with three

groups of synthetic mutations: one mutation cluster with a VAF of 20%, one cluster

with a VAF of 8%, and one with a VAF of 2% (see section 2.4). Our method not only

automatically identifies the most frequent cluster and estimates its VAF, but also finds

the other two clusters in subsequent iterations (Figure 2.10). In the second experiment,

we subsampled and mixed sequencing reads from WBC and primary tumor biopsy sam-

ples, both taken from the same cancer patient (Methods). The tumor fraction, which

is estimated by the frequency θ of the most frequent mutation cluster in these mixed

samples, correlates very strongly (Pearsons correlation = 0.99) with the ground-truth

mixing dilution (Figure 2.4a) across the study population. In the third experiment, we

used data from two independent sequencing experiments (WES and WGS) on the same

cfDNA sample from cancer patients. Specifically, we compare the tumor fraction esti-

mated by cfSNV on WES to that estimated by ichorCNA on WGS. This result, shown

in Figure 2.10, also confirms that our method accurately estimates the frequency of

the major mutation clusters. (2) Does accurately estimating the mutation cluster fre-

quency θ enhance mutation detection? We generated simulated sequencing data with

a list of predefined θ values, from 0% to 100%, and observed the optimal θ that fits

the joint-genotype model. Our performance metric is the model-to-data fitness ratio,

defined as the ratio between the likelihoods of correct and incorrect joint genotypes

(see section 2.4). A higher ratio means that the model is a better fit, so the mutation

is more likely to be identified. Our result shows that any given mutation is best fit by

the model when θ takes on a value close to the mutations frequency (Figure 2.10). In

addition, when comparing the fitness of the model with and without θ (i.e., comparing
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the two likelihood ratios), we find that the smaller a mutations VAF, the larger the

difference (e.g., the model-to-data fitness ratio is 40 times higher with θ present, for

VAF< 5%). This relationship indicates that an accurate θ estimate significantly en-

hances the detection power for low-frequency mutations (Figure 2.4b). Furthermore,

we used cfDNA samples whose frequent mutation clusters have low frequency (< 20%)

to further confirm this conclusion (Figure 2.10). More mutations were detected when

the assigned θ approached the true value of the mutation cluster frequency.

3. Enhance the sensitivity of mutation detection by an iterative process. We

compared two versions of cfSNV, with and without the iterative process, on real data:

four cfDNA samples whose frequent mutation clusters have low frequency (< 20%

estimated from cfSNV and ichorCNA). With the iterative process, cfSNV detected

1.41 to 1.73 times more confirmed mutations (true positives) than cfSNV without the

iterative process (Figure 2.4c). Both versions had high precision: namely, 95.3% and

95.0% for cfSNV with and without the iterative process respectively (Figure 2.4c).

4. High confirmation rate of rescued mutations by cfDNA-specific post-filtration.

Compared with the conventional post-filtration strategy, which models the distribution

of variant-base positions on reads, our new filtration strategy rescues 1 16 mutations

(6.8 on average) per sample among the 36 plasma samples in this study. In 69.4% (26)

of the samples, 100% of the rescued mutations are confirmed in either the matched

tumor biopsy or the other plasma sample (Figure 2.4d).

5. Machine learning approach to distinguish true mutations from sequencing

errors in cfDNA reads. The independent data used to test the machine learning

model are data from 12 MBC and 6 CRPC patients. We hand-labeled read pairs

containing high-confidence mutations or sequencing errors, and applied the random

forest classifier (Methods). Our method achieves an average AUC-ROC of 0.95 over

the MBC cfDNA samples (Figure 2.4e and Figure 2.11) and an average AUC-ROC of
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0.94 over the CRPC cfDNA samples (Figure 2.4f and Figure 2.11). This result shows

that our machine learning model can distinguish true mutations from sequencing errors

with high accuracy at the level of individual reads. It implies that our machine learning

model is non-specific to tumor types, and can easily be generalized to include samples

from many kinds of tumors.

2.2.5 Application to predict the outcome of anti-PD-1 treatment: a new bTMB

measure

Cancer immunotherapies, which activate a patients own immune system to kill tumor, have

remarkably improved the clinical outcome of a subset of patients with non-small-cell lung

cancer (NSCLC) [RHS15]. To better predict the therapy response and identify patients with

potential clinical benefit, tumor mutational burden (TMB) based on solid tumor biopsies,

which measures the extent of nonsynonymous genetic changes of the tumors, has been studied

and utilized as a biomarker in various cancer types [RHS15] [SMM14] [MMG18], including

NSCLC. In addition to the work on TMB, recent studies [GPK18] [WDC19] have shown that

blood-based tumor mutational burden (bTMB) is an attractive alternative to tissue-based

TMB due to three advantages: (1) noninvasiveness, (2) more comprehensive mutation cov-

erage (by cfDNA) than a single-site tumor biopsy, and (3) the VAFs of mutations in cfDNA

reflect their clonality in tumors. It has also been shown that in solid tumor samples, high

truncal neoantigen load and low intra-tumor heterogeneity more significantly associate with

longer progression-free survival (PFS) than total neoantigen load alone [MFR16] [WBP19].

Advantage (3) allows the inference of the clonality of tumor-derived mutations from cfDNA,

and thus improves the prognosis. To fully exploit advantages (2) and (3), profiling of cfDNA

with a broad genomic coverage (e.g. whole exome) is needed. However, due to the lack

of efficient tools to accurately call SNV from cfDNA using medium-coverage WES data

(e.g. 200x), all current bTMB methods [GPK18] [WDC19] use small gene panels (¡600) in

order to perform deep sequencing (e.g. ¿ 5000x). Small panels can only sparsely sample
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the total mutation landscape, so the resulting estimates of TMB or bTMB are influenced

by population and sampling variation [FGP19]. In contrast, cfSNV enables sensitive and

precise mutation profiling in even medium-depth sequencing data, thus allowing us to fully

profile the mutation landscape as well as benefit from all the other advantages offered by

cfDNA. Specifically, we exploit the clonality information in cfDNA to develop a new im-

munotherapy prognosis metric, truncal-bTMB, which uses only truncal mutations called by

cfSNV from the WES profiling of cfDNA samples (Methods). We applied this new metric to

predict the outcomes of anti-PD-1 treatment, and achieved superior performance compared

with bTMB and TMB. To comprehensively evaluate the predictive power of the measures

bTMB and truncal-bTMB (facilitated by our powerful tool cfSNV ), we studied a cohort of

30 non-small-cell lung cancer patients who received anti-PD-1 treatment (pembrolizumab).

Blood samples were drawn from these patients before their treatment. All cfDNA samples

were sequenced with WES. First, we compared bTMB based on different mutation callers

(MuTect, Strelka2 and cfSNV ). We split the 30 patients into two groups using the popu-

lation median [RHS15] of the respective truncal-bTMB metric (the distribution shown in

Figure 2.18), which we call the high-burden (>median) and low-burden (≤median) groups,

and evaluate how Kaplan-Meier survival curves of the progression-free survival time (PFS)

differ between the two groups. The truncal-bTMB calculated based on cfSNV mutation

calls had the most significant one-sided log-rank p-value (Figure 2.5a-c), 0.015 (cfSNV) vs.

0.225 (Strelka2) and 0.322 (MuTect), implying that the truncal-bTMB derived from cfSNV

has the highest power for predicting patients with longer PFS. We further show that the

truncal-bTMB metric is a more powerful predictor than the bTMB metric, for which the PFS

association is less significant (Figure 2.5d-f), 0.097 (cfSNV) vs. 0.369 (Strelka2) and 0.446

(MuTect), although cfSNV mutation calls again yielded the best predictor. Note that using

any of the three callers, truncal-bTMB always offers better predictive power than bTMB,

indicating that combining mutation clonality and intra-tumor heterogeneity improves pre-

dictive power. Interestingly, comparing the three variant calling methods, the disagreement
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of the high/low burden group assignment concentrated on the samples with estimated tu-

mor fraction lower than 20%, indicating that those samples contributed most to the superior

performance of cfSNV. This is consistent with the aforementioned major strength of cfSNV

in sensitively and precisely calling mutations in samples with low tumor fraction. Further-

more, we compared tumor-derived TMB with bTMB and truncal-bTMB on a subset of 14

patients, for whom the tumor biopsies were available. Again, cfSNV -derived truncal-bTMB

had the best performance in predicting outcomes (Figure 2.8) also in this cohort, where

the one-sided log-rank test p-values are 0.028 for truncal-bTMB, 0.280 for TMB, and 0.067

for bTMB with cfSNV, respectively. In this cohort, cfSNV -derived trunctal-bTMB showed

the best performance in predicting the PFS outcome, as the truncal-bTMB values gave the

most significant p-value between the high-burden group and the low burden group. From

the survival analysis, the high truncal-bTMB in the plasma cfDNA was associated with

the improved progression-free survival. Therefore, even though our analysis was based on

a small cohort of NSCLC patients, our proposed new measure, by exploiting the unique

advantages of cfDNA using cfSNV, provides a promising prognosis indicator for anti-PD-1

immunotherapy on NSCLC patients.

2.3 Discussion

We presented a new computational framework, cfSNV, that sensitively detects low-frequency

somatic SNVs in cfDNA sequencing data. cfSNV is equipped with a series of innovative

techniques to address cfDNA-specific challenges (i.e., mixed tumor-derived/normal cfDNA,

low tumor-derived cfDNA fraction, high heterogeneity, and non-random fragmentation) and

take advantage of cfDNA-specific features (high rate of overlapping reads, complete cover-

age of the mutation landscape). Specifically, (1) we designed a joint-genotype statistical

model, parametrized by the mutation cluster frequency, to probabilistically deconvolute the

mixture of tumor-derived and normal reads in cfDNA data; (2) we developed an iterative
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approach to detect clusters of mutations with different variant allele frequencies; (3) we de-

signed a data pre-processing step that exploits the overlapping read mates caused by short

cfDNA fragments to improve data quality; (4) we developed a new procedure for filtering

misalignment errors that accounts for the non-random fragmentation pattern of cfDNA; and

(5) we developed a machine learning approach that incorporates the sequencing context to

filter errors at the level of individual reads. Equipped with the new techniques and spe-

cial considerations for cfDNA, we have shown cfSNV outperforms the existing methods in

terms of overall precision and sensitivity. The cancer patients of this study are metastatic,

so their plasma cfDNA has high fractions of tumor-derived cfDNA and carry many high-

frequency mutations that can be usually detected by all conventional methods. For these

high-frequency mutations, cfSNV can still achieve the best performance. Especially, for

those low-frequency mutations, cfSNV achieves the sensitivity >10 times higher than com-

peting methods, without sacrificing precision, not only in the real patient data but also

in the simulation data. These results demonstrate that cfSNV could provide high-quality

discovery of both low- and high-frequency mutations even in the medium-depth sequenc-

ing data, such as WES data. cfSNV is a general computational framework, applicable to

medium- or deep-coverage cfDNA sequencing data. While the existing efforts address the

challenge of low tumor-content in cfDNA by ultra-deep sequencing of a limited number of

loci, the power of cfSNV can significantly reduce the required sequencing depth for profil-

ing given genomic regions, and therefore the cost of the current cfDNA clinical tests. On

the other hand, coping up with the ever-increasing demand of large gene panels, cfSNV s

power allows cfDNA medium-depth WES to be used in a wide variety of clinical applications.

Here we presented an example application of cfDNA WES that offers a novel and effective

immunotherapy response measure (truncal-bTMB) by exploiting a comprehensive coverage

of the clonal mutation landscape in cfDNA. We believe that cfSNV will greatly facilitate

cfDNA-based therapy prognosis and longitudinal monitoring.
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2.4 Methods

2.4.1 Data collection

We collected WES data of 42 metastatic cancer patients from two sources: (1) the data of

41 patients were obtained from Adalsteinsson et al. [AHF17] under dbGaP accession code

phs001417.v1.p1. Each patients data include a WBC sample, a tumor biopsy sample, and one

or two plasma cfDNA samples. Among the 41 patients, 18 have two plasma cfDNA samples.

A patient (MBC 315) has her cfDNA sample sequenced with both WES and deep WGS.

(2) The data of one patient was obtained from Butler et al. [BJP15] (European Nucleotide

Archive accession numbers ERS700858, ERS700859, ERS700860, and ERS700861). The

data include a white blood cell sample, a primary breast cancer biopsy sample, a metastatic

liver biopsy sample, and a plasma cfDNA sample. We also collected samples from 30 lung

cancer patients and generated our own WES data as described below.

2.4.2 Human subjects

We collected blood samples, tumor biopsy samples and white blood cell samples from 30 non-

small-cell lung cancer patients from KEYNOTE-001 [GRH15] and KEYNOTE-010 [HBK16],

who all provided informed consent for research use. The blood and tissue collection was

described in the full protocol of KEYNOTE-001 and KEYNOTE-010. The project was

approved by the Institutional Review Boards (IRBs) of University of California, Los Angeles

(IRB# 12-001891, IRB# 11-003066, and IRB# 13-00394).

2.4.3 Genomic DNA whole exome sequencing (WES) library construction

The WBC and tissue samples underwent multiplexed paired-end whole-exome sequencing

(WES) to a target depth of 100-150x on HiSeq 2000/3000 (Illumina, San Diego, CA) per-

formed by the UCLA Technology Center for Genomics & Bioinformatics. Macrodissection
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was not performed. DNA isolation was performed with DNeasy Blood & Tissue Kit (Qia-

gen, Germany); exon capture and library preparation used the KAPA HyperPrep Kit and

Nimblegen SeqCap EZ Human Exome Library v3.0 (Roche, Switzerland).

2.4.4 Plasma cfDNA whole exome sequencing (WES) library construction

For each of the 30 non-small-cell lung cancer patients, venipuncture was performed by trained

phlebotomists such as nurses or medical assistants. Blood tubes were centrifuged at 1,800g

for 20 min at room temperature and plasma supernatant was isolated within 2 hours of

collection. Samples were stored at -80C until use. Then, cfDNA was extracted from their

plasma samples using the QIAamp circulating nucleic acid kit from QIAGEN (Germantown,

MD). The cfDNA WES library was constructed with the SureSelect XT HS kit from Agilent

Technologies (Santa Clara, CA) according to the manufacturers protocol. No molecular

barcodes were used in the sequencing libraries. In brief, 10ng of cfDNA was used as input

material. After end repair/dA-tailing of cfDNA, the adaptor was ligated. The ligation

product was purified with Ampure XP beads (Beckman-Coulter, Atlanta, GA) and the

adaptor-ligated library was amplified with index primer in 10-cycle PCR. The amplified

library was purified again with Ampure XP beads, and the amount of amplified DNA was

measured using the Qubit 1xdsDNA HS assay kit (ThermoFisher, Waltham, MA). 700-1000

ng of DNA sample was hybridized to the capture library and pulled down by streptavidin-

coated beads. After washing the beads, the DNA library captured on the beads was re-

amplified with 10-cycle PCR. The final libraries were purified by Ampure XP beads. The

library concentration was measured by Qubit, and the quality was further examined with

Agilent Bioanalyzer before the final step of 2x150bp paired-end sequencing by Genewiz

(South Plainfield, NJ), at an average coverage of 200.
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2.4.5 The workflow of cfSNV

cfSNV takes the plasma DNA and germline DNA sequencing data of a patient as inputs,

and detects SNVs using the three-step process described below (Figure 2.6). The outputs at

the end of the pipeline are the detected mutations and the tumor fraction.

2.4.5.1 Data preprocessing.

A short cfDNA fragment (size peak 166 base pairs) usually has the overlapping read mates

in the paired-end sequencing data and this cfDNA feature poses two data preprocessing chal-

lenges: double-counting the overlapping regions and biasing variant allele frequencies. Simply

discarding overlapping regions [CLC13] [MHB10] [DBP11] would waste a large amount of

sequencing data. Actually, these overlapping regions provide the opportunity to detect and

suppress sequencing errors as two copies of the original DNA template are available. There-

fore, in addition to the standard data preprocessing steps of alignment, deduplication, local

realignment, and base quality recalibration, we perform an additional step: merging over-

lapping read mates. This new step is performed before the standard preprocessing pipeline

(Figure 2.6) for addressing two challenges and utilizing the emerging opportunity from the

overlapping regions. It corrects the read counts in overlapping regions, thereby removing the

bias in variant allele frequencies from double-counting, and also detects sequencing errors

by comparing the context of the two cfDNA copies in the overlapping region. Specifically,

inconsistent bases in the overlapping region are corrected to the base call with higher quality,

while consistent bases are confirmed and assigned a high base quality. This step is imple-

mented by FLASh [MS11]. Those read mates that are overlapping are merged as single-end

reads, while the rest of read pairs are treated as paired-end reads. The parameters for FLASh

were adjusted to accommodate the typical fragment lengths of cfDNA and read lengths in

sequencing data. We aligned paired-end reads and single-end reads separately to the hg19 hu-

man reference genome. We used bwa mem [LD09] to align the reads, and samtools [LHW09]
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to sort them. Then we used picard tools [Ins16] MarkDuplicates to remove duplicate reads

resulting from PCR amplification. After this step, we added read group information to the

bam file using picard tools AddOrReplaceReadGroups, and realigned reads around indels us-

ing GATK [MHB10] [DBP11]. The target regions in realignment were identified through

GATK RealignerTargetCreator, then reads around target regions were realigned using GATK

IndelRealigner. Finally, base quality scores were recalibrated using GATK BaseRecalibrator

and PrintReads.

2.4.5.2 Iterative process of detecting mutation candidates

As illustrated in Figure 2.6, this process repeats a sequence of four steps until no more muta-

tion candidates are detected with confidence. In each complete iterative round, a mutation

cluster is determined.

• (Step 1) Estimating the mutation cluster frequency θ of the most frequent mutation

cluster. As the frequency of mutations in cfDNA are naturally clustered to the clonal

hierarchy [ABW17] [MDP15], we defined a mutation cluster as a group of mutations

with similar variant allele frequencies. The mutation cluster frequency θ is defined as

the fraction of cfDNA carrying the mutations in the cluster, out of all cfDNA mapped to

the same genomic positions. Due to the low amount of tumor-derived cfDNA in blood,

individual sites may be covered by a very small number of tumor-derived cfDNA reads

(or none), leading to highly uncertain estimates of the tumor-derived cfDNA fraction.

Therefore, we aggregate tumor-derived signal from multiple sites to obtain a robust

estimation. The first step is to identify sites across the genome that are highly likely

to be mutated (called hotspots). Specifically, a locus is selected as a hotspot if it

meets the following criteria: (a) both matched germline DNA and cfDNA sequencing

data have adequate coverage (30 for germline, 80 for cfDNA in this study); (b) bases

at the locus in matched germline DNA data contain only reference alleles; (c) the

22



average sequencing error probability is less than the variants observed frequency; (d)

reads in both matched germline DNA and cfDNA data have high mapping quality

(≥ 20); (e) no strong strand bias is observed; and (f) enough variant supporting reads

are observed in the cfDNA data (≥ 3). All hotspots are ranked by read coverage,

VAF, and the counts of variant alleles in matched germline DNA data. Next, we

estimated θ by maximizing the likelihood of observing the data at all hotspots P(X|θ),

where X = (X1, X2, · · · , Xr, · · · ) is the cfDNA sequencing data and Xr represents all

the information (such as sequence and base qualities) contained in a single read r.

For each locus, we assume that reads are independently sampled from a cfDNA joint-

genotype model that is denoted by the triplet G = (gT, gN, gW) where the subscripts N,

T and W refer to normal cfDNA, tumor-derived cfDNA and WBC DNA respectively.

However, only the normal cfDNA genotype gN and tumor-derived cfDNA genotype gT

are utilized in this step, because the WBC genotype gW is already controlled by hotspot

selection (criterion b). All three genotypes are used in (Step 2) and (Step 3), described

below. Specifically, gW is essential in the later step of the process to remove germline

mutations and WBC-derived somatic mutations (clonal hematopoiesis). Based on the

independence assumption of reads, the likelihood of θ at a hotspot is calculated as the

product of the probabilities of observing individual reads covering the hotspot, given

the parameter θ. We express this relation as follows:

P(X|θ) =
∏
r∈RH

P(Xr|θ) =
∏
r∈RH

∑
Gr

P(Xr|Gr, θ)P(Gr),

where RH is the pool of reads covering a selected hotspot and Gr is the joint genotype

at the hotspot covered by a read r. Note that sometimes a read r may cover multiple

hotspots, so Gr could be the combination of all hotspots covered by read r. Since

an individual read is sequenced from either tumor-derived cfDNA (with probability θ)

or normal cfDNA (with probability 1 − θ), the likelihood of observing this read can

be calculated using a probabilistic mixture model that describes the presence of two
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subpopulations:

P(Xr|Gr, θ) = θP(Xr|gTr) + (1− θ)P(Xr|gNr),

where gTr and gNr are the tumor-derived and normal cfDNA genotypes of the hotspot

on read r. The information contained in an aligned read r (Xr) consists of base

calls, base qualities and mapping qualities at hotspots in the read. So we can expand

P(Xr|gTr) as follows:

P(Xr|gTr) = P(Br|gTr)

and

P(Xr|gNr) = P(Br|gNr),

where Br represents base calls at the hotspot on read r. The base quality and the

mapping quality are embedded in the probability of sequencing error described below.

