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Abstract. We solve a conjecture from the first and third authors that claims that fully simple
maps, which are maps with non self-intersecting disjoint boundaries, satisfy topological
recursion for the exchanged spectral curve (y, x), making use of the topological recursion for
ciliated maps (building on a result from Belliard, Eynard, and the second and third authors).
Keywords. Maps, fully simple maps, enumeration, topological recursion
Mathematics Subject Classifications. 05A15, 05A19, 46L54

1. Introduction: maps, fully simple maps, and topological recursion

1.1. Maps and fully simple maps

A map M of genus g is the proper embedding of a finite connected graph into an oriented,
topological, compact surface of genus g, so that the complement of the graph is a disjoint union
of topological discs (called faces). We say that a face f surrounds a vertex v (or an edge e)
when v (or e) belongs to the topological closure of f . Define an oriented edge to be an edge
along with a choice of one of its two orientations. We say that an oriented edge is adjacent to
a face if the face lies on its left and incident to a vertex if it points to this vertex. Maps may
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be endowed with the extra structure of an ordered tuple of distinct oriented edges, such that no
two are adjacent to the same face. We refer to these oriented edges as roots, to their adjacent
faces as boundary faces, and to all remaining faces as internal faces. The number of oriented
edges adjacent to a face (resp. incident to a vertex) is called the degree of the face (resp. of
the vertex). We denote by ∂M the disjoint union of boundary faces and by ∂1M, . . . , ∂nM the
boundary faces ordered as their roots are. We say a map of genus g with n boundary faces has
topology (g, n). We say that the map is closed if it does not have boundary faces, i.e. n = 0.
Throughout the article, we will keep g ⩾ 0 and n ⩾ 1 unless stated otherwise.

Two maps are equivalent if there exists an orientation-preserving homeomorphism between
their underlying surfaces such that the vertices, oriented edges and faces of the first map are
carried bijectively to the vertices, oriented edges and faces of the second, preserving the graph
structure and the ordered tuple of roots. This also gives the notion of automorphism of a map,
which is a permutation of the oriented edges arising from an orientation-preserving homeo-
morphism from the underlying surface to itself that preserves the graph structure and the tuple
of roots1.

Mg,n will denote the set of maps of genus g with n boundary faces and Mg,n(v) its subset of
maps having v vertices. The definition of a map allows different boundary faces to be adjacent
along vertices and edges, as well as for a boundary face to be adjacent to itself along vertices
and edges. Informally, we call a map fully simple if such behaviour does not arise — a precise
definition follows.

Definition 1.1. An oriented edge in a map is a boundary edge if it is adjacent to a boundary
face. A map is fully simple if at each vertex v, at most one boundary edge is incident to v.

In previous work, the term simple has been used to refer to maps in which for each
i ∈ {1, . . . , n}, at each vertex, at most one boundary edge adjacent to ∂iM is incident [BGF20].
We stress that, unlike in fully simple maps, boundary edges adjacent to distinct boundary faces
can be incident to the same vertex. Throughout the article, we use the term ordinary to refer to
the class of all maps, so as to emphasise the distinction from the class of fully simple maps. We
will be interested primarily in the following enumerations of (equivalence classes of) ordinary
and fully simple maps.

1
2

3 2

13

Figure 1.1: Examples of connected maps of genus 2 with 3 boundary faces: on the left, an
ordinary map, and on the right, a fully simple map. The root of each boundary face is indicated
with an arrow.

1Note that for maps of topology (g, n)with n > 0, we haveAut(M) = {Id}. Automorphisms therefore will not
play a role in this article, although for conceptual reasons we prefer to keep #Aut(M) in the formula for weights.
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Definition 1.2. Let r ⩾ 2 be an integer fixed throughout the article. For positive integers
k1, k2, . . . , kn, let

Mapg;(k1,...,kn)
:=

∑
M∈Mg,n

deg(∂iM)=ki

W (M)

be the weighted enumeration of maps M with n boundary faces, such that the degree of the ith

boundary face is ki for i ∈ {1, 2, . . . , n}, and the internal faces have degree ⩽ (r + 1). The
weight of a map is given by

W (M) :=
α2−2g−#V(M)

#Aut(M)
t
f3(M)
3 t

f4(M)
4 · · · tfr+1(M)

r+1 . (1.1)

Here, fk(M) is the number of internal faces of degree k, V(M) is the set of vertices, andAut(M)
the group of automorphisms. The analogous weighted enumeration restricted to the set of fully
simple maps is denoted

FSMapg;(k1,...,kn)
:=

∑
M∈Mg,n

fully simple
deg(∂iM)=ki

W (M).

Mapg;(k1,...,kn) and FSMapg;(k1,...,kn) are well-defined elements of αZ [t3, . . . , tr+1] [[α
−1]].

For brevity, our notation makes implicit the dependence on the parameters α, t3, . . . , tr+1. From
these formal power series, one can extract the number of maps with prescribed topology, bound-
ary face degrees and internal face degrees. We adopt the convention that M0,1(1) contains only
the map consisting of a single vertex and no edges; it is the map of genus 0 with 1 boundary
of length 0, that is Map0;(0) = α. Apart from this degenerate case, we always consider that
boundaries have length ⩾ 1. For closed maps, there is no point in distinguishing ordinary and
fully simple, and we denote Mapg,∅ the corresponding generating series.

Definition 1.3 (Generating series of ordinary and fully simple maps). Summing over all possible
lengths, we define the generating series of maps of topology (g, n) as follows:

Wg,n(x1, . . . , xn) :=
∑

k1,...,kn⩾0

Mapg;(k1,...,kn)

x1+k1
1 · · ·x1+kn

n

.

We have that Wg,n(x1, . . . , xn) ∈ αZ[x−1
1 , . . . , x−1

n , t3, . . . , tr+1][[α
−1]]. We also introduce the

generating series for fully simple maps of topology (g, n):

Xg,n(w1, . . . , wn) :=
∑

k1,...,kn⩾0

FSMapg;(k1,...,kn)w
k1−1
1 . . . wkn−1

n ,

and we have Xg,n(w1, . . . , wn) ∈ w−1
1 · · ·w−1

n Z[w1, . . . , wn, t3, . . . , tr+1][[α
−1]].

Functional relations determining the fully simple and the ordinary generating series for topol-
ogy (0, 1) (discs) and (0, 2) (cylinders) have been established in [BGF20], and the choice of x−1

i
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for ordinary maps but wi for fully simple maps makes the formulae more elegant. In particular,
a straightforward adaptation of [BGF20, Propositions 3.3. and 4.4] to include the parameter α
yields:

X0,1(α
−1W0,1(x)) = αx, W0,1(α

−1X0,1(w)) = αw (1.2)

and (
W0,2(x1, x2) +

1

(x1 − x2)2

)
dx1dx2 =

(
X0,2(w1, w2) +

α2

(w1 − w2)2

)
dw1dw2 (1.3)

provided that αxi = X0,1(wi) or equivalently αwi = W0,1(xi).

1.2. Topological recursion for maps and fully simple maps

Topological recursion [EO07] is a procedure which appears in various contexts, and in particular
for the enumeration of maps. It is a procedure which takes a spectral curve as input, and produces
infinitely many multi-differentials as an output. We give now a brief definition of topological
recursion. For a general introduction to the subject, see [Eyn14].

Definition 1.4 (Spectral curve). A spectral curve S is a tuple (Σ, x, y, ω0,2), where:

• Σ is a Riemann surface;

• x and y are meromorphic functions from Σ to P1 (the Riemann sphere). We require that
x is branched.

• ω0,2(z1, z2) is a symmetric bi-differential on Σ, which has only poles of order 2 on the
diagonal z1 = z2.

In the body of the article, the datum ω0,1(z) = y(z)dx(z) is sometimes added to the spectral
curve, albeit being redundant.

The ramification points of S = (Σ, x, y, ω0,2) are the points a ∈ Σ such that dx(a) = 0. We
require in this paper that the ramification points be simple, that is the order of vanishing of dx
at the ramification points is 1.

Near a ramification point a ∈ Σ, one defines the local involution σa:

σa : Σ → Σ, σa ̸= Id, σa(a) = a, x(σa(z)) = x(z).

We are now ready to present the formula of topological recursion.

Definition 1.5 (Topological recursion). Let S = (Σ, x, y, ω0,2) and a1, . . . , ak be its set of (sim-
ple) ramification points. We define the kernel of recursion near ai by:

Kai(z1, z) =
1

2

∫ z

w=σai (z)
ω0,2(z1, w)

(y(z)− y(σai(z)))dx(z)
.

From the spectral curve S , one builds the multi-differentials (ωg,n)2g−2+n>0 according to the
formula:
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ωg,n(z1, . . . , zn) =

k∑
i=1

Res
z=ai

Kai(z1, z)

(
ωg−1,n+1(z, σai(z), I) +

′∑
h+h′=g
J⊔J ′=I

ωh,1+#J(z, J)ωh′,1+#J ′(σai(z), J
′)

)
,

(1.4)

where I = {z2, . . . , zn}, and
∑′

means that the terms involving ω0,1 should be excluded from
the sum.

Let us unfold what is implied when stating, in the context of enumeration of maps, that a
model of maps satisfies topological recursion. This statement implicitely means that there exists
a spectral curve S so that, for any g, n ∈ Z⩾0 with 2g − 2 + n > 0, the multi-differential ωg,n

produced by topological recursion from S, allows to recover the generating series of the given
model of maps of genus g with n boundaries.

