UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Situating GOMS Models Within Complex, Sociotechnical Systems

Permalink
https://escholarship.org/uc/item/3mz6n4d3

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 22(22)

Authors

West, Robert L.
Nagy, Gabriella

Publication Date
2000

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3mz6n4d3
https://escholarship.org
http://www.cdlib.org/

Situating GOMS Models Within Complex, Sociotechnical Systems

Robert L. West (robert_west@carleton.ca)
Department of Psychology; Carleton University
Ottawa, Canada

Gabriella Nagy (gnagy@chat.carleton.ca)
Department of Psychology; Carleton University
Ottawa, Canada

Abstract

In this paper we present a methodology for situating GOMS
models in complex sociotechnical work domains. The meth-
odology is presented within a larger theoretical framework
that relates GOMS modeling to other modeling systems ac-
cording to principled and systematic guidelines.

Increasingly, computers play critical roles in the running of
complex systems such as telecommunications networks and
nuclear power plants. However, the role of human agents in
these systems is also critical. As computer and software
technology improve we see a decrease in the number of
technical errors caused by computers, but there is also evi-
dence of a corresponding rise in errors attributable to hu-
mans (e.g., Bennett, 1998). No doubt, this is due to the in-
creasing complexity of computers and network systems.

In this paper, we consider the role of GOMS (Card,
Moran, & Newell, 1983) in designing systems situated
within complex, sociotechnical systems, that is, systems with
multiple humans and multiple computers all interacting (see
Vicente, 1999 for a more complete definition). GOMS is a
method for modeling tasks according to a human agent’s
goals, operators, methods and selection rules (John, 1995).
But in complex sociotechnical systems the task is often a
small part of a larger, distributed task. The design problem
is analogous to designing a complex operating system. Indi-
vidual programmers design different components of the
system, but each time a new component is added it is unclear
if it will create a conflict in the system. Similarly, changing
the way an individual performs a task within a complex so-
ciotechnical system can have unforeseen consequences (for
a discussion of this point and some interesting examples, see
Hutchins, 1995). To deal with this problem operating sys-
tems are beta tested. Unfortunately, changes in a sociotech-
nical system cannot be beta tested and then fixed the next
day. In fact, such changes are usually costly and time con-
suming, especially if people need training. Thus, we need a
means to evaluate changes before they are implemented.

Task Analysis

A task analysis is important for understanding the sort of
knowledge driven tasks common in technical areas and large
organizations. By knowledge driven we mean that the agent
knows, implicitly and/or explicitly, the steps that must be
completed. The need for a task analysis presupposes that the

process for completing the task quickly and without error is
not common knowledge. Many studies have found that
experts often have specialized knowledge that is not
expressed in any manual, but is nevertheless crucial for
completing the task in an acceptable manner (Mayer, 1997).
This is particularly true of tasks situated in sociotechnical
environments, which often involve a considerable amount of
undocumented knowledge concerning how the various
agents, computers, and artifacts involved are coordinated to
complete the task.

The result of a task analysis is a model, which is then used
to simulate changes in the system. The level of detail of the
model will depend on the modeler’s goals, and the
representation of the model can range from a mental
representation, to a paper and pencil representation, to a
computerized representation. Furthermore, the goal may be
to represent the whole task or only the major components,
relationships, and/or functions that characterize the task. The
important point is that this process allows some level of
foresight into the effect of the proposed changes.

In this paper, we will be concerned with "modeling
systems". This term is further defined below but for now we
can say that a modeling system tells the researcher what
types of behaviors to observe and how to organize the data
into a functioning model. Thus, a modeling system both
guides the task analysis and produces the model. A modeling
system could be quite formal (e.g., NGOMSL, Kieras, 1988)
or very informal, based on common sense notions about
what is important in the task (in this case the researcher may
be unaware they are using a modeling system). However,
both our formal and informal modeling systems have
difficulty coping with complex, distributed systems. One
reason for this is that it is easier to think in terms of tasks
performed by single agents than tasks distributed across
multiple agents, especially when the distributed system is
not under some sort of centralized control. When agents act
locally and organize themselves, multiple different ways of
completing the task can emerge. This results in several
different levels of analysis, including the following: (1) the
knowledge level, the steps that must be taken to complete
the task, (2) variations on a theme, the different ways the
task can be done given the constraints of the knowledge
level, and (3) the different ways that agents can organize
themselves to accomplish different steps of the task. To cope
with this, a modeling system must be able to represent the

task at different levels and also be capable of integrating
factors involved in completing the task with the factors
involved with organizing and sustaining cooperation
between the agents. In this paper, we describe how GOMS
can be used to cope with this type of system, and the relative
advantages of using GOMS under these conditions.