The probability of error ε is calculated from the mapping quality m and the base

quality q, as 1− (1− 10−
m
10 )(1− 10−

q
10 ). Assuming that all sequencing error directions

have the same probability, the probability of observing a base call given genotype g

can be calculated from the probability of error ε. So we have

P(A|g) =


1− ε, if g = AA,

1
2
(1− ε) + 1

6
ε, if g = AB,

1
3
ε, if g = BB,

where A and B are the reference and non-reference alleles respectively. Based on the

above formulation, an estimation of the mutation cluster frequency θ can be achieved

by optimizing the likelihood P(X|θ) via the Expectation-Maximization (EM) algorithm

or a simple grid search.

• (Step 2) Predicting somatic mutation candidates using the joint genotype. After ob-

taining θ, we can determine the variant status of a genomic position by finding the
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joint genotype that optimizes the posterior probability of reads at that position. As

illustrated in Figure 2.6(ii), for a given locus, we collected all reads that are aligned to

the locus in both cfDNA data and the matched germline DNA data, then computed

the posterior probability of each joint genotype from the observed reads. This proba-

bility can be modeled by a mixture model similar to that aforementioned in (Step 1).

Subsequently, the joint genotype with the highest posterior probability is adopted as

the prediction result at the locus. Somatic mutation candidates are then selected by

following the inferred joint genotype. In this step, we used the matched germline data

XW from WBC and the cfDNA data XP from plasma cfDNA, consisting of normal

cfDNA and tumor-derived cfDNA. For a specific locus, its joint genotype is deter-

mined as GMAP, the joint genotype that maximizes the posterior probability given the

observed data and θ:

GMAP = arg max P(G|XW,XP, θ).

Using Bayes theorem, we have

P(G|XW,XP, θ) ∝ P(XW,XP|G, θ)P (G)

The probability of observing the data is the product of the probability of observing

individual reads. So we have

P(XW,XP|G, θ) = P(XW|gW)P(XP|gN, gT, θ),

P(XP|gN, gT, θ) =
∏
r

P(Xr|gN, gT, θ),

and

P(XW|gW) =
∏
r

P(Xr|gW),

where Xr stands for a single read r. In the same way we calculate the likelihood of a

given θ, we decompose P(Xr|gN, gT, θ) and P(Xr|gW) and get

P(G|XW,XP, θ) ∝ P(G)
∏
r

[(1− θ)P(Xr|gN) + θP(Xr|gT)]
∏
r′

P(Xr′ |gW)
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As the majority of normal cfDNA comes from WBCs, we set the prior distribution of

the joint genotype G as

P(G) = P(gN, gT, gW) =


P(gN, gT), if gW = gN,

0, otherwise.

The joint distribution of the component (gN, gT) in joint genotype G has been defined

in JointSNVMix [RDM12]. It can also be calculated from public databases. Based on

above formulation, the joint genotype can be determined for every locus. By comparing

the three components of the joint genotype with the highest posterior probability, then

we can determine whether the locus is a somatic mutation, a germline mutation, or a

loss of heterozygosity (LOH) site. The somatic mutation loci are input as mutation

candidates in the next filtration steps. The above model is actually a probabilistic

deconvolution of the normal and tumor signals in cfDNA. By incorporating the matched

germline data (WBC) and the mutation cluster frequency θ, we separate the tumor-

derived cfDNA from the total cfDNA at individual somatic SNV candidates, and thus

enhance mutation detection (as shown in section 2.2.4 (2)).

• (Step 3) Site-level filtration. To reduce false positives from mutation candidates, we

investigated a set of site-level statistics in raw data and FLASh-processed data (i.e.,

both single-end reads from merged overlapping read pairs, and paired-end read pairs

without overlapping regions). The site-level statistics used here include averaged base

quality, averaged mapping quality, strand bias, depth of coverage, and nearby sequenc-

ing context (e.g. repeats and indels). Detailed descriptions and default thresholds

for these site-level filters are listed in Table 2.3. One essential filter to determine the

mutation candidates in this iterative round is the binomial VAF test. It removes the

mutation candidates whose VAF is not likely to be observed based on the current mu-

tation cluster frequency. With the joint-genotype model and the binomial VAF test,
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the VAF of the mutation candidates in this iteration is around the estimated mutation

cluster frequency, and thus these mutation candidates can form a cluster. Based on

the results from all filters, each mutation candidate is sorted into one of three cate-

gories: “pass”, “hold”, or “reject”. Candidates in the “pass” category pass all filters,

so they are very likely to be mutations. Candidates in the “hold” category fail some

non-essential filters, so we cannot determine whether they are mutations at this step.

Candidates in the “reject” category fail at least one essential filter (e.g. averaged base

quality), so they are regarded as false positives and removed from further analysis.

The requirements for a variant to be classified as either “pass or “hold, are listed in

Table 2.3.

• Iterating (Steps 1-3) to refine the mutation cluster frequency estimate. After (Step 3),

we select hotspots from the mutation candidates in the “pass” category to refine the

θ estimation in (Step 1). By repeating (Steps 1-3) for the same mutation cluster, we

obtain a stable frequency estimate and a group of mutation candidates for this cluster.

Convergence is reached when the difference between two consecutive θ estimations is

less than 0.01. In our experiments with simulation data, convergence is usually reached

after only two rounds (Figure 2.12). Thus, with just one iteration of (Steps 1-3), we

already accurately capture the most frequent mutation cluster. In fact, our software

offers both options: a quick version that performs only one round of estimation and

candidate detection for each cluster, and a slow version that iterates until convergence

for each mutation cluster.

• (Step 4) Output and removal candidates from data. After obtaining somatic mutation

candidates from the most frequent mutation cluster, we output the mutation candidates

in the “pass” and “hold” categories from (Step 3). Thus the mutation cluster at this

iterative round is determined. Then we remove the loci and data of these sites from

the cfDNA data. After removal, we continue iterating from (Step 1) to identify the

next most frequent mutation cluster.
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• Termination criterion. Mutation clusters are detected one at a time, in the decreasing

order of their frequency in cfDNA. The process terminates until no mutation candidates

are found in (Step 4) (i.e., the “pass” and “hold” categories are empty).

2.4.5.3 Error filtration at the read level

Site-level statistics provide some information on the difference between sequencing errors

and true mutations, but are not adequate for error filtration in cfDNA. Due to the low

tumor fraction and high heterogeneity of cfDNA, site-level frequency estimates are uncertain

and unreliable for mutations with only a few supporting reads. To reduce the number

of false positives among mutation candidates, we developed a machine learning filter to

eliminate reads with sequencing errors at candidate sites and remove SNV candidates whose

count of “confirmed” supporting reads fails to pass a threshold (see details in Table 2.4).

Specifically, for each mutation candidate, we classify each of its supporting reads with a

random forest model in order to distinguish sequencing errors from true variants. This

model combines a variety of features (Table 2.6) and automatically discovers statistical

relationships among the features that reflect sequencing errors. It is worth noting that read

pair statistics (e.g. fragment length and features of the read mate) are always among the

most informative features of the random forest model. Since this error filtration method is

applied at the read level, it vastly improves the precision of detecting low-frequency somatic

mutations. Although this read-level filter can be performed at any step of the method (e.g.,

after alignment or during the iterations), we prefer to perform it at the end of the cfSNV

workflow in order to save computing time and resources. Generally, the later this step is

performed, the fewer sequencing reads need to be inspected for errors, and thus the less-

consuming time is needed for cfSNV. Practically, based on our hands-on experience of the

real data, the times of inspecting read-level errors in the beginning of the process is reduced

50 times if it is performed at the end of the process: that is, for each read that needs to

be inspected at the end of the process, at least 50 reads would need to be inspected at the
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beginning.

To train the random forest model, we used four WES sequencing datasets from the same

cancer patient (MBC 315): two cfDNA sequencing datasets, a WBC sequencing dataset, and

a tumor biopsy sequencing dataset. As the two cfDNA sequencing datasets were obtained

from the same cfDNA sample, we can treat them as technical replicates and label their

read pairs by their concordance. The training data are the supporting cfDNA read pairs

at known mutation/error sites, and labeled as containing mutations or errors. Mutation

sites are defined as the collection of common germline mutations detected using Strelka2

germline [KSH18] from all four datasets. In addition, common somatic mutations were

detected using Strelka2 somatic [KSH18] and MuTect [CLC13] from two cfDNA-WBC pairs

(cfDNA data vs. WBC data) and one tumor-WBC pair (tumor data vs. WBC data).

Error sites are defined as sufficiently covered sites (>80x) with only one high-quality non-

reference read (base quality ≥ 20 and mapping quality ≥ 40) in all four datasets. All

labeled read pairs were extracted from raw cfDNA data using picard tools FilterSamReads

(Table 2.5). Different features were extracted from the overlapping read pairs and the non-

overlapping read pairs (Table 2.6). All categorical features were expanded using one-hot

encoding method. We used the parameters of the random forest model as follows: (1) the

number of decision trees is 100, (2) the maximum tree depth is 10, (3) imbalanced classes

were handled by setting the class weights with option “balanced”, and (4) other parameters

were left at their default values. Two random forest classifiers (for overlapping read pairs

and non-overlapping read pairs) were trained on read pairs extracted from the WES data

(SRR6708941) using RandomForestClassifier from the python library sklearn [PVG11]. Read

pairs from SRR6708920 were only used for validating the model. The trained classifiers are

saved in the cfSNV code package (https://zhoulab.dgsom.ucla.edu/pages/cfSNV).
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2.4.6 Truncal-bTMB measure

Somatic SNVs are annotated using snpEff. Nonsynonymous mutations and high-impact

mutations are treated the same in snpEff results. Mutations from Strelka2 were filtered if

their VAF in the matched normal is greater than 1%. As the mutations VAF in cfDNA

reflects the clonality of a mutation, we treat a mutation as truncal mutation if its VAF is

greater than a threshold; otherwise it is a branch mutation. The threshold is defined as 60%

of the average VAF of the 5 most frequent mutations. The truncal-bTMB measure can then

be calculated as the sum of the normalized VAFs of all truncal nonsynonymous mutations.

truncal-bTMB =

∑
VAF of truncal mutations∑ highest 5 VAF

5

.

2.4.7 Additional validation data for random forest classifier

To further test the random forest classifiers, we generated data from other patients with

metastatic breast or prostate cancer (Table 2.2). For each patient, we obtained WES data of

a WBC sample, a tumor biopsy sample, and plasma samples from two different time points.

To generate the testing data and label the individual reads, we used the same procedure as

described in section 2.4.5.3 for producing the training data.

2.4.8 Simulation with BAMSurgeon to evaluate precision and sensitivity

To evaluate the performance of cfSNV, we employed BAMSurgeon [EHH15] to generate

simulation data by inserting individual mutations at different allele frequencies. The in-

put to BAMSurgeon was a pool of cfDNA DNA data from eight cancer patients (MBC 333,

MBC 336, MBC 292, CRPC 531, MBC 284, CRPC 525, MBC 303, and MBC 335) [AHF17].

Before mixing the eight cfDNA samples, to avoid the potential interference of the germline

and somatic mutations in the individual cfDNA samples, we removed the reads covering

these positions. The germline mutations were identified using a standard pipeline (GATK

HaplotypeCaller) from individual samples; the somatic mutations were identified using cf-
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SNV, MuTect and Strelka2 from the individual cfDNA samples and their matched WBC

samples. Three methods were used in the somatic mutation removal to avoid potential bias

introduced in this step. Sequencing reads in the individual data were removed if they fell in a

200bp region centered at any germiline/somatic mutations (upstream 100bp and downstream

100bp). Then the eight individual cfDNA samples were merged. The mean target coverage

of the pooled sample reached 2200x. The BAMSurgeon program attempted to insert 1000

somatic SNVs with different variant allele frequencies: 100 at 8%, 100 at 5%, 100 at 3%, 100

at 1%, 100 at 0.8%,100 at 0.5%, 200 at 0.3%, and 200 at 0.1%. A total of 581 mutations

were successfully inserted. The other 419 mutations failed to insert into the sequencing data

because their assigned VAF was incompatible with the sequencing depth in the original data,

e.g. 1% VAF among 10 reads. We evaluated the performance of cfSNV, MuTect (disabling

the contamination filter and testing different levels of the tumor lod parameter) and Strelka2

(default parameters, with enabled and disabled filters) on this simulation dataset by compar-

ing the ground truth to the final variant reports. MuTect performed best when “tumor lod”

was set to 6, so we only report its results for this setting.

2.4.9 Mutation concordance between tumor biopsy and plasma samples

To validate our method on real data, we examined mutation concordance between a tumor

biopsy sample and the plasma samples. This analysis involves twelve patients with metastatic

breast cancer and six patients with metastatic prostate cancer [AHF17]. Each patient had

a tumor biopsy sample, a WBC sample, and plasma samples from two different time points,

all processed with WES. Mutations called from one plasma sample were checked in the

raw sequencing data of the matched tumor biopsy sample and the other plasma sample. A

somatic SNV is confirmed if there are at least three reads supporting the variant allele in the

matched tumor biopsy sample or at least three reads supporting in the other plasma sample.

A somatic SNV is not confirmed when the mutation has power at least 0.9 and fewer than

3 alternative reads [AHF17].
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2.4.10 Comparison with MuTect and Strelka2 on real cfDNA data

We compared our method to two state-of-the-art methods, MuTect and Strelka2. The same

validation analysis was conducted for both methods on the same samples. Both tools were

run with their default parameters unless otherwise noted in the text. The same confirmation

process described in section 2.4.9 was conducted for somatic SNVs detected by MuTect and

Strelka2.

2.4.11 Calculation of TMB and bTMB

For tissue biopsy samples, we called their somatic SNVs using Strelka2. The mutations were

annotated using snpEff [CPW12]. TMB was calculated as the number of nonsynonymous

SNVs. For plasma samples, we called somatic mutations using MuTect, Strelka2 or cfSNV,

and annotated them using snpEff. Mutations from Strelka2 were filtered if their VAF in the

matched normal is greater than 1%. We calculated traditional bTMB as the count of all

nonsynonymous mutations with VAF ≥ 0.15.

2.4.12 Simulation with BAMSurgeon to evaluate the accuracy of the intelligent

search of the most frequent mutation cluster

We used BAMSurgeon to generate simulation data. The input to BAMSurgeon was the

WBC sequencing data from MBC 299. The program attempted to insert 300 mutations at

three different VAF levels: 50 mutations at 20%, 150 mutations at 8%, and 100 mutations

at 2%. Five simulated samples with the same settings were generated.
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2.4.13 Generating spike-in simulation data to validate the mutation cluster fre-

quency estimates

To evaluate the accuracy of our mutation cluster frequency estimation, we generated spike-in

simulation data by mixing the primary tumor sequencing data (ERS700859) and the WBC

sequencing data (ERS700858) of a metastatic breast cancer patient, at varying concentrations

of cfDNA reads (from 2% to 20% in eight steps). Five independent mixtures are generated

at every concentration. Each spike-in sample contains a total number of randomly sampled

reads equivalent to 170x coverage of the targeted regions. The coverage of the targeted

regions is limited by the number of sequencing reads in the original data.

2.4.14 Impact of the mutation cluster frequency on the model-to-data fitness

at a single simulated mutation

The model-to-data fitness is evaluated using the likelihood ratio Lθ, the ratio between the

maximum likelihood of a somatic-mutation joint genotype (i.e., homozygous and heterozy-

gous genotypes) and the maximum likelihood of a non-somatic-mutation joint genotype

(other joint genotypes) given an θ. Since we screened mutation candidates based on the

joint genotype estimated at each position, this likelihood ratio reflects the ability of cfSNV

to detect a somatic mutation candidate. We explored the theoretical properties of this like-

lihood ratio using simulated mutations, which consist of randomly generated base quality

values, mapping quality values and a corresponding list of base calls reflecting the VAF. To

compare the fitness of the model with and without θ, we calculated the value of Lθ
L1

.

2.4.15 Impact of the mutation cluster frequency on real patient data

To test the impact of estimated mutation cluster frequency on real patient data, we selected

four samples whose frequent mutation clusters have low frequency < 20% estimated from

cfSNV and ichorCNA. We performed cfSNV on the four samples using both a predetermined
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value of θ (0.2, 0.5, 0.8, and 1.0) and the estimated θ of the most frequent mutation cluster in

the sample. When we set θ as 1.0, the candidate screening model is the same as the regular

joint genotype model for solid tumor samples, which is equivalent to a model that does not

incorporate the estimated mutation cluster frequency. In this simulation, we also disabled

the iterative procedure to converge on the best value of θ, so the candidate screening only

took place at the given θ.

2.4.16 Rescuing mutations from conventional post-filtration

The “clustered read position”, defined as positions with the alternative alleles being clustered

at a constant distance from the start and end of the read alignment [CLC13], is regarded as

hallmarks of misalignment artifacts. Because of the existence of the preferred start and end

positions, the start and end sites of reads at some mutations tend to cluster together, and

thus the position of the alternative alleles on these reads tend to cluster together. Therefore,

cfDNA preferred start and end positions may make the true somatic mutations look like

misalignment false positives with “clustered read position”. To rescue these mutations, we

removed the conventional clustered read position filter entirely. Instead, to remove misalign-

ment artifacts, we implemented a new filter that simultaneously checks the co-occurrence of

candidates and mismatch positions on the reads with alternative alleles (variant supporting

reads), instead of purely relying on the “clustered read position” of a single mutation. If

multiple candidates and mismatch positions exclusively co-occur on the variant supporting

reads, we regard them as artifacts from misalignment (Table 2.3). A mutation is called

“rescued” if it is reported by cfSNV but would be filtered by conventional methods due to

the clustered read position. For each rescued mutation, the same confirmation process de-

scribed in section 2.4.9 was conducted. The fraction of confirmed rescued mutations among

all rescued mutations was calculated for every sample. Indeed, we were able to confirm that

for some rescued mutations, the variant bases are more clustered in cfDNA reads than in

solid tumor samples (Figure 2.13), validating our rationale.
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2.4.17 Data availability

Sequencing data have been deposited into EGA under accession code EGAS00001004373.

2.4.18 Code availability

cfSNV can be obtained at https://zhoulab.dgsom.ucla.edu/pages/cfSNV.

Sub-table a. Performance of cfSNV,

evaluated based on all ground-truth mutations (581)

cfSNV MuTect Strelka2
Strelka2

(filters disabled)

# predicted positives 386 119 149 1643

# true positives 386 118 149 190

# false positives 0 1 0 1453

Sensitivity 64.0% 20.3% 25.6% 32.7%

Precision 100.0% 99.2% 100.0% 11.6%

Sub-table b. Sensitivity of cfSNV for mutations at different VAFs

VAF # Mutations
Sensitivity

cfSNV MuTect Strelka2
Strelka2

(filters disabled)

0.10% 116 39.7% (46) 3.4% (4) 0.9% (1) 2.6% (3)

0.30% 116 50.9% (59) 3.4% (4) 0.9% (1) 4.3% (5)

0.50% 58 53.4% (31) 1.7% (1) 0.0% (0) 3.4% (2)

0.80% 57 57.9% (33) 3.5% (2) 0.0% (0) 5.3% (3)

1% 59 74.6% (44) 6.8% (4) 0.0% (0) 3.4% (2)

3% 61 91.8% (56) 41.0% (25) 72.1% (44) 100.0% (61)

5% 53 84.9% (45) 62.3% (33) 88.7% (47) 100.0% (53)
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8% 61 95.1% (58) 73.8% (45) 91.8% (56) 100.0% (61)

Total 581 64.0% (386) 20.3% (118) 25.6% (149) 32.7% (149)

Table 2.1: Validation of cfSNV on simulation data. Note that because the sequencing

errors in the simulation data were less complicated than those in real data, all three

methods achieved comparably high precisions. Therefore, here we focused on the

comparison of the sensitivities. Strelka2 had no false positives because its background

scoring model uses a high cutoff and hence sacrifices sensitivity. To make a fair comparison

with the other methods, we disabled the filters of Strelka2 in the last column.

