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Concurrent Implicit Spectral Deferred Correction Scheme
for Low-Mach Number Combustion

with Detailed Chemistry

François P. Hamona,∗, Marcus S. Daya, Michael L. Miniona

aCenter for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, USA

Abstract

We present a parallel multi-implicit time integration scheme for the advection-diffusion-reaction sys-
tems arising from the equations governing low-Mach number combustion with complex chemistry. Our
strategy employs parallelization across the method to accelerate the serial Multi-Implicit Spectral De-
ferred Correction (MISDC) scheme used to couple the advection, diffusion, and reaction processes. In our
approach, the diffusion solves and the reaction solves are performed concurrently by different processors.
Our analysis shows that the proposed parallel scheme is stable for stiff problems and that the sweeps con-
verge to the fixed-point solution at a faster rate than with serial MISDC. We present numerical examples
to demonstrate that the new algorithm is high-order accurate in time, and achieves a parallel speedup
compared to serial MISDC.

Keywords: low-Mach number combustion, complex chemistry, time integration, multi-implicit spectral
deferred corrections, parallelization across the method

1. Introduction

Many reacting flow problems are modeled by advection-diffusion-reaction partial differential equations.
These systems are often characterized by a large disparity in the time scales of these three processes,
therefore making the design of accurate and efficient time integration schemes particularly challenging.
This is the case for the low-Mach number combustion approaches used to simulate laboratory-scale flames.
Low-Mach number combustion models are obtained from the fully compressible equations by an asymp-
totic analysis which eliminates the fast acoustic waves while still accounting for compressibility effects
caused by diffusion and reaction processes (Majda and Sethian, 1985). This methodology is advantageous
for the computational efficiency of the time integration scheme because low-Mach number combustion
models can therefore be numerically evolved on the time scale of the relatively slow advection process.
The resulting stability constraint is much less restrictive than in fully compressible models and signifi-
cantly larger stable time steps can be used. However, this approach requires a sophisticated integration
method to couple advection with the diffusion and reaction processes which operate on much faster time
scales. The coupling strategy becomes a key determinant of the largest time step size that preserves the
accuracy, stability, and computational efficiency of the overall numerical simulation framework.

A popular approach to advance low-Mach number reactive systems is operator splitting, in which
the different physical processes are decoupled and solved sequentially. Operator splitting is attractive
because it allows specialized schemes and solvers to be used for advection, diffusion, and reaction, with
different time step sizes depending on the stiffness of each process. Applications to low-Mach number
combustion include the second-order Strang-split schemes of Knio et al. (1999); Day and Bell (2000).
The former is based on an explicit evaluation of the advection and diffusion terms and an implicit
treatment of the reaction term. The latter couples an explicit scheme for advection with a Crank-
Nicolson treatment of diffusion and a fully implicit method for reactions; the implicit diffusion treatment
accommodates that diffusive time scales in combustion can be much shorter than those of advective
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transport. Several authors present alternatives to address the stiffness of the diffusion terms relative to
advection via extended-stability Runge-Kutta-Chebyshev schemes (Najm and Knio, 2005; Safta et al.,
2010; Motheau and Abraham, 2016). However, in all such attempts, the underlying splitting approach
introduces significant time-splitting errors, and therefore requires a dynamic adaptation of the time
step sizes to preserve the accuracy of the approximation, as in Duarte et al. (2013). In addition to this
drawback, a significant limitation of operator-splitting approaches in general is that they cannot be easily
extended beyond second-order accuracy in time.

