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intRoduction
Ovarian cancer is a leading cause of death in women 

worldwide, with more than 300,000 new cases and nearly 
200,000 deaths globally each year (1). In the United States 
during 2024, approximately 19,600 new cases will be diag-
nosed and 12,700 women will die from ovarian cancer (2).  
The most common form of ovarian cancer is epithelial ovar-
ian cancer, which comprises four major subtypes: serous,  
clear cell, mucinous, and endometrioid carcinomas. According 
to the Surveillance, Epidemiology, and End Results data-
base, for individuals with detected invasive epithelial ovar-
ian cancer, the estimated 5-year survival is 93% and 75% for 
localized (stage I) or regional (stage II or stage IIIA1 with  
regional lymph node involvement) disease, respectively, com-
pared with 31% for distant disease (remaining stage III or 
stage IV; refs. 3, 4). Unfortunately, ovarian cancer is usually 
detected in advanced stages (stages III and IV) due to non-
specific clinical symptoms at earlier stages and the lack of 
an effective screening approach (3). Consequently, there is 
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a clear unmet clinical need for the development of highly 
specific and sensitive assays to detect ovarian cancer in its 
earliest stages.

Ovarian cancer screening trials such as the Prostate, Lung, 
Colorectal, and Ovarian Cancer Screening Trial (5), the U.K. 
Collaborative Trial of Ovarian Cancer Screening (UKCTOCS;  
ref. 6), and the Normal Risk Ovarian Screening Study (ref. 7) 
have shown that existing biomarkers, including cancer anti-
gen 125 (CA-125), may provide a shift toward detection of ear-
lier stages of cancer but not a survival benefit, likely because 
of suboptimal detection of ovarian cancers. These analyses 
open the door to new and more effective approaches aimed 
at identifying combinations of biomarkers with improved 
performance for early ovarian cancer detection. Such ap-
proaches would need to be affordable, accessible, and have 
high performance for high-grade serous ovarian carcinoma 
(HGSOC), which is more aggressive, typically detected in 
late stages, and responsible for the majority of ovarian can-
cer deaths (8).

Ovarian cancer is a leading cause of death for women worldwide, in part due to  
ineffective screening methods. In this study, we used whole-genome cell-free DNA 

(cfDNA) fragmentome and protein biomarker [cancer antigen 125 (CA-125) and human epididymis 
protein 4 (HE4)] analyses to evaluate 591 women with ovarian cancer, with benign adnexal masses,  
or without ovarian lesions. Using a machine learning model with the combined features, we detected  
ovarian cancer with specificity >99% and sensitivities of 72%, 69%, 87%, and 100% for stages I to IV, 
respectively. At the same specificity, CA-125 alone detected 34%, 62%, 63%, and 100%, and HE4 alone 
detected 28%, 27%, 67%, and 100% of ovarian cancers for stages I to IV, respectively. Our approach  
differentiated benign masses from ovarian cancers with high accuracy (AUC = 0.88, 95% confidence  
interval, 0.83–0.92). These results were validated in an independent population. These findings show 
that integrated cfDNA fragmentome and protein analyses detect ovarian cancers with high performance,  
enabling a new accessible approach for noninvasive ovarian cancer screening and diagnostic evaluation.

SigNiFiCANCE: There is an unmet need for effective ovarian cancer screening and diagnostic  
approaches that enable earlier-stage cancer detection and increased overall survival. We have  
developed a high-performing accessible approach that evaluates cfDNA fragmentomes and protein 
biomarkers to detect ovarian cancer.
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A secondary clinical need also exists in determining whether 
women presenting with ovarian masses have benign or malig-
nant lesions. In this setting, preoperative malignancy classifi-
cation is challenging and may lead to unnecessary procedures. 
A number of biomarkers have been proposed in this setting, 
including CA-125 and human epididymis protein 4 (HE4; 
refs. 9–11). Prediction models using a combination of multi-
ple protein biomarkers as well as age and menopausal status 
(12), the risk of malignancy index (ref. 13), and other ultra-
sound classifications (International Ovarian Tumor Analysis; 
ref. 14) have been developed, but these vary in accuracy, per-
formance, and ease of use in a clinical setting.

Analyses of circulating cell-free DNA (cfDNA) provide 
another approach for early cancer detection in the screening 
or diagnostic settings. Approaches for ovarian cancer have 
included identification of tumor-specific mutations (15, 16), 
or alterations in DNA methylation (17), or specific repeat se-
quences (18, 19); however, these approaches have had limited 
sensitivities for early-stage disease, may be confounded by 
alterations in white blood cells (20), and have not been vali-
dated for clinical use. An emerging approach of cfDNA analy-
ses have focused on the “cfDNA fragmentome,” defined as the 
genome-wide compendium of cfDNA fragments in the circu-
lation, providing an integrated view of the chromatin, genome, 
epigenome, and transcriptome states of normal and cancer cells 
of an individual. Recent cfDNA fragmentome analyses using 
low-coverage whole-genome sequencing (WGS) combined with 
machine learning using DNA evaluation of fragments for early 
interception (DELFI) have demonstrated high sensitivity for  
early detection across lung (21), liver (22), and other cancer 
types (23–26) using an accessible, cost-efficient approach (27) 
that is not confounded by clonal hematopoiesis (20, 28).

In this study, we present a method to detect ovarian can-
cer using cfDNA fragmentomes combined with protein bio-
markers. This multianalyte combination has the benefit of 
utilizing genome-wide multifeature fragmentation analyses 
together with complementary protein biomarkers CA-125 
and HE4 from the same blood draw that may have utility in 
both the screening and diagnostic settings.

Results
Clinical Cohorts

Blood samples in the discovery cohort were collected 
from women with ovarian cancer (n = 94), with benign ad-
nexal masses (n = 203), or without any known ovarian lesions  
(n = 182), who were part of previously reported prospective di-
agnostic or screening efforts at hospitals in the Netherlands and 
Denmark (Table 1; Supplementary Table S1; refs. 9, 21, 23, 29). 
For the validation cohort, we analyzed samples from patients  
prospectively collected at the University of Pennsylvania or 
through a commercial source in the United States (n = 40 pa-
tients with ovarian cancer, n = 50 patients with benign ovarian 
masses, and n = 22 without known ovarian lesions; Table 1; 
Supplementary Table S1). The patients analyzed were largely 
representative of ovarian cancer subtypes, including high-grade  
serous (HGSOC), low-grade serous (LGSOC), clear cell, muci-
nous, and endometrioid ovarian cancers, across all International 
Federation of Gynecology and Obstetrics (FIGO) stages (Table 1).

