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 ABSTRACT 
Background Bipolar disorder (BIP), major depressive disorder (MDD) and schizophrenia (SCZ) are severe mental disorders 
(SMDs), each associated with poor cardiometabolic health. Mapping the genetic relationships of these highly heritable 
disorders with blood markers of metabolic activity may uncover biological pathways underlying this important shared clinical 
feature. 
Methods We charted global genetic overlap of the three SMDs, type 2 diabetes (T2D), coronary artery disease (CAD), and 
body mass index (BMI) with 249 circulating metabolic markers through linkage disequilibrium score regression and bivariate 
Gaussian mixture modeling. We estimated causal relationships, functionally annotated shared genetic variants, and 
investigated enrichment across diverse brain and body tissues. 
Results All three SMDs had extensive overlap with the metabolic markers. The pattern of genetic correlations was highly 
similar between MDD, T2D, CAD, and BMI (Spearman’s correlation rs>.93), opposite in direction to the pattern found for 
SCZ and BIP (MDD-BIP rs=-.74; MDD-SCZ rs=-.83). The metabolic markers had widespread, robust causal effects on the 
SMDs and cardiometabolic traits. We mapped 1056 genes shared between the individual SMDs and the metabolic markers 
to disorder-specific processes related to metabolic activity, mitochondrial function, and synaptic processes. These genes were 
most prominently expressed throughout the brain, heart and liver. 
Discussion SMDs have strong associations with metabolic markers, whereby MDD has a distinctly different genetic 
relationship than BIP and SCZ. Our findings suggest that metabolic pathways are involved in the development of SMDs and 
can play a central role in disentangling disorder-specific etiologies. Our “metabolic psychiatry” approach has high potential 
to guide the development of targeted interventions.    

Keywords: metabolic psychiatry; metabolomics; schizophrenia; depression; bipolar disorder; genetic overlap. Word count: 3428.  
 

 

Bipolar disorder (BIP), major depressive disorder 
(MDD), and schizophrenia (SCZ) are severe mental 
disorders (SMDs) with shared etiology and 
overlapping clinical features.1 These disorders are also 
associatied with higher rates of cardiometabolic 
diseases such as type 2 diabetes (T2D) and coronary 
artery disease (CAD), which significantly impact 
clinical outcomes, quality of life and life expectancy.2 
Further, dyslipidemia and weight gain are common 
adverse side effects of psychotropic medication,3 
which are linked to treatment response and non-
adherence.4,5 SMDs and cardiometabolic diseases rank 
first and second in the global burden of disease.6 Thus, 

uncovering their shared determinants may be highly 
impactful for improving public health globally. 
Metabolic processes produce sets of metabolites that 
may act as fingerprints, capturing their activity. 
Medication-naïve individuals with SCZ as well as 
their siblings have abnormal levels of a range of these 
markers, indicating defects in lipid metabolism and 
glycolysis.7 Such dysfunction has also been reported 
for BIP and MDD.8,9 Panels of markers can thereby 
form a biological signature that separates individuals 
with SMDs from controls.10 Markers such as 
lipoproteins, cholesterol, fatty acids, and glucose are 
now well-captured in plasma by high-throughput 
nuclear magnetic resonance (NMR) spectroscopy,11 
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explaining more variance in metabolic dysfunction 
than traditional measurements.12 

Recent genome-wide association studies (GWAS) of 
SMDs,13–15 cardiometabolic diseases16,17 and 
metabolic markers18 have quantified the genetic 
architectures of these phenotypes, and discovered 
hundreds of associated loci. The resulting well-
powered GWAS summary statistics, combined with a 
new generation of biostatistical tools,19 enable us to 
accurately map genetic overlap and estimate causal 
relationships, less burdened by the influence of 
secondary disease processes and medication use that 
may confound estimates of phenotypic associations. 
Here, we chart the genetic relationships between 
SMDs and metabolic markers, with the overall goal to 
better understand the connection between mental and 
cardiometabolic health. Specifically, we aim to 
characterize and compare the global and local genetic 
overlap of SCZ, BIP and MDD with metabolic 
markers, and determine underlying pathways and 
body-brain relationships. Identification of the 
biological pathways involved could pave the way 
towards novel therapeutic strategies, ultimately 
improving the diagnosis, treatment, and prevention of 
SMDs and comorbid cardiometabolic diseases. 
 