Recently, the Multi-Implicit Spectral Deferred Correction (MISDC) scheme of Bourlioux et al. (2003);
Layton and Minion (2004) has been successfully employed to couple advection, diffusion, and reaction
processes in the low-Mach number equation set (Nonaka et al., 2012; Pazner et al., 2016). The methodol-
ogy builds on the Semi-Implicit Spectral Deferred Correction (SISDC) scheme of Minion (2003) and aims
at handling a right-hand side with one or more explicit terms coupled with multiple implicit terms. Specif-
ically, MISDC relies on a temporal splitting in which advection is treated explicitly while diffusion and
reaction are treated implicitly but decoupled as in operator splitting. In MISDC, the integration is based
on a sequence of low-order corrections applied to the variables to iteratively achieve high-order accuracy.
At a given Spectral Deferred Correction (SDC) temporal node, the diffusion and reaction corrections are
computed separately in two successive implicit solves. Numerical results showed that MISDC is able to
accurately resolve stiff kinetics while capturing the coupling between chemical reactions and transport
processes. The finite-volume schemes based on MISDC avoid the often catastrophic splitting errors of
Strang splitting, while also reducing the cost of the implicit reaction solves and achieving second-order
space-time accuracy in Nonaka et al. (2012), and fourth-order in Pazner et al. (2016).

The implicit solves corresponding to the diffusion and reaction steps still represent most of the com-
putational cost incurred by the multi-implicit time integration scheme for these stiff advection–diffusion–
reaction systems. In the numerical methodology for low-Mach number combustion presented in Pazner
et al. (2016), the treatment of the diffusion and reaction steps is sequential to avoid solving a global
diffusion-reaction nonlinear system involving all the degrees of freedom. Instead, the diffusion step re-
quires solving a linearized system for each mass conservation equation and for the energy equation to
update the species mass fractions and the enthalpy. Then, the diffusion step is followed by the reac-
tion step to update the species mass fractions. The latter entails solving complex, but local, nonlinear
Newton-based backward-Euler systems to evolve the multistep kinetic network of the combustion process
under consideration. These sequential solves become very expensive for detailed combustion problems
with a large number of species involved in stiff and highly nonlinear chemical reaction paths.

In this paper, we design a multi-implicit spectral deferred correction-based integration method in
which the implicit diffusion and reaction steps are performed concurrently to overcome the sequential
limitation of the standard MISDC method. Our algorithm, referred to as Concurrent Implicit SDC
(CISDC), relies on parallelization across the method according to the classification of Burrage (1997).
Examples of parallel-across-the-method approaches include Runge-Kutta schemes in which intermediate
stage values are computed in parallel (Iserles and Nørsett, 1990; Butcher, 1997), and SDC schemes in
which the corrections are applied at multiple temporal nodes concurrently (Christlieb et al., 2010; ?).
This strategy can be contrasted with parallelization across the steps (Nievergelt, 1964; Miranker and
Liniger, 1967; Lions et al., 2001; Emmett and Minion, 2012; Falgout et al., 2014) in which the parallel
work is done on multiple time steps concurrently, and parallelization across the problem (e.g. wave-
form relaxation methods (Lelarasmee et al., 1982; Gander, 1999)), in which the problem is divided into
temporal subproblems solved simultaneously.

In the proposed CISDC algorithm, we formally decouple the diffusion step at a given SDC temporal
node from the reaction step at the previous node. These two steps are therefore independent and can
be executed in parallel by multiple processors. In this work, we focus primarily on the convergence
of the correction iterations to show that the parallel scheme retains robust stability properties for stiff
problems, which is key for combustion problems with complex chemistry. We also analyze the theoretical
computational cost of the proposed CISDC scheme. Then, we modify the numerical methodology of
Pazner et al. (2016) to perform the temporal integration of the low-Mach number equation set with our
parallel-across-the-method scheme. Finally, we demonstrate the robustness and efficiency of the new
approach using synthetic test cases and a challenging one-dimensional unsteady flame simulation.

We proceed to the presentation of the low-Mach number equation set in Section 2. In Section 3, we
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propose our parallel Concurrent Implicit SDC scheme in which the implicit solves can be performed in
parallel to reduce the computational cost. The stability and convergence properties of the scheme are
analyzed in Section 4. Numerical examples are presented in Section 5.

