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REVIEW Open Access

Methods to account for uncertainties
in exposure assessment in studies of
environmental exposures
You Wu1,4, F. Owen Hoffman2, A. Iulian Apostoaei2, Deukwoo Kwon3, Brian A. Thomas2, Racquel Glass1 and
Lydia B. Zablotska1*

Abstract

Background: Accurate exposure estimation in environmental epidemiological studies is crucial for health risk
assessment. Failure to account for uncertainties in exposure estimation could lead to biased results in exposure-response
analyses. Assessment of the effects of uncertainties in exposure estimation on risk estimates received a lot of attention in
radiation epidemiology and in several studies of diet and air pollution. The objective of this narrative review is to examine
the commonly used statistical approaches to account for exposure estimation errors in risk analyses and to suggest how
each could be applied in environmental epidemiological studies.

Main text: We review two main error types in estimating exposures in epidemiological studies: shared and unshared
errors and their subtypes. We describe the four main statistical approaches to adjust for exposure estimation uncertainties
(regression calibration, simulation-extrapolation, Monte Carlo maximum likelihood and Bayesian model averaging) along
with examples to give readers better understanding of their advantages and limitations. We also explain the advantages
of using a 2-dimensional Monte-Carlo (2DMC) simulation method to quantify the effect of uncertainties in exposure
estimates using full-likelihood methods. For exposures that are estimated independently between subjects and are more
likely to introduce unshared errors, regression calibration and SIMEX methods are able to adequately account for
exposure uncertainties in risk analyses. When an uncalibrated measuring device is used or estimation parameters
with uncertain mean values are applied to a group of people, shared errors could potentially be large. In this
case, Monte Carlo maximum likelihood and Bayesian model averaging methods based on estimates of exposure
from the 2DMC simulations would work well. The majority of reviewed studies show relatively moderate changes
(within 100%) in risk estimates after accounting for uncertainties in exposure estimates, except for the two studies
which doubled/tripled naïve estimates.

Conclusions: In this paper, we demonstrate various statistical methods to account for uncertain exposure estimates in
risk analyses. The differences in the results of various adjustment methods could be due to various error structures in
datasets and whether or not a proper statistical method was applied. Epidemiological studies of environmental
exposures should include exposure-response analyses accounting for uncertainties in exposure estimates.

Keywords: Environmental exposure, Radiation exposure, Risk assessment, Uncertainty, Measurement error, Regression
calibration, Simulation-extrapolation, Monte Carlo maximum likelihood, Bayesian model averaging
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Background
Environmental epidemiological studies are designed to
examine the impact of potentially toxic exposures on
the health of occupationally exposed workers and mem-
bers of the public [1]. These studies provide valuable in-
formation to public health authorities, especially with
regard to health risks of hazardous environmental expo-
sures [2]. The exposure estimate in such studies is usually
a complex system which describes physical, chemical or
biological characteristics of hazardous substances along
with their transport mechanisms in the general environ-
ment or workplace over time and space. In addition, the
role of individuals needs to be considered in exposure esti-
mation to determine the mechanism of uptake as well as
the amount of uptake of toxic substances by the human
body. Such complex processes lead to formidable chal-
lenges in exposure estimation as well as make the issue of
estimation error unavoidable.
In the past two years, about 2000 papers have been pub-

lished which included some kind of risk analysis of the ef-
fects of environmental exposures. However, only 39 of
these publications mentioned that ‘measurement error’ or
‘uncertainties’ may exist in exposure assessments. A
smaller amount of these publications (15) have assessed
the effect of measurement and/or estimation errors on
risk estimates. Failure to account for uncertainties in ex-
posure estimation may lead to biased results and undue
confidence in their accuracy in the subsequent
exposure-response analyses. As a result, inaccurate infor-
mation about the risks of exposures may be distributed to
other scientists, the public and to decision makers. The
three main effects of performing an exposure-response
analysis based on the error-prone exposure estimates are:
(a) biased estimation of exposure-response parameters, (b)
reduction of statistical power, and (c) hidden true
exposure-response features (e.g., true exposure-response
is distributed with a certain cyclic variation pattern such
as sinusoidal trend, however, this feature may be masked
if exposure is estimated with errors) [3].
Ionizing radiation is a known and well-studied carcino-

gen [4]. The effects of potential errors in exposure estima-
tion on the radiation dose-response has been debated in

radiation epidemiology for a number of years [5]. The
process of estimation of radiation doses is usually subject
to various sources of uncertainties [6, 7]. Little et al.
(2015), Land et al. (2015) and others used a variety of stat-
istical methods to examine the impact of uncertainties in
individual dose estimates on risk estimates in different
populations exposed to ionizing radiation [8, 9]. However,
the topic of uncertainties in exposure estimation is not
commonly considered for other exposure types in envir-
onmental epidemiological studies. The goal of this paper
is to introduce and review various error types in exposure
estimation as well as the statistical approaches to account
for exposure estimation errors in risk analyses. The ap-
proaches reviewed are regression calibration, simulation-
extrapolation, Monte Carlo maximum likelihood and
Bayesian model averaging. We will summarize their ad-
vantages and limitations as well as provide suggestions for
application of each method to other relevant scenarios in
environmental epidemiological studies.

Main text
Exposure uncertainties could be evaluated based on inves-
tigator’s knowledge about distribution of each parameter
required to estimate individual exposure values [10]. The
various sources of exposure estimation errors may result
in different types of errors which would require different
approaches to minimize their effects on risk estimates. In
this section, different error types in exposure estimation,
statistical methods to account for exposure estimation er-
rors and representative studies that applied these methods
are reviewed. Figure 1 shows a diagram of various types of
exposure estimation errors (adapted from [7]). Potential
sources and relevant examples of each type of error are
described in Table 1. Representative studies in radiation
epidemiology and other environmental epidemiological
fields are listed in Tables 2 and 3, respectively.