Patient ID Sample ID Error No

Overlap

Error

Overlap

Variant No

Overlap

Variant

Overlap

CRPC 17 SRR6708977 495000 178567 1796509 411606

CRPC 17 SRR6708976 52494 16194 2723733 612499

CRPC 22 SRR6708979 35705 9218 1265653 294224

CRPC 22 SRR6708978 81928 23566 1935107 397078

CRPC 264 SRR6708961 46534 20939 2195553 577018

CRPC 264 SRR6708962 19780 9723 1699284 441753

CRPC 372 SRR6708965 190119 78577 2281386 559180

CRPC 372 SRR6708966 10442 6567 3391413 820014

CRPC 468 SRR6708970 26671 18198 3508685 880805

CRPC 468 SRR6708971 36245 24241 3477492 878561

CRPC 554 SRR6708975 114429 34938 3770965 699477

CRPC 554 SRR6708974 674340 213989 5252738 973627

MBC 191 SRR6708921 210 138 1249492 405881

MBC 191 SRR6708922 1081490 532325 2593057 808558

MBC 284 SRR6708924 23606 11451 4890905 1150491
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MBC 284 SRR6708925 156905 62434 2842976 760736

MBC 288 SRR6708927 744548 334731 2957088 950078

MBC 288 SRR6708928 422 486 1934183 742452

MBC 295 SRR6708931 107341 60058 2206167 454093

MBC 295 SRR6708932 2157991 1079179 2892371 687378

MBC 303 SRR6708935 30212 16417 5075765 962065

MBC 303 SRR6708936 189828 114320 2105320 537091

MBC 307 SRR6708937 12730 6766 3274014 664581

MBC 307 SRR6708938 1050679 423942 3800586 907059

MBC 313 SRR6708939 18338 9232 3836598 834756

MBC 313 SRR6708940 1598064 785133 3548035 1056629

MBC 318 SRR6708943 7786 6301 3190647 800833

MBC 318 SRR6708944 504353 424018 2702102 1007410

MBC 325 SRR6708947 426575 295975 2884043 942507

MBC 325 SRR6708948 143538 90622 3336840 921844

MBC 339 SRR6708955 348650 119469 3888221 767321

MBC 339 SRR6708956 340479 114771 3661371 710946

MBC 349 SRR6708957 168731 56234 3864562 860056

MBC 349 SRR6708958 159512 54131 3734487 864607

MBC 331 SRR6708950 479579 274047 4272310 1004417

MBC 331 SRR6708951 924421 587408 2885284 730299

Table 2.2: Sample IDs and number of testing reads extracted. Patient IDs follow the

naming convention in reference [AHF17], while sample IDs are the SRA accession IDs of

the sample.

Filter Description and default thresholds Pass Hold
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Strand bias Removes false positives caused by context-specific or

systematic sequencing errors. These are recognized by

observing an abnormal number of variant alleles in a

single direction of reads. We test for strand bias by

calculating the binomial probability that variant alleles

are only observed in a single direction of reads. The pa-

rameter used in the binomial distribution is the strand

ratio, calculated from reference supporting alleles. Can-

didates are rejected if the binomial probability is less

than 0.05. This threshold is equivalent to saying that

when variant alleles are observed from both directions,

the ratio between forward variant alleles and reverse

variant alleles must be in the range [7, 1/7] to pass this

filter.

pass pass

Variant

frequency

Remove false positives caused by tri-allelic sites or ran-

dom sequencing errors. We compare the number of vari-

ant supporting reads and the number of non-germline

reads. If the fraction of variant supporting reads in all

non-germline reads is less than 0.8, then the candidate

is rejected.

pass pass
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Mapping

quality

Remove false positives caused by context-specific or

location-specific misalignments, so that reads aligned

to the candidate site have a lower mapping quality in

general. Candidates always pass the filter when there

are enough reads (n >20) with high mapping quality

(phred>10). Otherwise, candidates are rejected if there

are more than 3 reads with low mapping quality (phred

<5) and the number of total reads is less than 20. Can-

didates are also rejected if the fraction of reads with

low mapping quality is greater than 0.4, or if the me-

dian mapping quality at the position is low (phred<10).

Finally, candidates meeting none of these criteria pass

the filter.

pass pass

Variant allele

mapping

quality

Remove false positives caused by misalignment, where

reads aligned to the candidate have a lower mapping

quality in general. Candidates pass the filter directly

when there are enough reads (n >3) with high map-

ping quality (phred >10). Candidates are rejected if

there are more than 3 reads with low mapping qual-

ity (phred <5) and the number of total reads is less

than 20. Candidates are also rejected if the fraction of

reads with low mapping quality is greater than 0.4, or

if median mapping quality at the position is low (phred

<10). Otherwise, candidates pass the filter.

pass pass
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Variant base

quality

Remove false positives caused by incorrect base calls.

Candidates are rejected when the median base call error

probability of variants is more than 7 times the median

base call error probability of reference bases. Candi-

dates are also rejected if the number of high-quality

variant bases (phred >23) is fewer than 3.

pass pass

Supporting

fragments

Mark candidates with strong evidence. Candidates with

more than three supporting reads are marked as having

strong evidence.

pass -

Tumor cover-

age

Remove false positives caused by inadequate sequenc-

ing. Candidates are rejected if they have 10x coverage

in plasma. Candidates are marked as having a low-

confidence VAF if they have coverage >10x and 50x in

plasma.

pass pass

Normal cov-

erage

Remove false positives caused by inadequate sequencing

of the matched germline blood sample. Candidates are

rejected if their coverage is 7 in the germline blood

sample.

pass pass

Nearby re-

peats

Remove false positives caused by misalignment of

nearby repeats. Candidates are rejected if they are

within a repeat region annotated by RepeatMasker.

pass pass
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Nearby indels Remove false positives caused by misalignment of

nearby indels. Candidates are rejected if they are within

a distance of 5 base pairs from an indel. Indels are

marked by the alignment tool (BWA), and collected for

use in this filter if there are 3 reads supporting an indel

at the position or if the fraction of reads supporting an

indel is greater than 0.02.

pass pass

Binomial

VAF test

Remove false positives with low confidence given the

current global tumor fraction. Candidates are rejected

if the binomial probability of observing the number of

variant supporting reads is less than 0.1.

pass -

Public

databases

Remove germline variants by rejecting candidates

present in a public germline database (dbSNP).

pass pass

Co-

occurrence of

candidates

Remove false positives associated with misalignment.

Candidates are rejected if they always co-occur with

other candidates on the variant supporting reads, or

their position on the reads are always the same.

pass pass

Table 2.3: Description of site-level post-filtration criteria and thresholds.

Category from it-

erative detection

Passing criteria

pass number of variant supporting reads >5

pass number of variant supporting reads >3 and binomial probabil-

ity of observing more variant supporting reads given the tumor

fraction <0.6

hold number of variant supporting reads >12

41



hold number of variant supporting reads >5 and binomial probabil-

ity of observing more variant supporting reads given the tumor

fraction <0.6

Table 2.4: Description of read-level post-filtration criteria and thresholds.

Sites Total read

pairs

Overlapping

read pairs

Non-

overlapping

read pairs

Variant

SRR6708941

33355 4397873 772283 3625590

Variant

SRR6708920

33355 600931 118771 482160

Error

SRR6708941

41903 59170 21325 37845

Error

SRR6708920

23148 23943 9181 14762

Table 2.5: Training data for the random forest model. Reads from two experiments of the

same plasma sample were labeled as containing true variants or sequencing errors. Reads

from SRR6708941 were used for training, while reads from SRR6708920 were only used for

validating the model.

Feature description Feature type Non-

Overlapping

model

Overlapping

model
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base call in a 7-bp window centered on the

query site from the read

categorical yes yes

base quality in a 7-bp window centered on the

query site from the read

numerical yes yes

CIGAR information in a 7-bp window cen-

tered on the query site from the read

categorical yes yes

Occurrence CIGAR operators from the read Boolean yes yes

mapping quality of the read pair numerical yes yes

distance to the nearest indel on the read pair numerical yes yes

whether the query site was contained in a ho-

mopolymer with size >= 5

Boolean yes yes

insertion sizes of the read pair numerical yes yes

mapping flags of the read and the mate categorical yes yes

base call in a 7-bp window centered on the

query site from the mate

categorical no yes

base quality in a 7-bp window centered on the

query site from the mate

numerical no yes

CIGAR information in a 7-bp window cen-

tered on the query site from the mate

categorical no yes

Table 2.6: Extracted features from read pairs for the random forest models. The column

“non-overlapping model” indicates which features are used in the random forest model for

purifying non-overlapping read pairs. The column “overlapping model” indicates which

features are used in the model for overlapping read pairs.
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Sample ID Sequencing

protocol

Total ana-

lyzed pairs

Overlapping

pairs

Non-

overlapping

pairs

Overlapping

rate

CRPC 161.T1 PE100 133713461 76706008 57007453 57.37%

CRPC 17.T2 PE100 112912255 68762359 44149896 60.90%

CRPC 17.T1 PE100 231379063 116648407 114730656 50.41%

CRPC 22.T2 PE100 69719765 40838217 28881548 58.57%

CRPC 22.T1 PE100 50922107 34962567 15959540 68.66%

CRPC 264.T1 PE100 94489440 49437464 45051976 52.32%

CRPC 264.T2 PE100 76285866 39931380 36354486 52.34%

CRPC 342.T1 PE100 77800434 39983987 37816447 51.39%

CRPC 362.T1 PE100 144733728 90831593 53902135 62.76%

CRPC 372.T1 PE100 95419408 46729963 48689445 48.97%

CRPC 372.T2 PE100 141469008 85545590 55923418 60.47%

CRPC 444.T1 PE100 99823352 58835498 40987854 58.94%

CRPC 463.T1 PE100 64410200 34965310 29444890 54.29%

CRPC 466.T1 PE100 86867442 40093027 46774415 46.15%

CRPC 468.T1 PE100 127076900 73725114 53351786 58.02%

CRPC 468.T2 PE100 125959241 69753527 56205714 55.38%

CRPC 525.T1 PE100 181507284 98384770 83122514 54.20%

CRPC 531.T1 PE100 191525002 110656948 80868054 57.78%

CRPC 554.T2 PE100 172555255 93394611 79160644 54.12%

CRPC 554.T1 PE100 115826043 69821170 46004873 60.28%

MBC 191.T1 PE100 49434221 37173220 12261001 75.20%

MBC 191.T2 PE100 104346049 58194183 46151866 55.77%

MBC 217.T1 PE100 45819537 31484308 14335229 68.71%
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MBC 284.T1 PE100 187766846 115972627 71794219 61.76%

MBC 284.T2 PE100 105253472 57912040 47341432 55.02%

MBC 287.T1 PE100 72621076 47398698 25222378 65.27%

MBC 288.T1 PE100 109914978 60307802 49607176 54.87%

MBC 288.T2 PE100 71159260 49173622 21985638 69.10%

MBC 291.T1 PE100 125487153 79432588 46054565 63.30%

MBC 292.T1 PE100 169264847 109287196 59977651 64.57%

MBC 295.T1 PE100 72290837 40661840 31628997 56.25%

MBC 295.T2 PE100 95321907 45817182 49504725 48.07%

MBC 299.T1 PE100 145495818 89226402 56269416 61.33%

MBC 301.T1 PE100 139127700 80183853 58943847 57.63%

MBC 303.T1 PE100 172833875 103629229 69204646 59.96%

MBC 303.T2 PE100 70238383 39263198 30975185 55.90%

MBC 307.T1 PE100 107376735 63850659 43526076 59.46%

MBC 307.T2 PE100 147719840 83423006 64296834 56.47%

MBC 313.T1 PE100 129906737 75086942 54819795 57.80%

MBC 313.T2 PE100 145333019 83038161 62294858 57.14%

MBC 321.T1 PE100 233457402 125507698 107949704 53.76%

MBC 330.T1 PE100 131880037 83083092 48796945 63.00%

MBC 325.T1 PE100 113079532 67731787 45347745 59.90%

MBC 325.T2 PE100 139083004 94962794 44120210 68.28%

MBC 335.T1 PE100 176603512 113906872 62696640 64.50%

MBC 336.T1 PE100 188162046 143807711 44354335 76.43%

MBC 331.T2 PE100 106639523 60706708 45932815 56.93%

MBC 331.T1 PE100 153265273 92462423 60802850 60.33%

MBC 333.T1 PE100 295079422 221021645 74057777 74.90%
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MBC 339.T1 PE100 122625928 72668646 49957282 59.26%

MBC 349.T2 PE100 123144300 87299997 35844303 70.89%

MBC 339.T2 PE100 118773552 68464597 50308955 57.64%

MBC 349.T1 PE100 135793407 96439191 39354216 71.02%

MBC 8.T1 PE100 102102243 61739698 40362545 60.47%

MBC 315.T1 PE100 106654039 63979866 42674173 59.99%

MBC 318.T1 PE100 97363967 65247299 32116668 67.01%

MBC 317.T1 PE100 89449800 53075788 36374012 59.34%

MBC 318.T2 PE100 109788289 73645143 36143146 67.08%

MBC 320.T1 PE100 169238177 94487319 74750858 55.83%

1129838 PE150 90493972 60668969 29825003 67.04%

3397799 PE150 98954989 62899357 36055632 63.56%

3736900 PE150 101233709 63795666 37438043 63.02%

4193384 PE150 92216457 56592576 35623881 61.37%

4258357 PE150 77145937 51554475 25591462 66.83%

4325774 PE150 112462632 69365854 43096778 61.68%

4492669 PE150 92722035 62999558 29722477 67.94%

4496246 PE150 53272682 36793304 16479378 69.07%

4514025 PE150 116818638 73998376 42820262 63.34%

4528560 PE150 73080877 47761989 25318888 65.35%

4532964 PE150 95269655 62118982 33150673 65.20%

4536877 PE150 84576575 53857762 30718813 63.68%

4545410 PE150 105795081 72662041 33133040 68.68%

4561279 PE150 125089513 80524552 44564961 64.37%

4563728 PE150 31166243 22383526 8782717 71.82%

4583975 PE150 117726231 69731179 47995052 59.23%
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4599369 PE150 100124756 63787421 36337335 63.71%

2163573 PE150 94058875 59201901 34856974 62.94%

4650336 PE150 92495802 54860077 37635725 59.31%

2510880 PE150 70282777 41196303 29086474 58.62%

4390360 PE150 84718207 53665469 31052738 63.35%

4471067 PE150 84266052 47593768 36672284 56.48%

4566326 PE150 97320644 55114291 42206353 56.63%

4582920 PE150 59732944 33126627 26606317 55.46%

4612584 PE150 95861797 57164638 38697159 59.63%

4562675 PE150 87382996 49998703 37384293 57.22%

2450596 PE150 81592146 49147981 32444165 60.24%

4335068 PE150 87083450 47799248 39284202 54.89%

4526552 PE150 93363300 63106874 30256426 67.59%

4411770 PE150 56819893 37203845 19616048 65.48%

4580642 PE150 113976400 76878551 37097849 67.45%

4637842 PE150 69840351 44686904 25153447 63.98%

Table 2.7: Statistics of overlapping read pairs in the cfDNA samples.

Sample ID Time gap

(days)

Truncal mutation confirma-

tion rate

Branch mutation confirma-

tion rate

CRPC 17.T2 24 100.00% 96.70%

CRPC 17.T1 24 100.00% 90.00%

CRPC 22.T2 21 93.10% 88.20%

CRPC 22.T1 21 100.00% 92.20%

CRPC 264.T1 28 100.00% 97.00%

CRPC 264.T2 28 100.00% 96.30%
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CRPC 372.T1 62 100.00% 98.50%

CRPC 372.T2 62 100.00% 95.20%

CRPC 468.T1 14 99.00% 98.90%

CRPC 468.T2 14 99.00% 99.60%

CRPC 554.T2 138 96.30% 85.10%

CRPC 554.T1 138 100.00% 79.20%

MBC 191.T1 71 97.80% 93.20%

MBC 191.T2 71 72.70% 89.40%

MBC 284.T1 51 100.00% 93.30%

MBC 284.T2 51 100.00% 91.90%

MBC 288.T1 39 90.30% 97.60%

MBC 288.T2 39 97.40% 98.10%

MBC 295.T1 56 100.00% 91.10%

MBC 295.T2 56 92.90% 77.60%

MBC 303.T1 55 95.90% 91.40%

MBC 303.T2 55 100.00% 89.30%

MBC 307.T1 42 100.00% 96.40%

MBC 307.T2 42 96.20% 96.20%

MBC 313.T1 21 90.90% 93.10%

MBC 313.T2 21 92.90% 91.80%

MBC 318.T1 35 100.00% 90.90%

MBC 318.T2 35 100.00% 95.40%

MBC 325.T1 56 91.70% 81.10%

MBC 325.T2 56 100.00% 96.00%

MBC 331.T1 22 93.80% 97.50%

MBC 331.T2 22 96.40% 95.00%
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MBC 339.T1 37 100.00% 97.60%

MBC 339.T2 37 100.00% 96.00%

MBC 349.T1 37 100.00% 98.10%

MBC 349.T2 37 100.00% 97.10%

Table 2.8: The plasma confirmation rate of the truncal and branch mutations in the

validation patient cfDNA data and the time gap of the plasma collection between two time

points.
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Figure 2.1: cfSNV framework and its novel techniques. a. The workflow of conventional

SNV callers takes the genomic data of a tumor and its matched normal tissue as inputs.

b. Five new techniques introduced to cfSNV that modify the standard workflow. c. Full

workflow of cfSNV. cfSNV takes plasma DNA and germline DNA sequencing data as inputs.

It first merges overlapping read pairs in cfDNA sequencing data. Next, we apply standard

data preprocessing tools. An iterative procedure then detects mutation clusters and esti-

mates their frequencies θ based on multiple, automatically selected hotspots. Each iteration

determines joint genotypes across sequencing regions to predict somatic SNV candidates, and

masks the mutation candidates before proceeding. After all clusters and mutation candi-

dates have been detected, a random forest classifier identifies raw read pairs with sequencing

errors. Finally, somatic SNVs are reported only if enough variant supporting read pairs pass

the random forest screening. The background color of steps in c corresponds to the feature

listed in b.
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Figure 2.2: cfSNV outperforms competing methods in sensitivity and precision, especially for

low-frequency mutations. a. The sensitivity of three variant calling methods on simulation

data as a function of VAF for cfSNV, MuTect and Strelka2. Mutations were grouped based

on their simulated VAF, and the sensitivity at each simulated VAF level was calculated

separately. The precision of all three methods remained at comparable and high level (Table

2.1). b. The precision of three variant calling methods on patient data as a function of

VAF. Mutations detected from all samples were grouped based on their rounded VAF (two

decimal places). The precision at each VAF level was estimated by the confirmation rate.

The sensitivity of patient data cannot be quantified because of the unknown ground truth,

but cfSNV detected the most true positive mutations. All curves were fitted using logit

functions.
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Figure 2.3: Somatic SNV calling on cfDNA sequencing samples from cancer patients. a, Total

number of confirmed mutations and precision (confirmation rate) using cfSNV, MuTect and

Strelka2. The precision is the number of confirmed mutations divided by the total number

of reported mutations. In the sample name, “T1” and “T2” indicate the first time point and

the second time point of blood plasma samples respectively. b, The total number of low-

frequency variants and their confirmation status found by cfSNV, MuTect and Strelka2 from

all plasma samples. Low-frequency variants are divided into five groups according to their

rounded VAF, and the number of confirmed and unconfirmed mutations for each variant

group are plotted in five subfigures for comparing between our method and two competing

methods. The number at the top of each bar indicates the precision (the confirmation rate).
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Figure 2.4: Experimental analysis of five new techniques. a. Performance of mutation cluster

frequency estimation in terms of the correlation between the estimated tumor fraction and the

true dilution ratio. This experiment uses simulated data based on WES of a single patient,

with dilution ratios ranging from 2% to 20%. The points are the means ± s.d. of five

independently generated datasets at each dilution. b. the fold change in the likelihood ratio

between cfSNV models with and without a step to estimate the mutation cluster frequency,

based on simulated mutations at different VAFs. c. Number of mutations detected with

and without the iterative screening procedure. d. Confirmation rate of rescued mutations

after adjusting conventional site-level post-filtration. e-f. Performance of read-level variant

classifier on testing data. e. The averaged ROC of applying the classifier to labeled data

taken from 24 cfDNA sequencing samples of 12 metastatic breast cancer patients. f. The

averaged ROC of applying the classifier to labeled data taken from 12 cfDNA sequencing

samples of 6 metastatic prostate cancer patients. The numbers in parentheses indicate the

area under curve (AUC) metric.

54



Figure 2.5: Kaplan-Meier curves for progression-free survival (PFS) on the pre-treatment

cfDNA sequencing data of 30 advanced non-small cell lung cancer patients. a-c, Kaplan-

Meier curves based on truncal-bTMB calculated using MuTect, Strelka2 and cfSNV. The

high-burden and low-burden groups in each plot are defined by the median value of the

measure: MuTect (a, Hazard Ratio (HR)=0.839, 95% confidence interval (CI) [0.403, 1.747]),

Strelka2 (b, HR=0.745, 95% CI [0.352, 1.581]), or cfSNV (c, HR=0.438, 95% CI [0.205,

0.938]). d-f, Kaplan-Meier curves based on bTMB calculated using MuTect, Strelka2 and

cfSNV. The high-burden and low-burden groups in each plot are defined by the median value

of the measure: MuTect (d, HR=0.948, 95% CI [0.451, 1.990]), Strelka2 (e, HR=0.883, 95%

CI [0.415, 1.880]), or cfSNV (f, HR=0.611, 95% CI [0.288, 1.295]).
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Figure 2.6: Workflow of cfSNV. cfSNV takes plasma DNA and germline DNA sequencing

data as inputs. It first merges overlapping read mates in cfDNA sequencing data. The reads

are processed using the GATK pipeline. After these steps, an iterative procedure estimates

the mutation cluster frequency θ based on a set of carefully selected sample-specific hotspots.