For all participants, we isolated plasma, extracted cfDNA, 
created genomic libraries, and performed next-generation 
WGS of cfDNA fragments at ∼2× coverage. An average of  
3 mL of plasma per sample was used, and all samples were 
successfully processed, without any sample or technical fail-
ures (Supplementary Tables S2 and S3). For all patients, we 
quantified levels of CA-125 and HE4 using clinical-grade im-
munoassay measurements from the same blood samples that 
were used for genomic analyses or from serum samples of the 
same patients (Supplementary Table S4).

cfDNA Fragmentomes Reveal Tumor-Specific 
Changes in Ovarian Cancer

We evaluated cfDNA fragmentation profiles that captured 
fragment size and coverage distributions in 473 nonoverlap-
ping genome-wide 5-Mb regions, covering 2.4 Gb of the 
genome (Fig. 1; refs. 21, 22). Fragmentation profiles were 
homogenous among individuals without cancer or showed 
limited changes in individuals with benign adnexal masses  
(Fig. 2A). In contrast, fragmentation profiles from patients 
with cancer showed marked heterogeneity both between pa-
tients and across different regions of the genome for the same 
individual, consistent with changes in chromatin landscapes 
that affect cfDNA fragmentation (Fig. 2).

Ovarian tumors are known for having marked large-scale 
genomic changes (29–32). As cfDNA fragmentomes may 
reflect large-scale genomic alterations contained in DNA 
fragments released from tumor cells, we also examined 
chromosomal copy-number changes in the circulation of 
these individuals. In addition to changes in genome-wide 
cfDNA fragmentation (Fig. 2A and B), we observed chro-
mosomal gains and losses consistent with those expected 
from prior analyses of ovarian tumors in The Cancer Ge-
nome Atlas (TCGA; n = 597; ref. 30) as well as from genomic 
analyses of early ovarian cancer precursors (32), including 
gains of 3q, 8q, 12p, 20p, and 20q and losses of 4q, 5q, 6q, 
8p, 13q, 17p, and 22q (Fig. 2C). These gains and losses  
were not observed in individuals without cancer or with 
benign adnexal masses, consistent with the notion that  
although ovarian tumors and benign lesions may share 
similar anatomic locations, the observed changes in cfDNA 
were cancer-specific.

Detection of Ovarian Cancer Using cfDNA 
Fragmentome and Protein Analyses

Given the concordance between genomic changes and 
cfDNA fragmentation in ovarian cancer, we applied a ma-
chine learning approach to ascertain if alterations in cfDNA 
fragmentomes could distinguish individuals in the discov-
ery cohort with ovarian cancer from those without ovarian 
lesions. The model incorporated genome-wide fragmentation 
profiles, chromosomal arm–level changes, and the concentra-
tions of protein biomarkers CA-125 and HE4. We previously 
utilized similar approaches to construct high-performance 
classifiers for lung and liver cancer detection that were exter-
nally validated (21, 22). These approaches utilized penalized 
logistic regression (PLR) due to its parsimonious model ar-
chitecture, interpretability, and robustness to overfitting. 
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In this study, we determined the performance of this classifier 
using repeated 5-fold cross-validation, producing a score 
for each patient as an average of 10 cross-validation repeats 
[DELFI protein (DELFI-Pro) score; Supplementary Table S5]. 
The DELFI-Pro classifier utilized both fragmentomic features 
and proteomic measurements for detecting individuals with 
ovarian cancer (Fig. 2D). The DELFI-Pro classifier employed 
a PLR model to retain only the most informative features, 
including fragmentation characteristics reflecting chromatin 
and chromosomal changes alongside conventional protein 
biomarkers.

Because clinical characteristics can influence biomarker pro-
files evident in the circulation, we examined the relationship 
between the DELFI-Pro score and demographic parameters 
such as age or common comorbidities such as diabetes, hy-
pertension, or atherosclerosis in individuals without ovarian 

disease for whom this information was available. We observed 
either no or limited association between DELFI-Pro scores  
and these conditions, although this conclusion was limited 
by incomplete availability of clinical information (Supple-
mentary Fig. S1A–S1C).

We then evaluated the relationship between DELFI-Pro 
scores and the presence and stage of ovarian cancer. The 
cross-validated DELFI-Pro scores, spanning a possible range 
from 0 to 1, for 182 women who were free of ovarian disease 
were low, with median scores of 0.07. In contrast, women 
with ovarian cancers had significantly higher median scores 
across all stages, including stage I = 0.93, stage II = 0.93, 
stage III = 1.00, and stage IV = 1.00 (P < 0.0001 across all  
tumor stages, Wilcoxon rank-sum test, Fig. 3A). Scores did not 
differ by age (P = 0.95, Pearson correlation test) and were not 
different among women with cancer who were symptomatic or 

Patient characteristic
Discovery cohort Validation cohort

Noncancer Cancer Benign mass Noncancer Cancer Benign mass
182 94 203 22 40 50

Age, years
 Mean 56 62 58 59 53 52
 Range 49–75 37–85 19–92 34–84 13–85 16–83
Cancer stage, n (%)
 I — 32 (34%) — — 14 (35%) —
 II — 26 (28%) — — 5 (13%) —
 III — 30 (32%) — — 11 (28%) —
 IV — 2 (2%) — — 6 (15%) —
 Unknown — 4 (4%) — — 4 (10%) —
Cancer subtype, n (%)
 High-grade serous — 39 (41%) — — 16 (40%) —
 Low-grade serous — 7 (7%) — — 5 (13%) —
 Clear cell — 11 (12%) — — 2 (5%) —
 Mucinous — 12 (13%) — — 5 (13%) —
 Endometrioid — 14 (15%) — — 5 (13%) —
 Other — 11 (12%) — — 7 (18%) —
BRCA mutation status, n (%)
 Positive — 1 (1%) — — 3 (7.5%) 1 (2%)
 Negative — 12 (13%) — — 8 (20%) 10 (20%)
 Not tested — — — — 8 (20%) 39 (78%)
 Unknown 182 (100%) 81 (86%) 203 (100%) 22 (100%) 21 (52.5%) —
Benign lesion, n (%)
 None 182 (100%) — — 22 (100%) — —
 Cystadenoma/adenofibroma–serous — — 27 (13%) — — 17 (34%)
 Cystadenoma/adenofibroma–mucinous 31(15%) 6 (12%)
 Cystadenoma/adenofibroma–NA — — 7 (3%) — — 2 (4%)
 Endometriosis — — 11 (5%) — — 2 (4%)
 Mature teratoma of the ovary — — 8 (4%) — — 4 (8%)
 Ovarian fibroma — — 7 (3%) — — 4 (8%)
 Thecoma — — 4 (2%) — — 3 (6%)
 Other — — 20 (10%) — — 12 (24%)
 Unknown — — 88 (43%) — — —