Consider ordinary maps as an example. From the weights t3, . . . , tr+1 of the faces, we define

the potential of the model by V (u) = u2

2
−

r+1∑
k=3

tk
k
uk. Let then S be the following spectral curve:

S :


Σ = P1 ,

x(θ) = a+ c(θ + θ−1) ,

y(θ) =
[
V ′(a+ c(θ + θ−1))

]
⩽0

,

ω0,2(θ1, θ2) =
dθ1dθ2
(θ1−θ2)2

.

(1.5)

P1 is the Riemann sphere, the notation [· · · ]⩽0 stands for the polynomial part in the variable θ−1,
while c (up to a sign) and a are uniquely determined by:

y(θ) ∼
θ→∞

α−1

x(θ)
∼ 1

αcθ
, c = O(α− 1

2 ) , a = O(α−1) ,

(recall that α−1 is associated to the weight per vertex).
Theorem 1.6 ([Eyn16]). Ordinary maps satisfy topological recursion for the spectral curve S.

Indeed, the generating series Wg,n can be retrieved from the differentials ωg,n by the identi-
fication:

ωg,n(θ1, . . . , θn) =

(
Wg,n(x(θ1), . . . , x(θn)) +

δg,0 δn,2
(x(θ1)− x(θ2))2

)
dx(θ1) . . . dx(θn).

As for fully simple maps, the first and last authors came up with the following conjecture:
Conjecture 1.7 ([BGF20]). Fully simple maps satisfy topological recursion. Moreover, the
fully simple spectral curve is obtained from the ordinary spectral curve by exchanging the role
of x and y.

This conjecture is a manifestation of the symplectic transformation2 “exchange of x and y”
on spectral curves (Σ, x, y, ω0,2) 7→ (Σ, y, x, ω0,2).

2Such transformation is called symplectic because it preserves the symplectic form dx ∧ dy, up to sign.
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1.3. Main result and outline

Our main result is Theorem 4.10 establishing topological recursion for the fully simple generat-
ing series Xg,n. This theorem, together with Theorem 4.11, proves Conjecture 1.7 of [BGF20],
which was motivated by the transformations for discs and cylinders that can be justified by com-
binatorial methods and supported by numerical data in genus 1. The present article builds on the
enumerative study of combinatorial objects called multi-ciliated maps carried out in [BCEGF21]
and reviewed in Section 2. We show in Section 3 that multi-ciliated maps are dual to fully simple
maps, and use in Section 4 analytic techniques to establish the conjecture. This approach also
gives a different proof of (1.2)-(1.3) (see Theorem 4.11), i.e. that the fully simple spectral curve
(encoding X0,1 and X0,2) and the ordinary spectral curve (encoding W0,1 and W0,2) are related
by the symplectic transformation “exchange of x and y”. We discuss a few consequences (some
of them anticipated in [BGF20] conditionally to the former conjecture) in Section 5.

Added on revision. While finalising this work, the authors learned that B. Bychkov, P. Dunin-
Barkowski, M. Kazarian and S. Shadrin had also found a proof for the fully simple conjec-
ture [BDBKS23]. The two proofs are in essence very different. Our approach is rooted in the
algebraic combinatorics treatment of a more general class of maps, while their method relies
on algebraic manipulations in the Fock space formalism, where the universal relation between
ordinary and fully simple generating series, formulated in terms of monotone Hurwitz numbers,
can be efficiently implemented. The work [BDBKS23] can also establish topological recursion
for a larger class of combinatorial problems involving a large class of universal relations, while
the work [BCEGF21] suggests a more combinatorial framework to understand the ordinary-fully
simple relations in a different generalised setting.

The program motivating the study of fully simple maps mentioned in Section 5.3 has been
concretised and completed since we released the present work, although at present not by combi-
natorial means. The aforementioned universal relations can also be considered between any two
collections of generating series (not necessarily coming from maps or having a combinatorial in-
terpretation). This observation together with the flexibility of the Fock space techniques allowed
us together with Shadrin and Leid [BCGF+21] to find the higher-order (as well as higher-genus)
generalisation of the R-transform machinery relating higher-order moments and higher-order
free cumulants in free probability, solving a problem posed by Collins, Mingo, Speicher and
Śniady [CMŚS07]. It also led to the formulation in [BCGF+21, Conjecture 3.14] of a gener-
alisation of the conjecture addressed in the present work, stating that any pair of collections of
generating series satisfying topological recursion on a certain spectral curve and the spectral
curve obtained by exchanging x and y also satisfies the ordinary-fully simple relations. This
generalised conjecture was also resolved in [ABDB+22] by Fock space techniques. Yet, an al-
gebraic combinatorics approach to these developments is still to be found (for the free probability
applications, there has been some progress in [Lio22]).
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2. Multi-ciliated maps

In [BCEGF21], we introduced various types of generalised Kontsevich graphs. Among them,
the ciliated and multi-ciliated maps are the types that we shall relate to fully simple maps. We
remind the reader about their definitions; we also define their weights and their generating series;
last, we present preliminary results coming from [BCEGF21].

Ciliated and multi-ciliated maps are maps with two types of vertices (black and white), which
satisfy specific constraints.

Definition 2.1 (Constraints on the vertices). Black and white vertices have the following prop-
erties:

• a black vertex v• must have a degree deg(v•) ∈ {3, . . . , r + 1};

• a white vertex may have arbitrary positive degree;

• star constraint: for any given white vertex v◦, the faces surrounding v◦ are pairwise dis-
tinct;

• uniqueness constraint: each face surrounds at most one white vertex.

Note that a univalent white vertex automatically satisfies the star constraint.

Definition 2.2 (Ciliated maps). Cg,n is the set of maps M such that

• M is a connected map of genus g;

• M has exactly n white vertices, labelled from 1 to n. They are univalent and the face
surrounding the ith ith white vertex is called the ith marked face. The faces that do not
surround a white vertex are called unmarked faces.

Every such map is called ciliated map of type (g, n). Note that in this case, Aut(M) = {Id}.

The term ciliated comes from the fact that each of the n white vertices has degree 1, i.e. there
is only one oriented edge incident to it. This edge attached to a white vertex can be viewed as a
cilium in the corresponding marked face.

Definition 2.3 (Multi-ciliated maps). Let k = (k1, . . . , kn) be an n-tuple of positive integers.
Sg,k is the set of maps M such that

• M is a connected map of genus g;

• M has n white vertices, labelled from 1 to n. The ith white vertex has degree ki and
is equipped with a choice of incident edge (the ith root). The faces surrounding white
vertices are called marked faces, while the others are called unmarked faces. The set of
unmarked faces is denoted F◦(M).

Every such map is called multi-ciliated map of type (g, n). Again, Aut(M) = {Id}.
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1

2

3

λ2

λ2

λ5

z2

z1

z3 1

2

3

λ1

λ4

λ2

z2,1
z2,2z2,3

z1,1 z3,2
z3,1

Figure 2.1: On the left, a ciliated map in C1,3; on the right, a multi-ciliated map in S1,(1,3,2).
Both maps have 3 (shaded) unmarked faces; the roots are the blue arrows. The decorations of
the faces are explained in Definition 2.6.

Comparing Definitions 2.2 and 2.3, we have Cg,n = Sg;(1,...,1).

Definition 2.4 (Degree of a map). We define the degree of a map M as:

degM := #E(M)−#V(M) = 2g(M)− 2 + #F(M),

where g(M) is the genus of M and V(M), E(M) and F(M) respectively the sets of vertices,
edges and faces of the underlying graph. We denote by

Cδ
g,n ⊆ Cg,n and Sδ

g,k ⊆ Sg,k

the corresponding subsets of maps of fixed degree δ.

It easily follows from the Euler relation (see e.g. [BCEGF21, Section 2.1]) that for a given
topology (g, n) and degree δ = (2g − 2 + #F), the sets Cδ

g,n and Sδ
g,k are finite. We now turn

to the local weights of a (multi)-ciliated map.

Definition 2.5 (Local weights). The potential of the model is a polynomial of degree r + 1,
depending on the parameters t3, . . . , tr+1:

V (u) :=
u2

2
−

r+1∑
j=3

tj
j
uj.

We then introduce the propagator:

P(u1, u2) :=
u1 − u2

V ′(u1)− V ′(u2)
,

and for d ∈ {3, . . . , r + 1}:

Vd(u1, . . . , ud) := Res
u=∞

V ′(u)du∏d
j=1(u− uj)

=
d∑

i=1

−V ′(ui)∏
j ̸=i(ui − uj)

. (2.1)
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It is manifest from the first formula that this weight is a symmetric polynomial in u1, . . . , ud. In
particular it is well-defined when some of the ui coincide.

We fix a finite set of complex numbers Λ = {λ1, . . . , λN}, considered as parameters.
For a given n-tuple k, we denote Zi = [zi,1, . . . , zi,ki ] a ki-tuple of complex variables,
and Z = (Z1, . . . , Zn) — square brackets are used for better parsing. It is now possible to
associate a weight to a (multi)-ciliated map, by summing over decorations of unmarked faces
and multiplying the local weights:

Definition 2.6. The weight of a (multi-)ciliated map M is given by:

Wcil(M) =
∑

U :F◦→Λ

∏
e∈E(M)
e=(f1,f2)

P(uf1 , uf2)
∏

v∈V(M)
black

Vdeg(v)({uf}f 7→v),

Here, uf is the decoration of a face: for an unmarked face it is uf = U(f) ∈ Λ; for marked faces,
it is zi,1 for the face adjacent to the ith root, and starting from this one, zi,2, . . . , zi,k for the faces
encountered when travelling anticlockwise around the ith vertex. The notation e = (f1, f2)
means that e is the edge surrounded by the faces f1 and f2, and f 7→ v means that f surrounds v.