GOMS

GOMS is a family of relatively formal modeling systems,
but we would argue that it has a special status amongst
modeling systems. In this regard, it is useful to consider
Anderson’s (1993) distinction between frameworks, theories
and models of human cognition. According to this scheme,
frameworks are “bold, general claims about cognition,” (p.
2). Theories are created by adding specific assumptions as to
how frameworks could be applied to the relevant class of
behaviors, and models are created by adding assumptions as
to how a theory could be applied to a specific situation or
task. The idea that cognition can be understood in terms of
production rules (i.e., if...then statements) is therefore a
framework, and systems embodying assumptions as to how
to use production rules are theories. However, rather than
theory, we will use the term modeling system, because we
are focusing on the process of model building, rather than on
testing theories. So, to be clear, we will define a modeling
system as a system that allows us to create a model within a
specified framework.

The general idea behind GOMS is that well learned
human behavior can be modeled using goals, operators,
methods, and selection rules (e.g., John, 1995). This claim
places GOMS clearly within the production rule framework.
Using selection rules to choose between different methods
for accomplishing a task essentially embodies the idea of the
production rule (i.e., if this, then use this method). Also,
operators are necessary for any production system to specify
how the system retrieves information from the world and
generates behaviors in the world (although operators are
sometimes not explicitly represented in production system
models of cognition, they are always assumed to exist). The
idea that people have goals, or more specifically the idea
that people create sub goals to bring them closer to their end
goals, is the only element of GOMS that is not directly tied
to implementing production systems. For example, the first
attempts at implementing production systems (e.g., SOAR,
ACT) did not contain any mechanisms for managing goals
(Anderson & Lebiere, 1998). However, as Anderson and
Lebiere (1998) point out, all of the current production
system architectures have a structure for keeping track of
goals. Thus, the idea that we use goals to organize cognition
can be considered another framework (i.e., it is a bold,
general claim about cognition). Therefore, GOMS can be
interpreted as asserting that well learned behaviors can be
captured using the combined frameworks of production rules
and goal structures. At this level, GOMS itself is a general
claim about a class of behaviors and remains at the
framework level (it is also not possible to falsify this claim
without adding further assumptions, another hallmark of the
framework level, see Anderson, 1993).

Cognitive architectures can be considered as relatively
complete modeling systems (Anderson, 1993). Unlike these

systems, GOMS has no mechanisms for constructing or
searching the problem space, it presupposes that the agent
has already learned how to get to the end goal. The key
insight, on which GOMS was founded, is that once a path
through the problem space has been learned, the complexity
of the modeling task is hugely reduced. This makes moving
from the framework level to the modeling system level
easier. In fact, the simplest possible GOMS modeling system
can be created by merely assuming the appropriate operators
exist and structuring goals by connecting them serially,
essentially creating a flow chart of goals with branching
paths gated by production rules. This type of GOMS
modeling system is frequently used, often to sketch out the
task structure before creating a more fully functional model.
Since this system has no name we will refer to it as Minimal-
GOMS.

Other, specific GOMS modeling systems, such as
NGOMSL (Kieras, 1988) and CPM-GOMS (Gray, John, &
Atwood, 1993), have more detailed assumptions that are
contained in the human information-processor (Card, et al.,
1983). In this sense, GOMS can be considered a general
outline for moving from the dual production rule/goal
framework to a specific modeling system by adding
assumptions concerning the human information-processor.
Following from this, any model that (1) is explicitly or
implicitly based on the dual production rule/goal framework,
(2) refers only to knowledge driven behaviors (i.e., no
learning or problem solving), and (3) makes assumptions
concerning the behavior of the human agents involved, can
be interpreted as a type of GOMS model. For lack of a
better term, we will refer to models that fall into this
category, but have not been explicitly created and labeled as
GOMS models, as GOMS-like.

