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Modulating the bistable potential energy separatrix for augmented 
broadband vibration energy harvesting 
Scott A Ouellette and Michael D Todd 
Department of Structural Engineering, University of California, San Diego, USA 

 
Abstract 
In recent years, increased interest in broadband vibration energy harvesting (VEH) schemes has been a 
main topic of interest among researchers. One of the most successful approaches towards broadband 
vibration energy capture has been with bistable inertial generators. These devices leverage a nonlinear 
restoring force to exploit the hardening spring response to increase the resonant frequency bandwidth 
beyond the characteristically narrowband resonant frequency associated with conventional linear inertial 
generators. However, one issue with bistable energy harvesters is the presence of low-amplitude 
oscillations whose energy is insufficient to overcome the potential energy separatrix barrier between the 
competing potential wells. This paper presents the effects of controlling the magnitude of the potential 
energy separatrix by means of a high-permeability electromagnet in order to increase the resonant 
response bandwidth for low-amplitude harmonic excitations. An analytical model of the bifurcation space 
resulting from two control parameters is presented along with an experimental validation study. Lastly, an 
open-loop control law is developed and tested to validate the resonant frequency bandwidth augmentation 
for harmonic chirp excitations. 
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Introduction 
Broadband VEH techniques have been a 
significant domain of research in recent years as a 
pragmatic means of vibration energy capture in 
more realistic environments where the frequency 
content of excitation sources is often broadband, 
non-stationary, and stochastic. In attempts to 
achieve broadband resonance, researchers have 
investigated several tuning methods to increase the 
resonance bandwidth of vibration-based energy 
harvesters. Erturk and Elvin (Elvin and Erturk, 
2013) classify the tuning methods as either manual 
tuning (i.e., operator intervention is required) or 
self-tuning. While manual tuning is technically a 
low-power solution, the implementation is sub-
optimal for field deployment due to the necessity 
of human intervention. Self-tuning methods are 
much more attractive for remote energy harvesting 
applications as the device could potentially provide 
autonomous power to a sensor node (or system) 
well beyond the functional lifetime of a 
conventional battery. It should be noted that an 
essential criterion for self-tuning methods to be 
feasible for vibration energy harvester designs is 
that they generate a net-positive power output.  

 Investigations into nonlinear dynamics-
based approaches for broadband vibration energy 
harvesting have garnered increasing interest in the 
past few years (Friswell et al., 2012; Litak et al., 
2010; Zhu and Beeby, 2013). While various 
system designs have been investigated, this paper 
will focus on exploiting the nature of bistable 
oscillators.  
 Bistable configurations have been 
demonstrated to exhibit many favorable resonance 
response characteristics as a passive means of 
broadband energy capture (Erturk and Inman, 
2011; Gao et al., 2014; Liu et al., 2013; Stanton et 
al., 2010; Su et al., 2014; Zhu and Zu, 2014). In 
these configurations, a mechanical nonlinearity is 
induced on an inertial generator, and the resulting 
response resembles that of a Duffing oscillator. 
However, due to the nature of the nonlinear system 
dynamics, there exists a set of low-energy 
responses resulting from the competing inertial 
forces of the tip mass and the bistable well 
separatrix (Virgin et al., 1992). For many bistable 
energy harvesters, the double-well restoring 
potential is generated by means of magnetic 



repulsion, while other approaches used in 
developing a bistable potential have been via a 
compressed buckled beam and magnetic attraction 
(Harne and Wang, 2013). In general, manual 
tuning is required to adjust the nonlinear response 
of these systems, which can be a hindrance for 
field operations.  

New approaches towards passive self-
tuning of bistable inertial generators have been 
investigated as a means of expanding the 
broadband resonance response (Gao et al., 2014; 
Leng et al., 2015) through the use of an elastic 
support mechanism for the buckling magnet. The 
concept proposed in this paper is to actively 
manipulate the bistable potential separatrix by 
adaptively changing the current direction within a 
high-permeability electromagnet. By altering the 
coil current direction, the electromagnet polarity 
can be controlled, allowing for the potential energy 
of the system restoring force to fully transition 
between monostable and bistable, as shown below 
in Figure 1(b). 