Results 
Global genetic overlap 
For the analyses of genetic overlap, we included 
GWAS summary statistics of the Nightingale panel of 
metabolic markers,11 encompassing 228 lipids, 
lipoproteins or fatty acids and 21 non-lipid traits, 
namely amino acids, ketone bodies, fluid balance, 
glycolysis-, and inflammation-related metabolic 
markers,18 see Supplementary Table 1 for an overview 
of these markers, with abbreviations and 
categorizations. We further used the latest and most 
powerful GWAS of BIP,15 MDD,14 and SCZ,13 as well 
as T2D,17 and CAD,16 as commonly comorbid 
cardiometabolic conditions. We also included body 
mass index (BMI, as proxy of obesity),20 a known risk 
factor of these conditions. To correct for comparisons 
across the 249 markers, we adjusted p-values with the 
Benjamini and Hochberg method, and set significance 
thresholds at a=.05. 
First, we calculated the genetic correlation between 
each of the metabolic markers and the included traits, 
using LD Score Regression (LDSC).21 This revealed 
extensive genetic relationships of the markers with all 
three SMDs, though the extent varied across disorders. 
MDD had multiple comparisons-corrected significant 
genetic correlations with 194 of 249 markers, 
compared to 109 for SCZ and 7 for BIP. Figure 1a 
summarizes the results through volcano plots, 
highlighting the markers with the strongest genetic 

correlations per SMD. Overall, a clear pattern 
distinguished MDD from BIP and SCZ; MDD 
displayed similar genetic correlations across the 
markers as T2D, CAD and BMI, while BIP and SCZ 
showed strikingly opposite directions of correlations to 
MDD, see Figure 1b. Accordingly, there was a high 
negative Spearman’s rank correlation between the 
LDSC estimates for MDD versus BIP (rs=-.74) and 
between MDD and SCZ (rs=-.83). This contrasts with 
as well as the positive genetic correlations that exists 
between these disorders (MDD-BIP rg=.44 and MDD-
SCZ rg=.34; all p<1*10-16), see Figure 1c. These results 
suggest that the metabolic pathways involved in MDD 
etiology differ from those in BIP and SCZ, and that the 
genetics of metabolic processes may help distinguish 
between these disorders. Full results are listed in 
Supplementary Table 2.  
As a sensitivity analysis, we ran the genetic correlation 
analyses with the GWAS of metabolic markers 
corrected for BMI. This yielded the same overall 
pattern of results, albeit with attenuated strength of 
correlations, with the LDSC estimates between MDD 
and the markers still opposite to those for BIP (rs=-.57) 
and SCZ (rs=-.43), indicating that the relation between 
the markers and BMI does not fully explain the 
divergent patterns between the SMDs. 
We further mapped phenotypic relationships between 
the markers and traits, to compare this to the observed 
genetic overlap patterns. For this, we used data on 
plasma concentrations of the Nightingale NMR panel 
from 207 thousand participants of the UK Biobank. We 
combined this metabolomics data with information on 
ICD10 diagnoses for BIP, MDD, SCZ, T2D and CAD, 
as well as BMI. We estimated phenotypic associations 
by regressing the traits of interest onto the metabolic 
markers, covarying for age and sex. The resulting 
coefficients, displayed in Figure 1d, confirmed 
widespread, highly significant associations between 
nearly all markers and the traits, with highly similar 
patterns across all traits (all Spearman’s rank 
correlations >.76), in line with literature and 
contrasting with the genetic patterns for BIP and SCZ 
shown in Figure 1b.   
Mixed effect directions of genetic variants between 
pairs of complex traits (concordance), together with 
differences in polygenicity, may obscure the full extent 
of their genetic overlap as indicated by global genetic 
correlations.22 We therefore conducted bivariate 
Gaussian mixture modeling  with MiXeR19 to estimate 
the number of shared causal variants between the 
metabolic markers and the SMDs, irrespective of effect 
directions. Indeed, MiXeR revealed more extensive 
overlap than what was indicated by genetic correlations 
estimated with LDSC, clearly indicating the relevance 
of metabolic markers for understanding the etiology of 
these disorders. For example, while BIP had a median 
absolute genetic correlation of 0.04 with the markers, it 
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Figure 1. Associations with metabolic markers across the traits. a) Using linkage disequilibrium score regression 
(LDSC), we found widespread significant genetic correlations between the markers and each of the three disorders. These 
are here summarized through volcano plots, with genetic correlations on the x-axis and -log10(p-values) on the y-axis, 
separately for the disorders. Significant correlations are indicated in color, corresponding to marker category, and 
annotated with the marker name. b) This panel summarizes the genetic correlations through a heatmap with positive 
coefficients displayed in red and negative in blue (see legend), for each of the three disorders as well as the additional 
cardiometabolic traits on the x-axis. The y-axis corresponds to the markers and is sorted based on hierarchical clustering. 
The column to the right indicates the marker categories as listed in the legend. c) A correlation matrix contrasting the 
genetic correlations between the traits of interest in the upper triangle to the observed Spearman’s correlations of LDSC 
estimates between these traits across all metabolic markers (as depicted in Figure 1b) in the lower triangle. d) Using 
regression, we also found widespread phenotypic associations between the metabolic markers (y-axis) and with severe 
mental disorders and cardiometabolic traits and diseases (x-axis); The y-axis is sorted based on hierarchical clustering 
independently from panel b). MDD=major depressive disorder; T2D=type 2 diabetes; CAD=coronary artery disease; 
BMI=body mass index; BIP=bipolar disorder; SCZ=schizophrenia. 
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shared a median of 85% of their causal variants. 
Wilcoxon’s signed rank tests indicated highly 
significant differences (all p<1*10-12) of MDD with 
SCZ and BIP with respect to the distributions of the 
measures of genetic overlap with the markers, as 
visualized in Figure 2a. Whereas MDD had the highest 
genetic correlations, BIP shared on average the largest 
proportion of variants with the markers. This is 
explained by the concordance rate, which on average 
was close to 0.54 for BIP, i.e. half of the shared genetic 
variants have opposing directions of effect, as opposed 
to 0.79 for MDD and 0.41 for SCZ. Figure 2b provides 
an example of this by illustrating the genetic overlap 
between SMDs and glycoprotein acetyls. This shows 
that, whereas the number of shared variants is similar 
for all three disorders, MDD has a much higher 
concordance rate, explaining the higher genetic 
correlation, and suggesting a more direct genetic 
relation with metabolic markers than BIP and SCZ. The 
overlap and concordance estimates for each pair of 
disorder-marker are provided in Supplementary Table 
3.  
 