Note that white vertices have weight 1 in this formula, and that if Λ = ∅, the (multi-)ciliated
maps M with F◦(M) ̸= ∅ have vanishing weight: Wcil(M) = 0.

The shape of the weights in Definitions 2.5 and 2.6 might seem mysterious. However, they
find their inspiration in a formal hermitian matrix model, that generalises naturally the matrix
model used by Kontsevich in his proof of Witten’s conjecture [Kon92]. It is a formal hermitian
matrix model with external field, whose potential is given by V ; and whose external field is given
by diag(λ1, . . . , λN) (see [BCEGF21, Section 4.1]). The weights exposed above come from the
application of Wick’s theorem to the matrix integral.

Definition 2.7 (Generating series of (multi-)ciliated maps).

Cg,n(Z) =
∑

M∈Cg,n

α− degM Wcil(M)

=
∑

δ⩾2g−2+n

α−δ
∑

M∈Cδ
g,n

Wcil(M),

Sg;k(Z) =
∑

M∈Sg;k

α− degM Wcil(M)

=
∑

δ⩾2g−2+n

α−δ
∑

M∈Sδ
g;k

Wcil(M).

Those generating series are well-defined formal series in α−1, except C0,1 which in addition
contains the term α. The dependence on α−1, λs and ts has been omitted from the notation. We
now recall a key recursion on the degree of white vertices for multi-ciliated generating series.
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Lemma 2.8. [BCEGF21, Lemma 2.25] If k1 ⩾ 2, set k′ = (k1 − 1, k2, . . . , kn). We have:

Sg;k(Z1, . . ., Zn) =

1

α

Sg;k′ ([z1,1, z1,3, . . . , z1,k1 ], Z2, . . . , Zn)− Sg;k′ ([z1,2, . . . , z1,k1 ], Z2, . . . , Zn)

V ′(z1,1)− V ′(z1,2)

+ δg,0δn,1δk1,2P(z1,1, z1,2).

Applying this formula recursively, we can express the generating series of multi-ciliated
maps in terms of the generating series of ciliated maps:

Lemma 2.9. [BCEGF21, Theorem 2.23] Recall that Zi = [zi,1, . . . , zi,ki ] for i ∈ {1, . . . , n}.
We have:

Sg;k(Z1, . . . , Zn) =
1

αk1+...+kn−n

k1∑
j1=1

· · ·
kn∑

jn=1

Cg,n(z1,j1 , . . . , zn,jn) + δg,0δn,1αz1,j1
n∏

i=1

ki∏
li=1
li ̸=ji

(
V ′(zi,ji)− V ′(zi,li)

) . (2.2)

3. Relating fully simple maps and multi-ciliated maps

The aim of this section is to show that multi-ciliated maps are dual to fully simple maps, based
on a simple duality argument. It is convenient to do so via the permutation model for maps
presented e.g. in [LZ04]. Here is a schematic summary of what we will present in this section
at the level of combinatorial objects (if this duality is clear for some readers, this section can be
skipped) and what we will present in the next section at the level of generating series.

(A) Ordinary multi-ciliated maps −→ (B) Ordinary maps with fixed boundary lengths
(C) Multi-ciliated maps −→ (D) Fully simple maps with fixed boundary lengths

The arrows represent duality at the level of combinatorial objects and specialisation to 0 of
parameters associated to faces (see Section 4 for details) at the level of generating series.

Let us also use this diagram to briefly comment on the general context of these results. The
left-hand side corresponds to the realm of generalised Kontsevich graphs, while the right-hand
side corresponds to the usual 1-hermitian matrix model. More concretely, the graphs that Kont-
sevich introduced to prove Witten’s conjecture correspond to (C) for the case r = 2, and gen-
erating series of ordinary maps within (A) are given by the usual correlators of the 1-hermitian
matrix model. It was shown in [BGF20] that some other concrete correlators of the 1-hermitian
matrix model recover generating series of fully simple maps within (D). This work provides an
interpolation between Kontsevich matrix models from the left-hand side and usual 1-hermitian
matrix models of the right-hand side by showing that the matrix models used as inspiration in
[BCEGF21] allow to reach every corner (although in that work they were introduced to study (C),
i.e. a generalisation of Kontsevich’ work to r > 2, and not (A) or the right-hand side).
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3.1. Permutation model for fully simple maps

An unrooted map can be encoded into a triple (σ0, σ1, σ2) of permutations acting on the set E⃗ of
oriented edges, in which

• σ0 rotates each oriented edge anticlockwise around the vertex it is incident to;

• σ1 is the fixed-point-free involution swapping the two oriented edges with same underlying
edge;

• σ2 rotates each oriented edge anticlockwise around the face it is adjacent to (i.e. located
to its left).

The vertices, edges and faces of the map correspond respectively to the cycles of σ0, σ1 and σ2.

e1
e2

f1

f2

v2 v1 v

e
σ2(e)

σ1(e)

σ0(e)

Figure 3.1: The left panel depicts the local structure of an edge in a map. The oriented edges e1
and e2 are indicated by the arrows. With our conventions, ei is adjacent to face fi and incident to
vertex vi for i = 1, 2. The right panel depicts the local structure of a vertex in a map, including
the action of the permutations σ0, σ1, σ2 on an oriented edge e.

It follows that σ0 ◦ σ1 ◦ σ2 = Id. This can easily be adapted to describe rooted maps.

Lemma 3.1. A rooted map can be encoded by a triple (σ0, σ1, σ2) of permutations in S(E⃗) and
a tuple R ∈ E⃗n such that

• σ1 is a fixed-point-free involution;

• σ0 ◦ σ1 ◦ σ2 = Id;

• no two elements of R belong to the same cycle of σ2;

• the group generated by σ0, σ1, σ2 acts transitively on E⃗ (connectedness).

The data (σ0, σ1, σ2;R) and (σ′
0, σ

′
1, σ

′
2;R′) define equivalent maps if and only if there exists a

bijection ϕ : E⃗ → E⃗ that sends R to R′ and satisfies σ′
i = ϕ ◦ σi ◦ ϕ−1 for i ∈ {0, 1, 2}.
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3.1.1 Characterisation of simplicity in the permutation model

This permutation model allows the following characterisation of simple maps. Suppose that a
map is given by the data (σ0, σ1, σ2;R) with R = (e1, . . . , en). For i ∈ {1, . . . , n}, define the
set Bi ⊆ E⃗ to be the σ2-orbits of ei. We observe that Bi naturally corresponds to the set of
boundary edges around the ith marked face, and this face is simple if and only if the elements
of Bi belong to pairwise distinct σ0-orbits.

Let us describe the characterisation of simple maps in a slightly different way, using a no-
tation that will later be useful. For i ∈ {1, . . . , n}, denote by σ∂i

0 ∈ S(Bi) the permutation
obtained by expressing σ0 ∈ S(E⃗) as a union of disjoint cycles and deleting those elements that
do not lie in Bi. If e ∈ Bi is an oriented edge incident to the vertex v, then σ∂i

0 (e) is the next
oriented edge in Bi incident to v that is encountered when turning anticlockwise around v. Then
the ith boundary face is simple if and only if the permutation σ∂i

0 is the identity permutation.

3.1.2 Characterisation of full simplicity in the permutation model

For fully simple maps, define the set B ⊆ E⃗ to be the union of the σ2-orbits of the elements
of R. We observe that B naturally corresponds to the set of boundary edges. Then, the map is
fully simple if and only if the elements of B belong to pairwise distinct σ0-orbits. Equivalently,
denote by σ∂

0 ∈ S(B) the permutation obtained by expressing σ0 ∈ S(E⃗) as a union of disjoint
cycles and deleting those elements that do not lie in B. If e ∈ B is an oriented edge incident
to the vertex v, then σ∂

0 (e) is the next oriented edge in B incident to v that is encountered when
turning anticlockwise around v. A map is then fully simple if and only if the permutation σ∂

0 is
the identity permutation.

3.2. Characterisation of multi-ciliated maps in the permutation model

Next, we show that the star constraint concept on white vertices of multi-ciliated maps is the dual
of simplicity, and that adding furthemore the uniqueness constraint, we get the dual concept of
full simplicity. We recall that E⃗ is the set of oriented edges.

Hereon we will consider multi-ciliated maps for which we relax the conditions imposed on
white vertices: we call them ordinary multi-ciliated maps if their white vertices do not neces-
sarily satisfy the star and uniqueness constraints, so as to distinguish them from multi-ciliated
maps, which carry those conditions by definition.