The following sections of this paper will 
present analytical models for the modal response 
and critical buckling loads of the composite inertial 
generator, closed-form expressions for the 
nonlinear magnetic potential energy due to a 
permanent magnet interacting with a high-
permeability electromagnet, and an analytical 2-
parameter bifurcation diagram of the design space 
that yields a bistable system restoring force. 
Furthermore, experimental tests are employed to 
validate the analytical models and confirm the 
hypothesis that adaptive control of the bistable 
separatrix barrier can lead to an augmented 

broadband resonant response bandwidth for low-
amplitude harmonic excitations. 
Quasi-static buckling analysis and 
modal model 
In this section, analytical models for the global 
buckling mode and primary bending mode are 
developed in order to determine approximate 
values of interest (e.g., buckling load and natural 
frequency) for the sections that follow. 
Additionally, a finite element model was 
developed to verify the analytical modal model 
results with regards to the estimated natural 
frequency for various tip mass values. The inertial 
generator used in the experimental tests is the 
V22BL (Midé Corporation) VoltureTM 
piezoelectric energy harvester, with the 
experimental natural frequency values for various 
tip masses provided by the manufacturer were used 
as a means of modal model validation. 
  
Analytical and numerical modal analysis  

The analytical modal model developed to study 
this inertial generator with an added tip mass 
follows the procedure outlined by Koplow et al. 
(Koplow et al., 2006) and Stanton and Mann 
(Stanton and Mann, 2010) for beams with step 
changes in cross section. In this study, the 
composite beam is parsed into three sections, each 
with unique bending stiffness properties. Figure 2 
shows a layered diagram of the composite beam 
stacking sequence, consisting of the four materials 
that comprise the laminate in a relative scale of 
their respective thicknesses. To reduce the model 

(a)

 

(b)

 
 
Figure 1. (a) Experimental setup of modulated inertial generator (MIG) energy harvester, and (b) analytically 
derived time-varying total potential energy function of the MIG energy harvester.  



complexity often encountered with composite 
beams, each section is treated as an isotropic 
prismatic Euler-Bernoulli beam, with the elastic 
modulus calculated as the average modulus for 
each section in the following manner: 
 

𝐸! =	
𝐸"𝐴" +	𝐸#𝐴# + 𝐸$%&𝐴$%& + 𝐸'𝐴'

𝐴" + 𝐴# + 𝐴$%& + 𝐴'
 (1) 

 
where, A[] represents the total cross-sectional area 
of each respective lamina. The specific values used 
for each lamina are detailed in Table 1. The tip 
mass was modeled as an isotropic cylinder (non-
rigid), with the diameter kept as a variable in order 
to adjust the overall mass load for the model 
comparison study. 

 For the finite element model, the beam was 
again parsed into three sections and modeled using 
linear-quadrilateral and triangular shell elements, 
with a mean element size of 1 mm. The only 
variation between the analytical model and the 
finite element model is the treatment of the tip 
mass, in that for the finite element model the 
geometric properties and moment of inertia were 
idealized as a distributed mass load on the edge 
elements.   
 Both the analytical model and finite 
element model assumed an idealized fixed-end 
condition at the beam root, keeping with the 
intended application of traditional inertial 
generator configurations. Comparing the resulting 
estimations for the primary natural frequency to 
the experimental values provided by the 
manufacturer shows each model to have relatively 

 
Figure 2. Laminate stacking sequence of Midé V22BL inertial generator. 

 
 

 
 

Figure 3. Comparison of analytical and finite element models of the V22BL inertial generator to experimental 
values provided in the manufacturer datasheet. 



strong agreement to each other, while overall 
predicting a stiffer beam. However, the models 
qualitatively predict the asymptotic convergence to 
a natural frequency of approximately 25 Hz for tip 
mass values greater than 2 grams, as shown in 
Figure 3. For the experimental tests conducted, the 
tip mass was measured as 5.7 grams, with a 
measured damped natural frequency of 25.27 Hz. 
For both models with a 5.7 gram tip mass, the 
estimated natural frequency was calculated at 
25.02 Hz and 26.64 Hz for the analytical and finite 
element approach, respectively.  
 Analytical buckling analysis 

An analytical static buckling model was also 
derived for the inertial generator independent of 
the exact description of the magnetic repulsion 
forces used to generate the nonlinear restoring 
potential. The insights gained by studying the 
global buckling of the beam with an offset 
eccentricity tuning parameter were instructive in 
realizing the effective range of mechanical point 
loads required for generating a bistable potential 
function. The model approach used in this buckling 
analysis is nearly identical to the analytical modal 
model, with the chief difference being the equation 

of shape due to the presence of an externally 
applied load as shown in Figure 4. The governing 
ordinary differential equation for the deformed 
shape of the beam is as follows: 
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where, λi is the non-dimensionalized buckling 
parameter, and ωi represents the lateral deflection 
for each section, with i = 3 sections. Equation (2a) 
assumes for there are no externally applied lateral 
loads, and that there are no beam imperfections. A 
general solution to this problem can be found in 
(Virgin, 2007). Similar to the modal analysis 
approach developed by Koplow (Koplow et al., 
2006), the displacement, rotation, shear, and 
moment at each section interface must be set 
equivalent to ensure continuity in the deflected 
shape. However, since this model includes an 
eccentric offset parameter (e), a non-zero moment 
arm manifests at the beam tip, which must be 
accounted for in the boundary condition. As such, 