Each iteration step determines the joint tumor-normal genotypes across sequencing regions,

then eliminates somatic SNV candidates that fail essential filters based on site-level statistics

(Methods). Mutation candidates are used as hotspot sites to refine θ and candidate detection

until the frequency converges. SNV candidates from the previous iteration are output and

masked before the next iteration. After all candidates are detected, a random forest classifier

identifies raw read pairs with sequencing errors. Finally, somatic SNVs are reported only if

enough variant supporting read pairs passed the random forest screening.
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Figure 2.7: Fraction of confirmed truncal mutations and branch mutations detected by

cfSNV on patient data. Mutations found in cfDNA sequencing data were validated by

variant supporting read counts, either in cfDNA sequencing data from the other plasma

sample or in genomic DNA sequencing data from a tumor biopsy sample collected from the

same patient. The clonality of mutations was determined by their relative VAFs.
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Figure 2.8: Kaplan-Meier curves for progression-free survival (PFS) on advanced non-small

cell lung cancer patients. a-c, PFS for 14 patients with both tumor biopsy and pre-treatment

cfDNA sequencing data. The high-burden and low-burden groups in each plot are defined

by the median value of the measure: TMB (a, HR=0.721, 95% CI [0.239, 2.173]), bTMB (b,

HR=0.411, 95% CI [0.124, 1.355]), or truncal-bTMB (c, HR=0.326, 95% CI [0.098, 1.079]).
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Figure 2.9: Quantifying the existence and impact of overlapping read mates in cfDNA se-

quencing data. a, Fraction of merged overlapping read mates in 59 cfDNA whole exome

sequencing samples from metastatic cancer patients (paired-end 2x150bp). b, Fraction of

merged overlapping read mates in 30 cfDNA whole exome sequencing samples from NSCLC

patients (paired-end 2x150bp). c,Comparison of AUC metrics from classifiers trained on

overlapping read pairs and non-overlapping read pairs on 36 testing samples. d, A zoom of

c.
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Figure 2.10: Simulation on the estimated mutation cluster frequency. a, Performance of mu-

tation cluster frequency estimation in the first experiment with simulated samples containing

purely synthetic mutations inserted at known VAF levels (20%, 8% and 2%). Each box in

this plot shows the estimated mutation cluster frequency for the synthetic mutation cluster

at the same VAF level in five independent simulation samples. b, Performance of mutation

cluster frequency estimation in the third experiment with cfDNA data. The graph demon-

strates the correlation between the tumor fractions estimated by cfSNV and ichorCNA on

different sequencing experiments using the same cfDNA samples. c-f, The likelihood ratio

plot of a simulated mutation with VAF 0.1 (c), 0.01 (d), 0.05 (e), and 0.2 (f), under varied

mutation cluster frequencies. g, The number of mutations detected using different mutation

cluster frequencies on four plasma samples whose significant mutation clusters have preva-

lence ≤ 20%.The left most point on each line showed the number of mutations detected at

the estimated mutation cluster frequency.
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Figure 2.11: ROC curves for random forest classifiers on all read pairs in out-of-sample tests.

The classifiers were trained using data derived from only WES data of cfDNA sample from

a single patient (patient MBC 315, sample SRR6708941). Each independent testing dataset

(from one patient) has its own ROC curve. The numbers in parentheses are area under curve

(AUC) metrics. 61



Figure 2.12: Difference between the tumor-genotype fractions estimated in the first round

and the second round (refined by mutation candidates).
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Figure 2.13: Case studies of mutations rescued from the standard clustered read position

filter. Panel 1 and Panel 2 are plasma samples at two different time points. Panel 3 is blood

normal sample. Panel 4 is tumor biopsy sample. The position between the two dashed

vertical lines is the variant position. In the first plasma sample (panel 1) the variant base

in three of five supporting reads clustered at the same location, so this position was filtered

by the standard clustered read position. However, in the second plasma sample (panel 2)

and the tumor biopsy sample (panel 4), there was no clustered read position event at this

position, and it was detected as a mutation. Therefore this clustered read position event in

panel 1 is likely due to non-random fragmentation other than misalignment.

63



Figure 2.14: ROC curves for random forest classifiers on overlapping read pairs only in out-of-

sample tests. The classifiers were trained using data derived from only WES data of cfDNA

sample from a single patient (patient MBC 315, sample SRR6708941). Each independent

testing dataset (from one patient) has its own ROC curve. The numbers in parentheses are

area under curve (AUC) metrics. 64



Figure 2.15: ROC curves for random forest classifiers on non-overlapping read pairs only

in out-of-sample tests. The classifiers were trained using data derived from only WES data

of cfDNA sample from a single patient (patient MBC 315, sample SRR6708941). Each

independent testing dataset (from one patient) has its own ROC curve. The numbers in

parentheses are area under curve (AUC) metrics.
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Figure 2.16: Confirmed fractions of somatic SNVs from cfSNV, MuTect andStrelka2, along

with confirming sources.
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Figure 2.17: Correlation on the truncal and branch mutation confirmation rates in plasma

samples with respect to the sample collecting time gap.

Figure 2.18: Distribution of bTMB and truncal-bTMB in the 30 NSCLC patients. The

durable responders (DR, PFS > 9 months) and early progressors (EP, PFS < 6 months) are

defined based on the outcome of the patients, i.e. progression-free survival. The cutoff for

the two patient groups based on bTMB and truncal-bTMB is marked as the dashed blue

line.
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Figure 2.19: Distribution of variant allele frequency of somatic mutations detected by cfSNV

in each sample in the validation patient cfDNA data. The dashed line marks VAF = 0.05.

68



CHAPTER 3

OncoMonitor : noninvasive monitoring of MRD and

progression by comprehensive tumor mutation analysis

in plasma cfDNA

3.1 Introduction

Despite the rapid development of cancer treatment, a large fraction of cancer patients de-

velop recurrence, resistance, or progression during or after treatment [MLG18]. Even with

the surgical removal of tumors, there could still be minimal residual disease (MRD), which

is associated with an increased likelihood of the disease returning after treatment [CCL17].

Thus, monitoring cancer patients for the early detection of MRD, cancer recurrence and

progression is essential to assess the response and detect relapse. This in turn could facili-

tate early intervention and the personalization of adjuvant therapies and most importantly

improve the quality of life of cancer patients [CCL17] [KR14]. Although cancer monitoring

is clinically important, it often requires sequential sampling of the tumor from the patient,

which poses a difficult challenge toward traditional tumor biopsy. In this context, liquid

biopsy provides attractive options, especially the option of using cell-free DNA (cfDNA) in

blood, because blood can be obtained noninvasively, and tumor DNA in cfDNA can provide

comprehensive genetic profiles of heterogeneous tumors [MDP15].

However, a major challenge associated with cfDNA-based cancer monitoring is the often

very low tumor content in cfDNA. The fraction of tumor DNA can be as low as 0.1% in a
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cfDNA sample from cancer patients receiving treatment or with MRD [ABW17]. Previous

studies on cancer monitoring used deep sequencing on a small mutation panel to discover the

weak tumor signal in the plasma [CCL17] [ABW17] [GSW15] [TWT16] [MCS19]. However,

there are inevitable limitations to these methods: (1) due to the cost of deep sequencing,

these small panels track only a limited number of known mutations, e.g., common mutations

in cancer, or in the case of personalized panels, mutations identified from the pretreat-

ment/surgery tumor sample of the same patient; (2) personalized panels usually require a

labor-intensive experimental design; (3) these panels cannot detect newly emerging tumors,

e.g., secondary disease, because they cover a narrow genomic region; and (4) these panels

usually require a cohort of noncancer individuals to set cutoffs, which could result in im-

plicit systemic bias from both interindividual variations and interexperimental differences.

Recently, two studies [WHG20] [ZSS20] presented cancer monitoring methods using whole-

genome sequencing, but they have not yet addressed all the issues discussed above (issues 3

and 4) and focused only on mutations from pretreatment/surgery tumor samples.

In this study, we developed a new cancer monitoring approach, OncoMonitor, based on

cfDNA standard whole-exome sequencing (WES). It addresses all the aforementioned limita-

tions of existing methods. Specifically, it can be used to comprehensively monitor cancer by

analyzing the mutations in both pretreatment/surgery samples and newly emerging tumor

clones. By combining statistical methods and machine learning models, our method pro-

vides sensitive and unbiased detection of cancer recurrence and MRD by (1) integrating all

clonal somatic mutations in the whole exome and (2) sample-specific modeling background

noise distribution in the cfDNA sequencing data. Furthermore, our method permits the

detection of secondary disease via the de novo detection of newly emerging tumor mutations

and the detection of progression via a comprehensive analysis of tumor mutations in post-

treatment/surgery plasma samples. Previous methods limit their focus to a few mutations

detected from pretreatment/surgery tumor samples, so they can only draw conclusions with

respect to the pretreatment/surgery tumor profiles, not tumor evolution. However, approx-
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imately 30% of patients with no detectable recurrence or MRD develop secondary disease

[AFG20]. With broad sequencing coverage of the genome and a comprehensive analysis of

mutations, our method can identify these previously undiagnosed patients in a timely man-

ner when the tumor fraction in the plasma is still low, provide a thorough view of their

tumor status, and enable early intervention and personalization of treatment. In this study,

we demonstrate that our method achieves sensitive and specific detection of recurrence and

secondary disease in plasma samples with low tumor fractions. Specifically, in a cohort of

non-small-cell lung cancer patients, we show that our method can provide comprehensive tu-

mor changes for response prediction, which cannot be achieved by previous methods based

only on mutations in pretreatment/surgery samples.

In this paper, we have developed a new cancer monitoring approach, OncoMonitor, based

on cfDNA standard whole-exome sequencing (WES). It addresses all the aforementioned limi-

tations of existing methods. Specifically, it can comprehensively monitor cancer by analyzing

both the mutations in the pre-treatment/surgery samples and those in the newly emerging

tumor clones. Combining statistical methods and machine learning models, our method pro-

vides sensitive and unbiased detection of cancer recurrence and MRD by (1) integration of

all clonal somatic mutations on the whole exome and (2) sample-specific modeling of back-

ground noise distribution in the cfDNA sequencing data. Furthermore, our method permits

the detection of secondary primary diseases by de novo detection of newly emerging tumor

mutations, and also enables the detection of progression by comprehensive analysis of tumor

mutations in the post-treatment/surgery plasma samples. Previous methods limit their focus

on a few mutations detected from pre-treatment/surgery tumor samples, so they can only

draw conclusions with respect to the pre-treatment/surgery tumor profiles, in spite of tu-

mor evolution. However, around 30% of the patients with no detectable recurrence or MRD

have a second primary disease [AFG20]. With broad sequencing coverage on the genome

and comprehensive analysis of mutations, our method can timely identify these previously

undiagnosed patients when the tumor fraction in the plasma is still low, provide thorough
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view of their tumor status, and enable early intervention and personalization of treatment.

In this study, we demonstrate that our method achieves sensitive and specific detection

of recurrence and second primary disease in the plasma samples with low tumor fraction.

Specifically, on a cohort of non-small-cell lung cancer patients, we show that our method can

provide comprehensive tumor changes for response prediction, which cannot be achieved by

previous methods based only on mutations in the pre-treatment/surgery samples.

3.2 Results

3.2.1 Comprehensive and personalized cancer monitoring from plasma cfDNA

We present a new cancer monitoring method (Figure 3.1a and Figure 3.1b), OncoMonitor,

to tackle the limitations of previous methods by analyzing both pretreatment/surgery tu-

mor mutations and the newly emerging mutations in posttreatment/surgery samples. We

developed four major techniques to achieve comprehensive and sensitive detection of tumor-

derived cfDNA. Specifically, we collect a plasma sample, a tumor sample (optional), and

a matched white blood cell (WBC) sample from a patient before the treatment/surgery to

select markers (i.e., mutations) that are specific to the pretreatment/surgery tumor profile.

In the posttreatment/surgery plasma samples, selected pretreatment/surgery tumor mark-

ers are tracked, and newly emerging somatic mutations are identified to comprehensively

monitor the tumor.

1. Integrate all clonal tumor mutations from the pretreatment/surgery sam-

ples. Tumor mutations change as tumors evolve, so somatic mutations in pretreat-

ment/surgery samples may disappear in posttreatment/surgery samples. Instead of

using tumor mutations from a small panel, we fully utilize the broad genome coverage

of the WES data of the pretreatment/surgery samples and identify clonal somatic mu-

tations, which appear in all cancer cells and have high variant allele frequencies (VAFs)
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in the plasma [MDP15]. Compared to arbitrary tumor mutations, these mutations are

more likely to appear in posttreatment/surgery samples and thus are the most informa-

tive for cancer monitoring in posttreatment/surgery samples [ABW17]. To overcome

the low tumor fraction in WES data, our method aggregates variant supporting reads

at all clonal somatic mutations in pretreatment/surgery samples to track the tumor

signal (for details, see section 3.4 and Figure 3.7). Specifically, we quantify the tumor

content using the integrated variant allele frequency (IVAF), calculated as the sum of

variant supporting reads divided by the sum of all reads at the personalized marker

sites. The IVAF indicates the fraction of high-confidence tumor DNA in all cfDNA

fragments, so it is treated as the estimated tumor fraction in this study.

2. Suppress sequencing errors at the read level with a random forest model.

While the tumor reads at a large number of mutations are integrated to amplify the

tumor signal, sequencing errors also accumulate. Therefore, we suppress sequencing

errors and enhance the signal-to-noise ratio by differentiating the reads containing

sequencing errors from those containing true variants with a random forest model

(for details, see section 3.4). The model incorporates various information from reads,

including the sequencing context, alignment status, mapping quality, base quality, and

fragment length, which have been shown to be differential between tumor-derived and

non-tumor-derived cfDNA [JCC15] [MR15]. With the random forest model, we classify

all variant supporting reads at the personalized marker sites (i.e., the clonal somatic

mutation positions) as containing true variants or sequencing errors. Only the reads

with true variants are counted as variant supporting reads.

3. Predict recurrence or MRD from sample-specific background noise distri-

bution. To predict whether a patient has recurrence or MRD, we need to distinguish

the tumor signal from background noise (e.g., sequencing errors) in the plasma sample.

Previous studies usually compared the postsurgery/treatment sample of a patient with

a cohort of samples from healthy individuals. Because the difference among samples
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and experiments is difficult to account for, this kind of comparison might introduce im-

plicit bias to the prediction, and the resulting cutoffs would be difficult to generalize to

other experimental protocols. To avoid potential bias, we built a background noise dis-

tribution by calculating the IVAF from random genomic positions in the same sample

(Figure 3.1b; for details, see section 3.4). Therefore, this background noise distribu-

tion represents the error rates in this specific sequencing experiment. The presence of

recurrence or MRD can be determined by the p-value of the observed IVAF at the true

marker sites given the sample-specific background noise distribution, i.e., the fraction

of random samplings with a large IVAF (for details, see section 3.4).

4. Detect tumor evolution from de novo-identified newly emerging tumor mu-

tations. Previously described methods for cancer monitoring focus mainly on a small

mutation panel, so it is difficult to detect tumor evolution, especially secondary disease.

Taking advantage of the WES data with broad genome coverage, our method performs

de novo mutation identification to track tumor changes and detect secondary diseases.

We utilize cfSNV [LNZ20], a sensitive and accurate somatic mutation caller we pre-

viously developed to detect somatic mutations between posttreatment/surgery plasma

samples and matched WBC samples. The mutation caller, cfSNV, particularly accom-

modates essential cfDNA-specific properties, including a low tumor fraction, short and

nonrandomly fragmented DNA, and heterogeneous tumor content. It addresses the low

tumor fraction and the tumor heterogeneity in cfDNA by iterative and hierarchical mu-

tation profiling and ensures a low false-positive rate by multilayer error suppression.

From the mutation calling results from cfDNA, the presence of secondary diseases and

tumor changes is predicted by the de novo-detected mutations and the corresponding

tumor fraction (IVAF, for details, see section 3.4).
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3.2.2 Training a random forest model to suppress sequencing errors

When the tumor fraction is low, sequencing errors impair the detection of tumor signals in

plasma cfDNA. To increase the signal-to-noise ratio in cfDNA sequencing data, we devel-

oped a random forest model to accurately distinguish true variants and sequencing errors

for individual reads. The classification of true cancer mutations from sequencing artifacts

at the read level has been previously utilized to predict mutations and detect cancer and

MRD [ZSS20] [KZS18], though their implementation differs. Our error suppression model

incorporates various information, including the sequencing context, alignment status, and

quality score, in individual reads. Specifically, in this study, all data were generated from

paired-end sequencing, so the read pair can provide additional information on the original

cfDNA fragment, such as quality scores from the read mate and fragment length (Table 3.1).

To fully utilize the information from the paired-end sequencing data, here we treat a read

pair as a unit in the error suppression model. To train the model, we use the sequencing data

of two plasma cfDNA samples (collected at two different time points), the matched WBC

sample, and the tumor biopsy sample from each of 18 patients with advanced cancer (12 with

metastatic breast cancer (MBC) and 6 with metastatic prostate cancer (CRPC)). To build

the training data, we label the read pairs based on the consistent mutation calling results

across the four samples from the same patient (for details, see section 3.4 and Figure 3.8).

The random forest model is then evaluated using leave-one-out cross-validation (for details,

see section 3.4). On all validation datasets, the random forest model can accurately distin-

guish sequencing errors from true variants (average AUC = 0.95, 95% confidence interval

[CI] = 0.9496-0.9503, Figure 3.2a, Figure 3.9 and 3.10). By incorporating the random forest

model into our cancer monitoring method, the increased signal-to-noise ratio can largely

improve the detection of recurrence and MRD in samples with a low tumor fraction (Figure

3.2b and Figure 3.2c) based on our in silico spike-in simulation. In particular, in the samples

with a 0.025% tumor fraction, the AUC increased ¿ 20%, and the sensitivity increased ¿ 50%

(cutoff p-value = 0.05 of background noise distribution) after employing this model. Hence,
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the random forest model can accurately distinguish true mutations from sequencing errors

at the read level and thus facilitate the sensitive detection of weak tumor signals in plasma

samples by suppressing sequencing errors.

3.2.3 Detection of cancer recurrence and MRD in the simulation data

To evaluate the performance of our cancer monitoring method, we test our method with

the in silico spike-in simulation data. We use the sequencing data from 12 MBC and 6

CRPC patients [AHF17]. Each patient has sequencing data from two plasma cfDNA samples

(collected at two different time points), the matched WBC sample, and the tumor biopsy

sample. To demonstrate the sensitivity of the method, we generated an in silico dilution

series by mixing the plasma cfDNA samples at the second time point and the matched WBC

samples from the 18 MBC and CRPC patients at varying concentrations of cfDNA reads

(theoretical tumor fraction ranging from 0.001% to 0.768%, with median 0.105%; for details,

see section 3.4 and Figure 3.3a). To test the specificity of the method, we generated 0%

dilution samples by subsampling the original WBC samples (for details, see section 3.4 and

Figure 3.3b). In the 0% dilution samples, all reads are derived from the original WBC sample,

so theoretically, the tumor fraction is 0%, i.e., these simulated samples are from patients who

achieved complete remission. For each dilution, five independent random samples with three

theoretical depths of coverage (50x, 100x, and 200x) are generated. In total, 968 simulated

recurrence samples are generated with positive dilutions, and 150 complete remission samples

are generated. Tens to hundreds of clonal somatic mutations (ranging from 49 to 674, with

a median of 94) are identified using the pretreatment/surgery plasma and WBC samples.

By applying our monitoring pipeline, we observe increased detection performance with

increasing sequencing depth (Figure 3.4a and Figure 3.4b). The trend is as expected because

the higher the sequencing depth is, the more tumor DNA fragments might be captured.

Specifically, we achieve an AUC > 95% when tumor fraction is ≥ 0.025% at 200x coverage

(Figure 3.4a, with > 95% sensitivity and 95% specificity (cutoff p-value = 0.05 of background
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noise distribution, Figure 3.4b). This indicates a low detection limit of our method using

only 200x whole-exome sequencing data

3.2.4 Detection of secondary disease in the simulation data

Regarding the detection of secondary disease, pretreatment/surgery plasma and tumor biopsy

samples cannot provide effective tumor markers; thus, we need to perform de novo SNV de-

tection using posttreatment/surgery plasma samples. To simulate this scenario, we generate

an in silico dilution series by mixing the plasma samples at the second time point and the

matched WBC samples from the 12 MBC and 6 CRPC patients [AHF17] at varying concen-

trations of cfDNA reads (theoretical tumor fraction ranging from 0.331% to 7.680%, with

a median of 2.617%; for details, see section 3.4 and Figure 3.3c). At each dilution, the

simulation data are generated at the theoretical depth of coverage 200x. Five independent

mixtures are generated at every dilution. To evaluate the specificity of the method, the

samples from patients who achieved complete remission generated for recurrence detection

are reused. In total, 70 simulated recurrence samples are generated with positive dilutions,

and 50 complete remission samples at 200x are reused.