Lemma 3.2. An ordinary multi-ciliated map with n white vertices is encoded into a triple
(σ′

0, σ
′
1, σ

′
2) of permutations in S(E⃗) and a tuple R′ ∈ (E⃗)n such that

• σ′
1 is a fixed-point-free involution;

• σ′
0 ◦ σ′

1 ◦ σ′
2 = Id; and

• no two elements of R′ lie in the same cycle of σ′
0;

• the group generated by σ′
0, σ

′
1, σ

′
2 acts transitively on E⃗ .
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The data (σ′
0, σ

′
1, σ

′
2;R′) and (σ′′

0 , σ
′′
1 , σ

′′
2 ;R′′) define equivalent maps if and only if there exists

a bijection ϕ : E⃗ → E⃗ that sends R′ to R′′ and satisfies σ′′
i = ϕ ◦ σ′

i ◦ ϕ−1 for i ∈ {0, 1, 2}.

Proof. We take (σ′
0, σ

′
1, σ

′
2) the triple of permutations encoding the underlying map. For

each i ∈ {1, . . . , n}, we take ei to be the ith root. We then set R′ = (e1, . . . , en). By con-
struction all the conditions announced in the lemma are satisfied.

In the rest of the subsection, ordinary multi-ciliated mapsM ′ are replaced by a corresponding
permutation model (σ′

0, σ
′
1, σ

′
2;R′) with R′ = (e1, . . . , en).

3.2.1 Star constraint

The permutation model allows the following characterisation of the star-constraint. For
i ∈ {1, . . . , n}, define the set B′

i ⊆ E⃗ to be the σ′
0-orbit of the ei. We observe that it corresponds

naturally to the set of oriented edges incident to the ith white vertex. Denote by (σ′
2)

∂i ∈ S(B′
i)

the permutation obtained by expressing σ′
2 ∈ S(E⃗) as a union of disjoint cycles and deleting

those elements that do not lie in B′
i. If e ∈ B′

i is an oriented edge adjacent to a marked face f ,
then (σ′

2)
∂i(e) is the next oriented edge in B′

i met when turning anticlockwise around f . The ith
white vertex satisfies the star constraint if and only if the permutation (σ′

2)
∂i is the identity per-

mutation.

Lemma 3.3 (Star = dual of simplicity). The ith white vertex of an ordinary multi-ciliated map
satisfies the star constraint if and only if the ith boundary face of the dual map is simple.

Proof. Let M ′ = (σ′
2, σ

′
1, σ

′
0;R′) be an ordinary multi-ciliated map of type (g, n). Define the

map M = (σ0, σ1, σ2;R) = (σ′
2, σ

′
1, σ

′
0;R′) as the dual of M ′. The white vertices of M ′ corre-

spond to the boundary faces of M ; the black ones correspond to the internal faces of M . Then:

• M is of genus g since M ′ is of genus g;

• M has n labelled boundary faces since M ′ has n labelled white vertices;

• the boundary faces of M are rooted: the root of the ith boundary face is the dual oriented
edge to the ith root edge of M ′.

The ith white vertex of M ′ satisfies the star constraint if and only if the permutation (σ′
2)

∂i is
the identity permutation, i.e. the permutation σ∂i

0 is the identity permutation. This is the property
defining the simplicity of the ith boundary face.

3.2.2 Uniqueness constraint

In the permutation model, having the star and the uniqueness constraints simultaneously is char-
acterised as follows. Define B′ ⊆ E⃗ to be the union of the σ′

0-orbits of ei, for i ∈ {1, . . . , n}.
Denote by (σ′

2)
∂ ∈ S(B′) the permutation obtained by expressing σ′

2 ∈ S(E⃗) as a union of
disjoint cycles and deleting those elements that do not lie in B′. If e ∈ B′ is an oriented edge
adjacent to a marked face f , then (σ′

2)
∂(e) is the next oriented edge inB′ that is met when turning

anticlockwise around f . Then the vertices of an ordinary multi-ciliated map satisfy the star and
uniqueness constraints if and only if the permutation (σ′

2)
∂ is the identity permutation.
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Figure 3.2: On the left, a non simple map: a vertex has two boundary incident edges. On the
right, the dual ordinary multiciliated map: two corners of the white vertex belong to the same
face, so it does not satisfy the star constraint.

Lemma 3.4 (Uniqueness and star = dual of full simplicity). The white vertices of an ordinary
multi-ciliated map satisfy the uniqueness and star constraints if and only if the dual map is fully
simple.

Proof. As in the previous proof, the property that σ∂
0 = (σ′

2)
∂ is the identity permutation matches

the characterisation of full-simplicity in the permutation model.

Figure 3.3: On the left, a (simple but) non fully simple map: two boundaries share a common
vertex. On the right, the dual ordinary multi-ciliated map. The two white vertices are adjacent
to a same face, hence they do not satisfy the uniqueness constraint.

4. Topological recursion for fully simple maps

We use multi-ciliated maps in order to prove that fully simple maps satisfy topological recursion.
For this purpose we will only need to specialise the set of undecorated face weights to Λ = {0},
i.e. take N = 1 and λ1 = 0. We first recall from [BCEGF21] the topological recursion formula
for ciliated maps, specialised to Λ = {0}; we then show how to use this result to prove that fully
simple maps satisfy topological recursion; eventually, we discuss in greater detail the disc and
the cylinder case.
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Figure 3.4: On the left, a fully simple map; on the right, the dual multi-ciliated map satisfying
the star and uniqueness constraints.

4.1. Topological recursion for ciliated maps

If f is a formal power series in α−1, we denote by [f ]d the coefficient of α−d. We define the fol-
lowing spectral curve, which is a specialisation of the spectral curve for ciliated maps obtained
in [BCEGF21, Section 3.1].

Lemma 4.1. (N = 1, λ1 = 0 specialisation of [BCEGF21, Theorem 3.3]). For
any t3, . . . , tr+1 ∈ C with non-zero tr+1, there exists a unique polynomial Q of degree r with
coefficients in C[[α−1]], as well as a ∈ α−1C[[α−1]] satisfying:

Q(ζ) =
ζ→∞

V ′
(
ζ +

1

α

1

Q′(a)(ζ − a)

)
+O(ζ−1), Q(a) = 0.

Let us explain how to work with the lemma in practice. Recall that the coefficients t3, ..., tr+1

in V and the parameter λ1 are given. The first condition determines the top coefficient of the
polynomial Q to be −tr+1 and give algebraic equations for the other coefficients of Q depend-
ing on the auxiliary parameter a and the tjs. The second one gives an algebraic equation of
degree 2r − 1 for a depending on the coefficients of Q. The condition a = O(α−1) selects
a unique solution to this system of algebraic equations, which can be computed perturbatively
in α−1. Note that at leading order, we have Q(ζ) = V ′(ζ) +O(α−1).

Example 4.2. For r = 2 (triangulations) we find from the first condition

Q(ζ) = q0 + ζ − t3ζ
2, q0 = −2t3

α

1

1− 2t3a
.

The auxiliary parameter a then satisfies the cubic equation −2t3
α

1
1−2t3a

+ a − t3a
2 = 0, and its

solution which is O(α−1) is

a = 2t3α
−1 + 12t33α

−2 + 128t53α
−3 + 1680t73α

−4 + 24576t93α
−5 + 384384t113 α−6 +O(α−7).

This is turn gives

−q0 = 2t3α
−1 + 8t33α

−2 + 80t53α
−3 + 1024t73α

−4 + 14784t93α
−5 + 229376t113 α−6 +O(α−7).
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Example 4.3. For r = 3 (triangles and quadrangles) we find from the first condition

Q(ζ) = q0 + q1ζ − t3ζ
2 − t4ζ

3,

with parameters

q0 = − 2t3 + 3t4a

α(q1 − 2t3a− 3t4a2)
, q1 = 1− 3t4

α

1

q1 − 2t3a− 3t4a2
.

The auxiliary parameter a then satisfies the quintic equation q0 + q1a − t3a
2 − t4a

3 = 0. We
have q1 = 1 + O(α−1). Eliminating q0, it turns into a system of two algebraic equations for q1
and a. The solution is not explicit, but we can compute it perturbatively

a = 2t3α
−1 + 6t3(3t4 + 2t23)α

−2 + 4t3(5t4 + 8t23)(9t4 + 4t23)α
−3 +O(α−4),

−q0 = 2t3α
−1 + 4t3(3t4 + 2t23)α

−2 + 4t3(3t4 + 5t23)(9t4 + 4t23)α
−3 +O(α−4),

q1 = 1− 3t4α
−1 − 3t4(3t4 + 4t23)α

−2 − 6t4(9t
2
4 + 42t4t

2
3 + 20t43)α

−3 +O(α−4).

If t3 = 0 (quadrangulations), one can easily prove by induction on the order in α−1 that a = 0
and q0 = 0. Then, q1 satisfies a quadratic equation and we find

q1 =
1 +

√
1− 12t4α−1

2
.

Definition 4.4. We introduce ζ ∈ C(z)[[α−1]], the unique formal power series whose coefficients
are rational functions of z determined by:

Q(ζ) = V ′(z), [ζ]0 = z. (4.1)

The spectral curve for the weighted enumeration of ciliated maps with unmarked face param-
eters Λ = {0} is S = (P1, x, y,Γ0,2), where the meromorphic maps x, y : P1 → P1 and the
bidifferential Γ0,2 are defined by:

x(ζ) = Q(ζ),

y(ζ) = α ζ + 1
Q′(a)(ζ−a)

,

Γ0,1(ζ) = y(ζ)dx(ζ),

Γ0,2(ζ1, ζ2) =
dζ1 dζ2
(ζ1−ζ2)2

.

