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Implementing and Applying Multiplexed Single Cell RNA-sequencing to Reveal Context-

specific Effects in Systemic Lupus Erythematosus  

 

Meena Subramaniam 

 

Abstract 

Droplet single-cell RNA-sequencing (dscRNA-seq) has enabled rapid, massively parallel 

profiling of transcriptomes. However, assessing differential expression across multiple 

individuals has been hampered by inefficient sample processing and technical batch effects. Here 

we describe a computational tool, demuxlet, that harnesses natural genetic variation to determine 

the sample identity of each cell and detect droplets containing two cells. These capabilities 

enable multiplexed dscRNA-seq experiments in which cells from unrelated individuals are 

pooled and captured at higher throughput than in standard workflows. Using simulated data, we 

show that 50 SNPs per cell are sufficient to assign 97% of singlets and identify 92% of doublets 

in pools of up to 64 individuals. Given genotyping data for each of 8 pooled samples, demuxlet 

correctly recovers the sample identity of >99% of singlets and identifies doublets at rates 

consistent with previous estimates. We also apply demuxlet to assess cell type-specific changes 

in gene expression in 8 pooled lupus patient samples treated with IFN-b and perform eQTL 

analysis on 23 pooled samples. 

Systemic lupus erythematosus (SLE) is an autoimmune disease defined by a broad range 

of symptoms that disproportionately affects women. Our knowledge of which immune cells 

mediate the etiology and pathogenesis of the disease remains incomplete. Identifying pathogenic 

cells using bulk gene expression analysis is confounded by the functional overlap and frequency 
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variation of immune cell types. Here, we used multiplexed single-cell RNA-seq (scRNA-seq) to 

profile ~1 million peripheral blood mononuclear cells from 134 SLE cases and 58 healthy 

controls. Cases were marked by a reduction of naive CD4+ T cells, clonal restriction of effector 

memory CD8+ T cells, and elevated expression of interferon-stimulated genes in classical 

monocytes. An additional 15 cases experiencing active disease flares displayed increased 

expansion of effector memory CD8+ T cells and the presence of macrophages not seen in 

managed disease. Although cell-type-specific expression contributed most to inter-individual 

expression variability across all cells, cell composition accounted for more variability in genes 

differentially expressed in cases. We integrated dense genotyping data to map thousands of 

genetic variants, including SLE-associations, whose effects on expression are modified by cell 

type or interferon activation. Population-scale scRNA-seq analysis reveals changes in cell 

composition and state associated with SLE, and when integrated with genetic data, ascribes 

function to disease-associated and disease-modified variants. 
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Chapter 1: Introduction 

The annotation and functional interpretation of genetic variants from the human genome has 

been one of the largest challenges in studying complex traits. Although Genome Wide 

Association Studies (GWAS) have shed light on genetic loci that may be involved in disease 

pathology, the function of the individual variants that are associated with complex traits are often 

unknown and poorly understood in the context of a biological mechanism1. To overcome this, 

recent studies have quantified genetic variant associations with cellular composition, gene 

expression, chromatin accessibility, and protein expression in tissues of interest which provide 

more functional context that is relevant to disease states2–4. Gene expression and chromatin 

accessibility have also been used to identify potential biomarkers that are unique to disease states 

as well as subtype patients into groups where the disease is thought to have multiple functionally 

distinct mechanisms, suggesting their value in developing better diagnostics and targeted 

therapies in the future5,6. 

                                                                                       

Despite these advances, gene expression profiling of tissues does not offer clarity when the 

relevant cell type for a specific disease is unknown. For example, in the case of Systemic Lupus 

Erythematosus (SLE), an autoimmune disease with highly heterogeneous manifestations that is 

difficult to diagnose, GWAS studies have pointed to numerous cell types in the blood having 

involvement in the disease etiology7. Likely due to this, studying the peripheral blood in bulk 

likely does not capture the variability between patients or signatures from the specific cell 

subtypes that are dysregulated.  Several cell subtypes including B cells, CD4 T cell subsets, and 

CD8 T cells as well as broad clinical phenotypes such as lymphopenia have been studied in the 

context of SLE, and shown to change in abundance and state through the disease course8–10. 
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Additionally, previous work has shown that in the case of SLE, cell type specific gene 

expression implicates different signatures in different ancestral backgrounds, suggesting that 

studying interindividual variation across many cell types may inform more personalized 

medicine and targeted strategies11. 

  

Current bulk gene expression profiling across many cell types is performed by using antibodies 

for population markers to enrich for each cell type separately, and then prepare individual RNA 

libraries for each cell type. This procedure is costly, laborious, and prone to confounding effects 

due to the high number of independent experiments performed. Experimental procedures often 

take hours to prepare the samples for sequencing, and this impacts the quality and accuracy of 

the resulting data. Furthermore, the enrichment of specific cell subtypes based on previously 

identified markers biases the profiling towards known populations and does not lead to the 

discovery of any novel or unknown cell states that may be relevant to disease. These factors 

result in biased bulk gene expression profiles that are suboptimal for discovery and studying 

interindividual variation. 

  

Recent advances in droplet based single cell RNA sequencing have enabled the capture of 

heterogeneous populations in an unbiased manner12. To date, dscRNA-seq has been used to 

characterize heterogeneity in tissues globally, in response to stimulation and knock-down 

perturbations, and in tumor composition13–15. Although these studies have led to the discovery of 

novel cell populations and shed new light on the dynamics of transcriptional regulation, 

interindividual variability at single cell resolution remains largely uncharacterized. Previously, 

single-cell qPCR experiments have shown that the distributional properties of gene expression 
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may be controlled by genetic variants16. This suggests that characterizing interindividual 

variability across single cells and identifying its genetic basis will aid in the discovery and 

interpretation of disease-causing genetic polymorphisms. Characterizing molecular quantitative 

traits in specific cell types from peripheral blood mononuclear cells (PBMCs) will aid in the 

annotation of SLE-associations and shed new light on the pathogenesis of SLE. 

  

In this work we developed a multiplexed scRNA-seq experimental workflow that significantly 

decreases the cost and labor time to perform scRNA-seq experiments in large-scale cohorts. We 

show a proof of concept that our algorithm, demuxlet, performs with up to 99% accuracy and are 

able to replicate biological findings across demultiplexed data. We then applied our workflow to 

sequence 1M cells across 120 patients with SLE cases and 46 healthy controls, and identified cell 

composition as well as gene expression features that distinguish cases from controls, and show 

that cell type specific features are more predictive of clinical criteria for SLE than bulk features. 

We also performed the first genome-wide single-cell derived eQTL study in patients with SLE 

and healthy control to discover genetic variants that influence gene expression of different cell 

subtypes in the immune system. 
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Introduction 

 

Droplet single cell RNA-sequencing (dscRNA-seq) has increased substantially the throughput of 

single cell capture and library preparation1, 10, enabling the simultaneous profiling of thousands 

of cells. Improvements in biochemistry11, 12 and microfluidics13, 14 continue to increase the 

number of cells and transcripts profiled per experiment. But for differential expression and 

population genetics studies, sequencing thousands of cells per individual would better capture 

inter-individual variability than sequencing more cells from a few individuals. However, in 

standard workflows, dscRNA-seq of many samples in parallel remains challenging to implement. 
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If the genetic identity of each cell could be determined, pooling cells from different individuals 

in one microfluidic run would result in lower per-sample library preparation cost and eliminate 

confounding effects. Furthermore, if droplets containing multiple cells from different individuals 

could be detected, pooled cells could be loaded at higher concentrations, enabling additional 

reduction in per-cell library preparation cost. 

Here we develop an experimental protocol for multiplexed dscRNA-seq and a computational 

algorithm, demuxlet, that harnesses genetic variation to determine the genetic identity of each 

cell (demultiplex) and identify droplets containing two cells from different individuals (Fig. 2.1). 

While strategies to demultiplex cells from different species1, 10, 17 or host and graft samples17 

have been reported, simultaneously demultiplexing and detecting doublets from more than two 

individuals has not been possible. Inspired by models and algorithms developed for detecting 

contamination in DNA sequencing 18, demuxlet is fast, accurate, scalable, and compatible with 

standard input formats17, 19, 20.  

Demuxlet implements a statistical model for evaluating the likelihood of observing RNA-seq 

reads overlapping a set of single nucleotide polymorphisms (SNPs) from a single cell. Given a 

set of best-guess genotypes or genotype probabilities obtained from genotyping, imputation or 

sequencing, demuxlet uses maximum likelihood to determine the most likely donor for each cell 

using a mixture model. A small number of reads overlapping common SNPs is sufficient to 

accurately identify each cell. For a pool of 8 individuals and a set of uncorrelated SNPs each 

with 50% minor allele frequency (MAF), 4 reads overlapping SNPs are sufficient to uniquely 

assign a cell to the donor of origin (Fig. 2.1) and 20 reads overlapping SNPs can distinguish 

every sample with >98% probability in simulation (Supplementary Fig. 1). We note that by 

multiplexing even a small number of individuals, the probability that a doublet contains cells 



 9 

from different individuals is very high (1 – 1/N, e.g., 87.5% for N=8 samples) (Fig. 2.1). For 

example, if a 1,000 cell run without multiplexing results in 990 singlets with a 1% undetected 

doublet rate, multiplexing 1,570 cells each from 63 samples can theoretically achieve the same 

rate of undetected doublets, producing up to a 37-fold larger number of singlets (36,600) if the 

sample identity of every droplet can be perfectly demultiplexed (Supplementary Fig. 2, see 

Methods for details). To minimize the effects of sequencing doublets, profiling 22,000 cells 

multiplexed from 26 individuals generates 23-fold more singlets at the same effective doublet 

rate (Supplementary Fig. 3).  
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Results 

We first assess the performance of multiplexed dscRNA-seq through simulation. The ability to 

demultiplex cells is a function of the number of individuals multiplexed, the depth of sequencing 

or number of read-overlapping SNPs, and relatedness of multiplexed individuals. We simulated 

6,145 cells (5,837 singlets and 308 doublets) from 2 – 64 individuals from the 1000 Genomes 

Project21. We show that 50 SNPs per cell allows demultiplexing of 97% of singlets and 

identification of 92% of doublets in pools of up to 64 individuals (Supplementary Figs. 4-5, see 

Methods for details). Simulating a range of sequencing depths, we determined that 50 SNPs can 

be obtained with as few as 1,000 unique molecular identifiers (UMIs) per cell (Supplementary 

Fig. 6), and recommended sequencing depths of standard dscRNA-seq workflows would capture 

hundreds of SNPs. To assess dependence on the relatedness of multiplexed individuals, we 

simulated 6,145 cells from a set of 8 related individuals from 1000 Genomes21. In this 

simulation, 50 SNPs per cell would allow demuxlet to correctly assign over 98% of cells 

(Supplementary Fig. 7). These results suggest optimal multiplexed designs where cells from tens 

of unrelated individuals should be pooled, loaded at concentrations 2-10x higher than standard 

workflows, and sequenced to at least 1,000 UMIs per cell. 