Since we are currently interested in modeling errors within
complex sociotechnical systems, we searched the literature
for error modeling systems and found over 50. However,
comparing GOMS to these modeling systems it is clear that
they are not on the same conceptual level. In fact, the
product of many of the modeling systems we reviewed
would be a GOMS-like model. This issue is often the source
of confusion and contention between designers that favor
GOMS and designers that do not. It is not uncommon to
hear people say that modeling system X is a better approach
than GOMS, when in actuality modeling system X is a
system that produces GOMS-like models.

Part of the problem seems to have arisen from the
association of GOMS with models of how long it takes to
perform isolated tasks described at the level of individual
mouse clicks and button presses. GOMS is particularly good
at describing low level activities because the operators are
relatively simple and can be described with a reasonable
accuracy in the human information-processor (Card, et al.,
1983). Since a lot of research, explicitly represented as
GOMS research, was done at this level, there is a strong
tendency for people to view GOMS as synonymous with the
use of low level operators. In actuality, the grain size of the
operators should depend on the goals of the researcher
(West, Wong, and Vera, 1998).

In terms of complex sociotechnical systems, it is unlikely
that GOMS could produce very accurate time estimates as it

is often not possible to assign very precise times to high
level social operators (e.g. how long does it take arrange a
lunch meeting with a colleague), although, it should still be
possible to get good time estimates for well-defined sub
tasks. However, the value of GOMS in a multi-agent system
is that is allows us to examine the goals and methods of
individual agents, and how these relate to the overall task.
For example, multi-agent tasks are often described using a
critical path analysis. In the case of a centrally controlled
task the critical path represents the plan of the central
controller. However, when the task is not centrally
controlled (i.e., a complex system) the critical path is an
emergent property of the interactions between the agents. A
multi-agent GOMS model can allow us to examine these
interactions for inefficiencies, goal conflicts, and sources of
error.

Complex Sociotechnical Systems

One of the most influential modeling systems in terms of
modeling complex systems has been Rasmussen’s decision
ladder model (1980). As Vicente (1999) points out, the step
ladder model is not really a model, but rather a template for
creating models. Essentially, it is a generic model of
information processing that can guide the modeler in terms
of the general form a model should take (Vicente, 1999).
We believe that the template approach is important for
modeling complex, sociotechnical systems, and, more
specifically, that it can be used to effectively situate GOMS
models within such systems. As Vicente (1999) points out,
work within a sociotechnical system cannot be fully
captured by GOMS or GOMS-like models because this type
of work involves ongoing learning and problem solving,
which these models cannot handle. However, as John (1995)
points out, GOMS can be very useful for elucidating the
components of a task that are amenable to GOMS modeling.
In other words, GOMS doesn’t have to be the whole
solution, but can be part of the solution.

Another important aspect of sociotechnical modeling
systems is that they need to be multifaceted in focus. For
example, Vicente’s modeling system is actually a collection
of modeling systems for examining various aspects of the
sociotechnical environment, including: the work domain,
control tasks, strategies, social organization and
cooperation, and worker competencies. Likewise, a
modeling system advocated by a well known consulting firm
in this area involves a work flow model, a cultural work
model, a sequence work model, an artifact model, and a
physical environment model (this system is adopted from
Beyer & Holzblatt, 1997). What GOMS adds is the potential
to integrate knowledge gained in these different domains
into a unified model of the knowledge driven portions of the
process. Our approach to this is to use a template that (1)
allows the task to be described at different levels of
complexity and (2) describes how people situate knowledge
driven tasks within a complex environment involving
ongoing learning and problem solving.

The Basic Model

Our modeling system is closely related to Norman's
(1986) seven-stage model of user activities. However,
similar to Rasmussen's decision ladder model, we intend our
model to be a generic template for information processing in
general, rather than a specific model of human cognition.
The framework, which is described in Figure 1, revolves
around the goal, create-plan. This goal is meant to deal with
learning and problem solving, so overall it lies outside the
reach of GOMS. One approach to modeling this component
would be to use a production/goal based cognitive
architecture (e.g., ACT-R, SOAR). This would tie in nicely
with the GOMS aspects of the model since they share a
common framework, however, any approach can be used,
including treating create-plan as a black box.