In Lemma 4.1, ζ is a placeholder for the variable of the polynomial Q. In Definition 4.4, ζ
plays the role of a uniformising coordinate on the underlying Riemann sphere P1. It differs from
the variables z used in the generating series of multi-ciliated maps, but there is an invertible
functional relation between them which is specified by the first part of Definition 4.4. Γ0,2 is the
unique fundamental bidifferential of the second kind on P1 (called standard bidifferential for
short). To be precise, S is a family of spectral curves parametrised by the formal parameter α−1

and the complex parameters t3, . . . , tr.



combinatorial theory 4 (2) (2024), #14 17

For g ⩾ 0 and n ⩾ 1, we define the n-differential

Γg,n(ζ1, . . . , ζn) =

(
Cg,n(z1, . . . , zn) +

δg,0δn,2(
x(ζ1)− x(ζ2)

)2)dx(ζ1) · · · dx(ζn)
+ δg,0δn,1

(
α z1 +

N∑
j=1

1

V ′(z1)− V ′(λj)

)
dx(ζ1), (4.2)

where ζi and zi are related as in (4.1). It was proved in [BCEGF21] that ciliated maps satisfy
topological recursion for the spectral curve of Definition 4.4:

Theorem 4.5. [BCEGF21, Theorems 3.7 and 3.18 for N = 1] Let t3, . . . , tr+1 ∈ C with tr+1

non-zero, chosen such that the polynomial Q′(ζ) has simple roots. Then, the differentials Γg,n

can be analytically continued to meromorphic n-forms on the spectral curve, still denoted Γg,n.
Besides, Γ0,2 is the standard bidifferential on the spectral curve, andΓg,n for 2g−2+n > 0 satisfy
the topological recursion for the spectral curve of Definition 4.4. The generating series Cg,n are
retrieved by expansion when zi → ∞.

The roots of the polynomial Q′(ζ) are the ramification points of the spectral curve. Given ζ0,
we define {ζ(0)0 , ζ

(1)
0 , . . . , ζ

(r−1)
0 } as the set of roots ofQ(ζ)−Q(ζ0), where ζ(0)0 = ζ0. For generic

parameters, the branched cover x has r − 1 simple ramification points ρ1, . . . , ρr−1, i.e.

Q′(ρk) = 0, Q′′(ρk) ̸= 0,

and hence the theorem applies. For ζ near ρk, we can always choose the labellings of points
in x−1(x(ζ)) so that ρk = ρ

(k)
k (in the previous notation applied to ζ0 = ρk and to ζ0 = ζ)3; since

the ramification points are simple, we have ρ(l)k ̸= ρk for l ̸= 0, k. To each ramification point we
associate the recursion kernel:

Kρk(ζ1, ζ) =
1

2

∫ ζ

ζ(k)
Γ0,2(ζ1, ·)

Γ0,1(ζ)− Γ0,1(ζ(k))
, (4.3)

which is defined locally for ζ near ρk and globally for ζ1 ∈ P1. The topological recursion formula
allows the computation of Γg,n by induction on 2g − 2 + n > 0:

Γg,n(ζ1, . . . , ζn) =

r−1∑
k=1

Res
ζ=ρk

Kρk(ζ1, ζ)

(
Γg−1,n+1(ζ, ζ

(k), I) +

′∑
h+h′=g
J⊔J ′=I

Γh,1+#J(ζ, J) Γh′,1+#J ′(ζ(k), J ′)

)
, (4.4)

where I = {ζ2, . . . , ζn} and
∑′ means that terms involving Γ0,1 should be excluded from the

sum.
3That is, x−1(x(ζ)) := {ζ(0) = ζ, ζ(1), . . . , ζ(r−1)} and ζ(k), ζ(0) = ζ → ρ

(k)
k = ρ

(0)
k = ρk when ζ → ρk, for

ζ near the simple ramification point ρk (and ζ(k) ̸= ζ(0) = ζ as long as ζ ̸= ρk).
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4.2. Relating fully simple and ciliated generating series

The following key observation relates the enumeration of fully simple maps to the one of multi-
ciliated maps. If k ⩾ 0, let [0k] be the k-tuple whose elements are all zero.

Lemma 4.6. We have for any g ⩾ 0, n ⩾ 1 and k1, . . . , kn ⩾ 0:

FSMapg;(k1,...,kn) = Sg;(k1,...,kn)

(
[0k1 ], . . . , [0kn ]

)∣∣
Λ={0} + δg,0δn,1δk1,0α. (4.5)

Remark 4.7. The additional term for the disc case comes from the degenerate fully simple map
in M0,1(1), which has no equivalent among multi-ciliated maps.

Proof. From Lemma 3.4, multi-ciliated maps are dual to fully simple maps — we rigorously
characterised this correspondence in Section 3.2. The perimeter of the ith boundary face of a fully
simple map M ∈ Mg,n corresponds to the degree of the ith white vertex of M ′ ∈ Sg;(k1,...,kn),
i.e. deg(∂iM) = ki. We shall now compare the weights in their enumeration. Recall the Defini-
tion 2.5 for the potential V and Vd, especially its expression via a residue. We observe that

Vd(u1, . . . , ud)|uk=0 = td, d ∈ {3, . . . , r + 1},
P(u1, u2)|uk=0 = 1 .

This can be used to evaluate the weight Wcil(M
′) of a multi-ciliated map M ′ at uk = 0 — recall

that the us are either equal to λs or to zs which are in the present situation all set to zero. Thus,
the local weight td for a black vertex of degree d in the multi-ciliated map M ′ can be interpreted
as a local weight for an internal face of degree d in the dual fully-simple mapM . Unlike Wcil(M

′)
in Definition 2.6, the weight W (M) introduced in (1.1) contains a factor

α2−2g(M)−#V(M) = α2−2g(M ′)−#F(M ′) = α− degM ′
.

We deduce that this specialisation retrieves the weights for the standard notion of maps, in the
form

α− degM ′
Wcil(M

′)
∣∣∣
uk=0

= W (M).

Lemma 4.8. We introduce z(w) ∈ C[w][[α−1]] uniquely determined by{
V ′(z(w)) = w

α
,

z(w) = w
α
+O(α−2) .

Then, for any g ⩾ 0 and n ⩾ 1:

Xg,n(w1, . . . , wn) = Cg,n(z(w1), . . . , z(wn))|Λ={0} + δg,0δn,1 α

(
1

w1

+ z(w1)

)
. (4.6)

Proof. From the definition of Xg,n and Equation (4.5), we have

Xg,n(w1, . . . , wn) =
∑

k1,...,kn⩾1

wk1−1
1 · · ·wkn−1

n FSMapg;(k1,...,kn) + δg,0δn,1
α

w1

=
∑

k1,...,kn⩾1

wk1−1
1 · · ·wkn−1

n Sg;(k1,...,kn)

(
[0k1 ], . . . , [0kn ]

)∣∣
Λ={0} + δg,0δn,1

α

w1

.

(4.7)
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The expression forSg;(k1,...,kn)(Z1, . . . , Zn) in Lemma 2.9 relating multi-ciliated and ciliated gen-
erating series is not directly adapted to set simultaneously all variables zi,j to zero,
since V ′(0) = 0, so we would have singularities in the denominators. We first rewrite it us-
ing the change of formal variable z(w) ∈ C[w][[α−1]] announced in the lemma, which is easily
seen to exist and to be unique. Then, similarly to (2.1) we can write

Sg;(k1,...,kn)(Z1, . . . , Zn)|Λ={0}

= Res
w1=0

· · · Res
wn=0

Cg,n(z(w1), . . . , z(wn))dw1 · · · dwn + δg,0δn,1α z(w1)dw1∏n
i=1

∏ki
j=1(wi − αV ′(zi,j))

∣∣∣
Λ={0}

.

Now we can set zi,j to zero and this yields

Sg;(k1,...,kn)([0]
k1 , . . . , [0]kn)

∣∣
Λ={0}

= Res
w1=0

· · · Res
wn=0

Cg,n(z(w1), . . . , z(wn))dw1 · · · dwn + δg,0δn,1αz(w1)dw1∏n
i=1 w

ki
i

=
1

(k1 − 1)!

∂k1−1

∂wk1−1
1

· · · 1

(kn − 1)!

∂kn−1

∂wkn−1
n

(
Cg,n(z(w1), . . . , z(wn)) + δg,0δn,1α z(w1)

)∣∣∣ wi=0
Λ={0}

.

(4.8)

Inserting it in the formula (4.7) and observing that z(0) = 0, we recognise Xg,n as a Taylor
expansion of Cg,n around 0:

Xg,n(w1, . . . , wn)

=
∑

k1,...,kn⩾1

[
n∏

i=1

wki−1
i

(ki − 1)!

∂ki−1

∂wki−1
i

](
Cg,n(z(w1), . . . , z(wn)) + δg,0δn,1α z(w1)

)∣∣∣ wi=0
Λ={0}

=
(
Cg,n(z(w1), . . . , z(wn)) + δg,0δn,1 αz(w1)

)∣∣∣
Λ={0}

.

The equalities hold as formal series in α−1 (or formal Laurent series for (g, n) ̸= (0, 1))
and (wi)

n
i=1.