We evaluate the performance of demuxlet by analyzing a pool of peripheral blood mononuclear 

cells (PBMCs) from 8 lupus patients. By sequential pairwise pooling, three pools of equimolar 

concentrations of cells were generated (W1: patients S1-S4, W2: patients S5-S8 and W3: patients 

S1-S8) and each loaded in a well on a 10X Chromium instrument (Fig. 2.2). 3,645 (W1), 4,254 

(W2) and 6,205 (W3) cell-containing droplets were sequenced to an average depth of 51,000, 

39,000 and 28,000 reads per droplet. 
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In wells W1, W2 and W3, demuxlet identified 91% (3332/3645), 91% (3864/4254), and 86% 

(5348/6205) of droplets as singlets (likelihood ratio test, L(singlet)/L(doublet) > 2), of which 

25% (+/- 2.6%), 25% (+/- 4.6%) and 12.5% (+/- 1.4%) mapped to each donor, consistent with 

equal mixing of individuals in each well. From wells W1 and W2, each containing cells from 

two disjoint sets of 4 individuals, we estimated a demultiplexing error rate (number of cells 

assigned to individuals not in the pool) of less than 1% of singlets (W1: 2/3332, W2: 0/3864) 

(Fig. 2.2).  

We next assess the ability of demuxlet to detect doublets in both simulated and real data. 

466/3645 (13%) droplets from W1 were simulated as synthetic doublets by setting the cellular 

barcodes of 466 cells each from individuals S1 and S2 to be the same. Applied to simulated data, 

demuxlet identified 91% (426/466) of synthetic doublets as doublets or ambiguous, correctly 

recovering the sample identity of both cells in 403/426 (95%) doublets (Supplementary Fig. 8). 

Applied to real data from W1, W2 and W3, demuxlet identified 138/3645, 165/4254, and 

384/6205 doublets corresponding to doublet rates of 5.0%, 5.2% and 7.1%, consistent with the 

expected doublet rates estimated from mixed species experiments (Fig. 2.2). 

Demultiplexing of pooled samples allows for the statistical and visual comparisons of individual-

specific dscRNA-seq profiles. Singlets identified by demuxlet in all three wells cluster into 

known immune cell types (Fig. 2.2) and are correlated with bulk RNA-sequencing of sorted cell 

populations (R=0.76-0.92) (Supplementary Fig. 9). For the same individuals from different 

wells, t-distributed stochastic neighbor embedding (t-SNE) of dscRNA-seq data are qualitatively 

consistent, and estimates of cell type proportions are highly correlated (R = 0.99) (Fig. 2.2 and 

Supplementary Fig. 10). Further, t-SNE projections of the pool and each individual are not 

confounded by well-to-well effects (Supplementary Fig. 11a). While 6 genes were differentially 
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expressed between wells W1 and W2 (DESeq2 on pseudobulk counts, FDR < 0.05), only 2 

genes were differentially expressed between W1 and W2 individuals in well W3 (FDR < 0.05) 

(Supplementary Fig. 11b), suggesting multiplexing reduces technical effects due to separate 

sample processing22, 23.  

We used multiplexed dscRNA-seq to characterize the cell type specificity and inter-individual 

variability of response to IFN-β, a potent cytokine that induces genome-scale changes in the 

transcriptional profiles of immune cells24, 25. From each of 8 lupus patients, PBMCs were 

activated with recombinant IFN-β or left untreated for 6 hours, a time point we previously found 

to maximize the expression of interferon-sensitive genes (ISGs) in dendritic cells (DCs) and T 

cells26, 27. Two pools, IFN-β-treated and control, were prepared with the same number of cells 

from each individual and loaded onto the 10X Chromium instrument. 

We obtained 14,619 (control) and 14,446 (stimulated) cell-containing droplets, of which 

demuxlet identified 83% (12,138) and 84% (12,167) as singlets. The estimated doublet rate of 

10.9% in each condition is consistent with predicted rates (Fig. 2.2) and the observed and 

expected frequencies of doublets for each pair of individuals are highly correlated (R=0.98) 

(Supplementary Fig. 12). Detected doublets form distinct clusters near the periphery of other 

clusters defined by cell type (Supplementary Fig. 13). 

Demultiplexing individuals enables the use of the 8 individuals within each pool as biological 

replicates to quantitatively assess cell type-specific IFN-β responses in PBMCs. Consistent with 

previous reports from bulk RNA-sequencing data, IFN-β stimulation induces widespread 

transcriptomic changes observed as a shift in the t-SNE projections of singlets24  (Fig. 2.3). As 

expected, IFN-β did not affect cell type proportions between control and stimulated cells 

(Supplementary Fig. 14), and these were consistent with flow cytometry measurements (R=0.88) 
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(Supplementary Fig. 15). Estimates of abundances for ~2000 homologous genes in each cell type 

and condition correlated with similar data from mice (Supplementary Fig. 16). We identified 

3,055 differentially expressed genes (logFC > 2, FDR < 0.05) in at least one cell type 

(Supplementary Table 1). For 709 genes, estimates of fold change in response to IFN-β 

stimulation in myeloid and CD4+ cells are consistent with estimates in monocyte derived 

dendritic cells28 and CD4+ T cells27, respectively  (Supplementary Fig. 17) and correlated with 

qPCR results of sorted CD4+ T cells (Supplementary Fig. 18). Differentially expressed genes 

cluster into modules of cell type-specific responses enriched for distinct gene regulatory 

programs (Fig. 2.3, Supplementary Table 2). For example, genes upregulated in all leukocytes 

(Cluster III: 401 genes, logFC > 2, FDR < 0.05) or only in myeloid cells (Cluster I: 767 genes, 

logFC > 2, FDR < 0.05) are enriched for general antiviral response (e.g. KEGG Influenza A: 

Cluster III P < 1.6x10-5), chemokine signaling (Cluster I P < 7.6x10-3) and pathways active in 

systemic lupus erythematosus (Cluster I P < 4.4x10-3). The five clusters of downregulated genes 

are enriched for antibacterial response (KEGG Legionellosis: Cluster II monocyte down P < 

5.5x10-3) and natural killer cell mediated toxicity (Cluster IV NK/Th cell down: P < 3.6x10-2). 

The analysis of multiplexed dscRNA-seq data recovers cell type-specific gene regulatory 

programs affected by interferon stimulation consistent with published IFN-β signatures in mouse 

and humans29.  

Over all PBMCs, the variance of mean expression across individuals is higher than the variance 

across synthetic replicates whose cells were randomly sampled (Lin’s concordance = 0.022, 

Pearson correlation= 0.69, Fig. 2.3). The variance across synthetic replicates whose cells were 

sampled matching for cell type proportions is more concordant with the variance across 

individuals (Lin’s concordance = 0.54, Pearson correlation = 0.78, Fig. 2.3), suggesting a 
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contribution of cell type composition on expression variability. However, for each cell type, the 

variance across individuals22, 30 is also higher than the variance across synthetic replicates (Lin’s 

concordance = 0.007-0.20) suggesting additional inter-individual variability not due to cell type 

composition (Supplementary Fig. 19). In CD14+CD16- monocytes, the correlation of mean 

expression between pairs of synthetic replicates from the same individual (>99%) is greater than 

from different individuals (~97%), further indicating inter-individual variation beyond sampling 

(Fig. 2.3). We found between 15 to 827 genes with statistically significant inter-individual 

variability in control cells and 7 to 613 in stimulated cells (Pearson correlation, FDR < 0.05), 

with most found in classical monocytes (cM) and CD4+  helper T (Th) cells. Inter-individual 

variable genes in stimulated cM and to a lesser extent in Th cells (P < 9.3x10-4 and 4.5x10-2, 

hypergeometric test, Fig. 2.3) are enriched for differentially expressed genes, consistent with our 

previous discovery of more IFN-β response-eQTLs in monocyte-derived dendritic cells than 

CD4+ T cells26, 27. Comparing to 407 genes previously profiled in bulk monocyte-derived 

dendritic cells, the proportion of variance explained by inter-individual variability is more 

correlated in myeloid cells after stimulation (R = 0.26 – 0.3) than before (R = 0.05 – 0.19).  

To map genetic variants associated with cell type proportions and cell type-specific expression 

using multiplexed dscRNA-seq, we sequenced an additional 15,250 (7 donors), 22,619 (8 

donors) and 25,918 cells (15 donors; 8 lupus patients, 5 rheumatoid arthritis patients, and 2 

healthy controls). Demuxlet identified 71% (10,766/15,250), 73% (16,618/22,619) and 60% 

(15,596/25,918) of droplets as singlets, correctly assigning 99% of singlets from the first two 

pools, W1 and W2 (10,740/10,766 and 16,616/16,618). The estimated doublet rates of 18%, 18% 

and 25% are consistent with the increased concentrations of loaded cells (Fig. 2.2). Similar to the 

IFN-β stimulation experiment, we found that expression variability was determined by variability 
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in cell type proportion (Fig. 2.4) and reproducible between batches (Supplementary Fig. 20). 

Associating >150,000 genetic variants (MAF > 20%) with the proportion of 8 major immune cell 

populations, we identified a SNP (chr10:3791224) significantly associated (P = 1.03 x 10-5, FDR 

< 0.05) with the proportion of NK cells (Fig. 2.4).  