Table 1. Patient characteristics for discovery and validation cohorts.

http://AACRJournals.org
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asymptomatic (P = 0.61, Wilcoxon signed-rank test) or who 
were pre- or post-menopausal (P = 0.36, Wilcoxon signed-rank 
test; Supplementary Fig. S2A–S2C).

DELFI-Pro detected patients with ovarian cancer with an 
AUC of 0.96 [95% confidence interval (CI), 0.93–0.99; Fig. 3B]. 
Among early-stage ovarian cancers, performance remained 
robust, with AUCs of 0.96 (95% CI, 0.92–0.99) and 0.94 (95% 
CI, 0.87–1.00) for stages I (n = 32) and II (n = 26), respectively 
(Fig. 3B). Individuals with advanced-stage [stages III (n = 30) 
and IV (n = 2)] ovarian cancer were detected with high sen-
sitivity among the individuals analyzed [AUCs 0.99 (95% CI, 
0.98–1.00) and 1.00 (95% CI, 1.00–1.00), respectively]. Sta-
bility analyses of the cross-validated model revealed highly 
consistent DELFI-Pro scores for noncancers and cancers re-
gardless of the held-out fold or source of sample collection 
(Supplementary Fig. S3A and S3B). High performance was 
observed among patients with HGSOC (n = 39), with an AUC 
= 0.99 (95% CI, 0.99–1.00), as well as in other ovarian cancers, 
including LGSOC (n = 7), endometrioid (n = 14), mucinous  
(n = 12), clear cell (n = 11), or other (n = 11) subtypes [AUCs of 
0.99 (95% CI, 0.98–1.00), 0.97 (95% CI, 0.94–1.00), 0.94 (95% 
CI, 0.88–1.00), 0.84 (95% CI, 0.65–1.00), and 0.96 (95% CI, 
0.87–1.00), respectively; Supplementary Fig. S4]. High perfor-
mance was also observed when assessing only individuals who 
were asymptomatic [AUC 0.99 (95% CI, 0.97–1); Supplemen-
tary Fig. S5A and S5B]. Other genome-wide analyses, such as 
ichorCNA, which only includes copy-number changes, and 
analyses of overall median cfDNA fragment lengths provided 
substantially weaker performance, with overall AUCs of 0.71 
(95% CI, 0.64–0.78) and 0.59 (95% CI, 0.52–0.66), respectively 
(Supplementary Fig. S6A–S6D).

Given the low incidence of ovarian cancer (10.3 of 100,000 
age-adjusted women in the U.S. population; ref. 33), any 
screening test would need to have high specificity in order 
to give a high positive predictive value (PPV) and minimize 
the absolute number of false positive results leading to po-
tentially unnecessary procedures or prolonged diagnostic od-
ysseys. At a specificity >99%, the cross-validated sensitivity in 
this setting was 72%, 69%, 87%, and 100% for stages I to IV, 
respectively (Table 2). HGSOCs typically had high DELFI-Pro 
scores, with 90% detected at this threshold (83%, 88%, 91%, 
and 100% for stages I–IV, respectively). Analysis of CA-125 
alone in this population revealed a significantly lower fraction  

that was detected, especially [34%, 62%, 63%, and 100% of ovar-
ian cancers for stages I–IV (P = 0.001, two-sided test of equal 
proportions] at the same specificity (Supplementary Fig. S7).

In addition to the cross-validated analysis of the discovery 
cohort of European (EU) patients, we evaluated the locked 
DELFI-Pro classifier in a validation cohort of 62 patients from 
the United States. The validation cohort included patients 
across different ovarian cancer subtypes as well as individuals 
without ovarian cancer (Supplementary Table S1). Similar to 
the observations from the discovery cohort, the fragmentation 
profiles of women without ovarian cancer in the validation 
cohort were highly consistent across the genome, whereas pa-
tients with ovarian cancer were heterogenous (Supplementary 
Fig. S8). The chromosomal changes observed in the cfDNA of 
the U.S. validation cohort patients resembled those observed 
in the EU discovery group and in ovarian tumor tissue from 
TCGA (Supplementary Fig. S9A–S9C). The DELFI-Pro model 
detected patients with cancer in the validation cohort with 
high performance (AUC = 0.93, 95% CI, 0.87–1.00), including 
patients with HGSOC (AUC = 1.00, 95% CI, 1.00–1.00). At a 
fixed score threshold selected to achieve >99% specificity in 
the discovery cohort, we detected 73% ovarian cancers over-
all and 81% of HGSOC (Fig. 3C and D; Supplementary Fig. 
S10A–S10C; Supplementary Table S6). These results revealed 
the shared biological features of cfDNA fragmentation across 
cohorts and demonstrated the robustness and generalizability 
of DELFI-Pro in the detection of ovarian cancer in different 
populations.