Remark 4.9. The additional term of Lemma 2.8 for the case (g, n, k) = (0, 1, (2)) comes from
the term

P(z1,1, z1,2)|z1,1=z1,2=0 = P(0, 0) = 1,

which corresponds to the special multi-ciliated map, dual to the degenerate fully simple map
in M0,1(2):

z1,1 = 0

z1,2 = 0

Multi-ciliated map Corresponding fully simple map



20 Gaëtan Borot et al.

This special case yields the additional term of Lemma 2.9 and hence of the previous equations.
For g ⩾ 0 and n ⩾ 1, we define the specialisation of the n-differential (4.2) to Λ = {0}:

χg,n(ζ1, . . . , ζn) := Γg,n(ζ1, . . . , ζn)|Λ={0} .

As a consequence of Lemma 4.8, this is also:

χg,n(ζ1, . . . , ζn) =

(
Xg,n(w1, . . . , wn) +

δg,0δn,2(
x(ζ1)− x(ζ2)

)2)dx(ζ1) · · · dx(ζn)
=

(
α−n Xg,n(w1, . . . , wn) +

δg,0δn,2(
w(ζ1)− w(ζ2)

)2)dw1 · · · dwn,

(4.9)

since we have x(ζi) = Q(ζi) = V ′(zi) = wi

α
. The specialisation of Theorem 4.5 now implies

our main result, i.e. that the fully simple generating series satisfy the topological recursion.

Theorem 4.10. For any t3, . . . , tr+1 ∈ C with tr+1 ̸= 0 such that the ramification points are
simple (this holds for generic parameters), the n-differentials χg,n can be analytically continued
to meromorphic n-forms on the spectral curve of Definition 4.4. The analytic continuations, still
denoted χg,n, satisfy the topological recursion on this spectral curve. The generating series Xg,n

are retrieved by expansion when wi → 0.

4.3. Spectral curve for fully simple maps

The purpose of this section is to derive the spectral curve governing fully simple maps, based
on the previous sections.

Theorem 4.11. The fully simple spectral curve is obtained from the ordinary spectral curve (1.5)
by exchanging the role of x and y, and Conjecture 1.7 holds.

Remark 4.12. The topological recursion in Theorem 4.5 and Theorem 4.10 is stated for (generic)
parameters, so that the corresponding spectral curve has only simple ramification points. This
assumption can be waived using the continuity properties of topological recursion with respect
to parameters that have been anticipated in [BE13] and thoroughly studied in [BBC+23].

Proof of Theorem 4.11. We start from the spectral curve given in Definition 4.4. Besides, the
variables w ∈ αC(ζ)[[α−1]], resp. z(w) = z ∈ C(ζ)[[α−1]]) that should be used to extract the
fully simple (resp. ciliated) generating series are determined by:

w

α
= V ′(z) = Q(ζ),

w

α
= z +O(α−2) = ζ +O(α−2),

where Q is the polynomial from Lemma 4.1. Let χ̂g,n be the multi-differentials computed by the
topological recursion on the rescaled spectral curve:

Ŝ :


x̂(ζ) = x(ζ),

ŷ(ζ) = y(ζ)
α

= ζ + 1
α

1
Q′(a)(ζ−a)

,

χ̂0,1(ζ) = ŷ(ζ)dx̂(ζ),

χ̂0,2(ζ1, ζ2) = χ0,2(ζ1, ζ2).
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As the only effect of this rescaling on the topological recursion is to multiply the recursion kernel
by α (compare with (4.3) and (4.4)), and the topology (g, n) is reached after 2g− 2+n steps of
the recursion, we have:

χ̂g,n(ζ1, . . . , ζn) = α2g−2+nχg,n(ζ1, . . . , ζn) .

Taking into account the α−n present in (4.9) and coming back to Definition 1.3 for Xg,n, we see
that χ̂g,n are generating series of fully simple maps with modified weights:

Ŵ (M) =
α−#V(M)

#Aut(M)
t
f3(M)
3 · · · tfr+1(M)

r+1 .

This choice for the weight is the one made for the enumeration of ordinary maps e.g. in [Eyn16,
Chapter 3] with a formal parameter that keeps track of the number of vertices which is the inverse
of our α, i.e. t = α−1. More precisely, for any g ⩾ 0 and n ⩾ 1 we have:

χ̂g,n(ζ1, . . . , ζn) =
∑

M∈Mg,n

fully simple

Ŵ (M)w
deg(∂1M)−1
1 · · ·wdeg(∂nM)−1

n dw1 · · · dwn, (4.10)

where wi = αQ(ζi) as specified in Lemma 4.8, and the equation should be understood as the
equality of the all-order series expansion of the left-hand side when wi → 0 with the formal
series on the right-hand side.

Now, we introduce a different uniformising coordinate on the Riemann sphere, which we
call θ and is related to ζ by:

ζ(θ) = a+ cθ−1, c :=
(
αQ′(a)

)− 1
2 . (4.11)

It can be checked that c ∈ C[[α− 1
2 ]]; in particular

c = O(α− 1
2 ). (4.12)

We then find

Ŝ :


x̂(ζ(θ)) = Q

(
a+ cθ−1

)
,

ŷ(ζ(θ)) = a+ c(θ + θ−1) ,

χ̂0,1(ζ(θ)) = ŷ(ζ(θ)) dx̂(ζ(θ)) ,

χ̂0,2(ζ(θ1), ζ(θ2)) =
dθ1dθ2
(θ1−θ2)2

.

(4.13)

The characterisation of the polynomial Q from Lemma 4.1 can be rewritten as

Q
(
a+ cθ−1

)
=
θ→0

V ′(a+ c(θ + θ−1)
)
+O(θ).

In other words:
Q
(
a+ cθ−1

)
=
[
V ′(a+ c(θ + θ−1)

)]
⩽0

,
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where [· · · ]⩽0 is the polynomial part in the variable θ−1. Besides, we have the constraints

Q(a) = 0 and lim
θ→∞

θ Q(a+ cθ−1) = cQ′(a) = (αc)−1. (4.14)

The first one is a reminder from Lemma 4.1 while the second one follows from the definition
of c in (4.11). For comparison, the spectral curve for ordinary maps is4:

S :


x(θ) = a+ c(θ + θ−1) ,

y(θ) =
[
V ′(a+ c(θ + θ−1))

]
⩽0

,

ω0,1(θ) = y(θ)dx(θ) ,

ω0,2(θ1, θ2) =
dθ1dθ2
(θ1−θ2)2

,

(4.15)

where c (up to a sign) and a are uniquely determined by the conditions

y(θ) ∼
θ→∞

α−1

x(θ)
∼ 1

αcθ
,

c = O(α− 1
2 ) ,

a = O(α−1) ,

(4.16)

and α−1 is the weight per vertex. We recognise

y(θ) = x̂(ζ(θ)), x(θ) = ŷ(ζ(θ)), ω0,2(θ1, θ2) = χ̂0,2(ζ(θ1), ζ(θ2)),

with parameters (a, c) determined in an identical way: the first condition of (4.16) is equivalent
to (4.14), the second condition is equivalent to (4.12) (the sign ambiguity amounts to the choice
of squareroot), and the third condition matches the last condition in Lemma 4.1.

It is well-known that topological recursion on the spectral curve (4.15) computes the gener-
ating series of ordinary maps. More precisely, for g ⩾ 0 and n ⩾ 1, let us define:

ωg,n(θ1, . . . , θn) :=

(
Wg,n(x(θ1), . . . , x(θn)) +

δg,0δn,2(
x(θ1)− x(θ2)

)2)dx(θ1) · · · dx(θn). (4.17)

It is established in [Eyn04, Eyn16] that for any t3, . . . , tr+1 ∈ C with tr+1 ̸= 0 and such that Q′

has only simple zeros, the multi-differentials ωg,n can be analytically continued to meromorphic
n-forms on the spectral curve (4.15). If we still denote ωg,n the analytic continuations, ω0,2 is the
standard bidifferential and ωg,n for 2g − 2 + n > 0 is computed by the topological recursion on
this spectral curve. This explains the formulation of the claim, and concludes the proof, given
Theorem 4.10.

4See e.g. [Eyn16, Section 3.1.3]. Note that the y in [Eyn16] is ours minus V ′(x)
2 , but adding a rational function

of x to y does not alter the result of topological recursion, as is manifest in the formula (4.3) of the recursion kernel.
We use this y to obtain the right combinatorial interpretation for (0, 1) without any shift: ω0,1(θ) = y(θ)dx(θ) =
W0,1(θ)dx(θ), as in [BGF20]. In [Eyn16], the triple (α−1, a, c) was denoted (t, α, γ).
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5. Applications

In this section, we briefly explain some motivation for this work in the form of some conse-
quences of Theorems 4.10-4.11 which pave the way for future investigations.

5.1. Symplectic invariance

5.1.1 Context

Let S = (C, x, y, ω0,2) be a spectral curve and P the set of zeroes of dx, the topological recursion
constructs5 multi-differentials ωg,n indexed by g ⩾ 0 and n ⩾ 1, but also the following numbers
— called free energies — indexed by g ⩾ 2:

Fg[S] =
1

2− 2g

∑
ρ∈P

Res
z=ρ

(∫ z

oρ

ydx

)
ωg,1(z). (5.1)

Here, oρ ∈ C is an arbitrary point in a small contractible neighborhood of ρ and we integrate
from oρ to z in such a neighborhood.
Remark 5.1. If ydx is meromorphic on a connected curve C, we can also choose oρ independent
of ρ, and (5.1) does not depend on the path of integration from o to z since Resz=ρ ωg,1 = 0 for
any ρ ∈ P , see e.g. [EO07].