Across 23 donors, we conducted an expression quantitative trait loci (eQTL) analysis to map 

genetic variants associated with expression variability in each major immune cell type. We found 

a total of 32 local eQTLs (+/- 100kb, FDR < 0.1), 22 of which were detected in only one cell 

type (Fig. 2.4, Supplementary Table 3). Previously reported local eQTLs from bulk CD14+ 

monocytes, CD4+ T cells and lymphoblastoid cell lines are more significantly associated with 

gene expression in the most similar cell types (cM, Th and B cells, respectively) than other cell 

types (Fig. 2.4). We used an inverse variance weighted meta-analysis to identify genes with pan-

cell type eQTLs, including those in the major histocompatibility complex (MHC) class I antigen 

presentation pathway including ERAP2 (P < 3.57x10-32, meta-analysis), encoding an 

aminopeptidase known to cleave viral peptides34, and HLA-C (P < 1.74x10-29, meta-analysis), 

which encodes the MHC class I heavy chain (Fig. 2.4). HLA-DQA1 has local eQTLs only in 

some cell types (P <2.11x10-15, Cochran’s Q) while HLA-DQA2 has local eQTLs in all antigen 

presentation cells (P < 1.02e10-43, Cochran’s Q). Among other cell type-specific local eQTLs are 

CD52, a gene ubiquitously expressed in leukocytes that only has eQTLs in monocyte 

populations, and DIP2A, a gene with an eQTL only in NK cells that is associated with immune 

response to vaccination in peripheral blood35. These results demonstrate the ability of 

multiplexed dscRNA-seq to characterize inter-individual variation in immune response and when 

integrated with genetic data, reveal cell type-specific genetic control of gene expression, which 

would be undetectable when bulk tissues are analyzed. 
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Discussion 

The capability to demultiplex and identify doublets using natural genetic variation reduces the 

per-sample and per-cell library preparation cost of single-cell RNA-sequencing, does not require 

synthetic barcodes or split-pool strategies36-40, and captures biological variability among 

individual samples while limiting unwanted technical variability. We find the optimal number of 

samples to multiplex is approximately 20, based on sample processing time and empirical 

doublet rates of current microfluidic devices and anticipate that automated sample handling and 

lower doublet rates will increase the optimal number of individuals to multiplex. 

Compared to sorting known cell types followed by bulk RNA-seq, multiplexed dscRNA-seq is a 

more efficient and unbiased method for obtaining cell type-specific immune traits41. Demuxlet 

enables reliable estimation of cell type proportion, recovers cell type-specific transcriptional 

response to stimulation, and could facilitate further genetic and longitudinal analyses in relevant 

cell types and conditions across a range of sampled individuals, including between healthy 

controls and disease patients42-44. While demuxlet could in principle be applied to sequencing 

solid tissue, standardizing sample processing and preservation remain major challenges. 

Although we developed demuxlet specifically for RNA-sequencing, we anticipate that the 

computational framework could be easily extended to other single cell assays where synthetic 

barcodes or natural genetic variation are measured by sequencing. 
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Methods 

Identifying the sample identity of each single cell. 

We first describe the method to infer the sample identity of each cell in the absence of doublets. 

Consider RNA-sequence reads from C barcoded droplets multiplexed across S different samples, 

where their genotypes are available across V exonic variants. Let !"# be the number of unique 

reads overlapping with the v-th variant from the c-th droplet. Let $"#% ∈ {(, *, +}, - ∈

{1,⋯ , !"#} be the variant-overlapping base call from the i-th read, representing reference (R), 

alternate (A), and other (O) alleles respectively. Let  0"#% ∈ {0,1} be a latent variable indicating 

whether the base call is correct (0) or not (1), then given 0"#% = 0, $"#% ∈ {( = 0, * = 1}	and 

	~	Binomial <2,
>

?
@ when A ∈ {0,1,2} is the true genotype of sample corresponding to c-th 

droplet at v-th variant. When 0"#% = 1, we assume that Pr($"#%|A, 0"#%) follows Supplementary 

Table 4. 0"#% is assumed to follow Bernoulli <10I
JKLM
NO @ where P"#% is a phred-scale quality score 

of the observed base call. We use the standard 10X pipeline to process the raw reads which 

estimates the phred-scale quality score based on the alignment of each read to the reference 

human transcriptome using the STAR aligner49.  

 We allow uncertainty of observed genotypes at the v-th variant for the s-th sample using 

QR#
(>) = Pr(A|DataR#), the posterior probability of a possible genotype	A given external DNA 

data DataR#	(e.g. sequence reads, imputed genotypes, or array-based genotypes). If genotype 

likelihood Pr(DataR#|A) is provided (e.g. unphased sequence reads) instead, it can be converted 

to a posterior probability scale using QR#
(>) = Pr	(DataR#|A)Pr	(A) where 

Pr(A)~Binomial(2, U#) and U# is the population allele frequency of the alternate allele. To 
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allow errors V in the posterior probability, we replace it with (1 − V)QR#
(>) + VPr	(A). The overall 

likelihood that the c-th droplet originated from the s-th sample is 

 Y"(Z) = ∏ \∑ ^∏ (∑ Pr($"#%|A, 0)
_
`ab )QR#

(>)cKL
%a_ d?

>ab ef
#a_   (1) 

In the absence of doublets, we use the maximum likelihood to determine the best-matching 

sample as argmaxR[Y"(Z)]. 

 

Screening for droplets containing multiple samples. 

To identify doublets, we implement a mixture model to calculate the likelihood that the sequence 

reads originated from two individuals, and the likelihoods are compared to determine whether a 

droplet contains cells from one or two samples. If sequence reads from the c-th droplet originate 

from two different samples, Z_, Z? with mixing proportions (1 − k) ∶ 	k, then the likelihood in 

(1) can be represented as the following mixture distribution18,  

Y"(Z_, Z?, α) = ∏ \∑ ^∏ (∑ (1 − α)Pr($"#%|A_, 0) + kPr($"#%|A?, 0)
_
`ab )QR#

(>N)QR#
(>n)cKL

%a_ d>N,>n ef
#a_   

 To reduce the computational cost, we consider discrete values of α ∈ {α_,⋯ , αo}, (e.g. 5 

- 50% by 5%). We determine that it is a doublet between samples Z_, Z?  if and only if  

pqrsN,sn,t uK(RN,Rn,v)

pqrsuK(R)
≥ x and the most likely mixing proportion is estimated to be 

argmaxyY"(Z_, Z?, k). We determine that the cell contains only a single individual s if 

pqrsN,sn,t uK(RN,Rn,v)

pqrsuK(R)
≤

_

{
 , and less confident droplets are classified as ambiguous. While we 

consider only doublets for estimating doublet rates, we remove all doublets and ambiguous 

droplets to conservatively estimate singlets. Supplementary Fig. 8 illustrates the distribution of 

singlet, doublet likelihoods and the decision boundaries when t = 2 was used.  
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Theoretical expectation of deconvoluting singlets. 

The theoretical distribution of expected singlets with multiplexing (presented in Supplementary 

Fig. 2) is as follows. Let !| (e.g. 0.01) be the proportion of true multiplets when }| (1,000) cells 

are loaded when multiplexing was not used. Then the expected multiplet rates when x cells are 

loaded can be modeled exponentially as !(}) = 1 − (1 − !b)
~

~O. Let k be the fraction of true 

singlets incorrectly classified as non-singlets (i.e. doublet or ambiguous), and � be the fraction of 

multiplets correctly classified as non-singlets. When multiplexing } cells equally from Ä 

samples, the expected multiplet rates are !(}), and  _
Å
!(}) are expected to be undetectable 

doublets mixed between the cells from the same sample. Therefore, the overall effective 

multiplet rate is \ÅI(ÅI_)Ç
Å

e !(}). Similarly, the expected number of correctly identified singlets 

becomes (_Iy)[_Ic(É)]ÉOc(É)
IÑÖÜ	(_IcO)

 . Given k, � the expected number of singlets can be calculated by 

fixing the multiplet rate !(}) = !b. We used !b = 0.01, }b = 1000 for the simulation in 

Supplementary Fig. 2. 

 

Dependence of demultiplexing performance on experimental design parameters. 

The demuxlet ‘plp’ option was used to generate a pileup format of 6,145 cells from one well of 

PBMC 10x data.  The reads in the pileup were then modified to reflect the genotypes of 

individuals sampled from the 1000 Genomes Phase 3 cohort. The pileup was downsampled to 

obtain different numbers of read-overlapping exonic SNPs (ranging from 5,000 to 100,000) for 

the whole cohort. To create simulated doublets, we randomly sampled and merged pairs of 

barcodes within a dataset, resulting in a 5% doublet rate in the original data. For simulations with 

related individuals, we simulated transcriptomes from 8 individuals in 1000 Genomes with 
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varying degrees of relatedness, ranging from unrelated to parent-child (HG00146, HG00147, 

HG00500, HG00501, HG00502, HG00512, HG00514, and HG00524).  

 

Isolation and preparation of PBMC samples. 

Informed consent was obtained from all patients sequenced in this study. Peripheral blood 

mononuclear cells were isolated from patient donors, Ficoll separated, and cryopreserved by the 

UCSF Core Immunologic Laboratory (CIL). PBMCs were thawed in a 37°C water bath, and 

subsequently washed and resuspended in EasySep buffer (STEMCELL Technologies). Cells 

were treated with DNAseI and incubated for 15 min at RT before filtering through a 40um 

column.  Finally, the cells were washed in EasySep and resuspended in 1x PBMS and 0.04% 

bovine serum albumin.  Cells from 8 donors were then re-concentrated to 1M cells per mL and 

then serially pooled. At each pooling stage, 1M cells per mL were combined to result in a final 

sample pool with cells from all donors.  

 

IFN-β stimulation and culture. 

Prior to pooling, samples from 8 individuals were separated into two aliquots each. One aliquot 

of PBMCs was activated by 100 U/mL of recombinant IFN-β (PBL Assay Science) for 6 hrs 

according to the published protocol26. The second aliquot was left untreated. After 6 hrs, the 8 

samples for each condition were pooled together in two final pools (stimulated cells and control 

cells) as described above.  
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Fluorescence-activated cell sorting and analysis. 

1M PBMCs from each donor were stained using standard procedure (30 min, 4 C) with the 

following surface antibody panel (CD3-PerCP clone SK7 (BioLegend), CD4-APC clone OKT4 

(BioLegend), CD8-BV570 clone RPA-T8 (BioLegend), CD14-FITC clone 63D3 (BioLegend), 

CD19-BV510 clone SJ25C1 (BD), and Ghost dye A710 viability stain (Tonbo)) (Life Sciences 

Reporting Summary). Samples were then analyzed and sorted using a BD FACSAria Fusion 

instrument at the UCSF flow cytometry core. To calculate cell type proportions, the number of 

events in each of CD3+ CD4+ CD8- (CD4+ T cells), CD3+ CD4- CD8+ (CD8+ T cells), CD3- 

CD19+ (B cells), and CD3- CD14+ (monocytes) were divided by the sum of events in these gates 

(Supplementary Fig. 21).  

 

Quantitative polymerase chain reaction analysis. 

RNA was isolated from sorted CD4+ T cells following the RNeasy micro kit protocol 

(QIAGEN), and cDNA was prepared using MultiScribe Reverse Transcriptase (Applied 

Biosystems cat #4368814). The qPCR primers were chosen from the PrimerBank reference when 

available 50. Each sample was run in triplicate with the Luminaris HiGreen qPCR kit (Thermo 

Scientific #K0992) according to standard protocol using a Roche Light Cycler 96 instrument and 

fold change was calculated from DDCT between control and stimulated samples with GAPDH as 

a reference gene. 