Table 1 
Elastic and geometric properties used in composite beam analysis 
Substrate Properties 
Parameter Symbol Value 
Modulus Es 2.41 Gpa 
Thickness ts 0.1 mm 
Width b 6.1 mm 
Length Ls 53.16 mm 
Density ρs 1290 kg/m3 

Piezoelectric Layer Properties 
Modulus Ep 63 Gpa 
Thickness tp 0.254 mm 
Width bp 3.81 mm 
Length Lp 22.86 mm 
Density ρp 7700 kg/m3 
Fiberglass (FR-4) Properties 
Modulus Efr4 24.8 Gpa 
Thickness tfr4 0.039 mm 
Density ρfr4 1920 kg/m3 
Epoxy Resin Properties 
Modulus Ee 1.4 Gpa 
Thickness te 2.54 µm 
Density ρe 1420 kg/m3 
Tip-Mass Properties   
Mass mm 5.7 g 
Diameter dm 19.05 mm  
Length lm 9.525 mm 
Density ρm 1927 kg/m3 

 
 
 

 
 



the moment equilibrium boundary condition at the 
beam tip is as follows: 
 
 (#)$(*12$)

(*#
= 𝜆4,𝑒 (3) 

Combining all boundary and compatibility 
conditions results in a 12x12 matrix set of 
equations with a non-zero right-hand side resulting 
from the eccentrically applied buckling load.  

Since energy is only produced in the 
inertial generator for strain fields in the 
piezoelectric layers, this investigation is primarily 
focused on the buckling loads for beam section 1 
(nearest the beam root). Figure 5 shows the 
deflection evaluated for ω1(x = L1) as a function of 
applied load for varying eccentricity values. The 
critical buckling load for the modeled composite 
beam, which assumes perfect load alignment by 
setting the eccentricity value to zero, is calculated 
as 2.33 mN. Once an imperfection/eccentricity is 
introduced to the framework, the critical 

bifurcation load is no longer an explicit point, and 
is generally perceived as the point in which the 
lateral deflection makes a sharp “knee” bend. Of 
particular interest in this study is the apparent 
convergence of eccentrically applied buckling load 
values. Assuming an experimental misalignment of 
the magnets of 2 mm will only result in a 5.6% 
reduction in critical buckling load required to 
generate the bistability. 
 
Electromagnet dipole moment and 
bifurcation diagram  
Now that the critical buckling load for the inertial 
generator has been established, it is instructive to 
model the force interaction between the two 
interacting magnets. A vector-gradient method for 
approximating the force between to interacting 
magnetic dipoles in free-space was proposed by 
Yung et al. (Yung et al., 1998), and later applied to 
the study of bistable energy harvesters by Stanton 

 

 
Figure 4. Analytical buckling model with tunable eccentric load. 
 

 
Figure 5. Buckling diagram for piezoelectric beam section as a function of increasing eccentricity (e). 

 



et al. (Stanton et al., 2010). In essence, this 
approach defines the magnetic potential energy 
field in the 2D plane as the inner product of the 
magnetic flux density of the interacting dipole 
moments (Bp-em) with the stationary buckling 
magnet (µem). Figure 6 shows a simplified diagram 
of the interacting magnetic dipoles with respect to 
the Cartesian reference frame, with the permanent 
magnet affixed to the beam tip and the 
electromagnet held stationary. For cylindrical 
permanent magnets, a first-order approximation of 
the dipole moment (µp) can be expressed as 
follows: 
 
 𝜇⃗# =

5%
6&
𝜋𝑟#,ℎ# (4) 

where Br represents the remnant flux density of the 
ferroelectric material after the magnetizing field is 
removed, µo is the permeability of free space, and 
rp and hp are the cylinder radius and height, 
respectively. A cursory analysis of equation (4) 
reveals the magnitude of the dipole moment is 
approximately proportional to its volume and 
remnant flux density. To fully define the magnetic 
potential energy, Um, it is necessary to derive an 
expression for the dipole moment of the stationary 
electromagnet. 