In our current work on telecommunications network
maintenance and management we are using Vicente's (1999)
work domain analysis to provide the underpinnings for the
create-plan component. This involves understanding the
constraints imposed by the sociotechnical system and, rather
than specifying what a worker should do, specifying what a
worker should not do. For example, the main constraint that
we have identified is that of the working path (the path
through the network carrying live traffic) and the protection
path (a path to which the traffic could be shifted). This
constraint is critical because whenever work needs to be
done or a problem occurs the traffic must be rerouted along
a protection path. We are also using Hutchins’ (1995)
concept of organizational learning to look at how workers
pick up on this constraint. GOMS modeling, based on the
Figure 1 template, provides the means for describing and
evaluating how knowledge driven, procedural tasks fit into
the picture. The use of GOMS is very important since this
type of sociotechnical system involves many knowledge
driven components.

From the perspective of the rest of the model, the function
of the create-plan component is to output a knowledge
driven plan. The plan may be complete and well thought out
but in many cases this will not be the case. Essentially, the
cycle embodied by the template is to continue with a plan
until it is evaluated as inappropriate or is completed. To
further structure this process we need to invoke another
GOMS concept, the unit task (see Card, et al., 1983). In
theory, a plan could be of any size, but we conceptualize
plans as unit tasks in the sense that they should correspond
to actions that the agent believes can be accomplished
without a terminal interruption. Thus, the size of the plan is
determined by the nature of the task. For example, the
results of Kvan, West, and Vera (1998) indicate that
architects in the process of collaborating over a shared
whiteboard use very short plans, whereas maintenance
procedures on network hardware can involve lengthy
procedures that must be completed once started.

Another important function of the create-plan component
is to integrate technical, environmental, and social aspects of
the task. Thus, in addition to technical procedures a plan
should include how to deal with issues arising from the
physical environment the task is situated in, as well as the
social issues involved in getting cooperation from other
agents. As West, et al. (1998) argued, in many cases there
are routine ways of dealing with these issues if they

represent routine occurrences. However, in other cases these
issues may be dealt with in unique, creative ways. Either
way, the model is capturing valuable information (i.e.,
routine solutions or different case based solutions). Note,
though that we are not saying that plans are always complete
in this sense. In many cases, plans fail because they do not
include ways to deal with problems arising from the physical
or social environment. In this case, the system returns to the
create-plan process to fix the plan or come up with another.

The other components of the template are described
below:

1. Retrieve-next-action — This is meant to reflect the fact that
the representation of the plan may be distributed. It is
often the case that workers do not have all the
knowledge necessary for the task, but they know where
to get it (e.g, memory, personal notes, manuals,
colleagues).

2. Execute-action — This step refers to firing of operators. As
is normally the case in GOMS models, operators can be
either physical (e.g., move the mouse), perceptual (e.g.,
search the screen), or cognitive (e.g., add two numbers).
Operators can also vary in grain size and represent
complex tasks. For example, an architect might use an
operator, make-aesthetic-judgement. Such an operator
could be represented in terms of the % chance that such
a judgement will be positive, or may merely represent
the fact that the judgement takes place at a certain point
in the model. The grain size and function of the
operators will depend on the modeler's goals (see West,
et al., 1998 for a discussion about high level operators).
This step is also where communication is initiated
between agents by using an operator to place messages
in the environment (e.g., voice, email, etc.).

3. Update-situation-knowledge — After having acted in some
way this section refers to updating the task knowledge
to reflect these changes and any other relevant changes
that may have occurred during that time (including
messages from other agents). For isolated, low level
actions this step could be assumed to occur as the
actions are being executed. For complex, interactive
actions the process of checking may be quite extensive,
and may also involve retrieving knowledge from
various sources. In this case adding a box above it
entitled, retrieve-data, might be a good idea.