Error types
Uncertainty vs. variability
“Uncertainty” is sometimes defined as all possible sources
that challenge the study’s validity (e.g., [11]). In such cases,
variability is considered a special type of uncertainty.

Fig. 1 A diagram of general error types in exposure measurements
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However, the U.S. Environmental Protection Agency
(EPA) has suggested that researchers should follow the
definitions of uncertainty and variability recommended by
National Research Council (NRC), which distinguish the
natures of these two error types ([12, 13]). According to
the NRC (1994) definition, “uncertainty” is defined as a
lack of precise knowledge that is presented during expos-
ure assessment procedures and is due to absence of or im-
precise measurements, observations or information
pertinent to the assessment question. However, variability
in exposure reflects the inherent heterogeneity of the ex-
posure across individuals. Inter-individual variability of
the unknown true exposure or dose will still exist due to
randomness even if all other identified exposure charac-
teristics (such as sex, age, life-style, location of residence,
diet, job identifiers, etc.) are identical across a set of indi-
viduals [5, 7, 12].

Shared errors vs. unshared errors
Shared uncertainties are introduced when there is in-
complete knowledge about model parameters that are
used to estimate the exposure of a subgroup of individ-
uals in a cohort. As a limit, uncertainties can be shared
among parameters that apply to all members of the co-
hort (i.e., the subgroup can be equal to the entire co-
hort). The true values of these parameters are unknown
but fixed (i.e., not varying on an individual-by-individual
basis). The errors in these parameters lead to systematic

errors in exposure estimates of all subgroup members
[7]. In epidemiological studies, shared error (systematic
error) refers to bias. Unshared errors, which usually refer
to random errors, are the uncertainties that arise from
parameters that vary independently between subjects.
An unshared error could be random, which is usually
classified into two types: classical error and Berkson
error. It also could be non-random (e.g., errors in per-
sonal residence history records) because the true resi-
dence information is fixed to a specific individual [7].

Classical error vs. Berkson error
Both classical error and Berkson error are types of un-
shared random error. Classical error stems from an impre-
cise measuring device that is used to estimate individual
exposure. It is also introduced by over-estimation of
inter-individual random variability of true exposure. This
error is most commonly defined as a situation when there
are repeated measurements which vary around the un-
known true value for each individual. Berkson errors are
introduced when the same approximate exposure value
(usually the arithmetic mean value for a group) is assigned
to each member of a cohort sub-group who share similar
exposure characteristics. The true exposure values for in-
dividuals in this group are unknown, but vary around the
assigned value [14]. Examples of each error type are given
in Table 1.

Table 1 Possible sources and examples for each error type

Error Types Possible Sources Examples

Variability Differences in individual’s location, exposure or behavior,
randomness, etc.

Individual-specific exposure estimates differ with distances from the
pollutant source [12]; Exposure to pesticides or bacteria may vary by
season [12]; Different patterns of food intake may result in different
exposures across individuals [12].

Uncertainty Lack of knowledge in specifying exposure pathways,
simplified model assumptions, failure to account for
possible correlations between variables, etc.

There is uncertainty in the level of exposure to insecticide sprays due to
the unknown exposure pathway (inhalation, dermal contamination or
both) [61]; There is uncertainty when calculating one’s inhalation rate
because of the failure to account for the dependency of body weight and
breathing volume [61]; There is uncertainty in the estimated room air
concentration because of the unknown release rate of the chemical. [61].

Shared Error Incomplete knowledge about the parameters that affect
the exposure measurements of group.

Inaccurate estimations of the ground deposition of certain contaminants
may affect the estimation of exposure for all people who live in the same
area [18]; Errors from an uncertain of a biased measuring device when it is
used to a group of people [54].

Unshared Error Lack of knowledge about the parameters that vary
randomly between subjects.

See the examples for classical error, Berkson error and unshared
non-random error.

Classical Error Imprecise measuring device, repeated measurements
that vary around the true value, etc.

Using the replicated urinary nitrogen as a measured biomarker to
investigate the true long-term dietary protein intake, etc. [3, 44]

Berkson Error The same exposure value is assigned to a group with
similar characteristics.

Air quality records collected by a monitoring station are assigned to all
subjects in the study as estimates of true individual exposure to pollutants
[62]; When job-exposure-matrix is used to estimate the individual exposure
in occupational epidemiological studies, same exposure estimate
is assigned to the groups of people with same occupation code [17, 63].

Unshared
Non-random
Error

Imprecise knowledge in individual specific parameters. Errors in personal residence history records [7]; Errors in personal consumption
rates of contaminated foods [7].
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Suppose we are interested in an exposure D (e.g., radi-
ation dose), and Dtr represents an unknown true value
of the exposure, while Dest represents an estimated value
of exposure D. In many studies, but especially when ex-
posure refers to a radiation dose, the “measured” value is
usually not directly used in the exposure-response ana-
lysis, and calibrations and calculations are applied to the
“measured” value to obtain a final “estimated” exposure
value. This “estimated” value will be used in the subse-
quent risk analyses. Thus, we prefer to use the term of
“estimated exposure” rather than “measured exposure”
in this paper in order to avoid misinterpretation. Using
these notations, the classical error model is expressed as

Dest ¼ Dtr þ Uc

where Uc is a classical error term with E(Uc|D
tr) = 0 and

the estimated exposure Dest is an unbiased estimate of
the true exposure, that is, E(Dest|Dtr) =Dtr. When the
error term Uc has a constant variance, σ2u , Uc ∣Dtr ap-
proximately follows a normal distribution [3], although
other types of distributions may apply.
On the other hand, the Berkson error model could be

expressed as

Dtr ¼ Dest þ Ub

where E(Ub|D
est) = 0, and E(Dtr|Dest) =Dest.

