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Abstract

We hypothesize that two important
functions of declarative knowledge in
learning is to enable the learner to
detect and to correct errors. We de-
scribe psychologically plausible mech-
anisms for both functions. The mech-
anisms are implemented in a computa-
tional model which learns cognitive
skills in three different domains, illus-
trating the cognitive function of ab-
stract principles, concrete facts, and

tutoring messages in skill acquisition.!

Practice and Knowledge

Practice consists of
to solve problems which stretch the
learner's competence. The paradox of
practice is that the learner is deliber-
ately setting out to solve a problem
which he or she knows is beyond his
or her current competence. It is far

repeated attempts

from obvious how this produces
learning; and yet, there is no evidence
that skills can be acquired without
practice.

lPreparalion of this paper was supported by
grant No. NO00014-89-J-1681 from the
Cognitive Science Program of the Office of
Naval Research. The opinions expressed are
not necessarily those of the funding agent
and no endorsement should be inferred.
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Beginning with the seminal papers
by John R. Anderson and co-workers
(e. g., Anderson & Kline, 1979) and by
Anzai and Simon (1979), a computa-
tional interpretation of learning from
practice has been developed over the
past fifteen years. It can be summa-
rized in three hypotheses:

(a) The Weak Method Hypothesis.
When the learner is faced with a
problem beyond his or her current
competence, he or she wuses weak
problem solving methods such as ana-
logical inference, forward search, or
means-ends analysis to generate task
relevant, but possibly inefficient, ac-
tions.

(b) The Memory Storage Hypothesis.
Actions, even inefficient actions, gen-
erate information about the task envi-
ronment, e. g., information about the
effects of actions and about the prop-
erties of objects. This information is
stored in memory.

(c) The Skill Induction Hypothesis.
One or more learning mechanisms
(composition, subgoaling, etc.) revise
the current skill on the basis of the in-
formation in memory.

Repeated cycles through (a), (b) and
(c) result in a domain-specific adapta-
tion of the weak method which can
solve the (class of) practice problem(s)
efficiently. The three hypotheses can
be articulated in different ways to gen-
erate a wide variety of specific learn-
ing models (see Klahr, Langley, &
Neches, 1987).
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The empirical status of this mental
bootstrapping theory of practice is still
an open question, although its most
dubious assumption--that people store
large amounts of information in mem-
ory while engaged in the capacity de-
manding process of solving problems--
has survived at least one atitempt at
falsification (Ohlsson, 1991).

The major limitation of the theory is
that it depicts procedural knowledge as
a closed system: Problem solving skills
beget problem solving steps, which in
turn beget new problem solving skills.
There is no point along this loop at
which prior knowledge about the task
environment can influence the con-
struction of the new skill. However,
humans always learn in the context of
prior domain knowledge.

A more complete theory of practice
must describe how skill acquisition is
influenced by at least three types of
knowledge items: abstract principles,
concrete facts, and tutoring messages.

Abstract principles are common in
mathematics and science. The princi-
ple of one-one mapping is a simple ex-
ample. It plays a crucial role in learn-
ing how to count a set of objects
(Gelman & Gallistel, 1978). The laws of
conservation of mass and energy are
examples of principles in science.

Concrete facts are important in both
technical domains and in everyday
life. The fact that alcohol molecules are
characterized by an OH-group is useful
when constructing structural formulas
in organic chemistry (Solomon, 1988).

Tutoring messages are short verbal
instructions, uttered during practice.
"Don't borrow unless the minuend digit
is smaller than the subtrahend digit,"
uttered in the context of practice on
subtraction with regrouping, is an ex-
ample. One-on-one tutoring is a very
efficient form of instruction (Bloom,
1984).

The purpose of this paper is to de-
scribe a computational model which
embodies a unified view of the func-
tion of abstract principles, concrete
facts, and tutoring messages in skill
acquisition.
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Learning as Error Correction

By necessity, a novice makes many er-
rors while executing a skill; by defini-
tion, mastery is characerized by the
absence of errors; hence, the gradual
increase of competence during prac-
tice consists in the successive elimina-
tion of errors. Each error provides an
opportunity to learn how to avoid simi-
lar errors in the future. To make use of
such a learning opportunity, the
learner must be able to (a) detect that
an error as occurred, and (b) compute
the appropriate revision of the current
skill. We propose that the function of
domain knowlege in skill acquisition is
precisely to enable the learner to de-
tect and to correct errors.

Learners can detect errors in three
different ways: by self-monitoring, by
observing the environmental -effects,

and by being told by others (Reason,
1990, Chap. 6). We focus on the first of
these three methods. Learners monitor
themselves, we suggest, by testing each
new cognitive result (inference or
knowledge state) for consistency with
prior knowledge about the domain. For
example, a Pittsburgh driver who is
driving towards the river from the
airport on the back roads and who sees
a sign saying "route 60 south" recog-
nizes that he or she has made an error,
at least if he or she knows that the
river is north of the airport. A chem-
istry student who gets more mass out of
an experiment than he or she put in
recognizes that an error was made, be-
cause this violates the law of conser-
vation of mass. In each instance, de-
tecting the error requires prior
knowledge about the domain. During
deliberate learning we constantly
monitor the situations (problem states)
we create for consistency with what we
know about the domain and we recog-
nize inconsistencies as errors. The
more knowledge, the more powerful
the  self-monitoring ability.