Causal relationships 

We conducted bidirectional Mendelian randomization 
(MR) to identify significant causal relationships 
between the markers and the SMDs. Figure 3 lists the 

inverse variance weighted (IVW) MR coefficients that 
were significant after correction for multiple 
comparisons, which were also significant through 
weighted median and MR Egger approaches, 
confirming the robustness of the findings. As can be 
seen in Figure 3a, there were causal effects of 
numerous markers on each of the three disorders, with 
both shared and trait-specific effects. The findings in 
the opposite direction (Figure 3b) reiterated the 
distinction between MDD on the one hand and BIP and 
SCZ on the other; only MDD shows widespread 
significant causal influences on the markers. 
We subsequently expanded the MR analyses to 
investigate BMI (a prominent risk factor) and CAD and 
T2D (common comorbid conditions) as potentially 
clinically relevant mediators of the relationships 
between the SMDs and metabolic markers. We found 
no robust evidence of direct causal effects of these 
additional traits on the SMDs or vice versa, despite 
their well-known phenotypic relationships. Rather, the 
estimated causal relationships indicated that the 
metabolic markers are intermediate. The findings, 
summarized in Figure 3c, indicated that BMI increases 
the risk of T2D and CAD, while all three have 
bidirectional causal relationships with the markers. As 
can also be deduced from Figure 3a and b, MDD had 
a substantially higher number of bidirectional causal 
relationships with the markers than BIP and SCZ. 
Overall, more metabolic markers influenced the SMDs  

 