For the studies with exposure measured independently
between subjects, unshared errors are more likely to occur
in exposure estimation. For example, when self-report
values are used as individual exposures, almost all the un-
certainties are from unshared components. In contrast,
when a biased/uncalibrated measuring device is used or
mathematical models to estimate exposure with uncer-
tainty on mean values for the model parameters are ap-
plied for a group of people, shared errors are more likely to
be introduced. For example, when a mathematical model is
used to define the transport mechanism of a toxicant,
shared uncertainties would be potentially large if this
model is not well designed (i.e., it does not characterize the
true transport features perfectly). Uncertainties introduced
from this model will usually affect the entire cohort. In
such cases, shared uncertainties could not be ignored in
exposure estimates. Differentiation of classical error from
Berkson error is relatively easy in practice. If the
error-prone exposure is estimated uniquely to an individ-
ual, especially when some measurements during exposure
estimation could be replicated, the errors should be consid-
ered classical. If a group of people are assigned the same
value (usually the group average) of the error-prone expos-
ure while the true exposure value is particular to an indi-
vidual, errors are considered to be Berkson type [3, 15, 16].
Two types of error structure are usually considered in

the analysis of exposure estimation error. They are

described by a multiplicative error model or by an addi-
tive error model. The multiplicative error structure is
considered when the spread of the true exposure given
the estimated exposure increases proportionally to the
estimated exposure values, while the additive error
structure should be considered when the spread remains
constant [17]. The true values of the exposure are un-
known, but one can plot the average values of replicated
exposure estimates per individual versus each of the rep-
licated individual exposure estimates. When the plot
(made on a linear scale) is in a “tube” shape, the error
structure is most likely described by an additive error
model, while a multiplicative model seems to be reason-
able when the plot has a “trumpet” shape (Fig. 2) [17]. A
“tube” shape of the plot displayed using a log scale indi-
cates a multiplicative error.

Use of a two-dimensional Monte Carlo method for
estimation of exposures
In practice, the error structure of exposure estimation is
usually complex and contains various types of errors, al-
though one type usually predominates. In such cases,
more advanced statistical methods are needed to account
for the complex error structures in risk analyses. A Monte
Carlo simulation procedure (i.e., repeated drawing of ran-
dom samples from probability distributions of various ex-
posure estimation parameters) could be used to generate
multiple exposure estimates per individual (e.g., [8, 18,
19]). In this section, we introduce an exposure estimation
approach called the two-dimensional Monte Carlo
method (2DMC), which is an advanced approach com-
pared to other forms of Monte Carlo methods widely used
for quantitative uncertainty analysis in radiation dose re-
construction. By applying 2DMC in exposure estimation,
information on both shared and unshared uncertainties
are presented in the form of multiple alternative realiza-
tions of possibly true exposure estimate vectors. Each
realization of a possibly true exposure estimate vector rep-
resents a set of different values of shared and unshared
parameters. These multiple realizations of possibly true
exposure estimate vectors allow researchers to use various
statistical approaches to account for shared and unshared
sources of exposure estimates of uncertainties in
exposure-response analyses. This method allows re-
searchers to use information about both shared and un-
shared uncertainties in exposure estimates in risk
analyses. Although this method is time-consuming and
challenging, it is often necessary for performing certain
types of advanced statistical analyses of exposure-response
accounting for errors in exposure estimates. The statistical
methods that account for exposure estimation errors in
exposure-response analyses are introduced in the later
section, and are all described based on exposure estimates
obtained by 2DMC. Although not all of them require that
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they be performed based on the 2DMC procedure, we use
this setting for the convenience of comparison.
The 2DMC method is a simulation-based exposure re-

construction strategy that properly maintains the separ-
ation between shared uncertainties in exposure estimates
among the entire cohort or the cohort’s subset, and the un-
shared, individual uncertainties. The concept of 2DMC is
first mentioned in [20] while detailed implementation pro-
cedures were proposed by [7]. Although it had originally
been proposed as a radiation dose reconstruction method,
2DMC could also be applied in other exposure scenarios
in which the estimation procedure is complex and shared
uncertainties are expected to be relatively large. By apply-
ing 2DMC, the parameters shared by cohort or subgroup
members are fixed in the outer loop while the unshared
parameters are simulated in the inner loop. Each run of
the outer loop pass will generate a set of simulated expos-
ure values for the N cohort members. For example, if the
outer loop pass is run M times, it will result in a final esti-
mated exposure Dest in a matrix form as below:

Dest ¼
Dest

11 ⋯ Dest
1M

⋮ ⋱ ⋮
Dest

N1 ⋯ Dest
NM

0
@

1
A ð1Þ

where N is the sample size of the cohort. Thus, M sets
of exposure are estimated for the entire cohort.
We use W to denote the full set of input data that is

needed to determine the estimated exposure Dest, where

W does not represent a single variable but include all
the variables needed in exposure estimation. Then, for
example, in a dosimetry system developed to estimate
radiation doses, W may include residence history, ex-
posed age, intake of milk contaminated with radionu-
clides, etc. [21]. We use f ðDtr

1 ;…;Dtr
N jW Þ to denote the

joint distribution of true exposure for all cohort members,
given all input data that is needed in exposure estimation.
The aim of the exposure estimation procedure is thus to
draw samples from f ðDtr