For each pair of simulated plasma and simulated WBC samples, we use cfSNV to identify

somatic mutations. We use the sum of the tumor fraction at the detected mutations and

the number of detected mutations as a prediction score for secondary disease. A patient is

predicted to have secondary disease if a large tumor fraction (IVAF ≥ 0.1%) and a number

of novel mutations (≥ 2) are detected. The AUC is calculated based on the prediction score

of all complete remission samples and the simulation samples with positive dilutions of the

cfDNA at a specific tumor fraction (see section 3.4). We achieve an AUC > 80% when

the IVAF ≥ 0.1% at 200x coverage (Figure 3.5a), with a sensitivity of approximately 75%

and a specificity of approximately 100% (Figure 3.5b). The sensitivity for the detection of

secondary disease is lower than that of recurrence and MRD because to confirm secondary

disease, novel somatic mutations need to be identified. The detection of novel somatic
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mutations requires more variant supporting reads at a single position, so the advantage

of integrating personalized markers is limited. In summary, our method can be used to

sensitively detect secondary disease in plasma samples with a low tumor fraction.

3.2.5 Monitoring non-small-cell lung cancer patients on anti-PD-1 immunother-

apy through cfDNA

Cancer immunotherapy, which activates a patients own immune system to fight cancer, has

remarkably improved the clinical outcome of a subset of patients with non-small-cell lung

cancer (NSCLC) [RHS15]. Despite encouraging clinical improvements, the majority of pa-

tients eventually develop resistance and fail to respond to therapy [HTZ20]. Therefore, it is

essential to closely monitor the response of patients and identify early their potential need

for alternative treatment. However, since resistance may be associated with tumor evolution

[SHW17], monitoring requires consideration of the comprehensive tumor profile in the plasma

sample during treatment instead of only the pretreatment tumor profile. Our method, which

uses sequencing data covering the whole exome, not only covers mutations in the pretreat-

ment samples but also detects newly emerging tumor mutations during treatment. Hence, it

allows us to track tumor evolution as well as major tumor clones pretreatment, which may

serve as indicators of a patients response.

We applied our cancer monitoring method to plasma cfDNA samples from a cohort of

nine non-small-cell lung cancer patients who received anti-PD-1 immunotherapy. Among

the nine patients, five are durable responders whose progression-free survival (PFS) is longer

than 12 months. The other four patients are early progressors whose PFS is shorter than 6

months. Plasma cfDNA samples were collected at 0 weeks (baseline), 6 weeks and 12 weeks

from each patient. The tumor biopsy sample and the matched WBC sample were collected

at baseline.

The tumor fraction (IVAF) is calculated using the pretreatment tumor mutations and

the newly emerging tumor mutations. The two tumor fractions are different due to possible
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changes in tumor-derived somatic mutations in plasma cfDNA during treatment. In general,

we observe a decreasing or low tumor fraction in the majority of the durable responders

and an elevated or high tumor fraction in the early progressors (Figure 3.6). However, in

the early progressor 3736900, the tumor fraction calculated using the pretreatment tumor

mutations remains at a low level during immunotherapy treatment, but the tumor fraction

calculated from the newly emerging tumor mutations shows the opposite trend. This implies

a potential clonality change during treatment. The responding clone might have shrunk, but

the other clones grew. As our method does not consider newly emerging mutations, the

actual trend of the tumors during immunotherapy would be concealed by the changes in

the major clone at baseline, which could mislead further treatment. Therefore, by using our

cancer monitoring method, we can closely track the change in tumor fraction and mutation

clonality in the plasma sample and therefore enable timely treatment guidance.

3.3 Discussion

Cancer monitoring is essential to assess the effectiveness of treatment and thus improve the

quality of life of cancer patients. Unlike traditional tumor biopsy, plasma cfDNA provides

a unique opportunity for the noninvasive continuous monitoring of cancer patients, but the

often very low tumor content in cfDNA is still a major challenge. The current cfDNA-based

methods usually rely on deep sequencing a small gene panel to overcome the low tumor

content and the low input amount of cfDNA, which limit their power to detect evolving

tumors. Therefore, we aimed to develop a new cfDNA-based cancer monitoring method

that can effectively and sensitively track changes in tumors, detect cancer recurrence/MRD,

and identify the presence of secondary disease despite tumor evolution. We present a new

computation method, OncoMonitor, for cancer monitoring using cfDNA WES data to tackle

the limitations of previous methods. Taking advantage of the wide genome coverage of WES

data, our method (1) integrates a large number of clonal tumor mutations identified from
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pretreatment surgery samples to overcome the challenge of the low tumor fraction in cfDNA,

(2) suppresses sequencing errors at the read level with an accurate random forest model to

further enhance the tumor signal, (3) builds sample-specific background noise distributions

to predict recurrence and MRD to avoid interference from interindividual variations and

interexperimental effects, and (4) detects tumor changes, especially secondary disease and

progression, from de novo-identified newly emerging tumor mutations.

Combining these techniques, our method achieves sensitive and specific detection of re-

currence, MRD and secondary disease. Our method can be used to detect recurrence in a

sample with a 0.025% tumor fraction with > 95% sensitivity and 95% specificity and sec-

ondary disease in a sample with a 0.1% tumor fraction with approximate 75% sensitivity and

100% specificity. Since the performance of the method increases with a larger sequencing

depth, its performance could be further improved. As an application, we show that in the

monitoring of immunotherapy treatment in NSCLC patients, our method achieves accurate

and comprehensive monitoring of the changes in a tumor during treatment, which cannot

be performed by previous methods focusing only on mutations from pretreatment/surgery

tumor samples.

This study has notable limitations. First, our method was validated and evaluated on in

silico spike-in simulation data and a limited number of NSCLC patients only. To address this

limitation, we generated simulation data by considering factors in real cases, including tumor

evolution and sampling randomness. For example, simulated plasma samples with positive

tumor fractions are generated with subsampling the original plasma sample from the second

time point, which already contains a different tumor profile compared to the sample at base-

line. Nevertheless, we acknowledge that real cases of MRD, recurrence and secondary disease

could be more complicated. Applying our method to larger datasets would enable a more

comprehensive evaluation and possible optimization of parameter selection. Second, similar

to the tumor fraction calculation in the study by Wan JC et al. [WHG20], tumor evolution

during or after treatment/surgery and the random sampling effects in plasma collection could
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result in a low tumor fraction (IVAF) because some pretreatment/surgery clonal mutations

are not detected in posttreatment/surgery samples. Longitudinal monitoring of the same

patient would not change the relative trend of tumor changes, but care must be taken when

comparing the tumor fraction (IVAF) from our method with that from other methods.

Our results suggest that OncoMonitor may provide actionable information and treatment

guidance for patients. Our method mainly utilizes point mutations as cancer markers. Next,

more cancer-specific features in cfDNA can be incorporated. Recent studies have discovered

that copy number variations, fragment length, and jagged ends of cfDNA are all associ-

ated with tumor-derived cfDNA. In our random forest model, we incorporated the fragment

length of the DNA fragments to discriminate the true variants from sequencing errors. By

integrating other features, OncoMonitor may further empower cancer monitoring.

3.4 Methods

3.4.1 Data preprocessing

Both genomic DNA sequencing data and cfDNA sequencing data were preprocessed using

the same procedure. Raw sequencing data (FASTQ files) were aligned to the hg19 reference

genome by bwa mem [LD09] and sorted by samtools [LHW09]. Then, duplicated reads from

PCR amplification were identified and removed by picard tools MarkDuplicates [Ins16]. After

this step, read group information was added to the bam file using picard tools AddOrReplac-

eReadGroups, and reads were realigned around indels using GATK RealignerTargetCreator

and IndelRealigner [PRD17] [ACH13]. After realignment, base quality scores were recali-

brated using GATK BaseRecalibrator and PrintReads. All tools in the data preprocessing

were used under their default settings. After data preprocessing, the resulting bam files were

used as inputs for mutation detection and MRD detection.
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3.4.2 Predicting MRD using tumor-derived somatic mutations in pretreatment/surgery

samples

We predicted the presence of MRD by tracking the cfDNA fragments containing tumor-

derived somatic mutations (i.e., tumor-derived cfDNA fragments). Due to the low tumor

fraction in the plasma samples from patients with MRD, clonal mutations (see section 3.4.3)

in a wide range of genomic regions were integrated. To avoid the accumulating of sequenc-

ing errors in the integration of mutations, we suppressed the sequencing errors (i.e., filtered

sequencing reads with nonreference alleles caused by sequencing errors) by employing a ma-

chine learning model (see section 3.4.6), which can accurately classify sequencing reads with

sequencing errors or true mutations. Then, the level of tumor-derived cfDNA fragments was

compared with the background noise distribution generated from the same plasma sample

(see section 3.4.4 and 3.4.5) by a permutation test. If the tumor-derived cfDNA fragments

are significantly more abundant than the background noise in the sample (p-value ≤ 0.05),

the patient is predicted as having MRD. If no MRD is detected, the follow-up sample from

the patient is examined for the presence of secondary disease (see section 3.4.9).

3.4.3 Identification clonal mutations in the pretreatment/surgery plasma sam-

ple

The presence of tumor-derived somatic mutations in plasma is usually treated as a reliable

tumor marker to confirm the presence of cancer. However, not all tumor-derived somatic

mutations are equally effective because subclonal mutations have a lower observed allele

frequency than clonal mutations [ABW17]. To overcome the challenge of a low tumor content

in the plasma samples of patients with MRD, we integrated tumor-derived somatic mutations

in a wide range of the genome (e.g., whole exome). The integration accumulated not only

tumor-derived signals but also sequencing errors. Therefore, it is essential to select effective

tumor-derived somatic mutations for predicting MRD. If a mutation is selected and less
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likely to be observed in the plasma, the mutation is more likely to contribute only noise to

the prediction of MRD. Therefore, to monitor tumor development in patients, we used all

clonal somatic mutations in the pretreatment/surgery plasma and matched WBC samples

as tumor markers. Tumor-derived somatic mutations were detected using cfSNV [LNZ20].

The detected mutations were then filtered if there was at least one variant supporting the

read in the matched WBC sample. A mutation was clonal if its VAF was greater than 25%

of the average of the highest five VAFs in the sample [SLA18].

3.4.4 Identification of mutations and CHIP positions

To accurately estimate the background noise in a sequencing experiment, it is essential

to remove the interference of the nonreference alleles at the germline mutations, somatic

mutations, and CHIP positions. Otherwise, these nonreference alleles can cause largely

overestimated levels of nonreference alleles from sequencing errors (i.e., background noise).

Therefore, we identified germline mutations in the pretreatment/surgery plasma sample, the

tumor biopsy sample, and the matched WBC sample from the same patient using GATK

HaplotypeCaller and Strelka2 Germline [KSH18] using default settings. GATK Haplotype-

Caller was applied to the plasma sample, the tumor biopsy sample, and the WBC sample

individually; Strelka2 Germline was applied to the plasma-WBC sample pair and the tu-

mor biopsy-WBC sample pair separately. Somatic mutations were detected from the tumor

biopsy sample and the matched WBC sample as a tumor-normal pair using MuTect [CLC13]

and Strelka2 Somatic under default settings. The CHIP positions were identified from pileup

files generated using samtools mpileup. If a nonmutation position has ≥ 3 variant support-

ing reads or a VAF > 1% in the matched WBC sample, the position is regarded as a CHIP

position. All the identified germline mutations, somatic mutations and CHIP positions were

excluded in the step of building background noise distribution.
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3.4.5 Building background noise distribution using random genomic locations

The presence of variant supporting reads at tumor-derived somatic mutations alone cannot

be used to determine the presence of MRD because the variant supporting reads could be

caused by sequencing errors. Therefore, to quantify the sequencing error level, we built

a background noise distribution directly from the exact same plasma sample we used to

monitor MRD. Unlike using a panel of normal samples from other sources, we can avoid

potential biases from interindividual and interexperimental differences by quantifying the

background noise using the same sample. A background noise distribution is generated for

a specific size of tumor markers used for monitoring MRD. For a given set of tumor markers

of size n, n positions are randomly selected from the targeted genomic region (e.g., whole

exome), and the mutations and CHIP positions are excluded. Thus, ideally, all read pairs

with nonreference alleles at these n positions are expected to be from sequencing errors, so

the observed frequency of these reads represents the background noise level. The sequencing

read pairs containing nonreference alleles at these n positions are extracted and input into the

sequencing noise suppression model. Then, the observed frequency of the nonreference allele

(i.e., integrated variant allele frequency) is calculated as the fraction of the sequencing read

pairs, which are classified by the model as containing true mutations, among all the read pairs

aligned to the n positions. We repeated the random sampling of n positions and calculated

the observed frequency of nonreference alleles K times. A background noise distribution

was built from the K observed frequency of nonreference alleles at random n positions. By

comparing the integrated variant allele frequency at the tumor markers θ (selected clonal

mutations) with the background noise distribution, a p-value can be calculated as the rank

of θ among the K background integrated variant allele frequencies. If the p-value is ≥ 0.05,

the patient is regarded as having MRD. Based on our simulation, there is a minor difference

when K = 100, 500, or 1000. In our simulation, we set K to 100.
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3.4.6 Machine learning model for suppressing sequencing errors

Although weak tumor signals in plasma samples can be amplified by integrating the variant

supporting reads across a large genomic region, sequencing errors can also accumulate and

possibly confound the tumor signal. Moreover, because of the low fraction of tumor DNA,

the variant supporting reads at a single mutation are not sufficient to provide a robust

and accurate estimation of site-level statistics (e.g., strand bias and average base quality)

for error removal. Therefore, we developed a machine learning filter to eliminate reads

with sequencing errors. Specifically, for a group of genomic positions (tumor markers or

random positions), we classify the variant supporting reads with a random forest model to

distinguish sequencing errors from true variants. This kind of sequencing error classification

has been previously utilized in mutation prediction, cancer detection and MRD detection

[ZSS20] [KZS18], though their implementation differs. Our model combines a variety of

features (Table 3.1) and automatically discovers statistical relationships among the features

that reflect sequencing errors. Since all data in this study were generated from paired-

end sequencing, in the following section, we detail the model for paired-end reads, but the

principle can also be applied to single-end reads.

To train the random forest model, we used whole-exome sequencing data from 18 patients:

12 with metastatic breast cancer (MBC) and 6 with metastatic prostate cancer (CRPC)

[AHF17]. Each patient had four samples sequenced: two plasma cfDNA samples (collected

at two different time points), a WBC sample, and a tumor biopsy sample. The training

data represent the supporting cfDNA read pairs at known mutation (error) sites and are

predicted to contain mutations (errors). Mutation sites are defined as the collection of

common germline mutations detected using Strelka2 Germline from all four datasets. In

addition, common somatic mutations between two cfDNA-WBC pairs (cfDNA data vs. WBC

data) and one tumor-WBC pair (tumor data vs. WBC data) were detected using Strelka2

Somatic and MuTect. Error sites are defined as sufficiently covered sites (> 80x) with only

one high-quality nonreference read (base quality ≥ 20 and mapping quality ≥ 40) in all
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four datasets. All high-quality labeled read pairs (base quality ≥ 30 and mapping quality

≥ 40) were extracted from raw cfDNA data using picard tools FilterSamReads. Multiple

read pairs may be extracted from a single locus, but these read pairs are similar and might

cause redundancy in the training and testing data. Therefore, we solved the redundancy

problem by retaining only one read pair per locus (Table 3.2). Different features were

extracted from the overlapping read pairs and the nonoverlapping read pairs (Table 3.1).

All categorical features were expanded using the one-hot encoding method. The parameters

of the random forest model used were as follows: (1) the number of decision trees was 100,

(2) the maximum tree depth was 50, (3) imbalanced classes were addressed by setting the

class weights to “balanced”, and (4) other parameters were left at their default values. Two

random forest classifiers (for overlapping read pairs and nonoverlapping read pairs) were

trained on the extracted read pairs.

To validate the performance of the random forest model, leave-one-out cross-validation

was performed. For each patient, the labeled read pairs from the 17 other patients were used

to train the model, while the labeled read pairs from this patient were used to test the model

(results shown in Figure 3.9). The simulation of MRD detection also used the leave-one-out

model to avoid data leakage. As an independent testing set, a group of non-small-cell lung

cancer patients (12 patients each with 3 samples) with sequential plasma cfDNA samples was

used. The read pairs in these cfDNA samples were labeled in the same manner as described

above. Then, these labeled read pairs were used as independent testing data for the random

forest model trained by the data generated from the 12 MBC and 6 CRPC patients (results

shown in Figure 3.10).

3.4.7 Simulation of recurrence and MRD detection by tracking clonal somatic

mutations in pretreatment/surgery plasma samples

To demonstrate the sensitivity of the MRD detection pipeline by IVAR, we generated an

in silico dilution series by mixing the plasma cfDNA samples at the second time point
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and the matched WBC samples for each of the 18 MBC and CRPC patients at varying

concentrations of cfDNA reads (from 0.01% to 1%: 0.01%, 0.05%, 0.1%, 0.3%, 0.5%, 0.8%,

and 1%) using samtools view and samtools merge. The theoretical tumor fraction of these

simulation samples was calculated as the product of the original tumor fraction in the cfDNA

sample and the dilution. The theoretical tumor fraction ranges from 0.001% to 0.768%, with

a median of 0.105%. Note that the theoretical tumor fraction is usually an overestimation of

the true tumor fraction because of random sampling and the imperfect on-target rate. Five

independent mixtures were generated at every concentration and at a theoretical coverage of

200x, 100x or 50x on the WES targeted regions. Since read sampling is random, it is possible

that there is no variant supporting read in a positive-dilution sample. Thus, we removed

those positive-dilution samples with no variant supporting read at the personalized markers.

In this simulation, the original matched WBC samples, the original cfDNA samples at the

first time point, and the original tumor biopsy samples were used as the WBC samples, the

pretreatment/surgery cfDNA samples, and the tumor biopsy samples, respectively (Figure

3.3). The in silico dilution series was used as the follow-up plasma samples.

To evaluate the specificity of the MRD detection pipeline, we generated subsamples from

the original WBC samples. Therefore, these subsamples were expected to have no tumor

DNA. For each WBC sample from the 12 MBC and 6 CRPC patients, five subsamples were

generated, with reads theoretically equivalent to 200x, 100x, and 50x coverage of the targeted

regions. These subsamples were used as the follow-up plasma samples. The original cfDNA

samples at the first time point and the original tumor biopsy samples were used as the

pretreatment/surgery cfDNA samples and the tumor biopsy samples, respectively. To avoid

potential data leakage in this simulation, we used another subsample of the original WBC

samples at a sampling rate of 95% (Figure 3.3). Therefore, in this simulation, we preserved

some randomness between the WC samples and the follow-up plasma samples, which reflects

real cases.

In total, 968 simulated recurrence samples were generated with positive dilutions, and
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150 complete remission samples were generated. The performance metrics (AUC, sensitivity,

and specificity) were evaluated on positive-dilution samples grouped by the tumor fraction

at a 0.005% step size and all zero-dilution samples (the samples with WBC reads only).

3.4.8 Calculation of the integrated variant allele frequency

To quantify tumor DNA across multiple loci, we calculated the “integrated variant allele

frequency” as the fraction of the sequencing read pairs, which were classified by the model

as containing true mutations by the model, in all the read pairs aligned to the loci. The

IVAF indicates the fraction of high-confidence tumor DNA in all cfDNA fragments, so it is

treated as the estimated tumor fraction in this study.

3.4.9 Detection of secondary disease

For a patient with secondary disease, the tumor markers identified from pretreatment/surgery

samples are not effective, so detecting novel mutations is important for secondary disease

detection. Since data from a wide range of genomic regions are used in the MRD detec-

tion pipeline, these data provide opportunities for novel somatic mutation detection. We

employ cfSNV, which is a sensitive and accurate somatic mutation caller we previously de-

veloped, to detect somatic mutations between the posttreatment/surgery plasma sample

and the matched WBC sample. The mutation caller, cfSNV, particularly accommodates

essential cfDNA-specific properties, including a low tumor fraction, short and nonrandomly

fragmented DNA, and heterogeneous tumor content. It addresses the low tumor fraction

and the tumor heterogeneity in cfDNA by iterative and hierarchical mutation profiling and

ensures a low false-positive rate by multilayer error suppression. From the mutation call-

ing results from cfDNA, secondary disease is detected based on a prediction score, which

is calculated as the sum of the tumor fraction at the detected somatic mutations and the

number of the detected somatic mutations. The performance metrics (AUC, sensitivity, and
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specificity) are evaluated on the prediction score of the positive-dilution samples grouped

by tumor fraction at a 0.1% step size and all zero-dilution samples. The sensitivity and

specificity were evaluated at a prediction score of 2.001, i.e., ≥ 0.1% tumor fraction and ≥ 2

detected mutations. In other words, a patient is predicted to have secondary disease if a

large tumor fraction (tumor fraction calculated at the novel mutations ≥ 0.1%) and ≥ 2

novel mutations are detected.