 

Droplet-based capture and sequencing. 

Cellular suspensions were loaded onto the 10x Chromium instrument (10x Genomics) and 

sequenced as described in Zheng et al17. The cDNA libraries were sequenced using a custom 
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program on 10 lanes of Illumina HiSeq2500 Rapid Mode, yielding 1.8B total reads and 25K 

reads per cell. At these depths, we recovered >90% of captured transcripts in each sequencing 

experiment.  

 

Bulk isolation and sequencing. 

PBMCs from lupus patients were isolated and prepared as described above. Once resuspended in 

EasySep buffer, the EasyEights Magnet was used to sequentially isolate CD14+ (using the 

EasySep Human CD14 positive selection kit II, cat #17858), CD19+ (using the EasySep Human 

CD19 positive selection kit II, cat #17854), CD8+ (EasySep Human CD8 positive selection kitII, 

cat#17853), and CD4+ cells (EasySep Human CD4 T cell negative isolation kit (cat #17952) 

according to the kit protocol. RNA was extracted using the RNeasy Mini kit (#74104), and 

reverse transcription and tagmentation were conducted according to Picelli et al. using the 

SmartSeq2 protocol51, 52. After cDNA synthesis and tagmentation, the library was amplified with 

the Nextera XT DNA Sample Preparation Kit (#FC-131-1096) according to protocol, starting 

with 0.2ng of cDNA.  Samples were then sequenced on one lane of the Illumina Hiseq4000 with 

paired end 100bp read length, yielding 350M total reads. 

 

Alignment and initial processing of single cell sequencing data. 

We used the CellRanger v1.1 and v1.2 software with the default settings to process the raw 

FASTQ files, align the sequencing reads to the hg19 transcriptome, and generate a filtered UMI 

expression profile for each cell17. The raw UMI counts from all cells and genes with nonzero 

counts across the population of cells were used to generate t-SNE profiles.  
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Cell type classification and clustering. 

To identify known immune cell populations in PBMCs, we used the Seurat package to perform 

unbiased clustering on the 2.7k PBMCs from Zheng et al., following the publicly available 

Guided Clustering Tutorial17, 53. The FindAllMarkers function was then used to find the top 20 

markers for each of the 8 identified cell types. Cluster averages were calculated by taking the 

average raw count across all cells of each cell type. For each cell, we calculated the Spearman 

correlation of the raw counts of the marker genes and the cluster averages, and assigned each cell 

to the cell type to which it had maximum correlation. 

 

Differential expression analysis. 

Demultiplexed individuals were used as replicates for differential expression analysis.  For each 

gene, raw counts were summed for each individual. We used the DESeq2 package to detect 

differentially expressed genes between control and stimulated conditions54. Genes with 

baseMean > 1 were filtered out from the DESeq2 output, and the qvalue package was used to 

calculate FDR < 0.05 55. 

 

Estimation of interindividual variability in PBMCs. 

For each individual, we found the mean expression of each gene with nonzero counts. The mean 

was calculated from the log2 single cell UMI counts normalized to the median count for each 

cell. To measure interindividual variability, we then calculated the variance of the mean 

expression across all individuals. Lin’s concordance correlation coefficient was used to compare 

the agreement of observed data and synthetic replicates. Synthetic replicates were generated by 

sampling without replacement either from all cells or cells matched for cell type proportion. Cell 
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type-specific variability estimated as the correlation between synthetic replicates was compared 

to variability estimates from 23 biological replicates of bulk IFN-stimulated monocyte-derived 

dendritic cells. Protein coding genes (407/414) originally measured using Nanostring (a 

hybridization based PCR-free quantification method) were assessed, and variability in the bulk 

dataset was estimated as repeatability using a linear mixed model56,26. 

 

Estimation of interindividual variability within cell types. 

For each cell type, we generated two bulk equivalent replicates for each individual by summing 

raw counts of cells sampled without replacement.  We used DESeq2 to generate variance-

stabilized counts across all replicates. To filter for expressed genes, we performed all subsequent 

analyses on genes with 5% of samples with > 0 counts.  The correlation of replicates was 

performed on the log2 normalized counts. Pearson correlation of the two replicates from each of 

the 8 individuals was used to find genes with significant interindividual variability.  

 

Quantitative trait mapping in major immune cell types. 

Genotypes were imputed with EAGLE57 and filtered for MAF > 0.2, resulting in a total of 

189,322 SNPs. Cell type proportions were calculated as number of cells for each cell type 

divided by the number of total cells for each person.  Linear regression was used to test 

associations between each genetic variant and cell-type proportion with the Matrix eQTL 

software58. Cis-eQTL mapping was conducted in each cell type separately. All genes with at 

least 50 UMI counts in 20% of the individuals in all PBMCs were tested for each cell type, 

resulting in a total of 4,555 genes.  Variance-stabilized and log-normalized gene expression was 

calculated using the ‘rlog’ function of the DESeq2 package54. All variants within a window of 
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100kbp of each gene were tested with linear regression using Matrix eQTL58. Batch information 

for each sample as well as the first 3 principal components of the expression matrix were used as 

covariates.  

 

Single cell and bulk RNA-sequencing data has been deposited in the Gene Expression Omnibus 

under the accession number GSE96583. Demuxlet software is freely available at 

https://github.com/statgen/demuxlet 
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Figures 

 

Figure 2.1: demultiplexing and doublet identification from single cell data.  
a) Pipeline for experimental multiplexing of unrelated individuals, loading onto droplet-based 
single-cell RNA-sequencing instrument, and computational demultiplexing (demux) and doublet 
removal using demuxlet. Assuming equal mixing of 8 individuals, b) 4 genetic variants can 
recover the sample identity of a cell, and c) 87.5% of doublets will contain cells from two 
different samples. 
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Figure 2.2: Performance of demuxlet.  
a) Experimental design for equimolar pooling of cells from 8 unrelated samples (S1-S8) into 
three wells (W1-W3). W1 and W2 contain cells from two disjoint sets of 4 individuals. W3 
contains cells from all 8 individuals. b) Demultiplexing single cells in each well recovers the 
expected individuals. c) Estimates of doublet rates versus previous estimates from mixed species 
experiments. d) Cell type identity determined by prediction to previously annotated PBMC data. 
e) t-SNE plot of two individuals (S1 and S5) from different wells are qualitatively concordant. 
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Figure 2.3: Interindividual variability in IFN-β response.  
a) t-SNE plot of unstimulated (blue) and IFN-β-stimulated (red) PBMCs and the estimated cell 
types. b) Cell type-specific expression in stimulated (left) and unstimulated (right) cells. 
Differentially expressed genes shown (FDR < 0.05, |log(FC)| > 1). Each column represents cell 
type-specific expression for each individual from demuxlet. c) Observed variance (y-axis) in 
mean expression over all PBMCs from each of the 8 individuals versus expected variance (x-
axis) over synthetic replicates sampled across all cells (light blue, pink) or replicates matched for 
cell type proportion (blue, red). d) Cell type proportions for each individual in unstimulated and 
stimulated cells. e) Correlation between sample replicates in control and stimulated cells. f) 
Number of significantly variable genes in each cell type and condition. 
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Figure 2.4 – Genetic control over cell type proportion and gene expression (N=23).  
a) Observed variance (y-axis) in mean expression over all PBMCs from each individual versus 
expected variance (x-axis) over synthetic replicates sampled across batch 1 (left, N=8) and batch 
3 (right, N=15). b) Association of chr10:3791224 with NK cell type proportions.  c) Genome-
wide and chromosome 6 Manhattan plots across all major cell types. Horizontal lines correspond 
to FDR < 0.1 (blue) and FDR  < 0.05 (red). d) Q-Q plots across all genes and subsets of 
previously published eQTLs in relevant cell types are shown for B, cM, and Th populations. e) 
Notable cis-eQTLs across all major immune cell types are marked with *(FDR < 0.25), ** (FDR 
< 0.1), and *** (FDR < 0.05).  Lack of association is marked with NS (not significant).  
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Chapter 3: Multiplexed RNA-sequencing of 1M immune cells reveals the cellular, 

molecular, and genetic correlates of systemic lupus erythematosus. 

 
Introduction 

 
The approach described in Chapter 2 enables the large-scale profiling of disease cohorts in 

efficient and cost-effective manner. Chapter 3 highlights the biological insights that can be 

gained from applying this method to a disease cohort.  In this chapter, we study Systemic Lupus 

Erythematosus using our mutliplexed single cell sequencing workflow and demuxlet, profiling 

120 lupus cases and 46 healthy controls.  

  

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that disproportionately 

affects women1 and is characterized by a broad range of manifestations across multiple organs2. 

Molecular analyses have implicated the production of autoantibodies, dysregulation of antigen 

presentation and lymphocyte signaling3,4, activation of the interferon signaling pathway3,4, and 

failure of apoptotic clearance as hallmarks of the disease5,6. Many genes that participate in these 

immunological processes are proximal to the ~100 genetic variants thus far associated with 

SLE7. However, while these results implicate multiple immune pathways in SLE3,8, mapping the 

cell types and states underlying the pathogenesis of the disease remains incomplete and 

annotating the molecular function of disease-associated variants remains challenging. 

 

Historically, separate approaches have been used to characterize changes in cell composition and 

state in SLE. Flow cytometry analysis that estimates composition based on known cell surface 

markers has reported frequency changes of circulating immune populations9,10. Bulk peripheral 
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blood gene expression analyses with or without sorting for specific subsets have found elevated 

levels of interferon signaling with pleiotropic effects across immune cell types3,4,11. However, 

flow cytometry relies on the initial set of markers (and thus biased by prior knowledge) and bulk 

expression averages across diverse cells between and within types. Moreover, neither can 

simultaneously measure the frequencies and activation states of cell types or capture 

heterogeneity within sorted populations. Additionally, it is challenging to apply both methods at 

scale across the large cohorts necessary to detect subtle shifts in cell composition and gene 

expression caused by disease or disease-associated variants. 

 

Massively parallel single-cell RNA-sequencing (scRNA-seq) holds enormous potential as a 

comprehensive approach to simultaneously estimate the composition and characterize the state of 

circulating immune cells. When integrated with dense genotyping data, there is a further 

opportunity to ascribe molecular functionality to disease-associated variants across a number of 

cellular contexts. However, profiling large population cohorts using scRNA-seq has been limited 

by sample throughput and susceptibility to technical and biological variability. To overcome 

these limitations, we recently described a sample multiplexing approach that leverages single 

nucleotide polymorphisms (SNPs) to enable systematic and cost-effective profiling of 104 cells 

from 10-100 genetically distinct samples in one microfluidic reaction12. 