Distinguishing Ovarian Cancer from Benign Masses
We examined whether our approach could be useful in a 

diagnostic setting for distinguishing between patients with 
ovarian cancer and those with benign adnexal masses, which 
can be difficult to differentiate clinically using ultrasound- 
based prediction models. We observed that genome-wide frag-
mentation profiles were different between patients with can-
cer compared with those with benign lesions (Fig. 2A). We 
trained and cross-validated a DELFI-Pro machine learning 
model in the EU cohort to distinguish ovarian cancers from 
benign lesions. This machine learning model was similar to 
that developed for the screening setting, with the rank-ordered 
DELFI-Pro scores being highly correlated across all discovery 

Population

Screening and
diagnostic applicability

Plasma cfDNA extraction
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Matched blood used for
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Figure 1.  Schematic of ovarian cancer detection in screening and diagnostic models combining DELFI and protein biomarkers. Individuals undergo 
blood collection, plasma is extracted, and constructed genomic libraries undergo WGS at low coverage (∼2×). Using blood samples from the same col-
lection, proteins are quantified enabling the combined assessment of genome-wide fragmentation profiles and protein biomarkers. These features are 
evaluated in a machine learning model that classifies cancer and noncancer individuals.
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Figure 2.  Characteristics of cfDNA fragmentation for ovarian cancer detection. A, Fragmentation profiles in which each line represents one participant 
and is colored according to that participant’s correlation to the median genome-wide profile for women without cancer. B, Heatmap of fragmentation and 
protein features show marked heterogeneity in the cfDNA fragmentome among individuals with ovarian cancer compared with those with benign lesions 
or without disease. In the heatmap, individuals are split into disease groups and then successively ordered by DELFI-Pro, CA-125, and HE4, and cancers 
are categorized according to stage and subtype. Fragmentation features are clustered in columns. The top bar indicates the feature family containing the 
short to long ratio of fragment sizes (ratio) and chromosomal arm representation (z-scores). C, Chromosomal gains (red) and losses (blue) characteristic 
of ovarian cancer tumor tissue evaluated in TCGA were observed in cfDNA fragmentation data in patients with ovarian cancer and absent from those with 
benign lesions or without disease (red represents gains, whereas losses are blue, and purple indicates no changes in chromosomal representation, respec-
tively). D, Feature importance, as measured by scaled coefficients from the PLR locked screening model for ovarian cancer, demonstrates contributions of 
cfDNA fragmentation (fragment length and aneuploidy) and proteins (CA-125 and HE4) to high performance.

cohort ovarian cancer samples (n = 94; R = 0.78, P < 2.2e−16; 
Supplementary Fig. S11). Using this model, patients with 
benign lesions had median scores of 0.17, whereas patients 
with cancer had a stage-dependent increase in DELFI-Pro 
scores. Individuals with benign lesions had similar low scores 
regardless of lesion size or whether the patient was symptom-
atic or asymptomatic (Supplementary Fig. S12A and S12B). 
The model had strong performance in identifying patients 
with cancer as compared with those with benign lesions, with 
a ROC AUC of 0.88 (95% CI, 0.83–0.92), ranging from 0.82 
(95% CI, 0.74–0.90) to 1.00 (95% CI, 1.00–1.00) for stages I to 
IV. Patients with HGSOC, LGSOC, or endometrioid cancers 
were more easily distinguished from benign lesions [AUCs of 
0.96 (95% CI, 0.93–1.00), 0.84 (95% CI, 0.67–1.00), and 0.91 
(95% CI, 0.85–0.98), respectively] than those with mucinous 
or clear cell subtypes [AUC = 0.65 (95% CI, 0.51–0.79) and 
0.77 (95% CI, 0.62–0.92); Supplementary Figs. S13A–S13D 
and S14].

In the setting of a patient with a mass suspicious for ovar-
ian cancer, the clinical pathway generally involves referral to 
a gynecologic oncologist for surgical staging. A noninvasive 
test could help inform referral decisions, plan the extent of 
surgical resection, or even avoid resection in young or frail 
patients. In these scenarios, high sensitivity is critical to tai-
loring response, and a moderate specificity may be acceptable, 
because of the importance of not missing patients with ovar-
ian cancer while at the same time avoiding anxiety and un-
necessary surgeries for patients who would not need further  
follow-up (34). Consistent with this approach, at 80% specific-
ity in the discovery cohort, we distinguished 95% of patients 
with HGSOC from patients with benign masses. Evaluation 
of the locked model in the validation cohort resulted in an 
AUC of 0.81 (95% CI, 0.72–0.91; Supplementary Figs. S13C, 
S13D, and S15A–S15C), and at the score threshold achieving 
80% specificity in the discovery cohort, we maintained a rela-
tively high sensitivity, identifying 81% of patients with HGSOC 
at a specificity of 82% (Supplementary Table S6). In this set-
ting, the DELFI-Pro scores appeared related to overall tumor 
burden, as we observed a positive correlation between the 
DELFI-Pro scores and the sum of reported lesion diameters 
where these data were available (R = 0.65; P = 0.03; Supple-
mentary Fig. S16A and S16B).

Simulating the Performance of DELFi-Pro at the 
Population Scale

To examine how DELFI-Pro would perform on a popula-
tion scale for ovarian cancer screening, we used Monte Carlo 
simulations to evaluate a theoretical screening population of 
100,000 women (Fig. 4A). We compared DELFI-Pro with two 

other proposed clinical tests: CA-125 at a cut-off of 30 U/mL 
and HE4 at a cut-off of 70 pmol/L. For both CA-125 and HE4, 
we evaluated the cut-point both using performance estimates 
reported in the literature (35, 36) as well as those observed in 
our cohort, whereas for DELFI-Pro, we evaluated performance 
at the cut-point achieving greater >99% specificity in our anal-
yses. We blended sensitivity estimates according to the stage 
distribution in the UKCTOCS trial (36) and modeled the de-
gree of uncertainty of sensitivities and specificities of these tests 
in our theoretical population based on a 0.0037 prevalence of 
ovarian cancer (Fig. 4B; refs. 33, 37). Monte Carlo simulations 
from these predicted probability distributions demonstrated 
that the PPV for DELFI-Pro was high (median 23.6%, 95% CI,  
8.73%–68.5%), whereas all other modalities had a median 
PPV estimate of 9.17% or lower (Fig. 4C). Given the low prev-
alence of ovarian cancer and the risks of exploratory surgery, a 
PPV greater than 10% (38, 39) is needed to justify population- 
wide screening for ovarian cancer in a way that balances the 
benefits of early detection against potential harm from unnec-
essary surgical procedures in healthy women misdiagnosed 
with cancer. In addition, the cut-off chosen for DELFI-Pro at 
>99% specificity (no false positives in either the discovery or 
validation cohort) led to a predicted low false positive rate 
(FPR; median 0.95%, 95% CI, 0.14%–3.1%) as compared with 
the other four scenarios simulated (range of FPR medians, 
3.12%–20.60%; Fig. 4D). These analyses suggest that an ac-
cessible, high-adherence, sensitive, and specific assay like 
DELFI-Pro could enable population-wide ovarian cancer 
screening.

discussion
There is a clinical unmet need for an approach that im-

proves detection of early-stage ovarian cancer and provides 
guidance toward differentiating between benign or malignant 
ovarian masses. In this study, we demonstrate that cfDNA 
fragmentomes combined with existing protein biomarkers 
can noninvasively detect early-stage ovarian cancer and dis-
tinguish these lesions from benign ovarian masses.