In order to derive an approximate 
expression for the dipole moment produced by a 
finite length cylindrical electromagnet, this study 
employs analytical methods from classical physics 
in combination with a magnetic circuit modeling 
approach for high-efficiency transformer design. 
Since the electromagnet used in this study is 

cylindrical in shape, it is assumed that the dipole 
moment can be approximated as similar to that of a 
permanent magnet, with the notable variation being 
the flux density (B) is a function of the coil current, 
as shown below in equation (5). 

 
 𝜇⃗'7 = 5(+(8))

6&
𝜋𝑟'7,ℎ'7 (5) 

 
Magnetic dipole moment model for a cylindrical 
solenoid 

A framework for analyzing the flux density field of 
a finite length solenoid (i.e. an air-cored 
electromagnet) was developed by Derby & Olbert 
(Derby and Olbert, 2010), and was applied towards 
the analysis of an electromagnet by Ouellette and 
Todd (Ouellette and Todd, 2014). 
 The addition of an iron core to the solenoid 
has two notable effects: 1) the magnetic field 
generated per unit of coil current increases greatly 
due to the alignment of magnetic domains within 
the ferromagnetic material, making special note 
that the relative permeability of soft iron cores is in 
the range of 103-105, and 2) the field direction is 
focused within the boundary of the core. Unlike 
air, an iron core has a finite set of magnetic 
domains, and thus will saturate at a flux density 
level that is proportional to the molecular 
chemistry of the material and the core volume. 
When the magnetizing current is reduced to zero, 
the iron core still remains magnetized, and thus the 
material exhibits a hysteretic relationship between 
the two fields. It is important to note that once a 

 

 
Figure 6. 2D geometric diagram of the magnetic dipole moment interaction. 
 

 
 



magnetizing field is applied to the core, it will only 
return to a de-magnetized state if it is heated to its 
Curie temperature. For this study, the core 
characteristics are idealized such that the 
relationship is piecewise linear; a conventional 
assumption for high- permeability core materials 
due to their characteristically low coercive force.  
 Now that a foundation for the 
electromagnet behavior is established, the focus 
will shift to deriving an approximate expression for 
the magnetic dipole moment (µem) generated by a 
cylindrical electromagnet, as depicted below in 
Figure 7(a). To do this, we must first establish 
principles of magnetic circuits to account for the 
effect of the open loop. A fundamental principle of 
electromagnet analysis is that the magnetic field 
forms a closed loop from one pole to the other. For 
a simple toroidal inductor, the path is completed by 
the core, and thus the field strength, H(t), can be 
assumed to be uniform. The magneto-motive force 
(MMF),    FMM(t), between two points, x1 and x2, is 
simply the integral of the H-field between the 
points. Thus, for a uniform H-field, the MMF is: 
FMM = Hl, where l is the distance between points. 
Additionally, the total magnetic flux, ϕ(t), is the 
sum of all flux density vectors through a surface, 
Ac. Therefore, a uniform flux density through a 
surface with area, Ac, yields the expression: ϕ(t) = 
BAc. 
 The effect of the air gap can be modeled 
using an equivalent magnetic circuit model, as 

shown in Figure 7(b). The essential assumptions 
for a magnetic circuit using an analog of 
Kirchhoff’s node laws are as follows: 
 

• The divergence of B = 0; 
• Flux lines are continuous with no end; 
• Total flux entering a node must be zero; 
• The magnetic force and flux are uniform 

through an element with cross-sectional 
surface area, Ac (added for completeness). 

 
For the given essential assumptions, the 

application of Ampere’s Law to the magneto-
motive force places a restriction that the H-field is 
evaluated over a closed path. In the previous 
subsection, it was shown that the magnetic flux 
path is elliptical. However, for simplicity, the mean 
magnetic flux path for the solenoid shown in 
Figure 7(a) assumes a semi-circular rotation with a 
diameter equivalent to the core diameter.  
Applying the rules listed above to the system 
shown in Figure 7(b), the following expression for 
Ampere’s Law is derived: 
 
 𝑛𝑖 = 	𝜙(𝑅3 9 + 𝑅3:;#) (6a) 
 
 𝑅3 9 =	
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 (6b) 
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 (6c) 
Applying equations (6a-c) to equation (5), 

and assuming a cylindrical electromagnet with an 

(a)

 

(b)

 

Figure 7. (a) Diagram of a cylindrical electromagnet with an assumed magnetic field path (ϕ) shown, (b) an 
equivalent magnetic circuit accounting for the air gap reluctance, Rgap. 
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ideal iron core, yields the following expression for 
the magnetic moment: 

 
µ6⃗ '7

=	
𝑛𝜋𝑟9,ℎ9

µC𝐴9 7
𝑙9
µ𝐴9

+ 𝑙9 + 𝜋𝑑9µC𝐴9
:
;
𝑖(𝑡)		𝑓𝑜𝑟	|𝐻| < 𝐵";8 µC

𝐼";8		𝑓𝑜𝑟	𝐻	 ≥ 	
𝐵";8 µC

 