 

Here, we used multiplexed single cell sequencing to profile ~1 million peripheral blood 

mononuclear cells (PBMCs) isolated from 58 healthy controls and 136 SLE patients of Asian 

and European ancestry, including patients experiencing active disease flares. We analyzed this 

rich dataset to define changes in cellular composition, cell-type-specific gene expression, and 
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immune repertoire in cases. To place our findings in the context of the known molecular 

signatures of SLE, we estimated the contribution of cellular composition and cell-type-specific 

expression to inter-individual expression variability calculated over aggregated PBMCs, 

hereinafter pseudobulk. We further explored the contribution of genetics to interindividual 

variability by mapping common genetic variants associated with gene expression (eQTLs) across 

8 immune cell types, identifying eQTLs whose effects are modified by cell-type identity and 

interferon activation. Finally, we leveraged published genome-wide association studies (GWAS) 

summary statistics to annotate cell types that may mediate genetic associations in SLE and other 

autoimmune diseases. Our work demonstrates the power of single-cell RNA-seq as a compelling 

tool for quantitative high-dimensional immunological phenotyping of immunological disease. 
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Results 

Changes in helper T cell composition causally associated with SLE 

 

We generated a cross-sectional dataset of 834,096 cell profiles across 169 donors (119 cases 

from the California Lupus Epidemiology Study13 and 50 controls from the ImmVar 

Consortium14–17). PBMCs were profiled using multiplexed single cell sequencing in 13 pools 

each containing 16 donors12 (Fig. 3.1). A total of 1,134,700 cell-containing droplets were 

sequenced to an average depth of 18,201 reads per droplet. 834,096 cells remained after quality 

control filtering and removal of droplets containing two cells using demuxlet12 (doublet rate 

26.5%, expected 22-25%) resulting in 4,590 singlets (+/- 1,572) assigned to each donor (Supp. 

Fig. 1). 

 

From the multiplexed single cell sequencing profiles, we estimated the composition of 

circulating immune cells per sample and assessed the robustness of the estimates. Following 

batch correction, normalization, principal component analysis, k-nearest neighbor graph 

construction, and Leiden clustering (see Methods), we assigned each of 32 resulting clusters to 

11 immune cell types based on known gene signatures including: classical (cM) and non-

classical monocytes (ncM), conventional (cDCs) and plasmacytoid dendritic cells (pDCs), CD4+ 

(T4) and CD8+ T cells (T8), natural killer cells (NK), B cells (B), proliferating lymphocytes 

(Prolif), megakaryocytes (MK), and progenitor cells (Progen). Uniform Manifold Approximation 

and Projection (UMAP)18 revealed distinct regions of the embedding occupied by cells of 

different types (Fig. 3.1) and to a lesser extent by cells from cases versus controls (Fig. 3.1). For 

each sample, we constructed a personalized projection and obtained highly reproducible 
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estimates of cell composition between biological replicates (Mean R2 = 0.81) (Fig. 3.1, Supp. 

Fig. 2-3). Notably for 107 cases, estimates of monocyte (ncM+cM) and lymphocyte 

(T4+T8+NK+B) abundances are extremely well correlated with those measured by automated 

white blood cell counts with differential reported in the UCSF Electronic Health Records (EHR) 

(Rmono = 0.88, P < 9.30x10-36, Rlympho= 0.97, P < 1.40x10-63, Fig. 3.1). 

 

We used least squares regression weighted by the total number of cells per donor to quantify 

composition differences between cases and controls. Cases were marked by higher percentages 

of monocytes (cM: +10.7%, P < 1.68x10-8; ncM: +1.7%, P < 5.32x10-4, Linear Regression) and a 

corresponding lower T4 percentage because composition estimates are relative (-13.3%, P < 

1.78x10-13; RcM.vs.T4 = -0.41) (Fig. 3.1, Supp. Fig. 4-5). Additionally, SLE patients have higher 

percentages of ProlifT (+0.34%, 4.29x10-4), and a small but significant percentage of pDCs (-

0.55%, P < 5.16x10-24) consistent with most reports19. No significant effects of treatment on 

composition were detected in patients currently receiving mycophenolate mofetil, 

hydroxychloroquine, or oral steroids (Supp. Fig. 6), consistent with reports that suggest 

mycophenolate mofetil has no effect on white blood cells20 and prednisone has only transient 

effects on CD4+ T cells21,22. 

 

A higher ratio of monocytes to T4 cells could be due to mutually antagonistic regulation of 

myeloid versus lymphoid lineages during hematopoiesis or the enrichment or depletion of one 

lineage. Analysis of lymphocyte and monocyte abundances reported in the EHR of an additional 

117 cases and 1,688 matched controls found no difference in the abundance of monocytes but 

depletion of lymphocytes in cases (Caucasians: P < 8.00x10-9, African Americans: P < 1.81x10-5, 
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Asians: P < 1.66x10-14, Fig. 3.1). To assess if lymphocyte depletion is causative for disease, we 

performed Mendelian randomization using Generalised Summary-data-based Mendelian 

Randomisation (GSMR)23 using summary statistics on SLE and blood composition traits from 

the UK Biobank(Bycroft et al. 2018). The causal effect size of SLE-associated variants on 

disease status is negatively correlated with their effect sizes on lymphocyte (βSLE.lymph = -0.11, P 

< 0.03; Fig. 3.1) but not monocyte abundances (Supp. Fig. 7).  These results suggest that single 

cell sequencing can reliably detect broad changes in peripheral blood cell types and is concordant 

with other approaches to estimate cellular composition.  

 

Composition accounts for more inter-individual expression variability in SLE 

 

Bulk profiling of circulating immune cells have identified transcriptomic signatures linked to 

interferon signaling, lymphocyte activation, and cytolytic function in SLE4. However, 

pinpointing the pathogenic cells underlying bulk transcriptional signatures may be confounded 

by the functional overlap and frequency variation of immune cell types. To identify expression 

changes across cell types in SLE, we computed pseudobulk PBMC or cell-type-specific profiles 

for each sample and identified 141 differentially expressed (DE) genes in PBMCs and an 

additional 57 in at least one of eight cell types between cases and controls (cM, ncM, cDC, pDC, 

T4, T8, NK, or B) (FDR < 0.01, abs(logFC) > 1; Supp. Table 1, Fig. 3.2, see Methods). The 

198 DE genes clustered into 6 up-regulated and two down-regulated modules in SLE (Fig. 3.2, 

Supp. Fig. 8). Down-regulated modules MpDC and MT4 are comprised of lineage-specific genes 

reflective of the decrease in the frequencies of T4 (i.e. CCR7) and pDC (i.e. LILRA4). The up-

regulated modules include MPan, enriched for interferon-stimulated genes (ISG) across all cell 
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types (Supp. Table 1), and two modules (MMono, MncM) expressing genes specific to the myeloid 

lineage. MPan and MMono capture 21/30 previously described ISG genes in SLE5 while MncM is 

composed of components of the complement system. A pseudobulk ISG signature score 

calculated over all PBMCs is positively correlated with myeloid cell percentage (R = 0.58) and 

negatively correlated with lymphoid cell percentage (R = -0.22) (Fig. 3.2). Additional up-

regulated modules MLymph, MT8 and MB consist of genes expressed in T4, T8 and B cells 

including cytotoxicity (MT8: GZMB, GZMH), activation and checkpoint (MLymph: TIGIT, 

KLRB1), and major histocompatibility complex molecules and cytokines (MB: HLA-DRB5, IL6). 

Genes in these modules were largely not differentially expressed in PBMCs likely due to the low 

frequency of cells in circulation (e.g. T8 and Bs) and the opposing actions of cell depletion and 

increased expression (e.g. T4), highlighting an important advantage of single-cell analysis. 

 

Leveraging the ability to simultaneously estimate the frequency and expression profile of each 

cell type, we used variance component analysis to quantify the contribution of cellular 

composition (Vcomp) and cell-type-specific expression (Vexp) to inter-individual expression 

variability across PBMCs (see Methods). Composition explains more PBMC variance for 

differentially expressed genes (Vcomp = 48%) than all genes (Vcomp = 25%) (Fig. 3.2). Partitioning 

of Vcomp and Vexp implicates specific cell types responsible for the inter-individual variability of 

each module (see Methods). For MPan, PBMC variance is mostly determined by the percentage 

(31%) and expression (25%) of cMs with composition contributing substantially more in cases 

than controls (VcM,comp = 25% vs 1.2%) (Fig. 3.2). For MT8, highlighted by IFNG, T8 percentage 

contributes most to PBMC variance and was higher in cases than controls (VT8,comp = 32% vs 

13%) (Fig. 3.2). Beyond modules, an intriguing example is the proinflammatory cytokine IL6, 
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one of the only genes whose PBMC variance is determined by B cells in cases but not controls 

(VB,comp = +16.8%, VB,exp = +19.2%) (Fig. 3.2). While IL6 is known to induce B cell 

hyperactivity in SLE25,26, its expression by the cognate cells it activates suggests autoregulatory 

mechanisms orthogonal to canonical sources, possibly through the spontaneous formation of 

germinal centers27, to promote the production of autoantibodies and systemic autoimmunity. 