4.Evaluate — Like create-plan, this box may involve actions
that step outside of GOMS. If the situation has changed
in an unexpected way there must be a judgement as to
whether or not the plan is still appropriate. By
definition, unexpected changes will not be part of the
plan (Vicente, 1999), so there is a need to step outside
of the plan into problem solving or creative thinking to
make this judgement. However, it is possible to handle
expected or common problems within a plan. Another
issue that is important here is the agent’s evaluation of
risk. Human agents will often engage in risky behaviors,
especially if they are under time pressure. Often
workers will have heuristics for evaluating risk that can
be captured by GOMS.

5. Execute-Patch — if there is a known and immediate fix for
a problem the agent goes to execute-patch where the
patch with highest probability of success is executed.
These known patches can be considered to be implicitly
part of the plan. If there is no immediate fix the agent
goes to create-plan where a known fix is inserted into
the plan to be executed later, or the plan is recreated to
cope with the problem.

6. Parallel External Monitoring (PEM) — This module
operates in parallel, monitoring the environment for
alarms. Creating the model for PEM involves
understanding the extent to which the agent can pay
attention to the task and also to the general
environment. For example, an alarm siren could be
assumed to be always picked up, whereas an alarm on a
screen could only be picked up when the agent is
looking at the screen. The other aspect of the PEM
model is that it contains rules for when to interrupt the
system and go directly to update-situation-knowledge,
and when to store the information in memory until the
update-situation-knowledge process comes up. The goal
of this model is to capture expert knowledge about
monitoring and interruptions.

Create
> Plan

v

Retrieve
Next
Action

Parallel
External +
Monitor

no patch

Execute
Action

v

Update
Situation
Knowledge

v

Evaluate
Not OK)\ OK

Figure 1. A generic Minimal-GOMS template

Execute
Patch >

Multiple Agents

So far we have dealt only with modeling an individual. In
fact, the original version of this template was developed in
an attempt to make sense of data gathered from pairs of
architects working collaboratively over a shared whiteboard.
As reported in Kvan, West, and Vera (1998), the architects
never developed a plan for the collaboration, instead they

dealt with issues and organized themselves as they went
along. This resulted in very different organizational
structures, all of which were difficult to model. To simplify
things a version of the Figure 1 template was developed to
first understand the behavior of the individual architects. To
create a model of two agents working together you just
simply add another template. No lines of communication
need to be drawn between the two templates. Instead what is
needed is a simple model of the environment that the agents
can act on by altering the physical components of the task
and by creating messages (e.g., voice, notes, email, etc.).
Since the agents are modular they can be added or deleted
without too much trouble, so it is possible to have more than
two agents.

Using this approach, it was obvious that architects
generate very small plans with regard to the task (e.g., draw
box at location X) that serve a constantly evolving creative
vision. Thus, low level GOMS models of the task
components, as defined by the plan size, would be
appropriate. However, in addition to creating objects the
architects also needed to understand the objects that their
partner was creating. This caused a problem in one
condition of the experiment in which the architects used a
chat line to communicate. To attach a message to an object
(e.g., “what is that?”") they would either have to describe the
object in the message or tell the other person to watch the
their whiteboard pointer while they pointed (the white board
could get quite complex in terms of the number of objects
on it). A solution that would involve fewer steps would be to
attach a text box to the pointer to combine the activities of
message passing and pointing. This particular solution is not
complex, but recognizing the need for it was facilitated by
integrating the collaborative elements of the task into the
model. Also, notice that although the pointing/messaging
solutions the architects came up with were the result of
online problem solving, once created they could be treated
and evaluated as GOMS type methods.