3.4.10 Simulation of secondary disease detection

To evaluate the sensitivity of the method for secondary disease detection, we generated an in

silico dilution series by mixing the plasma cfDNA samples at the second time point and the

matched WBC samples from the 18 MBC and CRPC patients at varying concentrations of

cfDNA reads (from 1% to 10%: 1%, 3%, 5%, 8%, and 10%) using samtools view and samtools

merge. The theoretical tumor fraction of these simulation samples was calculated as the

product of the original tumor fraction in the cfDNA sample and the dilution. The theoretical

tumor fraction ranged from 0.331% to 7.680%, with a median of 2.617%. Note that the

theoretical tumor fraction is usually an overestimation of the true tumor fraction because

of random sampling and the imperfect on-target rate. Each spike-in sample contained a

total number of randomly sampled reads theoretically equivalent to 200x coverage of the

targeted regions. Five independent mixtures were generated at every concentration. In

this simulation, the original matched WBC samples were used as the WBC samples. The

in silico dilution series was used as the follow-up plasma samples. To demonstrate the

specificity of the method, we utilized the zero-dilution simulation data generated for MRD

detection. Because the pretreatment/surgery plasma samples and tumor biopsy samples

cannot provide effective tumor markers for secondary disease, no original plasma samples

from the first time point or original tumor biopsy samples were used in this simulation

(Figure 3.3). The performance metrics (AUC, sensitivity, and specificity) are evaluated on

the positive-dilution samples grouped by the tumor fraction at a 0.1% step size and all zero-
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dilution samples. In total, 70 simulated recurrence samples were generated with positive

dilutions, and 50 complete remission samples at 200x were reused.

Feature description Feature type Nonoverlapping

model

Overlapping

model

base call in a 7-bp window centered on the

query site from the read

categorical yes yes

base quality in a 7-bp window centered on

the query site from the read

numerical yes yes

CIGAR information in a 7-bp window

centered on the query site from the read

categorical yes yes

occurrence CIGAR operators from the

read

Boolean yes yes

mapping quality of the read pair numerical yes yes

distance to the nearest indel on the read

pair

numerical yes yes

whether the query site was contained in a

homopolymer with a size >= 5

Boolean yes yes

insertion sizes of the read pair numerical yes yes

mapping flags of the read and the mate categorical yes yes

base call in a 7-bp window centered on the

query site from the mate

categorical no yes

base quality in a 7-bp window centered on

the query site from the mate

numerical no yes

CIGAR information in a 7-bp window

centered on the query site from the mate

categorical no yes
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Table 3.1: Extracted features from read pairs for the random forest models. The column

“nonoverlapping model” indicates which features are used in the random forest model to

filter nonoverlapping read pairs. The column “overlapping model” indicates which features

are used in the model for overlapping read pairs.

Patient ID Sample ID Error No

Overlap

Error

Overlap

Variant No

Overlap

Variant

Overlap

CRPC 17 SRR6708976 15680 151 28570 24730

CRPC 17 SRR6708977 10789 1358 28185 25619

CRPC 22 SRR6708978 16282 144 28622 24474

CRPC 22 SRR6708979 6927 97 27933 23840

CRPC 264 SRR6708961 509 225 27052 24457

CRPC 264 SRR6708962 319 99 27122 23835

CRPC 372 SRR6708965 1646 584 26069 23315

CRPC 372 SRR6708966 396 92 27065 24682

CRPC 468 SRR6708970 504 198 32441 29473

CRPC 468 SRR6708971 510 239 31484 27138

CRPC 554 SRR6708974 45617 845 33894 30638

CRPC 554 SRR6708975 9434 435 33687 30218

MBC 191 SRR6708921 39 3 33692 30424

MBC 191 SRR6708922 12953 5129 32565 28987

MBC 284 SRR6708924 594 124 32020 26885

MBC 284 SRR6708925 1726 612 32400 29515

MBC 288 SRR6708927 9658 3366 32654 29815

MBC 288 SRR6708928 38 4 32852 28932

MBC 295 SRR6708931 8895 370 33720 28268
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MBC 295 SRR6708932 34007 10810 32476 27214

MBC 303 SRR6708935 3353 117 34204 31599

MBC 303 SRR6708936 3144 1126 31067 26469

MBC 307 SRR6708937 1383 40 33354 29336

MBC 307 SRR6708938 21055 5974 32663 29378

MBC 313 SRR6708939 2292 70 33820 30856

MBC 313 SRR6708940 21503 8790 31725 28822

MBC 318 SRR6708943 1330 51 33391 30548

MBC 318 SRR6708944 16734 5850 32684 29834

MBC 325 SRR6708947 5099 2431 29623 27158

MBC 325 SRR6708948 6120 1521 32499 29882

MBC 331 SRR6708950 14813 4030 32628 29610

MBC 331 SRR6708951 17448 5969 32055 28088

MBC 339 SRR6708955 28526 1651 34122 30393

MBC 339 SRR6708956 28212 1446 34088 29869

MBC 349 SRR6708957 17462 532 33951 31605

MBC 349 SRR6708958 19876 436 34059 31567

NSCLC 1129838 241 1 0 34188 34003

NSCLC 1129838 714 0 1 32863 33395

NSCLC 1129838 729 4 2 34186 34068

NSCLC 2163573 706 1750 1390 34237 34357

NSCLC 2163573 717 2065 1607 34356 34337

NSCLC 2163573 732 1582 1516 34168 34349

NSCLC 3736900 751 48627 19237 34227 34139

NSCLC 3736900 760 38567 12011 33316 33900

NSCLC 3736900 768 54542 7655 34522 33087
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NSCLC 4492669 643 24672 9970 32821 33588

NSCLC 4492669 704 19354 6022 33109 33642

NSCLC 4492669 715 24949 5439 34582 34155

NSCLC 4496246 620 34884 12337 32299 33056

NSCLC 4496246 636 38017 12905 33568 33659

NSCLC 4496246 644 40591 12438 33622 33614

NSCLC 4528560 640 31073 17751 33310 34140

NSCLC 4528560 647 76658 22143 35122 34883

NSCLC 4528560 708 45394 17274 23596 23540

NSCLC 4536877 650 24 11 33873 33887

NSCLC 4536877 712 46 9 33248 33635

NSCLC 4536877 725 22 9 33244 33738

NSCLC 4563728 705 1071 422 31756 33222

NSCLC 4563728 716 7433 2075 34431 34373

NSCLC 4563728 730 13020 2695 34688 34389

NSCLC 4566326 711 36161 12359 30874 30758

NSCLC 4566326 723 22368 9583 30620 30743

NSCLC 4566326 737 23331 10328 30772 30731

NSCLC 4582920 720 10 3 33874 33952

NSCLC 4582920 734 8 2 33891 33908

NSCLC 4582920 743 10 5 34162 33872

NSCLC 4599369 726 9345 4080 34467 34522

NSCLC 4599369 739 28379 19286 34878 34570

NSCLC 4599369 747 17077 14692 33156 33922

NSCLC 4650336 762 8296 7250 34574 34618

NSCLC 4650336 770 7877 8024 34535 34626

93



NSCLC 4650336 785 10825 11328 34547 34633

Table 3.2: Sample IDs and the number of labeled read pairs for training and testing on the

random forest model. For the MBC patients and the CRPC patients, the patient IDs

follow the naming convention in [AHF17], while the sample IDs are the SRA accession IDs

of the sample.
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Figure 3.1: Cancer monitoring in cfDNA samples by tracking pretreatment/surgery tumor

mutations and newly emerging tumor mutations. (a) Illustration of sample collections for

cfDNA-based cancer monitoring. At primary diagnosis, the tumor biopsy, plasma sam-

ple (blood), and matched white blood cell (WBC) sample are collected to generate the

pretreatment/surgery tumor profile. Serial blood samples are collected to monitor tumor

evolution and detect recurrence/MRD during or after treatment/surgery. (b) OncoMonitor

workflow. In the pretreatment/surgery samples, clonal tumor mutations are identified for tu-

mor tracking in the posttreatment/surgery samples. Given a posttreatment/surgery plasma

sample, the integrated variant allele frequency (IVAF) is calculated at the selected pretreat-

ment/surgery tumor mutations and compared to a sample-specific background noise distri-

bution generated by randomly sampled positions to predict recurrence/MRD. Furthermore,

somatic mutations are de novo detected using cfSNV between the posttreatment/surgery

plasma and WBC samples. The presence of secondary diseases and tumor changes is pre-

dicted by the de novo-detected mutations and the corresponding IVAF.

96



Figure 3.2: Performance of the random forest model and the improved tumor detection

power with the model using simulation data. (a) Receiver operating characteristic (ROC)

curve of the random forest model in all 36 leave-one-out cross-validation sets (two validation

sets for each of the 18 patients). The 95% confidence interval (95% CI) is indicated in

the figure. (b) The area under the ROC curve (AUC) of recurrence/MRD detection with

and without the random forest model in the in silico spike-in samples with different tumor

fractions. The circles and error bars indicate the average AUC. The solid lines show the

smoothed performance fitted with logit functions. (c) The sensitivity and specificity of

recurrence/MRD detection with and without the random forest model in the in silico spike-

in samples with different tumor fractions. The circles show the sensitivity using a cutoff

p-value = 0.05 of background noise distribution. The dashed lines show the specificity using

a cutoff p-value = 0.05 of background noise distribution. The solid lines show the smoothed

performance fitted with logit functions.
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Figure 3.3: Sample generation settings for the in silico spike-in simulation. (a) Simulation

samples with positive cfDNA dilutions for recurrence/MRD detection, i.e., recurrence/MRD

cases. The original tumor biopsy sample, the original plasma sample at the first time point

(T1), and the original WBC sample are directly used as the pretreatment/surgery samples

in the simulation. The original WBC sample and the original plasma sample at the second

time point (T2) are mixed at known dilutions. The mixed samples are used as the post-

treatment/surgery plasma sample. (b) Simulation samples with zero cfDNA dilutions, i.e.,

complete remission cases. The original tumor biopsy sample and the original plasma sample

at the first time point (T1) are used directly as the pretreatment/surgery samples in the

simulation. Two random samplings of the original WBC sample are used as the pretreat-

ment/surgery WBC sample and the posttreatment/surgery plasma sample. (c) Simulation

samples with positive cfDNA dilutions as used for secondary disease detection. The original

WBC sample is directly used as the pretreatment/surgery WBC sample in the simulation.

The original WBC sample and the original plasma sample at the second time point (T2)

are mixed at known dilutions. The mixed samples are used as the posttreatment/surgery

plasma sample. In the simulation, there is no pretreatment/surgery tumor biopsy sample or

plasma sample.
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Figure 3.4: Performance of cancer recurrence and MRD detection using the simulation data.

(a) AUCs of the in silico spike-in samples with different tumor fractions and different se-

quencing depths. The circles represent the average AUC. The solid lines are the smoothed

performance fitted with logit functions. (b) Sensitivity and specificity of the in silico spike-in

samples with different tumor fractions and different sequencing depths. The circles show the

sensitivity using a cutoff p-value = 0.05 of background noise distribution. The dashed lines

show the specificity using a cutoff p-value = 0.05 of background noise distribution. The solid

lines show the smoothed performance fitted with logit functions.
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Figure 3.5: Performance of secondary disease detection with the simulation data. (a) AUC

of the in silico spike-in samples with different tumor fractions at 200x sequencing depth.

The circles represent the average AUC. The solid lines are the smoothed performance fitted

with logit functions. (b) The sensitivity at the specificity of approximately 100% in the in

silico spike-in samples with different tumor fractions at a sequencing depth of 200x. The

circles show the sensitivity. The solid lines show the smoothed performance fitted with logit

functions.
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Figure 3.6: Longitudinal cfDNA monitoring in NSCLC patients who received anti-PD-1

immunotherapy. The lines show the tumor fraction in cfDNA during treatment.

Figure 3.7: The difference in tumor signal detection between targeted deep sequencing data

and medium-coverage broad sequencing data. (a) Illustration of observed sequencing reads

as a sample from the pool of cfDNA. The blue box indicates the observed reads from medium-

coverage broad sequencing, while the green box indicates the observed reads from targeted

deep sequencing. (b) The theoretical detection probability of tracking 10 markers at 2000x

and 100 markers at 200x. The probability of sampling ≥ 1 variant read is determined by a

binomial distribution over all markers given a fixed tumor fraction, which is the probability

of a read from tumor cells.
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Figure 3.8: Training data extraction and utilization of the random forest model for suppress-

ing sequencing errors at the read level. The upper panel shows the training data extraction

workflow (for details, see 3.4). True variant positions (somatic and germline mutations) and

sequencing error positions are identified by comparing the WBC sample, the tumor biopsy

sample and two plasma samples from the same patient. Read pairs with nonreference bases

at these identified positions are extracted and labeled “true variants” and “sequencing er-

rors”, respectively. Then, various features are extracted from each read pair, and these data

are used as training and testing data for the random forest model. The lower panel shows the

utilization of the random forest model. Given a posttreatment/surgery sample, the features

from the read pairs at given loci are extracted from the sequencing data and classified as

containing a “sequencing error” or a “true variant”.
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Figure 3.9: Performance of the random forest model in the 36 leave-one-out cross-validation

sets. The receiver operating characteristic (ROC) curve of the random forest model in the

36 leave-one-out cross-validation sets (Part 1).
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Figure 3.9: (Continued) Performance of the random forest model in the 36 leave-one-out

cross-validation sets. The receiver operating characteristic (ROC) curve of the random forest

model in the 36 leave-one-out cross-validation sets (Part 2).
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Figure 3.9: (Continued) Performance of the random forest model in the 36 leave-one-out

cross-validation sets. The receiver operating characteristic (ROC) curve of the random forest

model in the 36 leave-one-out cross-validation sets (Part 3).
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Figure 3.10: Performance of the random forest model in the 36 independent testing datasets

from 12 NSCLC patients. The receiver operating characteristic (ROC) curve of the random

forest model in the 36 independent datasets. (Part 1).
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Figure 3.10: (Continued) Performance of the random forest model in the 36 independent

testing datasets from 12 NSCLC patients. The receiver operating characteristic (ROC)

curve of the random forest model in the 36 independent datasets (Part 2).
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Figure 3.10: (Continued) Performance of the random forest model in the 36 independent

testing datasets from 12 NSCLC patients. The receiver operating characteristic (ROC)

curve of the random forest model in the 36 independent datasets (Part 3).
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CHAPTER 4

Disease detection with the microbiome profile in the

plasma cfDNA: sepsis and cancer

4.1 Introduction

The human microbiota consists of tens of trillions of cells living in or on each person [TLH07].

With the development of high-throughput sequencing technology, the human microbiota has

been found to substantially contribute to human diseases, such as sepsis [HW17], obesity

[LNQ13] [THY09], cirrhosis [QYL14] [CTH19], liver cancer [JJ19] [MB19], and stomach can-

cer [BMS14] [PB02]. Given its importance, efforts have been devoted to disease diagnosis

and classification based on the human microbiota [SJS20] [BTR19] [PKZ20]. Currently,

studies usually focus on microbes at body sites from which samples are relatively easy to

obtain, such as the skin [APD13] and gut [KDN11], and sometimes require microbial culti-

vation [KKC03]. The sampling site limitation has restricted the range of diseases that can

be studied, and the need for cultivation poses further constraints on microbe identification

[WDL14]. With the discovery of cell-free microbial DNA in plasma, liquid biopsy offers a

potential solution to comprehensively profile the microbiota in the human body, as microbes

in nearly all tissues can release DNA into the blood [HCF18] [CBL19] [BHL20] [HLS20].

Therefore, be combining this method with high-throughput sequencing technology, microbes

from various tissues, including unculturable microbes, can be profiled from plasma cell-free

DNA (cfDNA).

In addition to the comprehensiveness of the microbial profile in the plasma, cell-free
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microbial DNA has advantages in the detection and classification of specific diseases, such

as sepsis and cancer. Sepsis is a life-threatening emergency condition arising from various

infections of human tissues, and it is vital to quickly and accurately detect the causative

microbes to ensure prompt treatment. According to recent guidelines, deploying appropri-

ate antibiotic therapy as early as possible (preferably within 1 hour) is crucial for sepsis

patients [DLR13]. However, the standard procedure of pathogen detection requires blood

culturing for a significant period of time (up to 5 days) [DLR13] [VBL15]. Therefore, a more

rapid approach for diagnosing sepsis and comprehensively profiling the microbiome is ur-

gently required. By sequencing plasma cfDNA, we could promptly profile different potential

pathogens in the blood and thus save precious time for the patients. In addition to sepsis,

which is directly caused by microbial infection, the human microbiota has been indicated

to substantially impact some types of cancer [JJ19] [MB19] [BMS14] [PB02] [DBP17]. In

particular, recent studies have shown that the microbiome in the tissue and blood is specific

to cancer types and can discriminate samples from healthy individuals and samples from

patients with multiple types of cancers [PKZ20]. Considering the widely utilized human

methylome of cfDNA, the microbiota could possibly provide complementary information to

assist the current noninvasive cancer detection and location methods.

In this study, we aimed to develop a workflow using the microbiome composition in

cfDNA for disease detection. For this purpose, cfDNA was isolated and sequenced from the

blood samples of healthy and diseased cohorts. Then, a random forest model was trained

based on the microbiome composition of the healthy individuals and patients. Specifically, as

examples, we focused on rapid sepsis diagnosis and noninvasive cancer detection. For rapid

sepsis diagnosis, our method achieved an area under the ROC curve (AUC) of 93% based

on whole-genome sequencing data. The cooccurrence network of the candidate pathogens

showed the characteristics of the abundant pathogens and could be further utilized to guide

therapies. For cancer detection, our method achieved an AUC of 93% for patients with colon

(COAD), lung (LUAD and LUSC), liver (LIHC), and stomach (STAD) cancers based on the
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cfMethyl-seq data. In addition to cancer detection, the microbiome composition has the

potential to distinguish patients with different cancer types with an accuracy of 0.63 among

the five cancer types. By functional analysis of the microbes with the most importance in the

random forest model, we showed that most of these microbes were significantly differentially

abundant among cancer types and between cancer patients and healthy individuals. The

microbes with high importance in the model were consistent with the findings in previous

studies.

4.2 Results

4.2.1 Rapid sepsis diagnosis based on the cfDNA microbiome from WGS data

Following the procedures shown in Figure 1a and 1b, we developed a two-step approach

for rapid sepsis diagnosis. First, we identified 3546 bacterial species through alignment and

classification of cfDNA sequencing reads from 118 healthy and 38 sepsis samples [GSG16]

[UHS16]. These samples were randomly partitioned into two groups: 103 samples (78 healthy

samples and 25 sepsis samples) for training and 53 samples (40 healthy samples and 13 sepsis

samples) for testing. For each species, we fit a beta distribution based on the bacterial abun-

dance vector with 78 elements from the healthy training samples. Then, the 25 abundances

from the sepsis training samples were tested one by one against the beta distribution to

generate 25 p-values. A species was considered a candidate pathogen if at least one P-value

was smaller than 0.01. By this filtering procedure, approximately 200 candidate pathogenic

bacteria were selected. Figure 2 shows some examples of these candidate pathogens, with

the bacterial abundances showing significantly different distributions between healthy and

sepsis samples.

Second, based only on the observed abundances of the candidate pathogenic bacteria, we

trained a random forest model with balanced subsampling to generate an accurate classifier.

Finally, we used this classifier to test the other one-third of normal and sepsis samples re-
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served for this purpose. The above pipeline was repeated 1000 times through bootstrapping.

As shown in Figure 3a, the average out-of-bag error (OOB error) was 0.16 when there were a

sufficiently large number of decision trees (>100). The performance of the diagnosis strategy

was satisfactory, with an average AUC of 0.93, sensitivity of 0.91 and specificity of 0.83. As

an alternative, we also tried a logistic regression approach (average AUC 0.77, sensitivity

of 0.71 and specificity of 0.80) (Figure 3b). The logistic regression model was based on a

principal component analysis of all candidate species abundances, keeping the first 25 com-

ponents. A ranked list of the candidate bacterial species with respect to their importance

in the random forest model is provided in Supplementary Table 1. For the validation of an

independent dataset, all 118 healthy and 38 sepsis samples were used as the training set,

and samples from [BTR19] (No. PRJNA507824) were set as an independent validation set.

The AUC shows that the proposed method also performed well in the independent dataset

(Figure 3c).

4.2.2 Functional analysis of microbes from sepsis patients and healthy individ-

uals

Using the bacterial abundance matrices from 78 healthy and 25 sepsis samples for training,

we constructed two bacterial cooccurrence networks (Figure 4a). Each network contains

224 nodes, representing the 224 candidate pathogenic bacteria that were selected for hav-

ing significantly different abundance distributions between healthy and sepsis samples. As

mentioned above, blood can contain cfDNA fragments released by the bacteria inhabiting all

human body sites. Thus, we expect the cooccurrence networks of healthy and sepsis sam-

ples to include some associations among “harmless” species that are generally not involved

in sepsis. To focus on sepsis-specific associations, we generated a differential network by

excluding all association patterns also found in the healthy cooccurrence network from the

sepsis cooccurrence network (Figure 4a). We found 19 clusters (Figure 4b) of species in the

differential network, which are the strongly connected components visible in Figure 4a. In
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the 25 sepsis samples, all the species in a cluster were strongly correlated in terms of their

abundance levels. Detailed cluster information is provided in Supplementary Table 2.

To analyze the biological features of the clusters, we characterized the species in each

cluster according to three aspects: respiration mode, metabolic habitat, and growth rate.

First, among all the candidate pathogen species, 35.52%, 3.66%, and 52.12% were anaer-

obic, aerobic, and facultative, respectively (the remaining 8.7% were unknown). Most of the

clusters showed similarity in terms of respiration mode: 9 clusters exhibited a preference

for facultative species (clusters 3, 5, 6, 10, 14, 15, 16, 17 and 19), and 7 clusters exhibited

a preference for anaerobic species (clusters 1, 2, 7, 11, 12, 13 and 18). The few anaerobic

species in the sample did not dominate any cluster.