 (7) 
 
Electromagnet power analysis 

A cursory analysis of equation (7) shows the large 
effect on the air gap significantly increases the 
saturation current. As such, the required number of 
coil turns, n, increases greatly to offset the air gap 
reluctance. However, there are two issues 
associated with increasing the number of coil turns 
that lead to diminishing returns: 1) for a finite 
cylinder height, hc, the increasing number of turns 
will require coil overlap which results in increased 
coil diameter, and 2) the increased coil length adds 
to the parasitic resistance, which thus requires a 
higher terminal voltage, and higher DC power loss 
due to joule heating. 
 For most applications of electromagnets, 
there are two main sources of power loss: 1) DC 
copper loss/joule heating, and 2) core hysteresis 
loss. Since core hysteresis loss primarily occurs 
during high frequency switching applications, its 
effects are considered to be negligible in the 
context of this study. The effect of Joule heating on 
the power loss is of primary concern in this study 
due to the manner in which the electromagnet is 
employed. Furthermore, in order for this approach 

to be a viable technique in field operations, its 
effects must produce a net-positive output power. 
Therefore, analysis of the primary type of power 
loss is essential in characterizing the device 
performance, as well as providing a metric for 
optimization with regard to future design 
considerations such as material and geometric 
properties of the ferromagnetic core and wire coil.  
 The conventional description of Joule 
heating is to treat the wire coil as a resistor, in 
which case the power loss is simply I2Rwire, where 
the wire resistance for a cylindrical coil can be 
approximated as: 
 
 𝑅D+%' =

&E+"%,B'-".F
B+"%,
#  (8) 

 
where dcoil represents the coil diameter, dwire is the 
wire cross section diameter, and n is the total 
number of coil turns. The maximum buckling force 
for a set separation distance becomes limited by 
the saturation current of the core; thus, the DC 
power loss in the electromagnet occurs at the 
saturation current level, which can be determined 
explicitly via equation (7). Solving equation (7) for 
Isat in terms of Bsat yields the upper bound of the 
DC power loss: 
 

 (𝑃<G"")HI =
J5/)0?'KLM'@LM()*NO

#E+"%,B'-".
FB+"%,

#  (9) 

 
 Effectively, the optimal electromagnet 
design, in terms of minimal power loss, will use a 
relatively large gauge wire, a high-permeability 
core material, and a small core diameter. This 

(a)

 

(b)

 
 

Figure 8. (a) Nonlinear magnetic potential energy for fixed magnet spacing (s = 10.7 mm) and tip rotation (θ = 
0), and (b) relationship of potential energy magnitude and for varying magnet spacing and coil current for 
perfect magnet alignment (i.e. α = 0, and θ = 0). 



model does assume a singular layer coil, so there 
are higher-order layering effects that are 
unaccounted for in terms of total wire length and 
magnetic field gap reluctance estimation. 
Analytically modeling the nonlinear magnetic 
potential interaction and its effects on the 
parametric bifurcation space of the inertial 
generator is the subject of the next section. 
 
Analytical 2-parameter bifurcation diagram for 
electromagnetic buckling 

A closed-form analytical approximation of the 
magnetic dipole moment for a cylindrical 
electromagnet was derived in equation (7) in the 
previous section. Applying the expression in 
equation (7) to the expression for magnetic 
potential energy found in Stanton et al. will 
generate the closed-form expression for the 
nonlinear magnetic potential function. Due to the 
complexity of the calculations, the symbolic 
manipulation software MATHEMATICA was used to 
derive the full nonlinear magnetic potential energy, 
which is listed in full in the Appendix.  
 Since magnitude of the potential energy is 
a function of 4 variables, only specific cross 
sections of the data can be visualized. Figure 8 
shows two such visualizations of the magnetic 
potential function for various configurations of 
fixed and variable parameters. Of particular 
relevance to the bifurcation study is the 
comparison of the potential energy magnitude for 
varying spacing and coil current values Figure 
8(b). This figure shows the highly nonlinear 
relationship between the magnetic potential and the 
magnet spacing, whereas, with respect to the coil 

current, the magnetic potential is roughly linear. In 
order to generate the bifurcation diagram, it is first 
necessary to evaluate the total potential energy 
present in the modulated inertial generator (MIG) 
system. Keeping consistent with the energy 
description of the system, the elastic strain energy 
along the axial direction for a prismatic beam is 
expressed as follows: 
 