Let Š = (C, y, x, ω0,2) be the spectral curve where the role of x and y are exchanged, and P̌
be the set of zeroes of dy. It is expected that for reasonable spectral curves, we have the equality

Fg[S] = Fg[Š], (5.2)

even though the multi-differentials constructed by the topological recursion for S and Š are
different. This property is called symplectic invariance (for the exchange transforma-
tion (x, y) 7→ (y, x)). It is deep and still mysterious. In applications of topological recursion
in Gromov–Witten theory of toric Calabi–Yau threefolds [BKMP09, EO15], it corresponds for
instance to the framing invariance of the closed sector. The precise meaning of “reasonable”, i.e.
the minimal assumptions on the spectral curve under which (5.2) is expected to hold (perhaps
after adding certain explicit terms on the right-hand side) are not known. Eynard and Orantin
have proposed in [EO08, EO13] a rather involved derivation via the two-matrix model; yet, their
result does not seem to always apply in cases of interest. Understanding better the origin of
symplectic invariance, formulating it precisely and obtaining its proof under the weakest possi-
ble assumptions remains admittedly a fundamental and open problem in the theory of topological
recursion.

Here, we are in position to give an interpretation of some pieces of the puzzle
when S = (P1, x, y, ω0,2) is the spectral curve (4.15) governing ordinary maps. In that
case, Š = (P1, y, x, ω̂0,2) is the spectral curve (4.13) which we have proved to govern fully
simple maps, and numerically, (5.2) does not seem to hold as such.

5There are assumptions on the spectral curve for this construction to be well-defined, we refer to [BKS24] for a
discussion and the weakest currently known set of assumptions.
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5.1.2 Free energy computations

We shall compute both sides of (5.2) for our two spectral curves, in terms of ordinary and
fully simple generating series in topology (g, 1). We use the letters ω (resp. ω̌) for the multi-
differentials associated to the spectral curve S (resp. Š), so in fact ω̌ coincide with χ̂ of Sec-
tion 4.3. We denote P = {−1, 1} the set of zeroes of x′(θ) = c(1 − θ−2) and P̌ the zeroes
of y′(θ). By a continuity argument, it is sufficient to prove the result for t3, . . . , tr+1 such that
the zeroes of y′ are simple, i.e. #P̌ = r. Notice that

y(θ) =
[
V ′(x(θ))

]
⩽0

= V ′(x(θ)) +O(θ), (5.3)

where the O(θ) is in fact a polynomial in θ.
Let us fix g ⩾ 2. According to the basic properties of the topological recursion [EO07], ωg,1

(resp. ω̌g,1) is a meromorphic 1-form with poles at P (resp. P̌ ) and zero residues. Then, we can
introduce the rational functions

Φg,1(θ) =

∫ θ

∞
ωg,1, Φ̌g,1(θ) =

∫ θ

∞
ω̌g,1.

Another basic property is the linear loop equation (see e.g. [BS17]), which states that∑
θ̃∈x−1(x(θ))

ωg,1(θ̃) (5.4)

is holomorphic near P , for g > 0. But here x−1(x(θ)) = {θ, θ−1}; in particular, the involu-
tion θ 7→ θ−1 giving the second point in this fiber is globally defined on P1. Therefore, the
left-hand side of (5.4) is a holomorphic 1-form on P1, hence

ωg,1(θ) + ωg,1(θ
−1) = 0, for g > 0. (5.5)

See also [Eyn16]. Note that the linear loop equation for ω̌g,1 states that
∑

θ̃∈y−1(y(θ)) ω̌g,1(θ̃) is
holomorphic near P̌ , which does not lead to any formula for ω̌g,1(θ

−1). We also mention the
property obtained in [EO07]: ∑

ρ∈P̌

Res
θ=ρ

x(θ)y(θ)ω̌g,1(θ) = 0. (5.6)

An analogous one is also true for ωg,1 but we will not need it.
We recall that topological recursion for ordinary maps (see (4.17)) and for fully simple maps
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(see (4.10)) yields the expansions:

ωg,1(θ) =
θ→∞

r+1∑
k=1

Mapg;(k)

dx(θ)

x(θ)k+1
+O

(
dx(θ)

x(θ)r+3

)
,

ω̌g,1(θ) =
θ→∞

r+1∑
k=1

FSMapg;(k) y(θ)
k−1dy(θ) +O

(
y(θ)r+1dy(θ)

)
=

θ→∞
−

r+1∑
k=1

∑
ℓ1,...,ℓk⩾0

ℓ1+···+ℓk+k⩽r+1

(ℓ1 + · · ·+ ℓk + k) FSMapg;(k)

k x(θ)ℓ1+···+ℓk+k+1

[ k∏
i=1

Map0,(ℓi)

]
dx(θ)

+O
(

dx(θ)

x(θ)r+3

)
.

(5.7)

We could truncate the sum in the last line using y(θ) = O
(
x(θ)−1

)
when θ → ∞. We will see

that the expansion of ω̌g,1(θ) near θ = 0 plays a role for the computation of Fg[Š]. We therefore
introduce a name for its coefficients:

ω̌g,1(θ) =
θ→0

r+1∑
k=1

Restg,(k)
dx(θ)

x(θ)k+1
+O

(
dx(θ)

x(θ)r+3

)
.

We are ready to compute Fg[S], starting from (5.1).

Lemma 5.2. For g ⩾ 2, the generating series of closed maps of genus g satisfy:

(2− 2g)Fg[S] = α∂αMapg,∅ = −
Mapg;(2)

2
+

r+1∑
k=3

tk
Mapg;(k)

k
.

Proof. Integration by parts in (5.1) yields:

(2− 2g)Fg[S] =
∑
ρ∈P

Res
θ=ρ

(∫ θ

∞
ydx

)
ωg,1(θ) = −

∑
ρ∈P

Res
θ=ρ

Φg,1(θ) y(θ)dx(θ).

The 1-form ω0,1(θ) = y(θ)dx(θ) has a simple pole at θ = ∞ and a pole of order r + 2 at θ = 0.
Besides, the function Φg,1(θ) has a simple zero at θ = ∞. Moving contours we deduce that

(2− 2g)Fg[S] = Res
θ=0

Φg,1(θ) y(θ)dx(θ) = Res
θ=0

Φg,1(θ) dV (x(θ)),

where we have used (5.3). We then perform the change of variable θ 7→ θ−1 and use that x is
invariant while Φg,1 is antiinvariant (by integration of (5.5)) to find

(2− 2g)Fg[S] = −Res
θ=∞

Φg,1(θ) dV (x(θ)) = Res
θ=∞

V (x(θ))ωg,1(θ).
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We rather use the local coordinate x near θ = ∞ and insert the expansion (5.7) and Definition 2.5
of the potential, which results in:

(2− 2g)Fg[S] = Res
x=∞

dx

(
x2

2
−

r+1∑
m=3

tm
m

xm

)( r+1∑
k=1

Mapg;(k)

dx

xk+1

)

= −
Mapg;(2)

2
+

r+1∑
k=3

tk
Mapg;(k)

k
.

(5.8)

The weight of an ordinary mapM includes a factorαdegM =α2−2g(M)−#V(M)=α−#E(M)+#F(M).
Closed ordinary maps of genus g with a marked (non-oriented) edge are in bijection with ordi-
nary maps of genus g with an (unrooted) boundary face of degree 2: just glue the two edges of the
boundary face. Closed ordinary maps of genus g with a marked (unrooted) face are in bijection
with ordinary maps of genus g with an (unrooted) boundary face of degree k ∈ {3, . . . , r + 1}.
All together, these observations imply that

α∂αMapg,∅ = −
Mapg;(2)

2
+

r+1∑
k=3

tk
Mapg;(k)

k
= (2− 2g)Fg[S].

We now turn to the free energy for Š. It is not directly expressed in terms of FSMap.

Lemma 5.3. For g ⩾ 2, we have

(2− 2g)Fg[Š] = −
Restg,(2)

2
+

r+1∑
k=3

Restg,(k)
k

. (5.9)

Proof. Writing xdy = −ydx+ d(xy) and with the help of (5.6), we compute:

(2− 2g)Fg[Š] =
∑
ρ∈P̌

Res
θ=ρ

(∫ θ

oρ

xdy

)
ω̌g,1(θ) = −

∑
ρ∈P̌

Res
θ=ρ

(∫ θ

oρ

ydx

)
ω̌g,1(θ)

=
∑
ρ∈P̌

Res
θ=ρ

Φ̌g,1(θ) y(θ)dx(θ) = − Res
θ=0,∞

Φ̌g,1(θ) y(θ)dx(θ).
(5.10)

When θ → ∞, we have

y(θ)dx(θ) = O(θ−1dθ), Φ̌g,1(θ) = O(θ−1),

therefore θ = ∞ does not contribute to the residue, and we find:

(2− 2g)Fg[Š] = −Res
θ=0

Φ̌g,1(θ) dV (x(θ))

= Res
θ=0

V (x(θ)) ω̌g,1(θ)

= Res
x=∞

(
x2

2
−

r+1∑
m=3

tm
xm

m

)( r+1∑
k=1

Restg;(k)
dx

xk+1

)

= −
Restg,(2)

2
+

r+1∑
k=3

Restg,(k)
k

.
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5.1.3 Comment

Lemma 5.2 relates the enumeration of closed maps of genus g to the enumeration of ordinary
maps of genus g with 1 boundary face. One may try to apply a simplification procedure to
this boundary face, so as to relate it further to a fully simple enumeration. However, in doing
so, many topologies lower than (g, 1) may appear. To understand if symplectic invariance is
true (or true up to additional terms), we would need to find a combinatorial interpretation of
the generating series Restg,(k), stored in the θ → 0 series expansion of ω̌g,1. The fully simple
enumeration itself is stored in the expansion at θ = ∞. The particular form it takes in (5.7)
has a clear combinatorial meaning: one can attach ordinary disks at each vertex of a simple
boundary face to make it ordinary. However, an ordinary face can be obtained from a simple
face in different ways as well, which would involve maps of lower topologies. Therefore, the
combinatorial meaning of (5.9) is at present not elucidated although we expect there should be
one.