2. Low-Mach number governing equations

Following previous work by Day and Bell (2000); Nonaka et al. (2012); Pazner et al. (2016), we consider
a low-Mach number model presented by Rehm and Baum (1978) and derived from an asymptotic analysis
in Majda and Sethian (1985). It consists of a system of partial differential equations governing the
evolution of a gaseous mixture in an open container in a non-gravitationally stratified environment. The
system describes coupled advection, differential/preferential diffusion, and chemical reaction processes,
and relies on a mixture model for species diffusion (Kee et al., 1983; Warnatz and Peters, 1982). The
Soret and Dufour transport effects are ignored. Sound waves are analytically eliminated from the system,
but the local compressibility effects caused by reactions and diffusion are included in the model. The
system is closed by an equation of state (EOS), written as a constraint on the divergence of the velocity,
which acts to ensure that the thermodynamic pressure remains constant over space and time. Physically,
this approach amounts to enforcing an instantaneous acoustic equilibration of the entire system to the
constant ambient pressure.

Considering a mixture with N species, conservation of mass for species i ∈ {1, . . . , N}, and conserva-
tion of energy are expressed by the evolution equations

∂(ρYi)

∂t
= −∇ · (UρYi) +∇ · ρDi∇Yi + ω̇i, i ∈ {1, . . . , N}, (1)

∂(ρh)

∂t
= −∇ · (Uρh) +∇ · λ

cp
∇h+

∑
i

∇ · hi
(
ρDi −

λ

cp

)
∇Yi, (2)

where ρ is the density, Y = [Y1, . . . , YN ] are the species mass fractions, Di(Y , T ) is the mixture-averaged
diffusion coefficient of species i, T is the temperature, ω̇i(Y , T ) is the production rate of species i due
to chemical reactions, h(Y , T ) =

∑
i Yihi(T ) is the enthalpy with hi(T ) denoting the enthalpy of species

i, λ(Y , T ) is the thermal conductivity, and cp =
∑
i Yidhi/dT is the specific heat at constant pressure.

In this formulation, there is no exchange in enthalpy due to chemical reactions since h includes the
standard enthalpy of formation. These evolution equations are closed by an EOS, which states that the
thermodynamic pressure, pEOS, must remain constant and equal to the ambient pressure, p0,

p0 = pEOS, (3)

where pEOS is computed as

pEOS := ρRT
∑
i

Yi
Wi

. (4)

R is the universal gas constant and Wi is the molecular weight of species i. In the mixture model
considered here, the diffusion flux, Γi, of species i, is defined as Γi := −ρDi∇Yi. To enforce that the
sum of the fluxes is equal to zero and therefore to guarantee mass conservation, we define a dominant
species, i0, whose diffusion flux is set to Γi0 := −

∑
i6=i0 Γi. Using this approach, one can sum the species

equation (1) to obtain the continuity equation,

∂ρ

∂t
= −∇ · (Uρ), (5)

where we used the constraints ∑
i

Yi = 1, and
∑
i

ω̇i = 0. (6)

A possible approach consists in evolving all the thermodynamic variables but one with (1)-(2), and
then use the EOS (3) to compute the last thermodynamic variable (Najm et al., 1998; Knio et al., 1999).
However, this approach fails to strictly conserve energy. Instead, we follow the volume discrepancy method
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of Pember et al. (1998); Day and Bell (2000). That is, the EOS (3) is written in the form of a constraint
on the divergence of the velocity. This is achieved by taking the derivative of (3) in the Lagrangian frame
while enforcing that the thermodynamic pressure remains constant, and then substituting the evolution
equations (1)-(2) for ρ, Y , and T to obtain

∇ · U = S. (7)

The quantity S is defined as

S :=
1

ρcpT

(
∇ · λ∇T +

∑
i

Γi · ∇hi
)

+
1

ρ

∑
i

W

Wi
∇ · Γi +

1

ρ

∑
i

(
W

Wi
− hi
cpT

)
ω̇i, (8)

where W = (
∑
i Yi/Wi)

−1 denotes the mixture-averaged molecular weight. Equations (7)-(8) represent
a linearized approximation to the velocity field required to hold the thermodynamic pressure equal to
p0 in the presence of local compressibility effects due to reaction heating, compositional changes, and
thermal diffusion. In summary, the system of partial differential equations solved in this work is given
by (1), (2), and (5), coupled with the velocity constraint, (7)-(8). As an aside, since we only consider the
one-dimensional case in the present work, the numerical scheme does not require a velocity projection; the
velocity is fully determined via the divergence constraint (7) and the inflow Dirichlet boundary condition
specified in the numerical examples. Next, we proceed to the description of the temporal discretization
applied to these PDEs, with an emphasis on the proposed parallel spectral deferred correction scheme.