 𝑈P =

!
,
𝐸P𝐼P ∫ [𝜔′′(𝑥, 𝑡)],	𝑑𝑥2

C  (10) 
 
where, ESIS represents the bending stiffness for an 
isotropic prismatic section, and ω(x,t) is the lateral 
displacement at any point (x) in the beam for all 
time (t). A common approach for analyzing 
continuous Euler-Bernoulli beams is to separate 
the temporal and spatial variables via a modal -
expansion consisting of a finite sum of orthogonal 
mode shapes and generalized temporal 
displacements. By applying a modal expansion of 
the form ω(x,t) = Σ α(t) ϕ(x), the expression in 
equation (10) reduces to a simple quadratic 
function with respect to the temporal displacement 
parameter α(t).  
 
 𝑈P =

!
,
𝐸P𝐼P𝛷𝛼(𝑡), (11a) 

 
 𝛷 = ∫ 𝜙′′(𝑥),	𝑑𝑥2

C  (11b) 
 
where ϕ(x) is the composite mode shape developed 
in section 3.1. Since this beam is 
electromechanically coupled through the 
piezoelectric layers, it is also necessary to account 
for the bending enthalpy for each layer within the 

(a)

 

(b)

 
 
Figure 9. (a) Nonlinear potential energy function with respect to the lateral displacement of the beam tip and an 
externally applied electromagnet coil current, and (b) the analytical 2-parameter bifurcation diagram for various 
magnet spacing and coil current values.   



elastic strain energy formulation. A method for 
evaluating the bending enthalpy was presented by 
Stanton et al. and does not require further review 
with regards to the intent of this investigation 
(Stanton et al., 2010). Summing the three potential 
energy functions gives the total system restoring 
potential, of which the nonlinear restoring force 
(Ψ) can be derived by means of a partial derivative 
with respect to the generalized temporal 
displacement Ψ = ∂Utotal/∂α(t).  

Figure 9(a) shows the evaluation of the 
total potential energy function as the coil current 
parameter is varied, and in it we see the parabolic 
function smoothly transition into a bistable 
potential well system. For a system in which the 
magnets are initially perfectly aligned, the 
bifurcation diagram is reduced to a function of two 
parameters: magnet spacing (s) and coil current 
(icoil). As such, evaluating the critical points of the 
nonlinear restoring force (Ψ) for various 
parametric values of spacing and current yields the 
3D bifurcation diagram shown in Figure 9(b). 
 
Experimental results  
This section describes the experimental tests used 
to validate the theoretical and analytical models 
presented in the previous sections. The primary 
objectives of the tests performed were to 
quantitatively validate the analytical 2-parameter 

bifurcation diagram, investigate the bandwidth 
response of the inertial generator subject to a range 
of buckling loads, and to confirm the initial 
hypothesis that the resonant response bandwidth 
can be augmented by modulating the buckling 
force in real time during a test. 
Experimental validation of parametric bifurcation 
space 

A picture of the modulated bistable energy 
harvester experimental setup is shown in Figure 
1(a). As stated in section 3, the inertial generator 
used in these experiments is the Midé V22BL. A 
cylindrical tip mass of polysulfone was fabricated 
to mount to the tip of the inertial generator, and a 
3/8” diameter by 3/16” deep center bore was 
implemented to embed the permanent tip magnet 

 
Figure 10. Diagram of 2-parameter bifurcation experimental setup. 

 

Table 2 
Properties of tip magnet and electromagnet 
Electromagnet properties 
Parameter Symbol  Value 
Core length lc 13.8 mm 
Core diameter dc 9.53 mm 
Number of coil turns n 1000 
Core permeability µ 2.9 x 106 N/A2 

Permeability of free space µo 4.9 x 10-7 
N/A2 

Tip magnet properties 
Length lm 4.76 mm 
Diameter dm 9.53 mm 
Remnant flux density Br 1.48 T 
 

 



(D63-N52, K&J Magnetics). A cart and track 
system was fabricated out of Delrin to allow for 
variable magnetic spacing, which was controlled 
by a stepper motor for accurate spacing tolerances. 
The electromagnet used is an automotive relay 
(LD-5F-R, Raylex Elec.) with the protective plastic 
shell and switch contacts removed.  
 Figure 10 is a diagram of the experimental 
setup used to validate the analytical 2-parameter 
bifurcation diagram. A high resolution Laser-
Doppler Vibrometer (OFV 505/5000, Polytec Inc.) 
was used to measure the lateral displacement of the 
end mass on the inertial generator. A National 
Instruments PXI-1042Q data acquisition system 
was used with LabVIEW to generate the triangle 
wave excitation signal that cycled from 0-1 A of 
coil current with a frequency of 0.05 Hz.  
 A total of 26 trials were conducted over a 
magnet spacing range of 9 – 36.35 mm, with the 
results of these tests shown in Figure 11. 
Comparing the results to the analytical bifurcation 
diagram in Figure 9(b) shows a strong quantitative 
correlation of the initial bifurcation coil current, as 
well as the spatial dependence. Qualitatively there 
are two main differences between the analytical 
and experimental bifurcation diagrams are the 
result of the modeling assumption of a lossless 
core material (no hysteresis), and perfect magnet 