1 ;…;Dtr
N jW Þ as potential expos-

ure estimates. For 2DMC, where shared parameters are
first fixed in the outer loop and the correlations among
individuals are held, each estimated exposure vector
Dest

r ðr ¼ 1;…;MÞ is sampled from the joint distribu-
tion f ðDtr

1 ;…;Dtr
N jW Þ for all members of the cohort

[21, 22]. Therefore, the estimated exposure matrix
Dest in (1) is constructed by sampling ðDest

1 ;…;Dest
N Þ

for M times.
Each estimated set of exposures for the entire cohort

ðDest
1 ;…;Dest

N Þ based on 2DMC maintains the shared in-
formation among individuals and can possibly be the
true exposure vector. When full-likelihood methods,
such as the Monte Carlo Maximum Likelihood method
and the Bayesian model averaging method, are applied
to explore exposure-response relationship using the en-
tire estimated sets of exposure, the overall effect of un-
certainties in exposure estimates can be quantified [7].
Goodness of fit tests with respect to the cohort vector

Fig. 2 Measured exposure vs. true exposure assuming additive error model and multiplicative error model (adapted from [17])
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of individual exposure estimates and the cohort vector
of individual disease incidence (or mortality) is used to
distinguish between cohort exposure estimates that are
plausible versus those that are not.

Statistical methods to account for exposure estimate
errors in exposure-response analyses
Below, we will review the four main statistical methods
to account for effects of errors in exposure estimation
on risk estimates. Each section presents a short descrip-
tion of the methods to estimate functions and associated
variances, followed by examples and advantages and lim-
itations. For more details, readers are referred to primary
references. Examples of studies which successfully used
these methods are provided in Tables 2 (radiation epi-
demiology studies) and 3 (studies of other environmental
exposures).

Regression calibration
Regression calibration is a replacement method [23] that
substitutes the unobserved true exposure value Dtr by a
calibration function E(Dtr ∣Dest) in the regression of the
health outcome Y on true exposure Dtr. The method
could be easily applied to different types of data, includ-
ing survival and binomial [24–30]. The general proced-
ure of regression calibration can be summarized by the
following three steps:

1) Estimate the calibration function E(Dtr∣Dest);
2) Fit a regression of Y on E(Dtr∣Dest) instead of the

unobserved true exposure Dtr;
3) Adjust the variance of the risk estimates to account

for steps 1) and 2).

The method of estimation of calibration function
E(Dtr ∣Dest) depends on the data sources. In situations
where internal validation data or data on unbiased in-
strumental variables are available, the calibration func-
tion could be directly estimated by the regression of Dtr

on Dest or by the regression of an unbiased instrumental
variable on the estimated exposure [3].
When repeated estimates of exposure are available, the

calibrated function could be estimated by the so-called
linear approximation [3]. Suppose we have M replicates
of exposure estimate for ith individual ðDest

i1 ;…;Dest
iM Þ and

consider an additive classical error model: Dest =Dtr +U.
The variance of error term U is then estimated by

σ̂2u ¼
PN

i¼1

PM
j¼1 Dest

ij −D
est
i:

� �2

N M−1ð Þ ð2Þ

where D
est
i: is the mean of M replicates for ith individ-

ual. The best linear approximation to Dtr given Dest is
given by

E Dtr jDestð Þ ≈ μT þ σ2T

σ2
T þ σ2u

M

D
est
−μest

� �
ð3Þ

where μT and μest are the means of Dtr and Dest, respect-
ively. Both of these variables could be estimated by the

overall sample average
PN

i¼1
D

est

i:

N , and the variance of the
true exposure σ2

T is estimated by

σ̂2T ¼
M
PN

i¼1 D
est
i: −μest

� �2
− N−1ð Þσ2u

N−1ð ÞM ð4Þ

The formulas (2)–(4) above are based on the simple
case which only considers a relationship between a sin-
gle exposure D and outcome Y in a risk model. When
other covariates X (usually assumed to be estimated
without errors, e.g., age, gender, etc.) are included in the
risk model, the calibration function would change to
E(Dtr|Dest, X). A matrix form of the linear approxima-
tion of E(Dtr|Dest, X) could be found in [3]. For a
multiplicative error model, the log transformation is
used to convert it to an additive one. The method intro-
duced above can then be directly applied to the
log-transformed data. Statistical software such as Stata
[31] could be used to calculate the adjusted standard
error as well as the confidence interval. Although other
methods are available to adjust the variance (see [3]),
bootstrap is recommended for large data sets based on
the speed of computations [32].
The regression calibration method has been used in

several radiation epidemiological studies [9, 23, 33–36].
For example, a multiplicative error model was consid-
ered for estimated thyroid doses in studies of those ex-
posed to the Chornobyl (Chernobyl) accident [9, 15, 34,
37]. By assuming that the error term was log-normally
distributed, the calibration function E(Dtr|Dest) was ob-
tained based on the conditional distribution of f(Dtr|
Dest), which also follows a log-normal distribution. In
analyses of Chornobyl data, risk analyses using regres-
sion calibration method to adjust for uncertainties in
doses, had estimated excess odds ratios which were
7–11% higher in the Ukrainian cohort [34] and 13%
higher in the Belarusian cohort [9] compared to conven-
tional analyses without accounting for dose uncertainties.
Regression calibration method is also widely used in

nutritional studies. A recent systematic review of meas-
urement error-correction approaches in nutritional epi-
demiology, showed that 71 of 76 studies adjusted for
exposure measurement errors by regression calibration
method [38]. Nutrient intake measurements frequently
have errors because they are usually assessed based on
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self-reported food frequency questionnaires (FFQ) [39,
40]. To apply a regression calibration method to adjust
for the measurement errors in FFQ, researchers typically
collect additional data for a reference variable in a subset
of the population from the main study. The reference
variable is usually measured by multiple 24-h dietary re-
calls, or some biomarkers, such as urinary nitrogen for
protein intake [40–44]. Regression of this reference vari-
able on dietary variable from the FFQ is treated as an es-
timate of the calibration function E(Dtr ∣Dest). Table 3
presents examples of studies that used regression cali-
bration to adjust for exposure estimation errors.