The performance of our multianalyte and multifeature ap-
proach for detection of ovarian cancer was high and suggests 
that the combination of cfDNA and protein measurements 
is complementary, providing more information than either 
alone. This is particularly important for early-stage disease, 
especially for high-grade serous cancer, in which interven-
tion is thought to be most useful (32, 40). The validation of 
this approach in a fully independent cohort suggests that 
the method is robust and likely generalizable across differ-
ent populations.

http://AACRJournals.org


RESEARCH ARTICLEEarly Detection of Ovarian Cancer

January 2025 CANCER DISCOVERY | 111

0.3A

B

DC

0.2

0.1

0.0

–0.1

–0.1

–0.1

0.3

0.2

0.1

Women without cancer (n = 182)

Women with benign lesions (n = 203)

Women with cancer (n = 94) 

Features

S
am

p
le

s

Correlation to women without cancer median

0.0

0.3

0.2

0.1

0.0

1p

D
is

ea
se

D
E

LF
I-

P
ro

 s
co

re
C

A
-1

25
H

E
4

S
ub

ty
pe

S
ta

ge

1q 2p 2q 3p 3q 4p 4q 5p 5q 6p 6q 7p 7q 8p 8q

0.00 0.25 0.50 0.75 1.00

9p 9q 11p 11q 12q 13q 14q 15q 16q 17q 18q 1920 2122Xp Xq

Family

Benign adnexal mass
Z scoreNoncancer

Ovarian cancer

1

0.5

0

5000
4000
3000
2000
1000

2500
2000
1500
1000
500

Endometrioid
HGSOC
LGSOC
Mucinous
Other subtypes

I

2
1
0
–1

CA-125

HE4

Chromosomal changes 7p

Chromosomal changes 18q

Fragmentation PC 3

Chromosomal changes 11p

Fragmentation PC 2

Chromosomal changes 18p

Chromosomal changes 22q
CA-125
HE4
Fragmentation
Chromosomal changes

27.3% 24.1%

7.2%

41.5%

Chromosomal changes 17p

Chromosomal changes 8q

Chromosomal changes 4p

Chromosomal changes 2p

Chromosomal changes 19p

Chromosomal changes 3p

Chromosomal changes 19q

Chromosomal changes 1p

Chromosomal changes 14q

–2

II
III
IV
Unknown

Disease

DELFI-Pro score

CA-125

HE4

Subtype

Stage

Values

cfDNA analyses

TCGA ovarian cancers
(n = 597)

1p

1q

2p

2q

3p

3q

4p

4q

5p

5q

6p

6q

7p

7q

8p

8q

9p
9q
10p
10q
11p
11q
12p
12q

13q

14q

15q
16p
16q
17p
17q
18p
18q
19p
19q
20p
20q
21q
22q

0
Scaled logistic regression coefficient

2 4 6 8100–100 0100–100 0100–100–0.4 0.4 00.0

Ovarian cancer
(n = 94)

Benign
(n = 203)

Noncancer
(n = 182)

Family

10q

Ratio



RESEARCH ARTICLE Medina et al.

AACRJournals.org112 | CANCER DISCOVERY January 2025

1.00

A

B

C

D

0.75

0.50

D
E

L
F

I-
P

ro

0.25

0.00
Noncancer

screening population
         (n = 182)

I
(n = 32)

II
(n = 26)

III
(n = 30)

epytbuSegats recnaC

Discovery cohort

Discovery cohort

All cancer (n = 94)

HGSOC (n = 39)

Stage II (n = 26)

Stage I (n ( recnac llA)23 = n = 40)

Stage III (n = 30)/IV (n = 2) HGSOC (n = 16)

S
en

si
ti

vi
ty

Specificity

IV
(n = 2)

Unknown
(n = 4)

HGSOC
(n = 39)

LGSOC
(n = 7)

Endometrioid
(n = 14)

Mucinous
(n = 12)

Clear cell
(n = 11)

Other subtypes
(n = 11)

1.00
Specificity Sensitivity

0.75
0.50
0.25
0.00
1.00
0.75
0.50
0.25
0.00
1.00
0.75
0.50
0.25
0.00

Noncancer HGSOC Stage I

Validation cohort

Validation cohort

Stage II Stage III Stage IV

1.0

AUC: (95% Cl)
AUC: 0.96 (95% Cl,
0.93–0.99)

AUC: (95% Cl)
AUC: 0.99 (95% Cl,
0.99–1)

.75

.50

.25

0

S
en

si
ti

vi
ty

1.0

.75

.50

.25

0

Specificity

AUC: (95% Cl)
AUC: 0.94 (95% Cl,
0.87–1)

S
en

si
ti

vi
ty

1.0

.75

.50

.25

0

AUC: (95% Cl)
AUC: 0.96 (95% Cl,
0.92–0.99)

S
en

si
ti

vi
ty

1.0

.75

.50

.25

0

AUC: (95% Cl)
AUC: 0.99 (95% Cl,
0.98–1)

S
en

si
ti

vi
ty

1.0

.75

.50

.25

0

AUC: (95% Cl)
AUC: 0.93 (95%
Cl, 0.87–1)

S
en

si
ti

vi
ty

1.0

.75

.50

.25

0

AUC:
AUC: 1

S
en

si
ti

vi
ty

1.0

.75

.50

.25

0

1.0 .80 .50 .25 0

1.0 .80 .50 .25 0
Specificity

1.0 .80 .50 .25 0
Specificity

1.0 .80 .50 .25 0

Specificity
1.0 .80 .50 .25 0

Specificity
1.0 .80 .50 .25 0

Specificity
1.0 .80 .50 .25 0

>99%
sp

ecificity
99%

sp
ecificity

95%
sp

ecificity

ValidationDiscovery

Figure 3.  DELFI-Pro detects ovarian cancer with high sensitivity and specificity. A, In the discovery cohort, patients with ovarian cancer across all 
stages have elevated DELFI-Pro scores in HGSOC as well as other ovarian subtypes. B, ROC analyses of the discovery cohort show high performance 
across stages and in HGSOC. C and D, The locked DELFI-Pro model at locked thresholds (e.g., for 99% specificity, DELFI-Pro score >0.66) showed similar 
performance in the validation cohort.