alignment. As seen in Figure 11, there is a clear 
hysteretic effect on the bifurcation when the 
current ramps back down from the initial charge.   
 
 
Parametric investigation of broadband response  

This section will review the parametric power 
output of the nonlinear energy harvester subject to 
harmonic chirp excitations of amplitude 0.25 g 
with a sweep rate (ωr) of 0.1 Hz/s. The parametric 
study consisted of 40 trials in with the magnet 
spacing held to a fixed separation distance, and the 
electromagnet coil current set to a fixed current for 
the duration of each chirp excitation. Between each 
trial, the coil current was marginally increased 
from 0 mA up to a max of 400 mA. 
 The experimental setup for this suite of 
tests is diagramed in Figure 12. The cart and track 
system developed for the bifurcation tests was 
mounted to an electrodynamic shake table, with an 
NI c-DAQ I/O system used for all control and 
measurement acquisition. A 1 Ω, 10 W resistor 
was connected serially to the electromagnet coil to 
measure the current parameter, and a 68 kΩ, 0.25 
W resistor was connected across the external leads 
of the inertial generator to measure the power 
output response. 

 
Figure 11. Experimental 2-parameter bifurcation diagram 

 



 The intent of this parametric study was to 
investigate the full bandwidth of resonant response 
frequencies for low-amplitude excitations with 
respect to the nonlinear buckling control 
parameter. Figure 13(a) to (b) shows the power 
output in the frequency domain for the maximum 
and minimum electromagnet coil current for up-
chirp and down-chirp excitations, respectively. For 
the up-chirp excitation, a 3 Hz gap in resonance 
energy exists between the two coil current extrema. 
Figure 13(c) to (d) show that for discrete steps of 
the coil current, the transition of the resonant 
frequency peaks is continuous. To that extent, 
there exists an opportunity to capture vibration 
energy within an augmented range of frequencies 
with proper implementation of a control law on the 
electromagnet coil current.  
 Further insights into the continuity of the 
resonant frequency peaks and their relationship to 
the electromagnet coil current were also required 
for development of the open-loop control law 
described in the following sub-section. Figure 
13(e) to (f) show that for relatively low coil current 
values, there is a nonlinear shift in the resonant 
frequency, and for higher coil current values the 
frequency shift plateaus. This nonlinear 
relationship is a result of the electromagnet core 
saturation effect, in which for low values of coil 
current has a greater net effect on the nonlinear 

restoring force relative to current modulation when 
the core is saturated. 
 
Open-loop control of bistable separatrix for 
augmented broadband response  

This section details the design and implementation 
of an open-loop control law applied to the 
electromagnet coil in an effort to augment the 
broadband resonant frequency response of the 
inertial generator subject to harmonic chirp 
excitations.   
 The open-loop control signal was 
programmed to linearly modulate the 
electromagnet coil current in a manner that 
matches the peak power output across the range of 
frequencies shown in Figure 13(c) to (d). To 
accomplish this, the power response signal was 
enveloped, and the max value was extracted for 
each trial of the parametric sweep test. Since the 
measured data was stored as a vector array in 
Matlab, the index location of the max measured 
power is directly tied to the excitation frequency in 
the shake table. Figures 14(a) and (b) show the 
peak power points plotted as a function of the base 
excitation frequency along with an overlaid linear 
least-squares fit for both harmonic up-chirp and 
down-chirp excitations. The fitted line was then 
used as the modulating control signal for the 

 
Figure 12. Diagram of parametric study of dynamic response 

 



transition region in the chirp excitation tests. While 
this control approach requires significant a priori 
knowledge of the parametric power response as the 
basis for its design, the focus of this initiative is to 
demonstrate the ability to augment the power 
output bandwidth by means of external coil current 
modulation.  
 As shown in Figures 14(c) and (d) the 
resulting output power response of the inertial 
generator now fully captures resonant energy in the 
transition region, thus validating the experimental 
hypothesis. As shown in Figure 14(d), the power 

response for a down-chirp excitation is moderately 
less than that of the up-chirp excitation, which is 
primarily an artefact of the nonlinear resonance 
hysteresis exhibited in bistable oscillators. 
 Comparing the resonance bandwidth and 
total energy capture between conventional 
monostable and bistable schemes to the MIG 
system, it is clear that the MIG design is successful 
in augmenting vibration energy harvesting as 
shown in Table 3. The resonance bandwidth was 
calculated as the frequency range above 50% of 
peak power.   However; since the MIG system 
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Figure 13. Output power of parametrically controlled inertial generator for harmonically excited chirp 
excitations. 