Simulation-extrapolation
The simulation-extrapolation (SIMEX) method is a
simulation-based method that is implemented in two
steps: a simulation step and an extrapolation step [45].
The simulation step seeks to explore the relationship be-
tween errors in exposure estimation and an estimator of
interest. Based on this relationship, the error-free esti-
mate of risk parameter is obtained by setting the vari-
ance of the error term to zero in the extrapolation step.
In this case, the “error-free” estimate here does not
imply a perfect estimate of the risk parameter but a par-
ameter estimator. A log-transformation could also be ap-
plied to generate an additive error when a multiplicative
error model is considered [3].
In the simulation step, a set of pre-selected parameters

(ξ1, … , ξT), such that 0 ≤ ξ1 < ξ2 < … < ξT are used as the
scale factors to construct pseudo-errors. A “contami-
nated” exposure data set (i.e., the data set to which extra
errors are manually added) could be generated for each
scale factor ξt:

Dest;�
tð Þ;i ¼ Dest

i þ
ffiffiffiffi
ξt

p
Ui ð5Þ

where i = 1,… , N; t = 1,… , T; Ui is sampled from Nð0;
σ2uÞ and σ2u could be estimated using repeated data as eq.

(2). Based on the “contaminated” data ðY i;D
est;�
ðtÞ;i Þ, a naïve

parameter β̂ðξtÞ estimate could be obtained by fitting a
regression model.
After the simulation step, the risk parameter estimate is

obtained β̂ðξtÞ for each pre-selected scale factor ξt, where

β̂ðξtÞ could be treated as a function of ξt. It is assumed
that an extrapolation function, G(∙), is used to capture the

relationship between the risk parameter estimate β̂ðξtÞ
and the scale factor ξt, that is, β̂ðξtÞ ¼ Gðξt ; γÞ, where γ is
the parameter in function G(∙). The extrapolation step is
then summarized as follows:
1) Estimate the parameter γ in the extrapolant func-

tion G(ξt; γ).
2) Obtain the SIMEX estimate for the risk parameter:

β̂SIMEX ¼ Gðξt ¼ −1; γ̂Þ.
During the extrapolation step, it is important to de-

cide how to choose the extrapolation function G(∙).
Cook and Stefanski [45] suggested three different ex-
trapolation functions which include a linear extrapola-
tion G(ξ; γ) = γ1 + γ2ξ, a linear quadratic extrapolation
G(ξ; γ) = γ1 + γ2ξ + γ2ξ

2, and a nonlinear extrapolation
function (also called the rational linear extrapolant) G

ðξ; γÞ ¼ γ1 þ γ2
γ3þξ . These extrapolants provide a relatively

good approximation for any particular estimator.
The estimate of the standard error of the SIMEX esti-

mator could be obtained via a bootstrap procedure, a
Jackknife procedure [46], or a sandwich estimator [3].
SIMEX estimator with the estimated standard error
could be obtained using statistical software such as Stata
[31] or the R package “simex” [47].
SIMEX or extended SIMEX have been applied in some

air pollution studies to adjust for errors in exposure esti-
mates (e.g., [48, 49]). For example, a recent study of expo-
sures to particulate matter (PM) estimated individual
exposures using data from multiple monitoring stations
within a certain area, which could potentially introduce
some errors. After adjusting for exposure estimation errors
by extended SIMEX, the estimated effect of PM < 2.5 μm
in diameter (PM2.5) on birth weight increased by 56.7% in
Alexeeff et al. [49] compared to analyses without adjust-
ments for errors in exposure estimation. A radiation epi-
demiological study exploring a relationship between
individual colon dose from gamma radiation and solid can-
cer deaths [50] reported that the estimated excess relative
risk per gray (ERR/Gy) increased by 38.4% after accounting
for dose uncertainties by SIMEX, compared to an increase
of 6.7% after adjustment by regression calibration. Similar
increases in risk estimates were reported in a study of ef-
fects of bone marrow doses on the risk of death from
leukemia in survivors of atomic bombings in Japan [50].
After adjusting for dose uncertainties by SIMEX, the esti-
mated ERR/Gy increased by 19.6%, compared to an in-
crease of 7.3% after adjustment using regression calibration
method (see Table 3 for details).