Learners can correct an error, we
suggest, by determining the conditions
that produced it and then revising the



current skill so as to prevent the rele-
vant action from applying under those
conditions. For example, the bewildered
Pittsburgh driver might try to figure
out which turn was wrong and correct
his or her driving accordingly. The
identification of the conditions that
produced the error will result in a re-
striction on the relevant action, e. g.,
"remember not to turn right after exit-
ing the parkway at Clairton."

In summary, according to our theory
the learner monitors himself or her-
self by testing the consistency of each
new conclusion or problem state with
prior knowledge. Inconsistencies re-
veal errors which in turn trigger re-
visions which prevent those errors
from occurring in the future. Over the
course of practice, the errors are suc-
cessively eliminated. The new skill has
been mastered when no further errors
occur.

A Simulation Model

A computational model that instan-
tiates our theory must have (a) a per-
formance component, (b) a represen-
tation for prior knowledge, (c) a mech-
anism for detecting errors, and (d) a
mechanism for correcting errors. Our
model is called the Heuristic Searcher
(HS).

Performance component.
vanilla flavored production
language. Rules have a goal and a
conjunction of situation features in
their left-hand sides and a single
problem solving operator in their
right-hand sides. Hence, each step in
the problem space is controlled by a
single production rule. There is no
conflict resolution. If more than one
rule fires, multiple new knowledge
states are created. The system executes
best-first search if supplied with an
evaluation function by which to rank
problem states and either depth-first
or breadth-first search otherwise. HS is
not an hypothesis about the human
cognitive architecture. Our theoretical

HS is a
system
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committment is limited to the two as-
sumptions that cognitive skills are en-
coded as sets of production rules and
that people at least sometimes solve un-
familiar problems through forward
search. Both hypotheses are strongly
supported by data (Anderson, in press;
Newell & Simon, 1972).

Knowledge representation. Prior
domain knowledge is encoded in data-
structures called state constraints.
Syntactically, a state constraint is an
ordered pair <Cr, Cs>, where Cr and Cs
are patterns, 1i. e., conjunctions of
properties similar to the condition
sides of production rules. The rele-
vance pattern Cr has to match the cur-
rent knowledge state for the constraint
to be relevant and the satisfaction pat-
tern Cs has to match for the constraint
to be satisfied. States in which Cr match
but Cs does not are called constraint
violations. For example, a fact like
"Fifth Avenue is one-way in the east-
erly direction” would be encoded as "if
vehicle X is moving along Fifth
Avenue, X had better be going east".

Vehicles not moving along Fifth
Avenue are not subject to the con-
straint; a vehicle going east on Fifth

Avenue conforms with the constraint;
a vehicle going west constitutes a con-
straint violation. Constraints are not
inference rules or operators. They do
not generate new conclusions or revise
knowledge states. They test whether
certain properties are true of the cur-

rent knowledge state.
Error detection. When the current
rule set generates a new knowledge-

state, the latter is matched against all
state constraints with the same pattern
matcher that matches the rule condi-
tions. Constraints in which Cr does not
match are ignored, as are those in
which both Cr and Cs match. Neither
class of constraints warrant any action
on the part of the system. Constraints
for which Cr does match but Cs does not
are recorded as violated. A constraint
violation signals an inconsistency
between the system's prior knowledge
about the domain and the new outcome
generated by the current rule set and



it is interpreted as an error. HS as-
sumes that the rule set is at fault.

Error correction. HS assigns blame to
the last rule that fired, i. e., the rule
that produced the violating knowledge
state. A faulty rule is revised in two dif-
ferent ways. First, the relevance pat-
tern by itself is regressed through the
rule with a version of the standard goal
regression algorithm (Nilsson, 1980)
and the negation of the result added to
the condition side of the rule. This pro-
duces a rule that only applies in situa-
tions in which the constraint is irrele-
vant. Second, the entire constraint is
regressed through the rule and the re-
sult added to the rule condition
(without negating it). This produces a
rule which only applies in situations
in which the constraint is ensured to
be satisfied.