Second, before causing infection in blood, these bacteria usually originate in special-

ized metabolic environments. Bacterial metabolic habitats are divided into 4 types: host-

associated, terrestrial, aquatic, and diverse. The species in clusters 3, 4, 5, 9, 14, 15, 17,

18, and 19 were mainly host-associated, the species in cluster 10 were mainly terrestrial, the

species in cluster 3 were mainly aquatic, and clusters 1, 6, 7, 10, 12, 13, and 16 contained

species from diverse metabolic environments.

Third, bacterial growth was significantly correlated with metabolic variability and the

level of cohabitation. Analysis of the doubling-time data led to the important finding that

variations in the expression levels of genes involved in translation and transcription influenced

the growth rate [Roc04] [CR06]. We partitioned the clusters into two groups according to

the doubling time of their member species: “fast”- and “slow”-growing clusters are those

whose median duplication time is shorter or longer, respectively, than the mean over all

species by at least one standard deviation [FKB09]. The median doubling time for species

distributed in clusters 6, 7, 11 and 13 was larger than 1 (fast-growing clusters), while the

doubling time for members in clusters 1, 3, 4, 5, 15, and 16 was smaller than 0.6 (slow-

growing clusters). Notably, fast growth rates are typical of species that exhibit ecological

diversity, so the identification of “fast” clusters is consistent with the metabolic habitats
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analyzed in the previous paragraph.

4.2.3 Cancer detection and localization based on the cfDNA microbiome from

cfMethyl-seq data

As shown in Figure 1a and 1c, we developed a two-step approach for rapid sepsis diagnosis.

First, we aligned nonhuman reads from cfMethyl-seq data of 204 healthy individuals and

280 cancer patients to a hand-curated microbe database (see section 4.4). These samples

were randomly partitioned into three groups: 310 samples (from 210 cancer patients and

100 individuals without cancer) for training, 103 samples (from 70 cancer patients and 33

individuals without cancer) for testing, and 30 samples (from 30 individuals without cancer)

for normalization of the microbial abundance. For a robust performance evaluation, we

repeated this split scheme 10 times and reported the average prediction performance.

Second, we trained a random forest model for cancer detection, i.e., classification of

plasma samples from cancer patients and healthy individuals. Our model achieved an AU-

ROC of 0.93 (aggregated from prediction results from 10 random splits, with a 95% confi-

dence interval [0.91, 0.95], Figure 5) on the testing set.

Third, we trained a random forest model for cancer location, i.e., tissue of origin classifi-

cation of plasma samples from cancer patients with different cancer types. We used the same

strategy to evaluate the performance of cancer location prediction on 280 cfDNA samples

from the five cancer types. Among the 10 runs, we achieved an average accuracy of 0.63

(standard deviation 0.06) on the testing sets (Table 1). Specifically, the average prediction

accuracy of COAD/LIHC/LUAD/LUSC/STAD was 63/49/81/51/28% (Table 1).

Our results suggest the potential of the cfDNA microbiome in cancer detection and

location.
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4.2.4 Functional analysis of microbes from cancer patients and individuals with-

out cancer

Given the discriminative power of the microbial profiles, we analyzed the abundance of the

200 most important microbes in the pancancer classifier. We performed Mann-Whitney U

tests for each of the 200 microbes in the plasma samples from 204 healthy individuals and

280 cancer patients. For each of the 200 most important microbes in the cancer location

classifier, we performed Kruskal-Wallis tests on the plasma samples of cancer patients with

the five different cancer types (67 COAD, 49 LUSC, 77 LUAD, 47 LIHC, and 40 STAD).

A large proportion of the 200 most important microbes showed significantly differential

abundances between healthy individuals and cancer patients (73% in the cancer detection

classifier, Figure 6a) or among different cancer types (48% in the cancer location classifier,

Figure 6b).

In addition to the difference in the abundance of the important microbes in the plasma

samples, we also analyzed the abundance of these microbes in 164 solid tumor samples (26

COAD, 32 LUSC, 42 LUAD, 26 LIHC, and 38 STAD). For each of the top 200 microbes in the

cancer location classifier, we performed Kruskal-Wallis tests on the solid tumor samples from

the five cancer types. The abundance of 38% of the microbes was significantly different among

the solid tumor samples from the five cancer types (Figure 6c). We found that the microbes

in the plasma were partially consistent with the microbes in the solid tumor. For example,

eight Bacteroides species were found to be overabundant (Kruskal-Wallis test, p = 0) in

tumor samples from colon cancer patients. One of the eight species also showed significant

differences (the Kruskal-Wallis test, p = 0.022) among the plasma samples from patients with

the five cancer types, while the other species did not show strong differences among plasma

samples. One Pseudomonas species also showed significant differences in both the plasma

samples and the solid tumor samples (Kruskal-Wallis test, p = 0.019 in the plasma samples

and p = 0.005 in the solid tumor samples). Both Bacteroides spp. and Pseudomonas spp.

were previously found to be enriched in mucosal samples and tumor samples from colorectal
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cancer patients [ZRR14] [FLB17] [SLJ12]. A species from the Comamonadaceae family,

which is overabundant in other cancer types (e.g., breast cancer [UGB16]), also showed

significant differences in both the plasma samples and the solid tumor samples (Kruskal-

Wallis test, p = 0.037 in the plasma samples and p = 0.0002 in the solid tumor samples).

Therefore, our analysis indicated that the abundance of the important microbes in the plasma

samples was partially consistent with that in the solid tumor samples and the previous

findings in the microbiome analysis from cancer patients. As many tissues can release DNA

to the bloodstream, the difference between the plasma samples and the solid tumor samples

might result from the various tissue sources of fragmented microbial DNA in the blood.

4.3 Discussion

We developed a workflow for disease detection using the microbiome composition in cfDNA.

Specifically, we focused on rapid sepsis diagnosis and noninvasive cancer detection. Following

the general workflow, we developed an approach for sepsis diagnosis and pathogen identifi-

cation using cfDNA sequencing data mapped to bacterial genomes. This approach does not

require cultivation, greatly enhancing the efficiency of diagnosis, with an AUC of 93%, and

shortening the estimated turn-around time to approximately a day. Thus, it overcomes the

limitations of the current culture-based diagnosis methods and fulfills the urgent need for

timely diagnosis for sepsis patients. In addition to sepsis, we trained random forest models

for noninvasive cancer detection and location using the cfMethyl-seq data. We showed that

the microbiome composition derived from cfDNA can achieve an AUC of 93% for cancer

detection and an accuracy of 0.62 for cancer location. As an orthogonal data source, the

microbiome composition from cfDNA may further enhance the current noninvasive cancer

diagnosis methods, which are mainly built on the human genome or epigenome.

Furthermore, functional analysis of the candidate pathogens in sepsis patients suggests

the potential to guide therapy selection based on the detected pathogen clusters, which show
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clear characteristics in terms of respiration mode, metabolic habitat, and growth rate. The

microbes with high importance in the random forest model of cancer detection and location

are consistent with the previous findings and show statistically significant differences between

cancer patients and healthy individuals or among different cancer types. Despite the good

performance that we observed for rapid sepsis diagnosis and noninvasive cancer detection,

further investigation of the relationships among the cfDNA-derived microbiome, the disease-

related tissue-specific microbiome and the origin of the observed fragmented microbial DNA

is needed. Nevertheless, the results indicate that the microbiome composition identified

by plasma cfDNA analysis could provide extra information about the human host. The

microbiome information in cfDNA could possibly offer additional evidence for cfDNA-based

disease diagnosis, which is now accepted as a promising, noninvasive tool in disease detection.

4.4 Methods

4.4.1 Sample collection and processing

The cfDNA whole-genome sequencing (WGS) data used in this study were taken from 38

sepsis and 118 healthy samples. The raw sequencing reads were derived from two previously

published data sources: 38 sepsis and 15 healthy samples from the European Nucleotide

Archive (ENA, study No.: PRJEB13247 [GSG16], 103 healthy samples from the Euro-

pean Genome-phenome Archive (EGA, accession No. EGAS00001001754 [UHS16]), and 165

asymptomatic samples and 187 symptomatic samples from the European Nucleotide Archive

(ENA, study 3, No. PRJNA507824 [BTR19]). Samples from both studies were taken from

plasma and then sequenced by whole-genome and single-end sequencing.

The cfDNA cfMethyl-seq sequencing data used in this study were taken from 280 cancer

patients and 163 individuals without cancer. The plasma samples of cancer patients were

either collected at UCLA hospitals (i.e., Ronald Reagan UCLA Medical Center, UCLA Med-

ical Plaza, or UCLA Santa Monica hospital) or purchased from BioPartners Inc. All plasma
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samples of cirrhotic patients without cancer were collected from patients at UCLA hospitals.

All plasma samples of individuals without cirrhosis and cancer were collected from UCLAs

Institute for Precision Health or purchased from BioPartners, Inc. (Woodland Hills, CA),

or BioChain Institute, Inc. (Newark, CA). All solid normal and tumor tissue samples were

either collected from the UCLA Translational Pathology Core Laboratory or purchased from

Biopartners, Inc., Biochain Institute, Inc., Origene, Inc., or the Gundersen Health System.

The enrollment criteria at UCLA hospitals were as follows: (1) at least 18 years old, (2) able

to give consent, and (3) either not a cancer patient or diagnosed with colon cancer, liver

cancer, lung cancer, or stomach cancer. The institutional review board (IRB) of the Uni-

versity of California, Los Angeles, approved the study. We obtained informed consent from

the patients. cfDNA was extracted from plasma samples with a Qiagen QIAamp Circulat-

ing Nucleic Acid Kit (Catalog# 55114, Germantown, MD) by following the manufacturers

protocol. The amount of starting material was 2-10 ml of plasma for healthy controls and

1-4 ml of plasma for cancer samples. The solid-tissue gDNA samples were extracted with a

Qiagen Blood and Tissue Kit (Catalog# 69506). Approximately 100-200 ng of tissue was

used to extract gDNA from each sample. The cfMethyl-seq libraries were constructed for all

cfDNA samples; the RRBS libraries were constructed for all tissue gDNA samples.

4.4.2 Removal of human-like reads from WGS and cfMethyl-seq data

Because the cfDNA samples were processed with different protocols, namely, WGS and

cfMethyl-seq, the sequencing data were processed in different ways.

For the WGS data, the raw reads from ENA (PRJEB13247 and PRJNA507824) were

cleaned of human-like reads and reads with low complexity stretches using the NextGenMap

tool. For the EGA data (EGAS00001001754), the raw sequencing reads were preprocessed

to remove human and human-like reads using the fast alignment program Bowtie2 [LS12].

The raw sequencing reads were aligned to the human genome sequence (UCSC Human

hg19 reference genome). All mapped reads were regarded as human-like and removed. The
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remaining unmapped reads were of nonhuman origin and were used for microbiome analyses.

For the cfMethyl-seq data, the cfDNA was bisulfite-converted, so the unmethylated Cs

were converted to Ts in the sequencing data. The raw sequencing reads were aligned to

the human genome sequence (UCSC Human hg19 reference genome) using Bismark [KA11],

which is a widely used aligner for bisulfite sequencing data. The unmapped reads were of

nonhuman origin and were used for microbiome analyses.

4.4.3 Read alignment and microbe abundance quantification for WGS data

The nonhuman sequencing reads were aligned to a microbial genome sequence database using

Centrifuge [KSB16], an open-source microbial classification engine that enables rapid and ac-

curate labeling of reads and quantification of species. Specifically, the mapping was based on

a database of compressed microbial sequences provided by Centrifuge (https://ccb.jhu.edu/software/centrifuge/manual.shtml).

Traversing up a taxonomic tree, Centrifuge maps reads to taxon nodes and assigns a

“species abundance” to each taxonomic category. The abundances are the estimated frac-

tions α = (α1, α2, · · · , αS) that maximize a likelihood function, i.e.,

α = arg max
α

(L),

with the likelihood L given by

L(α) =
R∏
i=1

S∑
j=1

(
αjlj∑S
k=1 αklk

Cij).

R is the number of reads, S is the number of species, αj is the abundance of species j

(
∑S

j=1 αj = 1, 0 < αj < 1), and lj is the average length of the genomes of species j. The

coefficient Cij is 1 if read i is classified as species j and 0 otherwise. The abundance vector

α is obtained through an expectation maximization (EM) procedure.
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4.4.4 Identification of candidate pathogenic bacteria for sepsis

To detect an abnormal bacterial abundance in a cfDNA sample, we need to first establish

the background distribution of abundances under healthy conditions. We fit the expected

abundance of each species in healthy samples with a beta distribution (this is a family of

continuous probability distributions defined on the interval [0, 1] and parametrized by two

positive parameters). Specifically, for each bacterial species j, its observed abundance values

across a training set of healthy samples were used to fit a species-specific beta distribution

defined by the parameters aj and bj.

To determine whether bacterial species j is a candidate pathogen, we compare the abun-

dance value αj from a new sample (healthy or sepsis) to the beta distribution. Specifically,

we calculate the probability P to observe an abundance higher than αj assuming that the

sample is healthy:

P(x ≥ αj|a, b) =

∫ 1

αj
uaj−1(1− u)bj−1du∫ 1

0
uaj−1(1− u)bj−1du

.

If P is very small, then we can reject the hypothesis that the observed abundance of this

bacterial species in this sample is produced by the beta distribution determined under healthy

conditions and hence conclude that the abundance of this species is abnormally high and that

it is a candidate pathogen for sepsis. A bacterial species is classified as a candidate pathogen

for sepsis in our study if it meets this condition for at least one of the sepsis samples.

4.4.5 Read alignment and microbe abundance quantification for cfMethyl-seq

data

Since sequencing reads from cfMethyl-seq are bisulfite-converted, standard tools designed for

abundance quantification in metagenomics are not suitable for cfMethyl-seq data. Methyla-

tion in microbes is different from methylation in humans, but a fraction of CpG sites were

observed to be methylated in microbial genomes [WCB13]. Thus, we did not assume fully
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unmethylated microbial genomes in the cfDNA. To fully consider the potential bisulfite con-

version in the microbial genomes, sequencing reads that did not align to the human genome

were mapped against a hand-curated database, which contained a total of 1017 bacterial

genomes, 1 archaeal genome, 453 eukaryotic genomes and 149 viral genomes from the litera-

ture. The 1620 microbial genomes were merged into 13 large FASTA files to save computing

costs during alignment and prepared by bismark genome preparation before alignment. The

unmapped reads were aligned to the merged microbial genome using Bismark with default

parameters. UMI-Grinder (https://github.com/FelixKrueger/Umi-Grinder) was used to re-

move PCR duplicates based on the UMIs written into the read names during the UMI

reformatting step and the mapping location. After alignment, uniquely mapped reads were

counted for each microbial genome. The abundance of a microbe in a cfDNA sample was

calculated as the uniquely mapped read count divided by the total number of sequencing

reads in the sample and the size of the microbial genome. The abundance was then scaled

by multiplying a large integer (109) to avoid small floats. We then normalized each abun-

dance by standardizing it with the 30 reference cfDNA samples from individuals without

cancer, i.e.,
(τsample−µreference)

σreference
, where τsample is the abundance of a bacterial or viral genome

in the cfDNA sample, and µreference and σreference are the mean and standard deviation of

the abundance in the same microbial genome among the 30 reference cfDNA samples from

individuals without cancer.

4.4.6 Random forest models for sepsis diagnosis, cancer diagnosis and cancer

typing

Random forest is an effective classification method that generates many binary decision trees

and aggregates their results.

To distinguish sepsis patients and healthy individuals, we trained a random forest model

on the abundance of the candidate pathogens for sepsis. The WGS samples were randomly

partitioned into two groups: 103 samples (78 healthy samples and 25 sepsis samples) for
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training, 53 samples (40 healthy samples and 13 sepsis samples) for testing, and 352 samples

(165 asymptomatic samples and 187 symptomatic samples) for independent validation. Due

to the imbalanced sizes of the healthy and sepsis samples, a traditional random forest may

yield biased predictions. Therefore, we employed repeated balanced subsampling to build

our sepsis diagnosis model. Specifically, a random forest model was trained using sklearn

[PVG11] on the training data with the following parameters: (1) bootstrapping was enabled;

(2) class weights were balanced; (3) in each bootstrap subsampling, the maximum sample

size was 30; (4) the number of decision trees was 500; and (5) other parameters were set

as the default values. The final decision of the random forest is reached by aggregating the

decisions of each tree with the majority vote. The trained random forest was then evaluated

on the independent validation samples.

To distinguish cancer patients from individuals without cancer and predict their tumor

tissue of origin, we trained two random forest models on the abundance of microbes. The

cfMethyl-seq samples were randomly partitioned into three groups: 310 samples (from 210

cancer patients and 100 noncancer individuals) for training, 103 samples (from 70 cancer

patients and 33 noncancer individuals) for testing, and 30 samples (from 30 noncancer in-

dividuals) for the normalization of the microbial abundance. The random partition was

performed 10 times to obtain a stable evaluation of the performance. To detect cancer pa-

tients, we trained a random forest model using sklearn on the training data on each set of

partitions with the following parameters: (1) class weights were balanced; (2) the number

of decision trees was 2000; (3) the number of variables randomly selected at each split was
√

number of features; and (4) other parameters were set as default values. To classify the

tumor tissue of origin, we trained a random forest model for multiclass classification using

sklearn on the training data on each set of partitions with the following parameters: (1)

class weights were balanced; (2) the number of decision trees was 2000; (3) the number of

variables randomly selected at each split was
√

number of features; and (4) other parameters

were set as default values. For every plasma sample from cancer patients, the random forest
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model calculated a prediction score for each of the five cancer types, i.e., COAD, LUAD,

LUSC, LIHC, and STAD. A prediction for tissue of origin is made if the ratio between the

max prediction score and the second max prediction score is greater than 1.5; otherwise, the

sample is considered indecisive.

The testing data were left untouched for independent validation of the performance.

4.4.7 Construction of cooccurrence networks for sepsis patients and healthy

individuals

The bacterial DNA fragments in human blood may be shed from many species [KCK17].

These living bacteria are naturally present throughout the human body, from skin to viscera,

and even in environments previously considered sterile, such as blood in circulation [PAM14].

It is of great importance to understand how DNA fragments from different species with

different habitats come together. Strong inter-taxa associations in the data may indicate a

community (even including different domains of life, such as bacteria and archaea) originating

in a common niche space or perhaps direct symbioses between community members. Such

information is particularly valuable in environments in which the basic ecology and life

history strategies of many microbial taxa remain unknown. In addition, exploration of the

cooccurrence patterns between different microorganisms can help identify potential biotic

interactions, habitat affinities, or shared physiologies that could guide the development of

more focused studies or experimental settings [BBC12].

A cooccurrence network is a visualization of relationships among entities that usually

appear together. For example, it can be used to study the distribution of biotic populations

[WBS14], to predict cancer risk [ZW18] or to analyze text collections [GGG12]. We con-

structed a cfDNA-based bacterial cooccurrence network, where two species are considered to

cooccur if their abundances estimated from cfDNA are strongly correlated. Each node in the

network represents a bacterial species, while each edge represents a cooccurring relationship.
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To construct a bacterial cooccurrence network, we first generated two matrices: (1) the

observed abundance matrix O (with n species, m samples) and (2) the expected abundance

matrix N (also with n species, m samples). The latter is filled at each located sample

as predicted by a regional species distribution model (e.g., a leave-one-out LOESS model

[BBC12]). An n× n covariance matrix is calculated from either O or N by comparing rows

(i.e., the abundances of 2 species across all samples). From the inverse of this covariance

matrix (Σ), the partial correlation Cij between a pair of bacterial species is calculated as

follows:

Cij(M) =
−Σ−1ij (M)√

Σ−1ii (M)Σ−1jj (M)
,

where M is an n×m input matrix (O or N).

Both C(O) and C(N) were computed based on the above equation. Then, the standard

effect of the correlation between O and N was calculated by rescaling C(O) and C(N).

Finally, significant associations were found by calculating the p-value of the correlation

coefficient for each pair of species i and j, with the null hypothesis being that the observations

are uncorrelated. Finally, our cooccurrence network was generated by placing edges between

each pair of bacterial species with a significant link. The detailed algorithm of network

construction is described in [MBS16].

Split ID Overall COAD LUAD LUSC LIHC STAD

1 0.53 0.50 0.50 0.77 0.33 0.00

2 0.61 0.78 0.40 0.79 0.50 0.00

3 0.70 0.50 0.71 1.00 0.67 0.40

4 0.61 0.43 1.00 0.57 0.50 0.00

5 0.72 1.00 0.33 0.77 0.60 0.60

6 0.67 0.33 0.50 0.88 0.50 0.50

7 0.63 0.67 0.50 0.75 0.71 0.33
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8 0.64 0.75 0.50 0.75 0.40 0.50

9 0.56 0.57 0.17 0.87 0.50 0.29

10 0.64 0.78 0.33 1.00 0.40 0.20

Table 4.1: Testing accuracy of the cancer location model on the ten random splits. The

second column shows the overall accuracy of all five cancer types. The third to seventh

columns show the accuracy for individual cancer types, which is the fraction of patients

with correctly predicted specific cancer type.