Monte Carlo Maximum Likelihood
The estimated exposure matrix Dest from equation (1)
from the 2DMC dosimetry system can be treated as a
sample drawn from the conditional distribution of true ex-
posure given the input data f(Dtr|W). Because W repre-
sents the observed values of all the data that are used to
determine the exposure estimates, we could estimate an
observed likelihood f(Y|W; α, β) in the exposure-response
analysis [21], where α and β are the parameters of covari-
ates and exposure, respectively. The basic idea behind the
Monte Carlo Maximum Likelihood (MCML) method is to
obtain a maximum likelihood estimate of the risk
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parameter β based on the observed likelihood f(Y|W; α, β)
[21, 22] from multiple dose vectors. The observed likeli-
hood can be expressed as

f Y jW ; α; βð Þ ¼ EDtr jW f Y jDtr; α; βð Þ½ � ð6Þ

where EDtr jW ½∙� indicates the expectation under the con-
ditional distribution of the true exposure Dtr given the
full set of input data W and f(Y|Dtr; α, β) represents the
exposure-response model that describes the relationship
between response and true exposure value [21]. Since
the estimated exposure Dest can be treated as multiple
samples drawn from the conditional distribution f(Dtr|
W), the observed likelihood can be estimated by avera-
gingdexposure vectors:

f Y jW ; α; βð Þ ¼ 1
M

XM
r¼1

f Y jDtr Y jDest
r ; α; β

� � ð7Þ

where Dest
r ðr ¼ 1;…;MÞ is the estimated exposure vec-

tor for the entire cohort. For a set of pre-selected values
of β, [β1, … , βK], the profile likelihood of β is expressed
as

L βk
� � ¼ maxα f Y jW ; α; βk

� �

¼ maxα
1
M

XM
r¼1

f Y jDtr Y jDest
r ; α; βk

� �( )
ð8Þ

Then the maximum likelihood estimate of β is the β

value that maximizes the profile likelihood: β̂MLE

¼ argmaxβ½LðβkÞ� . The likelihood ratio test statistic, −2

ln ½LðβÞ� þ 2 ln ½Lðβ̂MLEÞ� , has an asymptotic χ2 distribu-
tion with one degree of freedom [21] and can be used to
estimate a confidence interval.
For a complex dosimetry system, simple (unweighted)

average might not produce precise values for point esti-
mate and confidence interval for β since only a few ex-
posure vectors will have reasonable goodness-of-fit to
the response. In such cases, it would be better to imple-
ment MCML based on weighted average of profile likeli-
hood function with respect to the goodness-of-fit
measure such as Akaike information criterion (AIC) and
Bayesian information criterion (BIC).
The MCML method has been used in many radiation

studies. For example, in the 15-country study of cancer
risks of nuclear workers [21], a time-period- and
facility-specific bias factor was introduced to calculate
possible true doses. The uncertainties in this bias factor
were shared across all individuals who worked in the same
facility during the specified time period. In analyses with
MCML, the estimated ERR per unite dose (ERR/Sievert
(Sv)) was reduced by 10.4% compared to the unadjusted
estimate (see Table 2).

Bayesian model averaging
Kwon et al. (2016) proposed a Bayesian model averaging
(BMA) method to account for uncertainties in exposure
estimates [51]. This method uses a data augmentation
approach to the multiple estimated exposure vectors ob-
tained from 2DMC by introducing an exposure vector
selection parameter, say γ (γ = 1, … ,M). Bayesian infer-
ence could be treated as a learning process from the
opinion of the unknown parameters (i.e., prior distribu-
tion) and the data at hand (i.e., likelihood). By first sam-
pling one value of the vector selection parameter γ from
its prior distribution, one of M exposure vectors will be
selected as the “best fit” to update likelihood informa-
tion. Iteratively, the updated likelihood information will
update the probability distribution of γ. Similar updating
process is applied to all the parameters. The posterior
samples of the parameter of interest could then be ob-
tained via Markov Chain Monte Carlo (MCMC) calcula-
tions by various sampling algorithms, such as Gibbs
sampling [52] or Metropolis-Hastings [53].
The selection of prior distributions for each parameter

depends on the prior knowledge and interpretation of the
parameter. For example, when the response variable is
binary, i.e., Yi~Bernoulli(1, pi), the parameter pi represents
the probability of Yi = 1. In this case, a beta distribution is
usually considered as the prior distribution of pi, because
the beta distribution is defined on the interval [0, 1] which
matches the natural probability range (between 0 and 1).
In the BMA method, parameter γ indicates which
exposure vector is selected in likelihood calculation,
and given a multinomial distribution with probability
vector π = (π1, … , πM) as its prior distribution. Multi-
nomial distribution is a multivariate generalization of bi-
nomial distribution, which describes a trial with multiple
possible outcomes. Since we have M sets of possibly true
exposure vectors, it is appropriate to consider a multi-
nomial distribution for γ. A Dirichlet distribution is often
combined with a multinomial distribution to define the
prior of the probability vector in multinomial distribution.
In our case, each parameter in the probability vector
π = (π1, … , πM) represents the probability of selecting
the corresponding exposure vector in likelihood calcula-
tion. For example, π1 = 0.6 indicates that the first
exposure vector has 60% chance to be selected to
update the likelihood. Therefore, a prior distribu-
tion of Dirichlet(1, … , 1) for hyper-parameter vec-
tor π = (π1, … , πM) is considered and it indicates

that every exposure vector Dest
r ¼ ½Dest

1r ;…;Dest
Nr �T has an

equal a priori probability to be selected as the best fitting
vector in the likelihood calculation. For additional details
of BMA method see Kwon et al. [51].
Several radiation epidemiological studies have applied

the BMA method to account for uncertainties in dose

Wu et al. Environmental Health           (2019) 18:31 Page 10 of 15



estimation [8, 9, 54]. For example, Land et al. (2015) ex-
amined the risk of radiation-related thyroid nodules in
individuals who lived downwind from the Semipalatinsk
Nuclear Test Site in Kazakhstan and accounted for com-
plex uncertainties in dose estimation by using the BMA
method [8]. Compared to conventional regression using
a point “best estimate” dose [55], the BMA method in-
creased the ERR per unit dose (ERR/Gy) estimate for the
internal exposure, which was considered to have a large
amount of shared uncertainties, by more than three
times (see Table 2).