 
Figure 2. Complementary measures of genetic overlap of the metabolic markers with the severe mental disorders (SMDs). 
a) Density plots showing the distributions of genetic overlap measures observed across all of the 249 markers and the three 
SMDs (colors, see legend). This summarizes the genetic correlations (left) and fraction of the markers’ causal variants 
shared (right), as indicated on the y-axis. b) Venn diagrams illustrating the genetic overlap between the three disorders and 
glycoprotein acetyls, as an example for one marker. The estimated number of unique and shared variants are indicated in 
thousands, with standard deviations in brackets. Below the Venn diagrams are bars indicating the concordance rates (‘cr’) 
of effect directions of shared variants, whereby 0.50 would mean an equal number of variants with opposing and same 
directions of effects on the pair of traits. The bar at the bottom indicates the estimated genetic correlation (‘rg’) of the pairs. 
BIP=bipolar disorder; MDD=major depressive disorder; SCZ=schizophrenia. 
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and cardiometabolic traits than the other way around, 
indicating their potential as modifiable factors that may 
be targeted to treat the disorders and their 
cardiometabolic comorbidities. Full results, across all 
pairs, are provided in Supplementary Tables 4-6. 
Molecular mechanisms 
To further delve into the biological pathways coupling 
the SMDs to metabolic health, we ran conjunctional false 
discovery rate (cFDR) analyses.23 Through cFDR, we 
identified hundreds of genetic variants shared by each of 
the 3 x 249 disorder-marker pairs, listed in 
Supplementary Tables 7-9. The shared lead variants were 
then mapped to genes using OpenTargets,24 which in turn 

were tested for enrichment among Gene Ontology (GO) 
biological processes. Figure 4a shows how much the 
aggregate of genes identified through the conjunction of 
the disorders and markers is shared across, or specific to, 
the three disorders. Figure 4b lists the top 5 most 
significant GO terms for each disorder among the 249 
marker pairings. Overall, identified pathways were 
relevant for energy metabolism or neuronal processes. 
For the BIP-marker pairs, general metabolic and 
mitochondrial pathways were common among the list of 
significant pathways; for MDD, the overlap with 
markers related most to (organ) developmental processes 
in addition to many pre- and postsynaptic processes; for 
SCZ, besides these same processes, we mostly found  

 

Figure 3. Bidirectional causal relationships between the metabolic markers and the traits. a) The causal effects of the 
significant markers on the severe mental disorders (SMDs), with inverse variance weighted Mendelian randomization (MR) 
coefficients (dots) and their standard errors (lines) displayed on the x-axis, the markers listed on the y-axis, and the three 
severe mental disorders (SMDs) represented by colors as indicated in the legend. b) same as panel a) but in opposite direction, 
i.e. the significant causal effects of the disorders on the markers. For both panels, the markers are ordered on the y-axis by 
Cochran’s Q-statistic, which captures the extent of divergence of the MR coefficients between the three disorders; the markers 
which show the most divergent relationship between the three disorders are at the top. c) Pathways of causal relationships 
between all traits of interest. Connections indicate robust significant causal effects as identified by all three MR approaches 
(see text). The curved arrows connect the traits to the markers, color coded by the number of significant markers. BIP=bipolar 
disorder; MDD=major depressive disorder; SCZ=schizophrenia; BMI=body mass index; T2D=type 2 diabetes; 
CAD=coronary artery disease. 
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pathways related to responses to biotic stimuli and the 
immune system. Thus, the disorders also have shared 
as well as specific biological processes that mediate 
their relationship with metabolic markers. 
Supplementary Tables 10-12 provide a comprehensive 
overview of all significant GO terms and their 
enrichment, per disorder. 
In order to gain an overview of the relevance of the 
findings for brain- and bodily health, we coupled the 
three aggregated sets of mapped genes found through 
the cFDR approach to tissue gene expression data. For 
all three disorders, there was significant enrichment 
across multiple brain regions and body tissues, without 
a clear distinguishing pattern between the disorders. 
Figure 5a shows regional variation in expression 
across cortical and subcortical brain regions, with the 
most significant region being the superior temporal 
sulcus, for SCZ (p=9.5x10-11). Figure 5b shows the 
enrichment, per GTEx v8 general body tissue type. 
This indicates that the mapped genes are not expressed 
solely in the brain, as the heart and liver were also 
among the most implicated organs.   
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Coupling of genes overlapping between severe mental disorders and metabolic markers to gene ontology terms. 
a) Venn diagram depicting the number of unique genes found through the conjunctional analyses, aggregated across all 
markers, for each disorder. b) Plots showing the top 5 most significantly enriched gene ontology terms (y-axis) based on 
the mapped genes, per disorder (panels), with the observed p-values (x-axis). BIP=bipolar disorder; MDD=major 
depressive disorder; SCZ=schizophrenia 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Expression patterns of genes shared between the 
metabolic markers and disorders, across body and brain tissue. 
Color coding indicates significance as -log10(p-value) of tests 
checking enrichment of the lists of shared genes, per disorder, 
among expressed genes. a) Brain maps summarizing significance 
of enrichment tests across cortical (Desikan-Killiany atlas) and 
subcortical (Freesurfer aseg) regions, based on expression data 
from the Allen brain atlas. b) Anatograms visualizing the results of 
the enrichment tests for each of 30 general tissue types from the 
GTEx database. BIP=bipolar disorder; MDD=major depressive 
disorder; SCZ=schizophrenia. 
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Discussion 