Order Bacteria species MeanDecreaseGini

1 Enterococcus faecium 0.87608067

2 Escherichia coli 0.71117135

3 Pseudomonas sp. TKP 0.66447362

4 Delftia tsuruhatensis 0.65595001

5 Xanthomonas campestris 0.37769903

6 Pseudomonas aeruginosa 0.33547929

7 Bacteroides fragilis 0.30124156

8 Pseudomonas pseudoalcaligenes 0.25519889

9 Gardnerella vaginalis 0.24256536

10 Staphylococcus aureus 0.24053659

11 Pseudomonas putida 0.23099539

12 Streptococcus mitis 0.21879577

13 Propionibacterium sp. oral taxon 193 0.2152918

14 Lawsonella clevelandensis 0.21400124

15 Mycoplasma mycoides 0.21099248

16 Lactobacillus sakei 0.20126349

17 Acinetobacter baumannii 0.19489872
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18 Pseudomonas mendocina 0.19331255

19 Delftia sp. Cs1-4 0.17978586

20 Bifidobacterium adolescentis 0.17706793

21 Streptococcus salivarius 0.17694939

22 Rhodococcus erythropolis 0.16457406

23 Comamonas testosteroni 0.16025665

24 Enterobacter cloacae 0.1599143

25 Klebsiella pneumoniae 0.1584747

26 Thermus scotoductus 0.15744758

27 Rothia mucilaginosa 0.14895304

28 Cupriavidus metallidurans 0.14692427

29 Rothia dentocariosa 0.14353751

30 Alicycliphilus denitrificans 0.1392072

31 Roseburia hominis 0.13707822

32 Elizabethkingia miricola 0.13525933

33 Acidovorax sp. RAC01 0.13150666

34 Staphylococcus pasteuri 0.12650772

35 Streptococcus parasanguinis 0.12640767

36 Bacteroides ovatus 0.12301837

37 Burkholderia cepacia 0.11336059

38 Sphingomonas sp. MM-1 0.11327717

39 Bradyrhizobium sp. S23321 0.11002664

40 Paraburkholderia phytofirmans 0.10998147

41 Pediococcus pentosaceus 0.10624074

42 Cutibacterium avidum 0.10558094

43 Pseudomonas antarctica 0.10112312
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44 Streptococcus pneumoniae 0.10109002

45 Klebsiella sp. LTGPAF-6F 0.09607979

46 Thermus parvatiensis 0.09532804

47 Staphylococcus haemolyticus 0.09349563

48 Bacillus cereus 0.09160156

49 Thermus thermophilus 0.09159278

50 beta proteobacterium CB 0.09100694

51 Leuconostoc mesenteroides 0.08929793

52 Pseudomonas stutzeri 0.08780254

53 Burkholderia sp. OLGA172 0.08748431

54 [Eubacterium] eligens 0.08709432

55 Staphylococcus saprophyticus 0.08453405

56 Bacteroides thetaiotaomicron 0.08329281

57 Enterobacter sp. HK169 0.08150616

58 Janthinobacterium sp. 1 2014MBL MicDiv 0.08144096

59 Acinetobacter sp. TTH0-4 0.08094619

60 Kytococcus sedentarius 0.08091638

61 Shigella boydii 0.0784422

62 Cupriavidus necator 0.0709098

63 Staphylococcus argenteus 0.06985492

64 Geobacillus sp. 12AMOR1 0.06619285

65 Leuconostoc carnosum 0.06254964

66 Veillonella parvula 0.06240773

67 Alistipes finegoldii 0.0619031

68 Klebsiella oxytoca 0.05933975

69 Pseudomonas resinovorans 0.05539547

127



70 Collimonas fungivorans 0.05425206

71 Ralstonia insidiosa 0.05422794

72 Corynebacterium diphtheriae 0.05386443

73 Ruminococcus bicirculans 0.0536176

74 Limnohabitans sp. 103DPR2 0.05199756

75 Haemophilus parainfluenzae 0.05197863

76 Finegoldia magna 0.05057758

77 Sphingobium sp. EP60837 0.04996478

78 Sphingopyxis fribergensis 0.04992504

79 Haemophilus influenzae 0.04974396

80 Shewanella sp. ANA-3 0.04705159

81 Streptococcus gordonii 0.045204

82 Lactobacillus johnsonii 0.04479736

83 Enterobacter cloacae complex Hoffmann clus-

ter III

0.0440336

84 Sphingobium baderi 0.04153171

85 Pseudomonas mandelii 0.04068203

86 Streptococcus sp. I-P16 0.04061352

87 Prevotella denticola 0.04037215

88 Flavobacterium sp. PK15 0.04015331

89 Enterobacter asburiae 0.04012392

90 Corynebacterium ureicelerivorans 0.03939868

91 Cronobacter sakazakii 0.0393335

92 Citrobacter koseri 0.03923981

93 Streptococcus sp. oral taxon 431 0.03712368

94 Azospira oryzae 0.03674209
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95 Pseudomonas sp. CCOS 191 0.03654554

96 Rhodopseudomonas palustris 0.03575288

97 Sphingobium sp. RAC03 0.03457213

98 Enterobacter hormaechei 0.03409861

99 Parabacteroides distasonis 0.03332963

100 Streptococcus sanguinis 0.03274637

101 Pseudomonas trivialis 0.03242779

102 Janthinobacterium agaricidamnosum 0.0323105

103 Enterococcus faecalis 0.03132254

104 Streptococcus oralis 0.03108336

105 Filifactor alocis 0.03067699

106 Xanthomonas axonopodis 0.03062822

107 Ramlibacter tataouinensis 0.03051396

108 Acinetobacter nosocomialis 0.02943133

109 Shewanella frigidimarina 0.02893095

110 Burkholderia seminalis 0.02891773

111 Carnobacterium maltaromaticum 0.02824715

112 Bacteroides cellulosilyticus 0.02764164

113 Bradyrhizobium oligotrophicum 0.02761387

114 Propionibacterium freudenreichii 0.02739786

115 Burkholderia multivorans 0.02731146

116 Barnesiella viscericola 0.02720064

117 Lactobacillus buchneri 0.02719418

118 Ralstonia pickettii 0.0269362

119 Shigella dysenteriae 0.02646106

120 Fusobacterium nucleatum 0.0264442

129



121 Corynebacterium aurimucosum 0.02634571

122 Methylobacterium sp. C1 0.02595359

123 Leuconostoc gelidum 0.02594945

124 Corynebacterium kroppenstedtii 0.02590795

125 Polynucleobacter asymbioticus 0.0257555

126 Pseudoalteromonas luteoviolacea 0.02470581

127 Verminephrobacter eiseniae 0.02461531

128 Acinetobacter pittii 0.02431786

129 Caulobacter segnis 0.02362301

130 Bifidobacterium bifidum 0.02255195

131 Weissella cibaria 0.02249466

132 Variovorax paradoxus 0.02247406

133 Shigella flexneri 0.02227876

134 Streptococcus sp. A12 0.02226548

135 Akkermansia muciniphila 0.0218752

136 Brevundimonas subvibrioides 0.02153242

137 Bacillus pseudofirmus 0.02091149

138 Streptococcus pseudopneumoniae 0.02031545

139 Staphylococcus equorum 0.02009038

140 Morganella morganii 0.01982859

141 Lactobacillus acidophilus 0.0194956

142 Bradyrhizobium icense 0.01915556

143 Pseudomonas balearica 0.01906781

144 Thiomonas intermedia 0.01892311

145 Streptococcus intermedius 0.01886052

146 Corynebacterium singulare 0.01731943
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147 Rhodoluna lacicola 0.01617393

148 Sodalis glossinidius 0.01557276

149 Dechloromonas aromatica 0.01504293

150 Eggerthella lenta 0.01411821

151 Streptococcus sp. I-G2 0.01403761

152 Burkholderia ambifaria 0.01323175

153 Bacillus bombysepticus 0.01309759

154 Pseudomonas alcaligenes 0.01203509

155 Raoultella ornithinolytica 0.01188065

156 Streptococcus constellatus 0.01176466

157 Pseudomonas rhizosphaerae 0.01173927

158 Corynebacterium urealyticum 0.0117

159 Lactobacillus brevis 0.01132764

160 Salmonella enterica 0.01126597

161 Paracoccus denitrificans 0.0111644

162 Pseudarthrobacter phenanthrenivorans 0.01040193

163 Escherichia fergusonii 0.01032787

164 Leclercia adecarboxylata 0.00922222

165 Burkholderia sp. RPE64 0.00887778

166 Pseudomonas sp. FGI182 0.00868713

167 Burkholderia sp. CCGE1003 0.00857079

168 Pseudomonas plecoglossicida 0.00845887

169 Enterobacter xiangfangensis 0.00834994

170 Shewanella sp. MR-4 0.00832222

171 Psychrobacter cryohalolentis 0.00815079

172 Burkholderia sp. KJ006 0.00796854
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173 Thioalkalivibrio sulfidiphilus 0.0079

174 Pectobacterium carotovorum 0.00777794

175 Thermobispora bispora 0.00738713

176 Ornithobacterium rhinotracheale 0.00711111

177 Lachnoclostridium sp. YL32 0.00702814

178 Enterobacter kobei 0.00654545

179 Odoribacter splanchnicus 0.00615327

180 Nitrosomonas europaea 0.00599394

181 Acidipropionibacterium acidipropionici 0.0059404

182 Pseudomonas parafulva 0.00593333

183 Sphingorhabdus sp. M41 0.00589286

184 Leptotrichia buccalis 0.00563636

185 Neisseria gonorrhoeae 0.00555128

186 Enterobacter sp. FY-07 0.00550327

187 Corynebacterium efficiens 0.00451128

188 Parvimonas micra 0.00451128

189 Kosakonia sacchari 0.00409091

190 Bacillus licheniformis 0.00394805

191 Arcanobacterium haemolyticum 0.00371429

192 Peptoniphilus sp. 1-1 0.0036359

193 Mobiluncus curtisii 0.00355556

194 Bifidobacterium angulatum 0.0035

195 Anaerococcus prevotii 0.00346609

196 Pseudomonas denitrificans 0.00330882

197 Shewanella sp. MR-7 0.00321905

198 Bradyrhizobium sp. CCGE-LA001 0.0032
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199 Caldicellulosiruptor lactoaceticus 0.00316484

200 Mycobacterium vanbaalenii 0.003

201 Campylobacter concisus 0.00294545

202 Aequorivita sublithincola 0.00290909

203 Streptococcus dysgalactiae 0.00288235

204 Treponema denticola 0.00276491

205 Corynebacterium uterequi 0.00274286

206 Pasteurella multocida 0.00232727

207 Lactobacillus plantarum 0.00220915

208 Flavobacterium branchiophilum 0.00213333

209 Bradyrhizobium sp. ORS 278 0.00201667

210 Thermus aquaticus 0.002

211 Leuconostoc citreum 0

212 Acinetobacter equi 0

213 Leuconostoc lactis 0

214 Renibacterium salmoninarum 0

215 Bacillus sp. OxB-1 0

216 Kocuria flava 0

217 Thalassolituus oleivorans 0

218 Isoptericola variabilis 0

219 Cloacibacillus porcorum 0

220 Burkholderia sp. CCGE1001 0

221 Parageobacillus thermoglucosidans 0

222 Exiguobacterium sibiricum 0

223 Pseudomonas oryzihabitans 0

224 Mycoplasma hominis 0
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Table 4.2: Importance of candidate bacterial species by Random Forest.

Cluster

index

Bacteria Possible antibiotics

Cluster 1 Bifidobacterium adolescentis, Bac-

teroides thetaiotaomicron, Odoribacter

splanchnicus, Bifidobacterium angula-

tum, Ornithobacterium rhinotracheale,

Lactobacillus brevis, Pseudomonas

rhizosphaerae, Flavobacterium bran-

chiophilum, Bacillus pseudofirmus,

Pasteurella multocida

aminoglycoside, ciprofloxacin, rax-

ibacuma, anti-pseudomonal peni-

cillins such as ticarcillin, doxycycline,

bordetella pertussis, metronidazole,

penicillin

Cluster 2 Sphingomonas sanxanigenens, Akker-

mansia muciniphila, Novosphingobium

pentaromativorans, Sphingomonas

wittichii, Pseudarthrobacter phenan-

threnivorans, Serratia marcescens,

Acidithiobacillus caldus, Achromobacter

xylosoxidans, Cyanobium gracile

aminoglycoside, cefotaxime, gentam-

icin, Anti-pseudomonal penicillins

such as ticarcillin

Cluster 3 Staphylococcus aureus, Sphingomonas

sp. MM-1, Sphingobium sp. EP60837,

Staphylococcus equorum, Klebsiella sp.

LTGPAF-6F, Streptococcus gordonii,

Prevotella denticola, Bradyrhizobium sp.

ORS 278

penicillin G, ciprofloxacin, 3rd gen-

eration cephalosporin, TMP/SMX,

methicillin, oxacillin, vancomycin,

nafcillin

134



Cluster 4 Escherichia coli, Pseudomonas aerug-

inosa, Ralstonia pickettii, Burkholde-

ria multivorans, Burkholderia ambifaria,

Cronobacter sakazakii, Burkholderia sp.

CCGE1003

aminoglycoside, cefotaxime, gentam-

icin, Anti-pseudomonal penicillins

such as ticarcillin, streptomycin,

piperacillin

Cluster 5 Propionibacterium freudenreichii, Strep-

tococcus mutans, Rhizobium sp. IRBG74,

Brevundimonas sp. GW460-12-10-14-

LB2, Staphylococcus lugdunensis, Pre-

votella melaninogenica, Corynebacterium

diphtheriae, Bacillus sp. ABP14, Polynu-

cleobacter necessarius, Polyangium

brachysporum, Enterococcus casseliflavus,

Bacillus bombysepticus

aminoglycoside, ciprofloxacin, peni-

cillin G, Raxibacuma, vancomycin,

doxycycline, TMP/SMX, ampicillin,

penicillin, erythromycin

Cluster 6 Barnesiella viscericola, Leuconostoc

citreum, Corynebacterium singulare,

Thermobispora bispora, Streptococcus

dysgalactiae, Pseudomonas sp. FGI182,

Thermus aquaticus, Renibacterium

salmoninarum, Treponema denticola

aminoglycoside, penicillin G, Anti-

pseudomonal penicillins such

as ticarcillin, doxycycline, ery-

thromycin, penicillin

Cluster 7 Corynebacterium ureicelerivorans,

Corynebacterium kroppenstedtii, Nitro-

somonas europaea, Arcanobacterium

haemolyticum, Thioalkalivibrio sul-

fidiphilus, Pseudomonas parafulva

aminoglycoside, Anti-pseudomonal

penicillins such as ticarcillin, ery-

thromycin, penicillin
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Cluster 8 Enterobacter hormaechei, Enterobacter

xiangfangensis, Enterobacter kobei, So-

dalis glossinidius, Enterobacter sp. FY-

07

amoxicillin and clavulanic acid

+ gentamicin/ciprofloxacin,

second/third generation

cephalosporin excluding cef-

tazidime gentamicin/ciprofloxacin,

piperacillin/tazobactam

Cluster 9 Mycoplasma mycoides, Bacteroides frag-

ilis, Cupriavidus necator, Carnobac-

terium maltaromaticum, Lachnoclostrid-

ium sp. YL32, Verminephrobacter eise-

niae, Sphingorhabdus sp. M41, Pseudoal-

teromonas luteoviolacea

doxycycline, metronidazole, borde-

tella pertussis, erythromycin

Cluster

10

Acinetobacter oleivorans, Leptothrix

cholodnii, Yersinia intermedia,

Thiomonas intermedia, Caulobacter

sp. K31, Shewanella putrefaciens,

Nitrobacter winogradskyi

streptomycin, tetracyclin, penicillin,

chloramphenicol, aminoglycosides

Cluster

11

Ruminococcus bicirculans, Pseudomonas

plecoglossicida, Pseudomonas denitrifi-

cans, Corynebacterium urealyticum, She-

wanella sp. MR-7, Mycobacterium van-

baalenii, Thalassolituus oleivorans

rifampicin, Anti-pseudomonal peni-

cillins such as ticarcillin, isoni-

azid, aminoglycoside, pyrazinamide,

ethambutol, erythromycin, penicillin

Cluster

12

Bifidobacterium bifidum, Lactobacillus

acidophilus, Bacillus cereus, Anaerococ-

cus prevotii, Parvimonas micra, Pecto-

bacterium carotovorum

Doxycycline, Ciprofloxacin, peni-

cillin, Raxibacuma
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Cluster

13

Pseudomonas balearica, Pseudomonas

trivialis, Salmonella enterica, Pseu-

domonas alcaligenes, Burkholderia sp.

RPE64, Aequorivita sublithincola

Anti-pseudomonal penicillins such

as ticarcillin, ciprofloxacin, ceftri-

axone, aminoglycoside, TMP/SMX,

azithromycin

Cluster

14

Leuconostoc carnosum, Lactobacillus fer-

mentum, Sphingopyxis alaskensis, Strep-

tococcus anginosus, Leuconostoc sp. C2

penicillin G

Cluster

15

Eubacterium eligens, Psychrobacter

cryohalolentis, Eggerthella lenta, Es-

cherichia fergusonii, Peptoniphilus sp.

1-1

cefotaxime, gentamicin

Cluster

16

Thermus thermophilus, Enterococcus

faecalis, Corynebacterium aurimucosum,

Acinetobacter equi, Bacillus sp. OxB-1

aminoglycoside, Ciprofloxacin, van-

comycin, Doxycycline, erythromycin,

ampicillin, penicillin, Raxibacuma

Cluster

17

Pseudomonas mandelii, Streptococ-

cus constellatus, Caldicellulosiruptor

lactoaceticus, Leptotrichia buccalis

Anti-pseudomonal penicillins such as

ticarcillin, penicillin G, aminoglyco-

side

Cluster

18

Xanthomonas campestris, Methylophaga

frappieri, Leuconostoc lactis, Xan-

thomonas alfalfae

second/third generation

cephalosporin and metronidazole

+/- gentamicin

Cluster

19

Weissella cibaria, Streptococcus sp. I-

P16, Enterobacter sp. HK169, Xan-

thomonas axonopodis

penicillin G, amoxicillin and clavu-

lanic acid +/- gentamicin

Table 4.3: The cluster information of the bacterial co-occurrence network.
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Figure 4.1: An illustration of our approach to rapid sepsis diagnosis and cancer detection

based on cell-free DNA (cfDNA). (a) Illustration of cfDNA data processing pipeline. All hu-

man reads were removed from the cfDNA sequencing data by read alignment to the reference

human genome. Nonhuman reads were assigned to different microbial genomes based on the

sequence context. From the read assignment, the normalized abundance of the microbes

was calculated. (b) Illustration of the rapid sepsis diagnosis approach. Our diagnosis strat-

egy is a two-step procedure based solely on cfDNA from blood. First, we select candidate

pathogenic bacterial species through statistical analysis (see section 4.4). Second, a random

forest model is used to calculate a diagnosis score for each sample. (c) Illustration of the

cancer detection approach. A random forest model is used to distinguish cancer patients

and healthy individuals. For the cancer patients, a second random forest model is used to

calculate the prediction score for the cancer type (tissue of origin, see section 4.4).
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Figure 4.2: Differential abundances of some candidate pathogenic bacterial species in heathy

and sepsis samples. The distributions of bacterial abundances for 12 candidate pathogens

are visualized as violin plots.
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Figure 4.3: Performance of a random forest classifier with balanced subsampling for identi-

fying sepsis samples and healthy samples. (a) The out-of-bag error converges to 0.16 if the

number of decision trees is over 100. (b) The average AUC curves for our diagnosis strategy

and a logistic regression scheme based on one-third of the samples reserved for testing the

model. (c) The AUC curves of our diagnosis strategy (red) and a logistic regression scheme

(blue) based on an independent validation dataset for validating the proposed algorithm.
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Figure 4.4: Bacterial cooccurrence networks constructed on the basis of cfDNA data from

normal and sepsis samples. (a) The differential cooccurrence network describing associations

between species that are only observed in the sepsis samples. (b) A partial list of clusters

(connected components) from the differential network. For each cluster, the representative

bacteria are listed.
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Figure 4.5: Performance of the cancer detection model. The receiver operating characteristic

(ROC) curve of the random forest model in testing sets of all ten random splits. The blue

band shows the confidence interval of the ROC curve.

Figure 4.6: Histograms of p-values in statistical tests of the abundance of the 200 most

important microbes from the cancer detection classifier and the cancer location classifier.

(a) The histogram of p-values from the Mann-Whitney U test of the abundance of the 200

most important microbes in the plasma samples between healthy individuals and cancer

patients. (b) The histogram of p-values from the Kruskal-Wallis test of the abundance of

the 200 most important microbes in the plasma samples from patients with the five cancer

types. (c) The histogram of p-values from the Kruskal-Wallis test of the abundance of the

200 most important microbes in the solid tumor samples from patients with the five cancer

types.
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