 

We next assessed whether models using estimates of cellular composition and cell-type-specific 

expression features could better predict disease status and activity than known bulk gene 

expression. Here we compared models that used monocyte/lymphocyte composition estimates, 

refined cell type label estimates, cell type specific gene expression, and bulk gene expression as 

features. Using elastic nets (see Methods), all models except one that only used 

monocyte/lymphocyte composition were highly predictive of disease status (10-fold cross-

validation R2 > 0.93, Fig. 3.2). Within cases, although no model predicted the Systemic Lupus 

Erythematosus Disease Activity Index (SLEDAI) particularly well (R2 ~ 0.09-0.23), a model that 

used only 11 composition features better predicted individual SLEDAI components than one that 

used the pseudobulk expression of the 30 published ISG genes5 (low complement R2: 0.71 vs 

0.66, anti-dsDNA R2: 0.60 vs 0.59, rash R2: 0.87 vs 0.80, Fig. 3.2). Lupus nephritis is a major 

complication of SLE and a model that included both cell-type-specific expression and 

composition components was able to predict past kidney complications significantly better than 

one that used the pseudobulk expression of ISG genes (kidney R2: 0.60 vs 0.53, Fig. 3.2). 
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Myeloid effects in SLE are positively correlated with interferon activity 

 

The significant inter-individual variability explained by their intrinsic expression in myeloid 

populations suggests additional heterogeneity within the myeloid compartment that underlies the 

bulk ISG signature in SLE. To test this, we re-clustered cM, ncM, pDC, cDC into 10 clusters 

including two differentiating the monocyte lineage (cM: CD14+ classical, ncM: CD16+ non-

classical) and three differentiating the dendritic cell lineage (cDC1: CLEC9A+ conventional, 

cDC2: FCER1A+ conventional, pDC: IRF7+ plasmacytoid) (Fig. 3.3, Supp. Fig. 9). Importantly, 

several functionally distinct clusters were also detected including IL1B+ pro-inflammatory 

monocytes (cMinf), activated monocytes expressing ISGs (cMact), complement-expressing 

monocytes (ncMcomp), and two populations of macrophages (Mac1 and Mac2, both expressing 

CSF3R and distinguished by the expression of ISG15) (Fig. 3.3). CMact, cMinf, and the 

macrophage clusters all express CD14 indicative of their origin from classical monocytes while 

ncMcomp expresses FCGR3A (CD16) indicative of their origin as non-classical monocytes 

(Fig3.3). 

 

Monocytes defined by function and dendritic cells defined by lineage occur at different 

frequencies between cases and controls. As a percentage of all PBMCs, pDCs remain reduced in 

cases while the two cDC populations do not change in frequency (Fig. 3.3). Two monocyte 

populations, cMact (+5.66%, P < 2.47x10-5) and ncMcomp (+0.27%, P < 3.72x10-5) and Mac2 

(+0.19%, P < 5.29x10-5) are notably increased in frequency (Fig. 3.3). The percentages of these 

cell types are positively correlated with the pseudobulk ISG signature score across all donors 

(cMact: R = 0.60, P < 6.95x10-14; ncMcomp: R = 0.45, P < 1.01x10-7; Mac2: R = 0.52, 2.87x10-7) 
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and in cases (cMact: R = 0.57, P < 2.52x10-11; ncMcomp: R = 0.41, P < 4.27x10-6; Mac2: R = 0.46, 

3.00x10-7) suggesting that these myeloid populations are the main producers of the ISG signature 

(Fig. 3.3). This is confirmed by the elevated expression of the ISG signature score component 

modules (MPan, MMono) in these clusters in cases but not controls (Fig. 3.3). Ordering myeloid 

cells along a diffusion pseudotime (DPT) based on the degree of IFN activation revealed a shift 

toward higher activation in cases as a function of the SLEDAI (Fig. 3.3, see Methods). This shift 

was also observed when ordering cells based on comparison to an independent in vitro 

stimulation dataset12 (Supp. Fig. 10) but not observed when ordering cells by the expression of 

lineage markers CD14 and FCGR3A (Fig. 3.3). Compared to controls, even cells from cases with 

0 SLEDAI are shifted toward higher IFN activation indicative of subclinical disease. These 

results suggest that IFN production specific to monocytes is a potentiall indicator of disease 

status as well as severity.   

 

SLE marked by naive helper T cell depletion and cytotoxic T cell expansion 

 

While lymphopenia is near-universal in pediatric and adult SLE, precisely which lymphocyte 

subpopulations are depleted during disease remains unknown. Our initial analysis provided 

evidence for the depletion of CD4+ T cells in cases while the abundances of CD8+, natural killer, 

and B cells remain unchanged. To further characterize the changes in the composition and state 

of the lymphoid compartment, we re-clustered T4, T8, NK, B and Prolif cells into 19 clusters 

(Fig. 3.4). 
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In the T cell compartment, we identified canonical subpopulations of naive (T4naive: annotated by 

CCR7 expression) and central memory CD4+ cells (T4cm: annotated by ANXA1 and IL7R 

expression), and the corresponding CD8+ cells (T8naive: CCR7 and CD8B, T8cm: SBF2) (Fig. 3.4). 

Additional populations detected include regulatory (T4reg: RTKN2, TIGIT and FOXP3) and 

interferon-activated cells (TIFN: tagged ISGs such as ISG15) within the CD4 lineage; mucosal-

associated invariant cells (T8em,MAIT: KLRB1) and two effector memory populations (T8em,cyto1 

and T8em,cyto2) within the CD8 lineage (Fig. 3.4). The effector memory T8 populations both 

express the chemokine CCL5, effector molecules PRF1 and GZMA, and exhaustion markers 

LAG3 and PDCD1, and can be distinguished by the expression of granzymes (T8em,cyto1: GZMB 

and GZMH, T8em,cyto2: GZMK; Fig. 3.4, Supp. Fig. 11). 

 

The distribution of T cells, especially CD8s, was shifted toward effector phenotypes in cases 

versus controls (Fig. 3.4). While both T4naive and T8naive percentages were reduced (T4: -12.7%, 

P < 4.03x10-23, T8: -3.49%, P < 9.99x10-8, Fig. 3.4), T4naive but not T8naive percentage is 

negatively correlated with the pseudobulk PBMC ISG signature score (R = -0.62, P < 4.63x10-15 

vs R = -0.08, P < 0.39) (Fig. 3.4). Strikingly, both T8em,cyto1 and T8em,cyto2 percentages were 

significantly increased (+4.57%, P < 2.34x10-5; +1.16%, P < 8.45x10-3) while T8em,MAIT 

percentages were decreased (-2.12%, P < 1.75x10-18) (Fig. 3.4). Previous studies have implicated 

GZMB+/PRF1+ CD8+s in SLE pathogenesis possibly by generating nontolerogenic granzyme-B 

mediated autoantigen fragments that may overwhelm physiologic clearance pathways and 

contribute to antigenic feeding of dendritic cells30. 
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To investigate the potential causal role for changes in the T cell compartment, we amplified and 

sequenced the CDR3 region of the T cell receptor (TCR), recovering productive paired TCRA 

and TCRB sequences from 10.2% of T4s and 8.7% of T8s with no differences in recovery 

between 119 cases and 22 controls (see Methods). Intriguingly, T8 cells from 48 of 119 cases 

(compared to 8 of 22 controls) and T4 cells from 1 case (compared to no controls) expressed at 

least one TCR sequence in at least two cells suggestive of clonal expansion of T8 and not T4 

cells in SLE. This was confirmed by a higher Gini coefficient (a measure of repertoire 

restriction) in cases for T8 (P < 0.006, t-test) but not T4 cells (P < 0.62; Fig. 3.4). Expanded T8 

clones (defined as those detected in more than 1 cell) were enriched within the T8em,cyto1 (P < 

0.004) and T8em,cyto2 (P < 0.03) clusters (Fig. 3.4). As a positive control, clones expressing the 

invariant TRAV1-2 and TRAJ33 chain aggregated almost exclusively within the T8em,MAIT cluster 

(Supp Fig. 12). The lack of correlation between the percentages of the T8 subsets and the ISG 

signature score within cases suggests that the expansion of effector memory T8 cells is 

independent of type 1 interferon activation. Although relatively few TCRs were sampled in this 

experiment from each individual, these results suggest further TCR sequencing efforts that can 

be used to establish more robust criteria for clonal expansion in SLE patients as compared to 

healthy controls. 

 

Within other lymphocyte compartments, we observed more subtle changes in cases. We 

identified three NK cell subpopulations distinguished by XCL1/2 (NKbright), PRF1 (NKdim and 

NK3) and HBA1 (NK3) and four B cell subpopulations distinguished by TCL1A (Bnaive), HLA-

DRA (all B cells), MZB1 (Bplasma) and cytotoxic markers including GZMB and PRF1 (Bdoublets) 

(Fig. 3.4). In cases, the NK clusters did not change in frequency while Bmem percentages were 



 48 

decreased (-2.73%, P < 1.96x10-7). The percentage of Bdoublets cells, expressing high levels of 

cytolytic and B cell markers, was also increased in cases. These cells resemble the recently 

described interacting pairs of B cells and either NK or T8 cells31. 

 

Context specific genetic effects on gene expression 

 

The integration of multiplexed dscRNA-seq and dense genotyping provides an opportunity to 

examine the prevalence and magnitude of genetic effects associated with composition, cell-type-

specific expression, and cellular response to prolonged stimulation in disease states. No genetic 

variants were associated at genome-wide significance with either lymphocyte or monocyte 

percentage, likely reflective of the small effect sizes of common variants32 and the effect of 

disease and treatment on these traits (Supp Fig. 13). On the other hand, hundreds to thousands of 

cis expression quantitative loci (cis-eQTLs) were detected in each cell type (1,118 in T4, 1,180 

in T8, 403 in NK cells, 538 in B cells, 1,686 in cM, 889 in ncM, 337 in cDCs, and 39 in Mkc; 

FDR < 0.1; Supp. Table 2) using the pseudobulk gene expression in each of  118-119 

individuals. Out of the 3,092 cis-eQTLs detected in at least one cell type, 2,132 were not 

detected in pseudobulk PBMCs, suggesting that the majority of cis-eQTLs have heterogeneous 

effects across cell types. While the genetic correlations of cis-eQTLs between pairs of cell types 

are generally high (rG = 0.25-0.61), clustering based on either the genetic correlations and the 

number of overlapping cis-eQTLs reflect the known lineage relationships between circulating 

immune cell types (Fig 3.5). Further, compared to cis-eQTLs detected in PBMCs, cis-eQTLs 

detected in each cell type were more enriched for accessible regions of the genome measured in 

the same cell type by ATAC-seq33 (Mann-Whitney test, Fig 3.5).  
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We integrated published GWAS data to assess the enrichment of cell-type-specific cis-eQTLs for 

autoimmune disease loci. T4-specific and T8-specific cis-eQTLs were most enriched for SLE-

associated variants suggesting T lymphocytes as potential mediators for genetic variants causal 

for disease (Fig 3.5). One example is the SLE-associated variant rs6671847, which has a 

significant effect on the expression of HSPA6 in T8 cells (Fig 3.5). HSPA6 is also within a risk 

locus for Ulcerative Colitis, and part of a family of heat shock proteins known to influence 

autoimmunity and tumor immunity34,35. Another example is the SLE-associated variant 

rs725801536, which is associated with the expression of ICAM3 only in ncM cells (Fig. 3.5). 

Circulating ICAM3 is upregulated in patients with autoimmune diseases37 and serum levels of 

ICAM3 can be used as an indicator of lymphocyte stimulation in PBMCs38. Beyond SLE, we 

also found enrichment of type-1 diabetes variants within T8 and NK cis-eQTLs, and multiple 

sclerosis variants within B cell cis-eQTLs (Supp Fig. 14) consistent with the known 

pathogenesis of each disease. 