Here, we performed large-scale analyses that revealed 
extensive genetic overlap of SMDs and related 
cardiometabolic traits with metabolic markers. Most 
notably, we found differences in the shared genetic 
architecture of these markers with MDD on the one hand 
and BIP and SCZ on the other, which contrasted with their 
phenotypic associations. Follow-up analyses confirmed 
extensive causal effects of the metabolic markers on the 
SMDs, while MDD also showed effects on the markers. 
Functional annotation of genetic variants shared by the 
SMDs and metabolic markers led to the identification of 
specific biological processes relevant for metabolism and 
neuronal activity. Gene expression across regional brain 
and body tissues showed a distributed effect of shared 
genetic variants. Taken together, the current findings 
underscore the role of metabolic processes in SMDs, and 
highlight the potential of metabolic psychiatry. 

SCZ, BIP and MDD have substantial genetic and clinical 
overlap,25,26 yet we found their genetic relationship with 
the metabolic markers to be distinctly divergent from their 
phenotypic overlap. The observed patterns of genetic 
overlap with metabolic markers suggest that the genetic  
underpinnings of MDD are more similar to 
cardiometabolic diseases than those of SCZ and BIP. The 
similarity in cardiometabolic comorbidities across these 
SMDs,1,27 opposing the observed patterns of genetic 
correlation, may therefore arise from environmental 
influences on SCZ and BIP. This is likely to encompass 
an unhealthy lifestyle, including poor diet and sedentary 
behaviour,28,29 as well as obesogenic effects of 
psychotropic medication.30 Our findings are in line with 
previous reports of SCZ and BIP being genetically 
associated with lower BMI,31,32 while MDD is genetically 
associated with higher BMI.31 Taken together, they 
indicate that factors beyond common genetic variants play 
a significant role in obesity and other cardiometabolic 
comorbidities in SCZ and BIP, whereas in MDD, genetic 
and non-genetic factors appear to act in the same 
direction. Characterization of the role of confounding and 
modifiable risk factors will be of high value to disentangle 
disease-specific etiologies and differential diagnosis, 
including subtyping.33 This is important for the 
development of targeted interventions, as well as 
individualized prediction of disease onset and clinical 
outcomes. Our findings support previous claims that 
metabolomics data may play a central role in such 
efforts.12 

We found robust evidence of causal relationships between 
metabolic markers and the SMDs, confirming and 
expanding on previous findings,34,35 underlining the 
potential of these markers as targets for interventions. 
Stronger bidirectional effects were observed for MDD 
compared to SCZ and BIP, in line with higher genetic 
correlations for MDD. The results indicate that genetic 
variants influencing both MDD and metabolic markers 
work in concert with non-genetic factors, while the 

etiology of SCZ and BIP involve more mixed patterns of 
directions. The three metabolic markers with the strongest 
causal influence had divergent, opposite directions of 
effects on the three SMDs. Docosahexaenoic acid (DHA), 
a polyunsaturated fatty acid (PUFA) essential for synaptic 
membrane function, memory and neuroprotection,36,37 has 
previously been identified as having a causal influence on 
MDD.38 The levels of DHA and other PUFAs, and their 
ratio to monounsaturated fatty acids (MUFAs), have also 
been found to be different between the three SMDs in 
postmortem brain tissue.39,40 Additionally, glycoprotein 
acetyls, an inflammatory marker and early indicator of 
cardiovascular risk,41 has been associated with depression 
in large clinical cohorts42 and bipolar depressive 
episodes.43 The identification of causal effects of these 
markers may be leveraged to better understand how 
metabolic pathways have divergent effects on the three 
SMDs. We found no robust direct causal relationships 
between the SMDs and the cardiometabolic traits, 
suggesting their associations are primarily downstream of 
other factors, including those that influence metabolic 
markers. Our findings thereby suggest metabolic 
pathways can play a substantial role in explaining 
multimorbidity, as previously reported across common 
noncommunicable diseases.44 