 



requires active control of the buckling 
electromagnet, it is necessary to calculate the 
energy consumed by the control device. The 
measured coil resistance was 14 Ω, and the energy 
consumption of the electromagnet was calculated 
by integrating the measured DC power loss as a 
result of the applied coil current control shown in 
Figures 14 (c) and (d). In this regard, the MIG 
design demonstrated in this paper produces a 
negative energy balance, which adversely affects 
the possibility of field deployment. The net energy 
balance for the parametric studies was neglected 

due to the fact that the monostable and bistable 
systems can be achieved passively using 
permanent magnets. As previously explored it the 
electromagnet power analysis section, this negative 
energy balance can potentially be rectified through 
an optimally designed buckling electromagnet. 
Furthermore, the open-loop control signal failed to 
capture the entire resonance bandwidth available. 
 
Conclusions  

Modulated Up-Chirp Modulated Down-Chirp 
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(b) 
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Figure 14. (a) Peak power points from up-chirp parametric excitation study with linear least-squares fit overlaid, 
(b) down-chirp peak power points with linear least-squares fit, (c) broadband power output of MIG energy 
harvester for up-chirp excitation, and (d) broadband power output of MIG for down-chirp excitation.  
 
 
Table 3 
Resonance bandwidth (Δf), total energy capture (E), and net energy balance (ΔE). 

Parameter 

Up-Chirp Down-Chirp Modulated 
icoil_min icoil_max icoil_min icoil_max Up Down 

Δf 0.48 Hz 1.87 Hz 0.41 Hz 0.77 Hz 4.18 Hz 3.89 Hz 
Etotal 163 mJ 598 mJ 126 mJ 216 mJ 852 mJ 720 mJ 
ΔE -- -- -- -- -3690 mJ -2552 mJ 

 



This paper investigated a novel method of 
augmenting the resonant frequency bandwidth of 
bistable inertial generators by modulating the 
separatrix barrier height with a stationary 
electromagnet. Analytical models of the inertial 
generator and electromagnet were developed to 
study the parametric space in which the system 
transitions from linear to nonlinear behavior.  
 A quasi-static experimental test was 
conducted to validate the analytical bifurcation 
diagram, and a suite of dynamic tests were run to 
investigate the output power of the inertial 
generator subject to harmonic chirp excitations. 
Lastly, an augmented resonant frequency response 
was validated experimentally for low-amplitude 
chirp excitations by means of a linear, open-loop 
control law operating on the electromagnet coil 
current.  

While the net energy balance was sub-
optimal, the initial hypothesis was successfully 
verified. Future investigations into optimal 
buckling electromagnet designs and control signals 
have significant potential for creating a system that 
generates a net-positive energy balance while 
simultaneously expanding the broadband 
resonance bandwidth.  
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Appendix: Nonlinear Magnetic Potential 
Function  
 
The nonlinear magnetic potential energy function 
derived in MATHEMATICA is as follows: 
 

 𝑈7;: =
Q&(Q1 RSTU@	Q# RST ,U@Q$ TVW U@	Q!)

A[Y&@Y1 RSTU@Y# TVW U@	)[2,8]#]
2
#3

 (12a) 

 
where 
 
 𝛼C = 2R𝜇#R|𝜇⃗'7|	𝜇C (12b) 
 
 𝛼! = −2(4𝑎, + 𝑆,) + 4𝜔[𝐿, 𝑡], (12c) 
 
 𝛼, = 𝑎𝑆 (12d) 
 
 𝛼4 = −4𝑎𝜔[𝐿, 𝑡] cos 𝜃 (12e) 
 
 𝛼& = 𝑆(7𝑎 + 6) (12f) 
 
 𝛽C = 4𝑎, + 𝑆, (12g) 
 
 𝛽! = 4𝑎𝑆 (12h) 
 
 𝛽, = 8𝑎𝜔[𝐿, 𝑡] (12i) 
 
and S = 4a +lc + 2s, where a is the permanent 
magnet length, lc is the electromagnet core length, 
and s is the separation distance. 
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