Theorem 4.11 had received a conditional proof in [BGF20], provided a milder version of
symplectic invariance was true for the topological recursion for the matrix model with external
field, from a combinatorial interpretation of the partition function governing the matrix model
with external field. Indeed, the latter is a generating series for fully simple maps. The definition
of ciliated maps from [BCEGF21] was also motivated by the matrix model with external field,
seen as a particular generalisation of the Kontsevich matrix model. The latter is relevant in the
study of the r-spin intersection numbers [Wit93, FSZ10] on the moduli space of curves, while
the r = 2 case is the one introduced by Kontsevich in his proof of Witten’s conjecture [Kon92].
This suggests that the concrete combinatorial tools developed to relate fully simple and ordinary
maps could have an extension to the full generality of the matrix model with external field;
concretely, we mean to the situation where the set of parameters Λ is not specialised to {0},
which therefore encompasses a larger family of spectral curves.

5.2. Enumeration of fully simple maps

The enumeration of fully simple maps of genus 0 was explicitly given by Krikun [Kri07] for
triangulations (only t3 ̸= 0). His formula was later extended by Bernardi–Fusy to planar quad-
rangulations (only t4 ̸= 0) and boundary faces of even degrees with a bijective approach [BF18].
Using the predictions coming from the conjectural topological recursion those formulae were
conjecturally generalised for any boundary face degrees [BGF20, Conjecture 1.9]. That closed
formula is now proved for n ⩽ 4 from a straightforward application of two steps of the topo-
logical recursion. The enumeration of discs and cylinders for any structure of internal faces was
already established in [BGF20].

In general, possibly disconnected ordinary maps are known to be related to possibly discon-
nected fully simple maps via monotone Hurwitz numbers. This relation was established using
Weingarten calculus in [BGF20] and using bijective methods in [BCDGF19]. These formulae
allow to compute the number of fully simple maps with certain constraints, if one is already able
to compute the number of ordinary maps and (strictly or weakly) monotone Hurwitz numbers.
The enumeration of connected maps in terms of the disconnected ones is possible making use
of inclusion-exclusion formulae. The advantage of Theorem 4.11 is that it solves directly the
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enumeration of connected fully simple maps for any topology, recursively on 2g−2+n, and for
any structure of the internal faces. For instance, it implies the enumeration of quadrangulations
of topology (1, 1):

Corollary 5.4. For m ∈ Z⩾0, let ϕm = c2m 1+(m−1)
√
1−12t4

1−12t4
, where we c2 = 1−

√
1−12t4
6t4

. Then,

Map1;(2(m+1))

∣∣
α=1

=
(2m+ 1)!

6m!2
ϕm, for m ⩾ 0, (5.11)

FSMap1;(2m)

∣∣
α=1

=
(3m)! tm+1

4

4m!(2m− 1)!
ϕ3m+1, for m ⩾ 1. (5.12)

The details of the proof and how to extract closed formulae from this corollary are detailed
in [BGF20, Section 5.2.3].

Another advantage of Theorem 4.11 is the fact that the topological recursion implies that the
differentials that it produces are endowed with strong structures, such as the following.

Corollary 5.5. For 2g − 2 + n ⩾ 1, the formal series

Xg,n(w(ζ1), . . . , w(ζn))x
′(ζ1) . . . x

′(ζn)

is a rational function such that in each variable, the poles are located at the ramification
points ρ1, . . . , ρr−1 and are of order at most 6g − 4 + 2n.

For a proof of this statement, see [BCCGF24, Corollary 2.15]. In particular, we can apply
this result for triangulations and quadrangulations, using the computations of Section 4.1.

Example 5.6. For r = 2 (triangulations). We have x′(ζ) = Q′(ζ) = 1 − 2t3ζ , so the spec-
tral curve has one ramification point ρ1 = 1

2t3
. We can deduce that for 2g − 2 + n > 0,

Xg,n(w(ζ1), . . . , w(ζn))x
′(ζ1) . . . x

′(ζn) is a rational function whose poles are all located at 1
2t3

in each variable.

Example 5.7. For r = 3 and t3 = 0 (quadrangulations). In this case,

x′(ζ) = Q′(ζ) =
1 +

√
1− 12t4α−1

2
− 3t4ζ

2.

There are two ramification points:

{ρ1, ρ2} =

±

√
1 +

√
1− 12t4α−1

6t4

 .

Those are the only possible poles in each variable for the rational function

Xg,n(w(ζ1), . . . , w(ζn))x
′(ζ1) . . . x

′(ζn)

(where again, 2g − 2 + n is supposed to be strictly positive).
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5.3. Functional relations and connection to free probability

In free probability theory, the notion of independence from classical probability is replaced by
a notion of freeness, which is particularly well-adapted to study non-commutative probability
spaces. Free cumulants are crucial objects that allow to characterise freeness in a simple way.
Random matrices in the large size limit constitute an important class of free random variables.
In [MS06, MŚS07, CMŚS07] a notion of higher order freeness was introduced to study these
questions more finely. While first order free cumulants are defined in terms of moments using
non-crossing partitions, the definition of higher order free cumulants involve intricate combina-
torial objects, called non-crossing partitioned permutations.

For n = 1, the R-transform machinery [Voi86] gives a relation between the generating
series of moments and of free cumulants, by functional inversion. For n = 2, a functional
relation between the ordinary and the free generating series was also found [CMŚS07], already
in a quite complicated way. Similar functional relations are unfortunately not known for n ⩾ 3,
which leaves us with a rather complicated theory to compute with. In [BGF20, Section 11.2],
for an arbitrary (formal) unitarily-invariant measure of the space of Hermitian matrices, the
classical identification of moments of products of traces of Hermitian matrices with generating
series of ordinary maps [BIPZ78] was extended to an identification of free cumulants for the
same measure with the generating series of planar fully simple maps. The formulae for discs
and cylinders (1.2)-(1.3) recover the R-transform machinery for n = 1, 2. In particular, the
formula for cylinders gives an intrinsic, geometric meaning to the functional relation for n = 2.

The present work allows to recursively compute higher order free cumulants in certain uni-
tary invariant matrix models, namely for measures of the form Z−1

N dM e−NTrV (M). We expect
that this approach could in fine extend the R-transform machinery for any order n for those
measures. For instance, for n = 3, we have already established the desired functional relation
between ordinary and fully simple pairs of pants, that is of topology (0, 3):

Corollary 5.8. Let ω0,2(θ1, θ2) = χ0,2(θ1, θ2) be the standard bidifferential and set α = 1. Then,
we have the following relation of ordinary and fully simple pairs of pants:

ω0,3(θ1, θ2, θ3) + χ0,3(θ1, θ2, θ3) = Res
θ=θ1,θ2,θ3

ω0,2(θ, θ1)ω0,2(θ, θ2)ω0,2(θ, θ3)

dx(θ)dy(θ)
(5.13)

= d1

[ω0,2(θ1, θ2)ω0,2(θ1, θ3)

dx(θ1)dy(θ1)

]
+ d2

[ω0,2(θ2, θ1)ω0,2(θ2, θ3)

dx(θ2)dy(θ2)

]
+ d3

[ω0,2(θ3, θ1)ω0,2(θ3, θ2)

dx(θ3)dy(θ3)

]
.

This corollary follows from Theorem 4.11 and the details exposed in [BGF20, Section 6].
Even if free cumulants are so far only defined for g = 0, our work suggests that there should
exist a universal theory of approximate higher order free cumulants taking into account higher
genus corrections. For a compact introduction to all the necessary objects to understand this
connection to free probability precisely, the reader could consult [GF18, Section 1.6] or many
other more extended sources written by experts in free probability [NS06, MS17].

For general (formal) unitarily-invariant measures, the underlying combinatorial objects (in
ordinary or fully simple flavor) are the stuffed maps introduced in [Bor14]. It was proved that
stuffed maps satisfy a generalisation of the topological recursion, called blobbed topological
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recursion [BS17], where the initial data of the spectral curve is enriched by symmetric holomor-
phic forms in n variables (ϕg,n)2g−2+n>0. In [BGF20] it was conjectured that after the same sym-
plectic exchange transformation, and a transformation of the blobs still to be described, blobbed
topological recursion will enumerate fully simple stuffed maps. This conjecture already follows
for the base topologies (0, 1) and (0, 2) from the formulae (1.2)-(1.3) for discs and cylinders,
since the base topologies are not altered by the blobs. It may be possible, either by studying
multi-ciliated stuffed maps, or by substitution methods (at least in genus 0), to extend the results
of the present article to the case of stuffed maps. The solution of this problem would allow
the compute higher order free cumulants in the full generality of [CMŚS07], and progressing
towards such a solution is an important motivation for the present work.
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