The survival benefit of current methods used in screening 
for ovarian cancer remains unclear (6, 41). However, the de-
velopment of a new classifier like DELFI-Pro that provides 
high performance at higher specificity than obtained in 
previous studies opens a new avenue for detection of indi-
viduals who may benefit most from subsequent diagnostic 
workup or intervention. Our population-scale simulations 
suggest that the improved performance of DELFI-Pro in 
comparison with either CA-125 or HE4 alone would increase 
the PPV and decrease the predicted FPR, thereby improving 
the overall impact and benefit-to-risk ratio of this approach 
in a screening setting, especially when the disease preva-
lence is low. Recent literature suggests that early diagnoses 
of cancers reduce treatment costs (42), thereby potentially 
decreasing overall societal health care costs while improving 
outcomes.

Although the study was performed in a sizeable EU diagnos-
tic cohort, it was subsequently validated in a modestly sized but 
fully external U.S. cohort. Additional and larger prospective 
studies, including one already underway (NCT04971421), 
will be needed to validate this approach for clinical use.  

In other cancer types, we have previously associated DELFI 
fragmentation scores with survival outcome data (21), and 
future efforts are needed to evaluate the prognostic potential 
of the DELFI-Pro score in ovarian cancer. The performance 
for detecting some subtypes of ovarian cancer (i.e., clear cell 
or mucinous) was lower, and inclusion of other protein bio-
markers in our assay that are tailored to these cell types of 
origin may increase performance in the future. Assays using 
a larger number of proteins have shown promising initial 
results (43) but are not yet broadly available for research or 
clinical use. The use of cfDNA fragmentation to distinguish 
between different cancer subtypes (21) may be feasible for 
differentiating among ovarian cancer subtypes and enabling 
personalized therapeutic approaches.

Ultimately, evaluation of survival outcomes will be im-
portant to demonstrate the benefit of population-scale 
screening with this approach, as stage shift alone may not 
result in an effective alternative measure of survival for 
ovarian cancer (6, 44). The use of both cfDNA and protein 
measurements may initially seem to be complex, but both 
types of analytes can be assessed from the same sample of 

http://AACRJournals.org
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Figure 4.  Modelling the implementation of DELFI for ovarian cancer screening. A, The proposed approach integrates the use of cfDNA fragmentation 
and protein analyses from a blood draw. Women with a positive result would undergo a transvaginal ultrasound and if positive would subsequently have a 
diagnostic cancer workup. A negative result at any step in this continuum would remove patients from subsequent steps and lead to annual screening. B, 
Modeling a theoretical population of 100,000 women based on existing performances for CA-125 and HE4, as well those observed for DELFI-Pro. Predic-
tive distributions for the (C) PPV and (D) FPR highlight the potential benefit of implementing DELFI-Pro as compared with existing biomarkers. JHU, Johns 
Hopkins University; TVUS, transvaginal ultrasound.

Discovery cohort Validation cohort

Individuals  
analyzed N

Sensitivity at >99% specificity
N

Specificity at the  
locked thresholda

Sensitivity at the locked threshold
DELFI-Pro CA-125 HE4 DELFI-Pro CA-125 HE4

Noncancer 182 — — — 22 100%  
(89%–100%)

— — —

Ovarian  
cancer

94 77%  
(69%–83%)

53%  
(45%–61%)

42%  
(34%–50%)

40 — 73%  
(60%–82%)

60%  
(47%–72%)

40%  
(28%–53%)

HGSOC 39 90%  
(79%–95%)

72%  
(59%–82%)

64%  
(51%–75%)

16 — 81%  
(61%–92%)

69%  
(48%–84%)

63%  
(42%–79%)

Stage I 32 72%  
(58%–83%)

34%  
(22%–49%)

28%  
(17%–43%)

14 — 71%  
(49%–87%)

57%  
(36%–76%)

36%  
(19%–57%)

Stage II 26 69%  
(53%–82%)

62%  
(46%–75%)

27%  
(15%–43%)

5 — 80%  
(44%–98%)

60%  
(27%–86%)

20%  
(2%–57%)

Stage III 30 87%  
(73%–94%)

63%  
(48%–76%)

67%  
(52%–79%)

11 — 73%  
(48%–89%)

64%  
(39%–83%)

36%  
(18%–61%)

Stage IV 2 100%  
(43%–100%)

100%  
(43%–100%)

100%  
(43%–100%)

6 — 83%  
(50%–98%)

67%  
(35%–88%)

67%  
(35%–88%)

aThe analyses in the discovery and validation cohorts were performed at the locked thresholds for DELFI-Pro of 0.66, CA-125 of 128.5 U/mL, and HE4 of 
212.8 pmol/L, all corresponding to a specificity >99% in the discovery cohort. For each value, the 90% CIs are indicated in the parentheses.

Table 2. Performance of the DELFi-Pro screening model and protein biomarkers for detection of ovarian cancer.a

blood, and optimized methods suggest that this combined 
approach would be cost-efficient and accessible. Overall, this 
study provides a new accessible approach for early detection 

of ovarian cancer that may overcome current challenges for 
ovarian cancer screening and reduce the morbidity and mor-
tality of this disease.
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Methods
Study Population and Design

Liquid biopsies from 591 healthy individuals or individuals with 
ovarian cancer or benign adnexal masses were prospectively collect-
ed at University of Pennsylvania (Penn BioTrust Collection; RRID: 
SCR_022387) from previously reported diagnostic or screening 
studies at the Netherlands Cancer Institute (trial NL58253.031.16; 
refs. 9, 29), the Danish Endoscopy III trial (21, 23, 45), or the Neth-
erlands COCOS trial (Netherlands trial register ID NTR1829; refs. 
21, 23) or through a commercial provider of biobank research speci-
mens (BioIVT). All samples were obtained under Institutional Review 
Board–approved protocols with written informed consent from all 
participants for research use at participating institutions, and the 
studies were performed according to the Declaration of Helsinki.  
Liquid biopsies from healthy individuals were obtained at the time 
of routine clinical appointments. Individuals were considered healthy 
if they had no prior history of cancer. Individuals with symptoms 
indicating clinical follow-up or at high risk for development of ovari-
an cancer were assessed using imaging of the pelvic region to identify 
ovarian masses. Depending on size and estimated risk of malignancy, 
patients received either an exploratory laparotomy with frozen sec-
tion (and staging when confirmed malignant or debulking in the case 
of an unexpected higher stage) or, if the lesion was expected to be 
benign, laparoscopic cystectomy/adnectomy. Liquid biopsies from 
patients with ovarian cancer or benign adnexal masses were obtained 
at the time of diagnosis prior to surgical resection or therapeutic in-
tervention. Of the total 591 women included in the study, 204 were 
healthy, 253 had a benign adnexal mass, and 134 had ovarian cancer. 
All stages of ovarian cancer were represented in the study popula-
tion, including 46, 31, 41, and 8 individuals with stages I, II, III, and 
IV of cancer, respectively (n = 8, stage unknown). The cancer cohort 
was comprised largely of HGSOC (n = 55) with a subset of individ-
uals having LGSOC or serous (n = 12), clear cell (n = 13), mucinous  
(n = 17), endometrioid (n = 19), or another (n = 18) histopathologic 
ovarian cancer diagnosis. Clinical data were completely de-identified 
for all individuals included in this study and are listed in Supplemen-
tary Table S1.