 

We and others have previously shown that in vitro stimulation with recombinant IFNB can 

modify the effects of genetic variants on the expression of myeloid cells15,39. We assessed if the 

ISG signature reflective of type-1 interferon activation in vivo can similarly modify genetic 

effects (cis-IFN-eQTLs) on gene expression in SLE. Using a model that explicitly tests for 

interactions between genetic variants and the ISG signature score (Methods), we detected 1 cis-

IFN-eQTL in cMs and 4 cis-IFN-eQTLs in PBMCs (FDR < 0.1). Despite the limited power, 

previous interferon response eQTLs40 featured a more prominent deviation from null in the 

quantile-quantile plot compared to all variants (Fig. 3.5). The paucity of signals could be due to 
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imperfect estimates of in vivo interferon activation, small interacting effect sizes, and population 

heterogeneity of the samples. Results from population-specific analyses mirrored those from the 

full cohort: of the top 100 cis-IFN-eQTLs in all cases, 53 were nominally significant (P < 0.05) 

in the European cases (P < 8.81x10-42, binomial test) and 42 in the Asian cases (P < 3.53x10-28, 

binomial test), suggesting minimal effects due to population heterogeneity (Supp Fig. 15). 

 

The most striking example of a cis-IFN-eQTL is associated with APOBEC3B (P < 9.55 x 10-7) 

(Fig 3.5F) where IFN activation as captured by the ISG signature score significantly modifes the 

effect of genotype of rs12628403 on APOBEC3B expression in monocytes (positive for major 

homozygotes and negative for heterozygotes). This results in low variability in APOBEC3B 

expression in cases with low ISG signature scores and high variability in cases with high ISG 

signature scores. APOBEC3B is a cytidine deaminase implicated in RNA-editing and 

autoimmunity, and it has been shown to be upregulated in SLE patients with managed disease41 

and further upregulated during flares42. Our results suggest that polymorphisms at the 

APOBEC3B locus could contribute to increased variability of its expression resulting in 

heterogeneous clinical presentation of SLE related to the function of the gene. 

 

Periods of heightened disease marked by the presence of macrophages 

 

One of the clinical complications of SLE is the development of flares that require a change of 

therapeutic strategy. To characterize the molecular features of SLE during periods of heightened 

disease, we recruited an additional 8 healthy controls and 17 SLE flare patients (Flare), 8 of 

whom provided an additional sample three months after change in treatment (Treated) (Fig. 3.6). 
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To facilitate comparisons, 10 healthy controls and 5 non-flaring SLE patients (Managed) from 

the original cross-sectional cohort (Fig. 3.1) were sampled again. Using a panel of 20 oligo-

tagged antibodies, we performed sample multiplexed Ab-seq of four pools (ranging from 8 to 17 

individuals per pool) (Fig. 3.6). In this longitudinal cohort, a total of 218,030 cell-containing 

droplets were sequenced to an average depth of 42,268 reads per droplet, 153,955 were retained 

after quality control filtering and removal of droplets containing more than one cell using 

demuxlet (29.38%, expected 22-25%). 

 

We identified 37 Leiden clusters and assigned them to 11 immune cell types (Fig. 3.6). Changes 

in composition between flare cases and controls were highly correlated with those observed 

between cross-sectional cases and controls (R = 0.81, P < 0.005) (Fig. 3.6, Supp. Fig. 16). To 

further validate and refine the observed differences in cellular composition, each of 37 clusters 

was assigned to one of 24 subpopulations that transcriptionally overlaps well with the same 

subpopulations identified in the cross-sectional cohort (Fig. 3.6). Analysis of the subpopulations 

between flare cases and controls generally confirmed the findings from the cross-sectional cohort 

(R = 0.73, P <1.22x10-4) including the following: decreased percentage of T4naive (-10.18%, P < 

8.54x10-5), T8MAIT (-2.59%, P < 4.23x10-6), pDC (-0.53%, P < 1.14x10-4); increased percentages 

of T8em,cyto1 (+9.40%, P < 1.97x10-4), cMact (+5.21%, P < 5.90x10-4), and ncMcomp (+0.56%, P < 

3.44x10-4) cells (Fig. 3.6). Surprisingly, we observed a significant increase in macrophages in 

cases that were not observed in the cross-sectional (+4.00%, P < 6.38x10-5, Wilcoxon rank-sum, 

Fig. 3.6). Although no significant differences were found in response to treatment overall, all 

three patients receiving rituximab were depleted of B cells (Supp. Fig. 17). 
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We used protein abundance estimates for 20 cell-surface markers to validate the major findings 

and identify differences between protein and mRNA features. Comparing protein and mRNA 

abundances revealed a range of correlations for cell surface markers from 0.03(FAS) to 0.68 

(CD14) (pearson r; Supp. Fig. 18). Leiden clustering and UMAP projection using protein 

features revealed cluster assignments that broadly recapitulated those obtained from using 

mRNA features (Supp Fig. 19). The notable exception is T8em,cyto1 identified from the mRNA 

analysis which projected onto both T4 and T8 regions of the protein UMAP (Fig. 3.6) and 

express both CD4 and CD8 proteins (Fig. 3.6). Only the percentages of cytotoxic T8 and not T4 

cells increase in abundance in flare cases (T8: +6.27%, P < 2.7x10-4; Fig. 3.6) further supporting 

CD8+ cytotoxic T cells as an important mediator of SLE. Their presence and the production of 

IFNG could recruit macrophages detected in flare patients to initiate the recurrence of disease. 
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Methods 

PBMC processing: 

PBMCs were thawed, suspended and multiplexed according to the protocol in Kang et al. and 

loaded onto the 10x Chromium instrument. Following library prep according to the standard 10x 

protocol, libraries were sequenced on the Hiseq4000 at a depth of 6306-29862 reads/cell.  

 

Single cell preprocessing: 

We sequenced a total of 1,352,730 droplets from cells in the healthy Immvar, Flare, and 

California Lupus Epidemiological Study cohorts. Demuxlet was used with an error probability of 

0.1 to assign each cell to a donor of origin, preserving a total of 991,016 singlets. Using Scanpy 

version 1.4, we preprocessed the cross-sectional and flare cohort separately by first adjusting for 

pool using COMBAT, then regressing total nUMIs, percentage mitochondrial UMIs, gender, and 

principal components capturing a platelet signature. Regression for the platelet signature was 

performed because of the detection of platelet markers across cell types that likely reflect low 

levels of contamination due to imperfect ficoll in the CLUES cohort. This claim is supported by 

the detection of platelet markers only in controls samples pooled with case samples but not with 

each other. After an initial round of regressing for total nUMIs, percentage mitochondrial UMIs 

and gender, principal components were computed and those correlated with the expression of 

PF4 (R>0.4) were identified as platelet specific. Cell filtering and expression normalization 

followed default settings, Subsequently, we performed k-nearest neighbor (knn) graph 

construction, leiden clustering, and plotted UMAP projections. Diffusion Pseudotime analysis 

(DPT) was performed through the scanpy function `api.tl.dpt` with default parameters. 
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Cell Type Annotation and Proportion Calculations: 

Scanpy version 1.4 was used to cluster singlets into leiden communities with parameter settings 

of resolution of 3 and controlling for random state. For the Flare cohort, a resolution of 2 was 

used. We found differentially expressed genes between communities in addition to most 

abundantly expressed genes for each community. We used gene expression profiles of known 

cell type populations identified in previous literature to identify our communities. The proportion 

of cells for each cell type was calculated as the number of cells belonging to the cell type divided 

by the total number of cells assigned to the sample. 2 samples with less than 100 cells total were 

excluded from the analyses. Cell type counts were calculated by multiplying the proportions by 

the total white blood cell count for each patient.  

 

Electronic health record query:  

SLE cases with available monocyte and lymphocyte counts were selected according to the 

following criteria: 4532 healthy female controls were selected according to {Rappoport et. al, 

JALM 2018}. In short, outpatients without abnormal findings of adult patients aged 20-90 was 

extracted from the EHR system at the University of California, San Francisco (UCSF) Medical 

Center Data was extracted at February 2018, covering about 6 years of medical service coverage. 

In case there were multiple healthy encounters were found for a subject, a single random one was 

chosen. 403 Cases where defined as patients in the same age range who have a diagnosis of an 

ICD-10 code M32.* appearing at least twice 30 days apart. Lab tests results for cases were taken 

from encounters for which MS was assigned as a primary diagnosis or principal problem 
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diagnosis. Patients with a monocyte count less than 5 and a lymphocyte count less than 6 were 

excluded.  

 

Mendelian randomization:  

To test putative causal associations between risk factors and diseases performed Mendelian 

randomization using the GSMR (Generalized Summary-data-based Mendelian Randomization) 

package in gcta_1.91.5beta. We searched for causal associations between blood count 

quantitative trait loci (qtls) in UK biobank (lymphocytes, monocytes, red blood cells, white 

blood cells, and platelets) and lupus qtls. We used 1000 genomes phase3 for our reference, a 

gwas significance threshold of 5e-18, heidi outlier threshold of 0.15, and a linkage 

disequilibrium threshold of 0.01. 

 

Cell Type Specific Differential Expression:  

For each cell type, we calculated a bulk profile summing all of the counts for each individual. 

The DESeq2 R package was used to estimate the log2 fold change and the p-value of gene 

expression differences between the SLE and the healthy cohorts, and batch was included as a 

covariate.  For visualization and variance decomposition, COMBAT (R package sva) was used 

to adjust batch effects across all genes and all batches. With the batch adjusted matrix, the 

differential expression signature was calculated as the first principal component of gene 

expression corresponding to the 190 differentially expressed genes from PBMCs.  
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Variance Decomposition of PBMC expression: 

Variance decomposition into composition and gene expression components was performed 

according to the following model:  

Raw counts for each cell type were normalized to the total number of PBMCs per donor. PBMC 

variance was decomposed first into cell composition components using linear regression and the 

following model: y = bp1*cp1+bp2*cp2+...-1. The residual from this fit was then regressed with 

the expression of each cell type: y_res = be1*ce1+be2*ce2+...-1. The contribution from each cell 

type (for both proportion and cell-type-expression) was computed using the following: ci = 

sum(cov_mat[i,]*bi*[b1,b2,...,])/var(y). This model accounts for both the variance contribution 

from each cell type but also allocates the covariance between any pair of cell types equally to 

each cell type. 