Distributed Agents

Although the template is useful for organizing models in
which individuals interact, only a relatively small number of
agents can be included before the model gets unwieldy. In
contrast, complex sociotechnical systems often involve a
considerable number of agents. However, we have found
that the template is scalable to what we call distributed
agents. The central premise of distributed cognition is that
cognitive agents can organize themselves to form larger,
distributed cognitive systems (Hutchins, 1995). Our
approach is to treat these distributed cognitive systems as
individual agents and apply the same template. This is not to
say that there are no differences between brain based
cognition, distributed cognition occurring across small
groups, or distributed cognition occurring across large
groups. There are important differences between these types
of structures. However, our argument is that the template
captures something basic about the way cognitive systems,
in general, deal with interactive, knowledge driven tasks.
We tried this approach at Oxfam, Hong Kong, for
modeling the process of deciding how to deliver aid to flood
victims in China and found that it simplified the process

considerably (West & Yeun, 1999). It also brought to our
attention the distinction between distributed agents and
official groups defined within the management structure
(i.e., specific departments and their subdivisions). There is a
strong tendency for organizations to understand themselves
in terms of their official subdivisions, and this information
should be part of a complex systems task analysis. However,
the goal of GOMS is to build task models, not
organizational models. Therefore, a distributed agent is
meant to map onto agents that function together to complete
a particular task, and will not necessarily map onto a
particular department or section. This also means that a
person may be a part of different distributed agents
depending on the task they are working on. One benefit of
this type of analysis is that it can provide insight into the
relationship between the task and the management structure.

Following this approach, it is possible to create a higher
level model describing the interaction between distributed
agents. As with individual human agents, the approach is to
represent each distributed agent using the template structure,
with communication occurring by placing messages in the
environment. Also note that it is possible to combine
distributed agents into higher level distributed agents or to
break them up into lower level distributed agents, depending
on the level of the analysis. It is also possible to mix agents
representing individuals with distributed agents. This allows
the model to focus in on an individual without representing
every other individual connected to the task.

Currently, we are using this modeling system to model
tasks involved in telecommunications network maintenance
and management. We have found that using this system
greatly simplifies the modeling process and also allows the
flexibility to address a wide variety of questions.

References

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Anderson, J. R., & Lebiere, C. (1998). The atomic
components of thought. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Bennett, J. (1998). FCC-Reportable Service Outages (3Q92-
4Q98) with Procedural errors as Root Cause. Telcodia
White Paper.

Beyer, H., & Holtzblatt, K. (1997). Contextual design: A
customer-centered approach to systems design. Morgan
Kaufmann Publishers.

Card, S. K., Moran, T. P., & Newell, A. (1983). The
psychology of human-computer interaction. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Gray, W. D., John, B. E., & Atwood, M. E. (1993) Project
Ernestine: A validation of GOMS for prediction and
explanation of real-world task performance. Human-
computer interaction, 8 (3), 237-309.

Hutchins, E. (1995). Cognition in the wild. Cambridge, MA:
The MIT Press.

John, B. E. (1995). Why GOMS? Interactions. 2 (10), 80-
89.

Kieras, E. E. (1988). Towards a practical GOMS
methodology for user interface design. In M. Helander

(Ed.), The handbook of human computer interaction (pp.
135-138). Amsterdam: North-Holland.

Kvan, T., West, R. L., & Vera, A. H. (1998). Tools for a
virtual design community: Modeling the effects of
different tools on design communication. International
Journal of Virtual Reality, 3 (3), 21-33.

Mayer, R. E. (1997). From novice to expert. In M. Helander,
T.K. Landauer, and P. Prabhu (Eds.), Handbook of hu-
man-computer Interaction (pp. 781-795). Amsterdam: El-
sevier Science.

Norman, D. A. (1986). Cognitive engineering. In D. A.
Norman and S. W. Draper (Eds.), User centered system
design: New perspectives on human-computer (pp. 31-
61). Hillsdale, NJ: Lawrence Erlbaum Associates.

Rasmussen, J. (1980). The human as a systems component.
In H. T. Smith and T. R. G. Green (Eds.), Human inter-
action with computers (pp. 67-96). London: Academic
Press.

Vicente, K. J. (1999). Cognitive work analysis: Toward safe,
productive, and healthy computer-based work. Mahwah,
NJ: Lawrence Erlbaum Associates.

West, R. L., Wong, A., & Vera A. H. (1998). GOMS,
Distributed Cognition, And the Knowledge Structures Of
Organizations. Proceedings of Cognitive Science 1998.

West, R. L., & Yuen, K. L. (1999). A framework for
incorporating social context into GOMS models. Poster
presented at Cognitive Science 1999, Vancouver, B.C.