This study was designed to provide proof-of-concept for nonin-
vasive detection of ovarian cancer using a genome-wide fragmen-
tome-based approach. For cfDNA analyses, all liquid biopsies were 
processed to separate blood plasma from which cfDNA was extract-
ed and processed to create genomic libraries for WGS at ∼2× cover-
age. The study population was subset to assess a discovery cohort 
to train and cross-validate a machine learning model for ovarian 
cancer detection, followed by application of the trained model to 
the subset of the population remaining as the validation cohort. 
Prediction of ovarian cancer was assessed in two clinical scenari-
os: (i) a screening model (ovarian cancer vs. no ovarian lesion) and  
(ii) a diagnostic model (ovarian cancer vs. benign mass). The dis-
covery cohort was defined to include (i) healthy individuals with 
no history of prior cancer and patients with ovarian cancer or  
(ii) individuals with a benign adnexal mass and patients with ovar-
ian cancer for the screening and diagnostic models, respectively  
(n = 479 discovery, n = 112 validation).

Liquid Biopsy Collection and Extraction of cfDNA
We collected venous peripheral blood in K2-EDTA (ethylenedi-

aminetetraacidic acid) or Streck tubes and, within 2 hours, centri-
fuged the tubes at 800 × g at 4°C for 10 minutes. Then the plasma 
fraction was transferred to new tubes and spun at 18,000 × g for  
10 minutes at room temperature to pellet remaining cellular debris. 
EDTA tubes from the Danish Endoscopy III trial were centrifuged at 
low speed (3,000 g) for 10 minutes within 2 hours from blood collec-
tion. The plasma portion from the first spin was spun a second time 

for 10 minutes. Plasma was subsequently aliquoted and stored at 
−80°C. cfDNA was isolated from ∼4 to 5 mL of plasma using QIAamp 
Circulating Nucleic Acid Kit (Qiagen GmbH). Extracted cfDNA was 
eluted in 52 μL into LoBind tubes (Eppendorf AG) and quantified 
using the Bioanalyzer 2100 (Agilent Technologies).

Genomic Library Construction
cfDNA libraries for next-generation WGS were prepared with 15 ng  

of cfDNA when available or the entire purified amount when less  
than 15 ng (Supplementary Table S2; refs. 21–23). The genomic librar-
ies were prepared using NEBNext DNA Library Prep Kit for Illumina  
(New England Biolabs) with four main modifications to the manu-
facturer’s guidelines: (i) the library purification steps followed the  
on-bead AMPure XP (Beckman Coulter) approach to minimize sam-
ple loss during elution and tube transfer steps; (ii) NEBNext End 
Repair, A-tailing, and adapter ligation enzyme and buffer volumes 
were adjusted as appropriate to accommodate on-bead AMPure XP 
purification; (iii) Illumina dual-index adapters were used in the liga-
tion reaction; and (iv) cfDNA libraries were amplified with Phusion 
Hot Start Polymerase (Thermo Scientific). All samples underwent 
four cycles of PCR amplification after the DNA ligation step.

Both genomic sequencing and protein measurements were per-
formed in batches that included samples from individuals with or 
without cancer, including from other studies, to reduce the possibil-
ity that differences between patients with or without cancer were not 
due to batch variability (Supplementary Table S2).

WGS and Alignment
Whole-genome libraries were sequenced using 100-bp paired-end 

runs (200 cycles) on the Illumina HiSeq2500 platform at 1 to 2× cov-
erage per genome (21–23). Before alignment, adapter sequences were 
filtered from reads using FASTP software (46). Sequence reads were 
then aligned to the hg19 human reference genome with Bowtie2 (47), 
duplicate reads were removed using Sambamba (48), and each aligned 
pair was converted to a genomic interval representing the sequenced 
DNA fragment using BEDTools (49). Reads with a MAPQ (Mapping 
Quality) score of less than 30 or that overlapped the Duke Excluded 
Regions blacklist (https://genome.ucsc.edu/cgi-bin/hgTrackUi?db= 
hg19&g=wgEncodeMapability) were excluded. To construct frag-
mentation profiles from low-coverage WGS that reflected large-scale 
epigenetic differences in fragmentation across the genome, we parti-
tioned the hg19 reference genome into nonoverlapping 5-Mb bins. 
Bins with mean GC (guanine and cytosine) base content <0.3 or 
mean mappability <0.9 were excluded, leaving 473 bins spanning 
approximately 2.4 Gb of the genome. A fragment-level GC correc-
tion was performed independently for short (<150 bp) and long 
(≥150 bp) cfDNA fragments using an external reference panel of 
individuals without cancer to generate a target distribution, as pre-
viously described (21, 22).

Genome-Wide Fragmentome Analyses
Fragmentation features were calculated as the ratio of short to 

long fragments in 473 nonoverlapping 5-Mb bins across the genome 
and as z-scores representing arm gains/losses for autosomal chromo-
some arms, as described in our previous publications (21, 22).