Representative studies
Tables 2 and 3 present a selection of representative stud-
ies from radiation epidemiology and other environmen-
tal epidemiological studies, respectively. The presented
studies applied at least one of the four methods to ac-
count for exposure estimation errors we reviewed above.
Whenever possible, we looked for studies that used mul-
tiple statistical methods on same dataset.
In the majority of studies, risk estimates adjusted for ex-

posure estimation uncertainties changed by +/− 100%
compared to model without such adjustments, with the
exception of two studies (Land et al. (2015) in Table 2 and
Wang and Song (2016) in Table 3) that doubled/tripled
the naïve risk estimates. Epidemiological textbooks state
that random errors in exposure estimation lead to attenu-
ation of exposure-response relationship. Thus, we expect
that after accounting for exposure estimation uncertain-
ties, risk estimates should increase. Accounting for
Berkson error will usually lead to a wider confidence inter-
val but would not bias risk estimates in linear models be-
cause Berkson error is usually caused by group averaging
(i.e., E(Dtr|Dest) =Dest) and is considered independent of
estimated exposure values. However, in studies presented
in Tables 2 and 3, the changes in risk estimates were not
always away from the null. This could be due to complex
error structures in different datasets or to different statis-
tical methods applied. For example, BMA method works
well when shared errors are substantial. However, it might
“over-adjust” risk estimates if shared errors are small to
only moderate in exposure estimation. Similarly, when
shared errors are large, applying regression calibration or
SIMEX could lead to “under-adjustment” of the uncertain-
ties in exposure estimate.

Discussion
In this paper, we provided a detailed description of four
main methods to account for effects of uncertainties in
exposures on exposure-response estimates used in radi-
ation epidemiology (regression calibration, simulation-
extrapolation (SIMEX), Monte Carlo maximum likeli-
hood (MCML) and Bayesian model averaging (BMA)).

Some of these methods have successfully been applied in
several studies of environmental exposures (Table 3).
Regression calibration is easy to perform and works

well when E(Dtr|Dest) can be approximated reasonably
well (e.g., when validation data or data on an unbiased
instrumental variable of exposure are available) or when
a linear model is used for risk analysis. For example, lin-
ear ERR model is often used in radiation epidemiology
to explore dose-response relationships and regression
calibration works well for adjustment of risk estimates
for uncertainties in exposure estimates. However, it is
relatively weak for highly nonlinear models [3] or com-
plex uncertainty structures [54]. For example, in radi-
ation epidemiological studies, a complex uncertainty
structure includes shared errors that usually cannot be
ignored. However, in regression calibration, the individ-
ual exposure vector ðDest

i1 ;…;Dest
iM Þ is treated as a vector

of replicated estimates for ith subject and its mean is
used as a best estimate of true exposure in regression
calibration. In such case, the correlation between sub-
jects (i.e., the shared information) is not accounted for,
even if the estimated exposure is obtained from the
2DMC procedure. In other epidemiological studies, such
as nutritional studies, shared error is not considered as
critical in exposure estimation. Obtaining data from val-
idation studies or data on unbiased instrumental vari-
ables is relatively easy in these studies, which makes the
calibration function E(Dtr|Dest) much easier to imple-
ment. Therefore, regression calibration method is a
strong tool for these studies to correct for exposure esti-
mation uncertainties.
Compared to regression calibration, SIMEX does not

require an assumption about a distribution of the un-
known true exposures and therefore would produce a
relatively robust estimator [15]. Also, SIMEX is easy to
perform because only a naïve estimator using estimated
exposure values is used and no additional data are
needed. However, SIMEX estimator can be affected by
the variance of error term and the choice of extrapola-
tion functions [37, 50]. We need to know the error vari-
ance or be able to estimate it precisely, or the results
would not be accurate. SIMEX has the same weakness
as the regression calibration method when a complex
uncertainty structure is considered, because it also uses
the individual exposure vector in the analysis.
In contrast to regression calibration and SIMEX,

full-likelihood methods such as MCML and BMA use
the possible true exposure vector for the entire co-
hort ðDest

1r ;…;Dest
Nr Þ ðr ¼ 1;…;MÞ in exposure-response

analyses, and therefore the shared information between
subjects is preserved. Unlike regression calibration and
SIMEX methods, which rely on the variance of the error
term of exposure estimates, MCML and BMA methods

Wu et al. Environmental Health           (2019) 18:31 Page 11 of 15



use each vector of exposure estimates as a possible true
exposure vector for the entire cohort. However, these
methods are computationally intensive and must be
applied based on 2DMC exposure estimates. Specifically,
MCML estimation is based on values of likelihood on
the profile likelihood function at specified grid points
(e.g., 100 points) for parameter of interest for each expos-
ure vector. Computational burdens will be large when the
number of parameters of interest is more than two since
choosing range and grid point is cumbersome and the
number of likelihood evaluations will grow exponentially.
Meanwhile, different choices of range and grid points for
the likelihood evaluation would have an impact on the ac-
curacy of point estimation (i.e., proximity to the true
value) and confidence interval estimation. We might not
obtain the accurate estimation results from inappropriate
choices of range and sparse grid points.
When the shared uncertainties are relatively modest