The hundreds of identified genetic variants that influence 
both the SMDs and the markers were mapped to genes 
known to be involved in specific biological processes of 
relevance for energy metabolism and neurotransmission, 
aligning with literature on the role of metabolic pathways 
in these disorders.45 While previous genetics studies of 
these SMDs have emphasized a near-complete overlap in 
causal variants,19 our approach did identify a substantial 
unique set of genes and pathways for each disorder. 
Consequently, despite the high global overlap between 
SMDs, our findings reveal unique pathways specific to 
each disorder that are linked to metabolism, enabling new 
opportunities for tailored drug discovery and treatment of 
each disorder. As one example, our findings indicated a 
role for mitochondrial dysfunction in BIP, fitting with the 
known mode of action of lithium treatment.46 The 
importance of metabolic pathways for treatment is further 
highlighted by the recent line of findings on GLP-1 
receptor agonists as treatment for SMDs.47 Coupling the 
overlapping genes  to expression data across regional 
brain and body tissues highlighted organs central to 
cardiometabolic function, such as the liver and heart, as 
well as the brain, consistent with research on the overlap 
between body and brain measures48 and their relevance for 
SMDs.49–51 The involvement of these organs is further in 
line with the substantial somatic comorbidities of these 
disorders, emphasizing the importance of an integrated 
approach focusing on the brain and the body to understand 
and treat SMDs.52 

Together, these findings implicate metabolic pathways in 
SMDs’ etiology. We found divergent patterns of genetic 
correlations with metabolic markers across SMDs, with 
important yet heterogeneous link to cardiometabolic 
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comorbidities. These findings suggest that metabolomic 
data has potential for guiding the development of targeted 
interventions, and emphasize the importance of metabolic 
psychiatry research to better understand the etiology of 
SMDs. 
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Methods 

Phenotypic associations 

For the UKB, we obtained data under accession number 
27412. The composition, set-up, and data gathering 
protocols of the UKB have been extensively described 
elsewhere.53 It has received ethics approval from the 
National Health Service National Research Ethics Service 
(ref 11/NW/0382), and obtained informed consent from 
its participants. For the primary analyses, we selected 
unrelated White Europeans (KING cut-off 0.05)54 that had 
the Nightingale NMR metabolomics data, as well as 
complete covariate data available (N=207 836, mean age 
57.4 years (SD=8.0), 53.7 % female). 

We applied additional pre-processing through the 
‘ukbnmr’ R package to the NMR data as released by 
UKB, to remove sources of technical noise.55 We further 
applied rank-based inverse normal transformation,56 
leading to normally distributed measures. 

ICD10 diagnoses for BIP (F31, N=769), MDD (F32, 
N=13,887), SCZ (F20, N=447), T2D (E11, N=17,299) 
and CAD (I20-I25, N=25,638) were taken from UKB field 
42170. BMI was taken from UKB field 21001, with a 
mean of 27.4 (SD=4.8). 

We ran a series of logistic regressions for the diagnoses 
(dummy-coded), regressing these onto each individual 
marker, covarying for age and sex, and recorded the log 
odds coefficient from these models. We z-scaled BMI, as 
a continuous measure, and recorded the resulting linear 
regression coefficient. 

GWAS summary statistics and pre-processing 

We included GWAS summary statistics of all 249 
metabolic markers from the Nightingale NMR 
metabolomics panel.11 We previously generated these 
summary statistics, based on 207,841 participants from 
the UK Biobank and 92,645 participants from the 
Estonian Biobank, meta-analyzed together.18 For SCZ,13 
MDD,14 BIP,15 CAD,16 T2D17 and BMI20 we made use of 
the latest European-specific GWAS summary statistics. 
Where available, we selected versions of the summary 
statistics that did not contain UKB or EstBB data, in order 
to minimize sample overlap as this may create biases for 
the MR and cFDR analyses. All summary statistics were 
QC’ed and formatted using our standardized pipeline 
(https://github.com/precimed/python_convert/blob/maste
r/sumstats.py). 

Bivariate LDSC 

We applied cross-trait21 LDSC to estimate genetic 
correlations between the metabolic markers, SMDs and 
cardiometabolic traits. For this, we formatted the GWAS 
summary statistics in accordance with recommendations, 
including ‘munging’ and removal of all variants in the 
extended major histocompatibility complex (MHC) 
region (chr6:25–35 Mb). 