Curing a rule from violating one
constraint does not garantee that the
rule is correct; it might still violate
other constraints. Multiple revisions of
a rule are common in HS' learning.
Because a skill consists of large num-
ber of rules, each of which might need

Three Applications

Three applications of HS have been
implemented to date. They are summa-
rized in Table 1. They illustrate that the
model can learn from each of the three
types of knowledge items specified
previously: abstract principles, con-
crete facts, and tutoring messages.
Learning from abstract principles.
Developmental data indicate that chil-
dren construct the skill of counting a
set of objects on the basis of (implicit)

knowledge of abstract counting prin-
ciples (Gelman & Gallistel, 1978). The
main supporting phenomena are that
children can transfer their counting
routines to non-standard counting
tasks and that they can evaluate
counting performances that they can-

not produce (Gelman & Gallistel, 1978;
Gelman & Meck, 1986). The counting
principles are abstract ideas like the
one-one mapping principle. Expressed
as a state constraint, this principle be-
comes "if object X has been assigned
object Y, there should not be a third

object Z assigned to either X or Y". The

multiple revisions, skill acquisition is HS model learns the correct counting
necessarily gradual. skill if given state constraints
Table 1. Three applications of the HS model.
Problem Type of knowledge Skill acquired
domain given to the model by the model
Counting Abstract principles, To count a set of objects

e. g. the one-one mapping (see Ohlsson & Rees, 1991a).

principle.
Chemistry Concrete facts, e. g. To derive the Lewis structure

that alcohol molecules for a given molecular formula

have OH-groups. (see Ohlsson, in press-a).
Subtraction Tutoring messages, Subtraction with regrouping

e. g., "don't regroup unless (see Ohlsson, Emst, & Rees,

the subtrahend is larger in press).

than the minuend."
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corresponding to the counting prin-
ciples (Ohlsson & Rees, 1991a) and it
can transfer the learmed skill to other
counting tasks (Ohlsson & Rees, 1991b).

Learning from concrete facts. The
skill of constructing a Lewis structure
on the basis of the molecular formula
is a routine scientific skill taught at
the begining of most organic chem-
istry courses. Textbooks teach this skill
by first stating a general but weak
procedure and then providing practice
problems (e. g., Solomons, 1988). The
general procedure is inefficient and
must be specialized to particular classes
of molecules. We gave HS a version of
the general skill and provided it with
state constraints expressing facts about
three classes of molecules (alcohols,
hydrocarbons, and ethers). An example
of a fact is that alcohols have an OH-
group ("if this is an alcohol molecule,
it had better have an OH-group"). The
model learned specialized versions of
the general procedure for each type of
molecule and its learning exhibited the
negatively accelerated curve typical of
human skill acquisition; see (Ohlsson,
in press-a) for a more detailed
discussion of these results.

Learning from tutoring messages.
Students typically need tutoring to ac-
quire the correct procedures for place
value arithmetic. We gave HS an initial
rule set which could solve canonical
subtraction problems, i. e., problems in
which the subtrahend digit is always
smaller than the minuend digit in the
same column. We then tutored the sys-
tem through the Ilearning of the re-
grouping procedure. The state con-
straints encoded typical tutoring mes-
sages, €. g., "don't borrow unless the
minuend digit is smaller than the sub-
trahend digit." The predictions from
this simulation experiment contra-
dicted the current wisdom that re-
grouping is easier to learm than alter-
native  subtraction methods; see
Ohlsson (in press-b) and Ohlsson, Emst
& Rees (in press) for a detailed discus-
sion of the results.
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Discussion

Skill acquisition always occurs within
the context of the learner's prior
knowledge about the domain. Models of
skill acquisition must explain the in-
teraction between prior knowledge and
problem solving experience during
practice. We suggest that the cognitive
function of domain knowledge is to en-
able the learner to monitor his or her
own performance. The more domain
knowledge he or she has, the better he
or she can detect and correct errors.
The simulation model we built
around this hypothesis learns in three
different domains which supports the
sufficiency and the generality of the
learning mechanism. The model sug-
gests new perspectives on three tradi-
tional problems in the theory of proce-
dural learning. First, it predicts nega-
tively accelerated learning curves, be-
cause the number of learning oppor-
tunities per practice trial will decrease
as more and more errors are corrected.
Second, it predicts low transfer of
training between domains, because
generality resides in the declarative
knowledge and not in the skill itself.
Finally, the model is consistent with
the fact that one-on-one tutoring is the

most efficient form of instruction, be-
cause tutors operate by helping the
learner with the two main functions

postulated in the model, i. to detect
and correct errors.

The empirical validity of a complex
simulation model is difficult to assess.
The derivation of quantitative predic-
tions from a computational model is
tricky, because the model's behavior is
determined not only by the hypotheses
behind it but also by implementation
details. Also, different models are sel-
dom applied to the same phenomena,
due to differences in the interests of
their creators, making comparative
evaluations difficult. No strong claims
for the empirical validity of HS can be
made at this time.

€.,



The theory behind HS is similar in
spirit to the theory proposed by
Schank (1986). According to the latter,
people understand events by generat-
ing expectations from their current
knowledge and they revise their
knowledge when their expectations
fail. Expectation failures and con-
straint violations are obviously similar
types of events. Schank's theory is fo-
cussed on the wunderstanding of other
agents’ actions rather than on problem
solving and it represents knowledge in
explanation patterns instead of rules,
but the two theories share the hypoth-
esis that learning is a response to an
inconsistency between a cognitive out-
come and existing knowledge.

This hypothesis might ultimately be
undermined by empirical data.
However, the problem of the interac-
tion between prior knowledge and ex-
perience during practice will not go
away. It must be solved before we can
claim to fully understand skill acquisi-
tion.
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