Analyses of Publicly Available TCGA Data
Copy-number data from the ovarian cancer cohort in TCGA [ovar-

ian cancer n = 597] were retrieved using the package RTCGA v1.16.0 
and were analyzed to determine the frequency of copy-number gains 
and losses in the 473 5-Mb bins for this cohort (21, 22). A somatic 
copy-number alteration threshold was used to call gains and losses in 
the ovarian cohorts (21, 50).

http://AACRJournals.org
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Proteins
Protein analyses were conducted on matched serum of the same 

patient or plasma from the same aliquot used for cfDNA isolation. 
The proteins CA-125 (U/mL) and HE4 (pmol/L) (Roche Elecsys II) 
were measured using a Roche Cobas E602 immunoassay analyzer in 
EDTA- or Streck-collected plasma (n = 435) and serum (n = 70). Eval-
uation of protein measurements showed high correlation between 
current analyses and replicate measurements performed at other in-
stitutions (Supplementary Fig. S17A and S17B). A subset of plasma 
from trial NL58253.031.16 was not available for protein analyses but 
had been previously evaluated for CA-125 (serum) and HE4 (plasma; 
n = 86). Assessment of proteins from multiple centers were batched 
by biospecimen type, source of collection, prior CA-125 data avail-
ability, as well as cancer stage or noncancer status and contained a 
set of technical replicates across batches. CA-125 and HE4 were mea-
sured at the Johns Hopkins Clinical Chemistry Research Laboratory, 
Department of Pathology, Division of Clinical Chemistry.

Machine Learning and Cross-Validation
Two machine learning models were developed to predict the pres-

ence of ovarian cancer in (i) a screening setting, and (ii) a diagnostic 
setting. Both models used PLR and features included fragmenta-
tion profiles, chromosomal arm–level changes, as well as the protein  
biomarkers CA-125 and HE4. The models were trained and cross- 
validated using data from (i) individuals in the subset of the discovery 
group with ovarian cancer or without any known ovarian lesions for 
the screening model, and (ii) individuals in the subset of the discovery 
group with ovarian cancer or benign adnexal masses for the diagnos-
tic model. The principal components of the ratios representing greater 
than 90% of variance and the z-scores (21, 22), along with levels of 
the protein biomarkers CA-125 and HE4, were used to train machine 
learning models. Training was performed with 10 repeats of 5-fold 
cross-validation, generating a DELFI-Pro score for every individual in 
the discovery cohort, which was the average over 10 cross-validation 
repeats. For the validation cohort, DELFI-Pro scores were generated 
using the locked models. Performance of the models was assessed us-
ing ROC analyses and at fixed score thresholds for set specificities in 
the discovery cohort.

Association of Clinical Covariates and the DELFI Score
Potential associations between clinical covariates and the DELFI- 

Pro score were assessed with Spearman rank correlation coefficient 
(continuous variables), Wilcoxon signed-rank test (two categori-
cal variables), and Kruskal–Wallis one-way ANOVA (>2 categorical 
variables).

Modeling of DELFI Performance in Screening and 
Diagnostic Settings

Monte Carlo simulations were used to compare the DELFI-Pro 
approach with other proposed biomarkers (CA-125 and HE4) in 
a theoretical surveillance population. For CA-125, we used pub-
lished sensitivities and specificities for CA-125 at 30 U/mL from 
the UKCTOCS trial (36) and estimated sensitivity and specificity in 
our cohort using the same threshold. For HE4, we used published 
sensitivities and specificities for HE4 at 70 pmol/L from (35) and esti-
mated sensitivity and specificity in our cohort using the same thresh-
old. For DELFI-Pro, we used sensitivity based on the score threshold 
yielding >99% specificity in the discovery cohort. We blended by-stage 
sensitivity estimates according to the stage distribution of cancers in  
UKCTOCS (36) and drew a 95% binomial CI around each sensitivi-
ty and specificity estimate. As noninvasive blood-based tests have a 
reported adherence of more than 75% (51, 52), we assumed a point 
estimate of 75% adherence to a blood-based biomarker test, with a 
95% CI of 60% to 90%.

The R package epiR was used to construct prior predictive probability 
distributions (β distributions) from these CIs (R package version 2.47, 
epiR; RRID: SCR_021673) for sensitivity, specificity, and adherence.  
We estimated the prevalence of ovarian cancer as 0.0037 using Surveil-
lance, Epidemiology, and End Results (37) and U.S. Census data (53) as 
follows: In 2020, there were 236,511 women with ovarian cancer in the 
United States, and 2022 census data indicated 63,757,324 women, age 
50+. For a single Monte Carlo simulation for DELFI-Pro, we

 i.  sampled the probability of adherence (η) from the prior predic-
tive distribution,

 ii.  simulated the number of 100,000 individuals (S) who partici-
pated in screening [S ∼ binomial (η, 100,000)],

 iii.  sampled the prevalence of ovarian cancer [θ ∼ β (236511, 
63520813)]

 iv.  simulated ovarian cancer cases [P ∼ binomial (θ, S)] and com-
puted the number of individuals without cancer (N = S − P),

 v.  sampled the sensitivity (se) and specificity (sp) from the corre-
sponding prior predictive distributions, and

 vi.  sampled the true positives [TP ∼ binomial (P, se)] and false posi-
tives [FP ∼ binomial (N, 1 − sp)].

Given TP and FP, we calculated the PPV as (TP)/(TP + FP) and the 
FPR as FP/N. We repeated the above simulation 1,000 times, obtain-
ing a distribution of PPV and FPR. Using parameters for sensitivity, 
specificity, and adherence for the CA-125 and HE4 scenarios, we 
repeated the same Monte Carlo analysis to allow comparisons be-
tween the different proposed screening methodologies.

Bioinformatic and Statistical Software
All statistical analyses were performed using R version 4.1.2. Trim-

ming of adapter sequences was performed using FASTP (0.20.0). We 
used Bowtie2 (2.3.0) to align paired-end reads to the hg19 reference 
genome. PCR duplicates were removed using Sambamba (0.6.8), and 
the remaining aligned read pairs were converted to a bed format using 
BEDTools (2.29.0). We used the R package data.table (1.12.8) for ma-
nipulation of tabular data and binning fragments in 5-Mb windows 
across the genome. The R package Caret (6.0.84) was used to imple-
ment the classification by PLR and resampling.

Data Availability
The code and data needed for generating figures and results are 

available at https://github.com/cancer-genomics/delfipro2024. The 
code needed to run the DELFI pipeline and generate features used in 
modeling is available at https://github.com/cancer-genomics/delfi3. 
Sequence data and clinical variables generated in this study have been 
deposited at the database of EU Genome–Phenome Archive under ac-
cession codes EGAS00001005340 and EGAS50000000484.
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