Bivariate MiXeR 

We applied a bivariate Gaussian mixture model, 
MiXeR,19,57 to estimate the number of shared causal 
genetic variants between the three SMDs and each 
metabolic marker, for a total of 3 * 249 analyses. MiXeR 
models additive genetic effects, based on the GWAS 
summary statistics, as a mixture of four components, 
representing null SNPs in both traits (π#); SNPs with a 
specific effect on the first and on the second trait (π% and 
π&, respectively); and SNPs with non-zero effect on both 
traits (π%&). For the mathematical framework, please see a 
previous publication.19,57 We checked whether the 
models, for each pair of traits, generated a positive AIC 
value, compared to a baseline infinitesimal model, 
indicating good model fit. All models passed this quality 
check. 

Mendelian randomization 

We ran bidirectional MR, investigating the causal 
relationships between the SMDs, the 249 metabolic 
markers and the cardiometabolic traits. For this, we 
applied the TwoSampleMR R package to the GWAS 
summary statistics. We selected only genome wide 
significant variants for the analysis, clumped using 
PLINK with clump_p = 1, clump_r2 = 0.001, clump_kb = 
10000 against the 1000 Genomes Phase3 503 EUR 
samples keeping other settings default. We calculated MR 
regression coefficients using the IVW method. To ensure 
robust findings, we further applied the weighted median 
method58 and the MR-Egger method.59 We only selected 
findings that showed an FDR multiple comparisons-
significance for both the IVW and weighed median 
approach, together with nominal significance for the MR 
Egger method. 

Conjunctional FDR 

We conducted conjunctional false discovery rate (cFDR) 
analyses for each of the three SMDs with each of the 249 
markers, i.e. 3 x 249 analyses. The cFDR analyses 
consisted of conditioning the GWAS summary statistics 
for each of the pair of traits onto each other in both 
directions through the pleioFDR tool using default 
settings, see https://github.com/precimed/pleiofdr, 
whereby the highest of the resulting pair of FDR values 
per genetic variant was taken as the strength of evidence 
for its shared effects. We set an FDR threshold of 0.05 as 
whole-genome significance, in accordance with 
recommendations. 

Gene mapping 

We used the Variant-to-Gene (V2G) pipeline from Open 
Targets Genetics, to map lead variants from the cFDR 
analyses to genes based on the strongest evidence from 
quantitative trait loci (QTL) experiments, chromatin 
interaction experiments, in silico functional prediction, 
and proximity of each variant to the canonical 
transcription start site of genes.24 
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Gene set enrichment 

We carried out gene set enrichment analyses on the 
mapped genes, investigating terms that are part of the 
Gene Ontology biological processes subset (n=7522), as 
listed in the Molecular Signatures Database (MsigdB; 
c5.bp.v7.1). We ran Fisher exact tests on the mapped 
genes from each individual cFDR analysis (i.e. 249 x 3 
sets of mapped genes), leveraging the enricher R package. 
We restricted the output to those terms that had more than 
5 overlapping genes and that were smaller than 500 genes 
in total, with a q-value <.05. We further removed terms 
from the list of significant enrichments if more than 80% 
of their overlapping genes were among more significant 
terms. Running the enrichment analyses on individual 
cFDR sets of genes, with the above settings, was chosen 
to ensure that we identified more biologically specific 
terms than when running across aggregated gene lists and 
included larger pathways. 

Tissue expression 

We used Fisher exact tests to calculate the significance of 
overlap between the three sets of cFDR mapped genes 
(aggregated within disorder across cFDR runs) and 
predetermined sets of differentially expressed genes 
(DEG) in each of the 30 general tissues available in the 
GTEXv8 database. DEGs are defined as genes with log2 
transformed, normalized expression values (Read Per 
Kilobase per Million, zero-mean) with P-value ≤ 0.05 
after Bonferroni correction and absolute log fold change 
≥ 0.58 in a given tissue. 

For the brain-based expression analyses, mRNA 
distribution data was acquired from the Allen Human 
Brain Atlas.60 In cases where multiple probes were 
available for a specific mRNA, the probe with the highest 
differential stability was selected.61 For the current study, 
we summarized the data using a Desikan-Killiany atlas-
based map with the Python toolbox Abagen.62 Data 
normalization was performed using the default scaled 
robust sigmoid method.61 To assess the difference in gene 
expression between the list of identified genes and all 
other genes, a Wilcoxon rank-sum test was conducted for 
each brain region. 

Statistical analyses 

All pre-processing steps and analyses performed outside 
the above-mentioned tools and software, e.g. formatting 
the data and creating the graphs, were carried out in R, 
v4.2. 
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