 

Sample Genotyping: 

CLUES SLE patients were genotyped on the Affymetrix World LAT Array and the Immvar and 

flaring SLE patients were genotyped on the OmniExpressExome54 chip. A total of 21,412,068 

SNPs were imputed from the Haplotype Reference Consortium version 1.1 with a MAF < 0.01.  

 

eQTL discovery: 

1,220,450 SNPs with a MAF < 0.1 were used to map cis-eQTLs within a cis window +/- 100kbp 

of each gene, and a total of 8,905 genes were tested. Gene expression for each cell type was 

normalized using the rlog function in the DESeq2 package, and eQTLs were called using the 

MatrixEQTL package. The first 10 principal components of gene expression and 7 genotype PCs 

were included as covariates in all of the eQTL linear models.  For the IFN interaction model, an 
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additional interaction term with the IFN signature and genotype, and the effect size and 

significance of the interaction term were calculated.  The IFN signature was calculated as the 

first principal component of gene expression of the 25 type I interferon genes as listed in Crow et 

al.  

 

ATAC-seq and GWAS enrichment: 

Cell type specific ATAC-seq peaks were downloaded from Calderon et al 

(https://web.stanford.edu/group/pritchardlab/dataArchive/immune_atlas_web/index.html). For 

each set of eQTLs and peaks, we applied a Mann-Whitney test to determine the enrichment for 

significant SNPs residing within each set of cell type specific peaks. GWAS enrichment was 

calculated using the GREGOR package, and the set of significant SNPs for each disease were 

downloaded from the UCSC Genome Browser.   

 

GEMMA 

GEMMA 0.98.1 was run using the genotypes from SLE patients in PLINK binary format. Both a 

standardized kinship matrix and gender were adjusted for in the results. Lymphocyte and 

monocyte counts from the EHR of our SLE patients were used. 
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Figures 

 

Figure 3.1: Overview and compositional changes in SLE.  
A.) Multiplexed single cell sequencing applied to 119 cases and 50 healthy controls. B.) 
Assignment of each cell to 11 major cell types. C.) UMAP projection depicting density of cells 
assigned to cases and controls. D). UMAP projection for each sample in a pool after 
demultiplexing using demuxlet. E.) Correlation of single cell counts normalized to the number of 
cells multiplied by 10^9 that are expected per liter of blood (x-axis) and CBC estimates (y-axis) 
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of monocyte and lymphocyte abundances. F.) Cell type percentage differences between cases 
and controls. Repeated controls are connected by a line. G.) Monocyte and lymphocyte 
abundances across populations in the UCSF EHR database. H.) Causal effect size correlation 
between Lymphocyte Count and SLE disease status reported in the UKBK. 
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Figure 3.2: Bulk expression differences and variance decomposition.  
A.) Volcano plot of effect size (x-axis) and log10(p-value) (y-axis) for differential expression in 
PBMCs. Differentially expressed genes in PBMCs (black) or only in specific cell types (gray) 
are colored. Previously identified IFN signature genes are circled. B.) Correlation between ISG 
score (x-axis) and myeloid percentage (y-axis). C.) Expression heatmap and cluster assignment 
of 209 differentially expressed genes between cases and controls. D.) Distribution of the 
contribution of cell type composition to gene expression variability in PBMCs. E.) Contribution 
of percentage (left) or cell-type specific expression (right) to the expression variability of each 
DE gene in PBMCs. F.) Correlation of IL6 and IFNG expression in PBMCs with the percentage 
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of each cell type. G.) Correlation of observed and predicted SLEDAI scores based on gene 
expression and cell type composition features, including broad composition estimates 
(Mono/Lymph), refined cell types (Composition), bulk gene expression for IFN genes (PBMC),  
variable genes in cell type specific expression (CT Var) and the combination of features from 
cell type specific expression and composition (CT Var+Comp).  
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Figure 3.3: Myeloid changes in SLE 
A.) UMAP projection and cluster annotation of myeloid cells. B.) Violin plot of marker genes 
differentiating annotated clusters. C.) Cell density plots for cases and controls split by ethnicity 
and sequencing site. D.) Cluster percentage differences between cases and controls. Lines 
connect control samples replicated across pools. E.) Correlation of cluster percentage with ISG 
score. red: EUR Ctrl, blue: ASN SLE, green: EUR Ctrl, orange: EUR SLE. F.) UMAP projection 
of single cells colored by the average expression of clusters of DE genes. G.) The density of cells 
along DPT ordering based on lineage markers, differentially expressed clusters or 25 known 
interferon sensitive genes. 
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Figure 3.4: Lymphoid changes in SLE.  
A.) Classification of each lymphocyte into 19 cell types. B.) Violin plot of key gene markers 
across different cell types. Lines connect control samples replicated across pools. C.) Cell 
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density plots for cases and controls split by ethnicity and sequencing site. D.) Cluster percentage 
differences between cases and controls E.) Percentage of clusters (y-axis) versus ISG score (x-
axis). red: EUR Ctrl, blue: ASN SLE, green: EUR Ctrl, orange: EUR SLE. F.) Box-whisker plot 
of Gini coefficients marking clonal expansion for T4 and T8 cells in cases and controls. G.) 
UMAP projection with clonally expanded cells highlighted. 
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Figure 3.5: cis-eQTL mapping demonstrates cell type specificity and environmental 
specificty in genetic effects.  
A.) eQTL overlap (lower triangle) and average genetic correlation (upper triangle) for each pair 
of cell types. B.) Enrichment measured by Mann Whitney p-value of cell type specific ATAC-
seq peaks in each cell type. C.) Enrichment of SLE GWAS variants in each cell type. D.) Genetic 
variants with cell type specific genetic effects on HSPA6 and ICAM3. E.) Quantile-quantile plot 
of cis-IFN-QTLs (orange) subsetted for previously published cis-IFN-QTLs (green). F.) IFN-
specific genetic effects for each mutational status on APOBEC3B gene expression in each cell 
type. 
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Figure 3.6: SLE flare cohort analysis demonstrates reproducibility of our findings and 
disease flare specific alterations  
A.) Multiplexed single cell sequencing and CITE-seq applied over 13 cases and 10 healthy 
controls. B.) Classification of each PBMC into 11 cell types. C.) Cell type proportion differences 
between cases and control. Lines connect matched flare and treated cases. D.) Cell density plots 
for controls, treated cases and flare cases. E.) Assignment of each PBMC to 26 cell types and 
changes in key clusters between flare and treated cases depicted by log2 fold changes with 
respect to controls. F.) Pseudobulk gene expression correlation heatmap between the cross 
sectional and flare cohorts. G.) UMAP of all PBMCs colored by CD4 (left) and CD8 (right) 
antibody normalized abundance. T8em,cyto1 is circled. 
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Discussion 

SLE remains one of the most challenging autoimmune diseases to diagnose and treat. The lack of 

effective targeted therapies47–53, the heterogeneous symptoms, and the treatment response 

variability highlight the significant need for improved molecular characterization of SLE. 

Analyses of almost 1 million cells from nearly200 individuals revealed key cell types whose 

frequency, state or both change in SLE. Compositionally, the depletion of naive CD4+ T cells, 

especially in patients of Asian ancestry, refines the known observation of lymphopenia54 and the 

depletion of antigen-presenting cells (APCs) is consistent with their localization in tissues55. 

Beyond composition, we observed elevated expression of interferon sensitive genes (ISGs) 

attributable to the activation of classical monocytes and complement expressing non-classical 

monocytes. The negative correlation between the frequency of naive CD4+ T cells and the 

expression of ISGs in monocytes suggests interferon activation as a cause for T4 lymphopenia. A 

model consistent with these observations is that APCs localize to sites of inflamed tissue and 

produce high levels of type-1 interferons with distinct effects on myeloid and lymphoid lineages. 

In monocytes, CD14+ cells are polarized into macrophages and CD16+ cells increase the 

production of complements. Interferon activation of T lymphocytes results in their sequestration 

in sites of inflammation through the regulation of CD69 and S1PR129. 

 

The most striking observation is the detection of expanded cytotoxic CD8+ T cells in SLE 

patients with managed disease, which is even more abundant during periods of heightened 

disease. Clonal expansion and proliferation of cytotoxic lymphocytes have previously been 

observed in independent works3056 and are consistent with a model of prolonged adaptive 

immune response in SLE, potentially initiated by foreign and autoantigens. In response to 
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antigen, activated and expanded cytotoxic T cells lyse antigen-presenting cells through the 

release of cytotoxic granules56. In vitro, the granzyme-B-dependent-cytotoxic pathway 

efficiently cleaves autoantigens observed in human systemic autoimmune diseases, generating 

unique fragments not observed in any other form of apoptosis and could drive antigenic feeding 

of APCs34,57. Prolonged contact between APCs and CD8+ T cells leads to the formation of a 

mature stimulatory synapse and the secretion of interferon-gamma58, which would in turn 

activate macrophages consistent with increased macrophage frequency during flare. As several 

therapeutic strategies have been developed to target CD8+ T cells including autologous 

regulatory T cell transfer with or without low dose IL-2 treatment, our results suggest that similar 

strategies could be considered as a novel therapeutic avenue to treat SLE. 

 

Integrating measurements of cellular composition and cell-type-specific expression with dense 

genotyping provides a unique opportunity to partition inter-individual expression variability in 

PBMCs, assess its genetic determinants, and ascribe functionality to disease-associated variants. 

This was demonstrated by the detection of thousands of cell-type-specific cis-eQTLs enriched 

for cis-regulatory elements active in each respective cell type. T lymphocyte cis-eQTLs, in 

particular, are enriched for SLE-associated variants. In addition, we mapped genetic variants 

whose effects are modified by elevated interferon levels, a critical disease environment in SLE, 

suggesting that simultaneous genetic and single-cell transcriptomic profiling could be used to 

molecularly phenotype patients with systemic autoimmunity. 

 

Looking forward, single-cell analysis of larger and more diverse cross-sectional cohorts is likely 

important for understanding the differences in SLE risk between genetic ancestries and the 
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involvement of environmental triggers. Longitudinal profiling of patients with or at risk for SLE 

could reveal new insights into the initiation of disease, escalation of symptoms, and response to 

treatment. More efficient transcript capture, higher sequencing depth, and larger sample sizes 

will undoubtedly improve the definition of molecular signatures to subphenotype SLE, the power 

to detect cis-eQTLs, and the resolution for annotating disease associations. Profiling of matched 

tissue and blood will provide a more complete picture of how immune cells are dynamically 

trafficked during disease, especially in cases with organ involvement and inform the 

development of future treatments for SLE. 
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