(e.g., [9, 54]), the full-likelihood methods are expected to
work similarly to regression calibration. As demonstrated
in Table 2, the regression calibration, MCML, and BMA
methods had roughly similar results of reduced excess
odds ratio per Gy (EOR/Gy) by 13, 2 and 23%, respect-
ively, compared to the EOR/Gy from the models with no
adjustment for dose uncertainties in studies of thyroid
cancer after the Chornobyl accident [9]. The relatively
small amount of shared errors is considered to be the
cause of these modest effects from the application of ad-
justment methods in the exposure-response analyses.
Unlike regression calibration and SIMEX methods, for
which variance of exposure estimation errors is required,
MCML and BMA methods require less information be-
cause each exposure estimate vector used in likelihood
calculation is a possible true exposure vector for the
entire cohort. However, if the shared uncertainties are
substantial (e.g., same biased measuring device is applied
to a group of people), the full likelihood methods such as
MCML and BMA would perform better than regression
calibration and SIMEX (see studies by Land et al. (2015)
and Stayner et al. (2007), Table 2). The majority of the
reviewed studies show relatively moderate changes (within
100%) in risk estimates after accounting for uncertainties
in exposure estimates except for the two studies which
doubled/tripled the naïve estimates [8, 56]. However, be-
cause the majority of risk estimates from studies of envir-
onmental exposures only show an excess of risk in
exposed over unexposed of less than 100% (relative risks
less than 2.0), the error in risk estimates of this magnitude
is important. The risk estimates from analyses that do not
account for uncertainties in exposure estimates could be
significantly biased, and confidence in their accuracy
overly optimistic. If analyses accounting for uncertainties
in exposure estimates are not feasible, at least the poten-
tial effects of uncertain exposure estimates on final results

should be discussed in environmental epidemiological
studies when risk estimates are reported [5].
Other methods have been developed to account for un-

certainties in exposure estimation in epidemiological stud-
ies at the stage of data analysis. Zhang et al. (2017)
described a corrected confidence interval (CCI) approach
to correct inflated variances of risk parameters estimated
by the Poisson regression model due to uncertainties in
the dosimetry system [57]. The CCI approximates an
asymptotic distribution of parameter estimates in Poisson
ERR model using multiple exposure vectors from the
Monte Carlo dosimetry system. The CCI includes a
variance-covariance matrix between multiple exposure vec-
tors and mean exposure vector in the calculation of vari-
ances of parameters in the Poisson risk model. If exposure
estimation uncertainty is large, then the corrected vari-
ances should be larger than the naïve variance estimates,
which do not take account of exposure estimation uncer-
tainties. Exposure-response analyses are performed with a
mean exposure value of multiple exposure vectors using a
regular Poisson ERR model to obtain an unbiased estimate
of the risk parameter. Then, CCI is obtained by using cor-
rected variances. The CCI is always wider than that of
naïve approach due to the inflated variance estimate.

The CCI approach has a big disadvantage when expos-
ure estimation uncertainties are very large compared to
MCML and BMA. When exposure estimation uncertain-
ties are small or moderate, using a variance-covariance
matrix between multiple exposure vectors and mean ex-
posure vector reflects uncertainty, since each exposure
vector has a very similar goodness-of-fit for the outcome.
When exposure estimation uncertainty is large, the
variance-covariance matrix between multiple exposure
vectors and the mean exposure vector is excessively large
and produces an unreasonably wide 95% confidence inter-
val. In this situation, only a few exposure vectors provide a
relatively strong goodness-of-fit while most others have a
poor goodness-of-fit. Both MCML and BMA take account
of this fact, and only a few exposure vectors contribute to
the estimation of ERR and corresponding confidence
interval. Using the variance-covariance matrix between
multiple exposure vectors and the mean exposure vector
as proposed by Zhang et al. (2017) does not incorporate
this mechanism and thus produces an unnecessarily large
variance for the corrected confidence interval.
Another method which has been used to account for

uncertainties in exposure estimation at the stage of data
analysis is a Multi-Model Inference (MMI) method, e.g.
[58–60]. In order to avoid a biased result based on a sin-
gle risk model, the MMI method combines risk esti-
mates from multiple plausible exposure-response models
by assigning a weight to each model. This method could
provide a comprehensive evaluation of model uncertain-
ties in risk estimates [5]. Conceptually, this method is
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similar to BMA and MCML in that uncertainty in the
use of multiple realizations of possibly true model par-
ameter values used to estimate individual exposure is
similar to uncertainty in the use of multiple model struc-
tures or equations to estimate exposure.

Conclusions
Although a single type of error may dominate in environ-
mental epidemiological studies, uncertainties in exposure
estimates for the entire cohort are often represented by
more complex structures. Comprehensive consideration
of potential error structures in the exposure estimates is
important when developing an exposure estimation proto-
col because it can lead to improved exposure-response re-
lationship by eliminating biases that can occur when
uncertainties are ignored. If the exposure assessment is
relatively simple and performed independently across in-
dividuals, unshared errors are more likely to be intro-
duced. In such cases, using regression calibration and
SIMEX methods with repeated estimates of exposure
would work well to account for exposure estimation un-
certainties in risk analyses. However, if the exposure as-
sessment requires applying the same measurement device
or using the same estimation parameters/models for a
group of people, shared uncertainties are more likely to be
introduced. In such cases, a more complicated exposure
estimation method, i.e., 2DMC, needs to be considered.
Although the 2DMC procedure was originally developed
for radiation dose reconstruction, it could be easily used
in other field of environmental epidemiology. Using ex-
posure estimates from the 2DMC simulations, the MCML
and BMA methods are able to account for exposure esti-
mation uncertainties when shared errors are substantial.
The methods reviewed in this paper are suitable to ac-
count for estimation errors in various situations of uncer-
tain exposure estimates in environmental epidemiology.
More analyses of uncertainties in exposure estimation
should be conducted and the effects of uncertain exposure
estimates on risk estimates should be discussed in envir-
onmental epidemiological studies when risk estimates are
reported.
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