3. Parallel spectral deferred correction scheme

3.1. Multi-implicit spectral deferred correction schemes

We start with a review of the fundamentals of the Spectral Deferred Correction (SDC) and Multi-
Implicit Spectral Deferred Correction (MISDC) schemes. Consider the ODE on a generic time step

φt(t) = FA(φ(t)) + FD(φ(t)) + FR(φ(t)), t ∈ [tn, tn + ∆t], (9)

φ(tn) = φn, (10)

and its solution in integral form given by

φ(t) = φn +

∫ t

tn
F (φ(τ))dτ, (11)

where FA, FD, and FR represent the advection, diffusion, and reaction terms, respectively, with F =
FA+FD+FR. We denote by φ̃(t) the approximation of φ(t), and we define the correction δ(t) := φ(t)−φ̃(t).
The SDC scheme of Dutt et al. (2000) iteratively improves the accuracy of the approximation with the
update equation

φ̃(t) + δ(t) = φn +

∫ t

tn

[
F
(
φ̃(τ) + δ(τ)

)
− F

(
φ̃(τ)

)]
dτ

+

∫ t

tn
F
(
φ̃(τ)

)
dτ. (12)

In (12), the first integral is approximated with a low-order discretization such as backward- or forward-
Euler, whereas the second integral is approximated with a high-order quadrature rule. The resulting
discrete update is applied iteratively in sweeps to increase the order of accuracy of the approximation.
Specifically, each sweep increases the formal order of accuracy by one until the order of accuracy of
the quadrature applied to the second integral is reached (Hagstrom and Zhou, 2007; Xia et al., 2007;
Christlieb et al., 2009).

MISDC, proposed in Bourlioux et al. (2003); Layton and Minion (2004), and used in Pazner et al.
(2016), is based on a variant of the original SDC update equation (12). It is well suited for advection-
diffusion-reaction problems in which the time scales corresponding to these three processes are very

4



Concurrent Implicit SDC Scheme for Low-Mach Number Combustion

different, which is the case for low-Mach number combustion with complex chemistry. MISDC provides
a methodology to treat these processes sequentially while accounting for the physical coupling between
them to minimize the splitting error. This approach is based on the update equations

φ̃(t) + δA(t) = φn +

∫ t

tn

[
FA
(
φ̃(τ) + δA(τ)

)
− FA

(
φ̃(τ)

)]
dτ

+

∫ t

tn
F
(
φ̃(τ
)
dτ, (13)

φ̃(t) + δAD(t) = φn +

∫ t

tn

[
FA
(
φ̃(τ) + δA(τ)

)
− FA

(
φ̃(τ)

)
+ FD

(
φ̃(τ) + δAD(τ)

)
− FD

(
φ̃(τ)

)]
dτ

+

∫ t

tn
F
(
φ̃(τ)

)
dτ, (14)

φ̃(t) + δ(t) = φn +

∫ t

tn

[
FA
(
φ̃(τ) + δA(τ)

)
− FA

(
φ̃(τ)

)
+ FD

(
φ̃(τ) + δAD(τ)

)
− FD

(
φ̃(τ)

)
+ FR

(
φ̃(τ) + δ(τ)

)
− FR

(
φ̃(t)

)]
dτ +

∫ t

tn
F
(
φ̃(τ)

)
dτ. (15)

To discretize the update equations, SDC-based methods rely on a decomposition of the time interval
[tn, tn+1] into M subintervals using M + 1 temporal nodes, such that

tn = tn,0 < tn,1 < · · · < tn,M = tn + ∆t = tn+1. (16)

In this work, we consider Gauss-Lobatto nodes for the definition of the subintervals. For brevity, we use
the shorthand notations tm = tn,m and ∆tm = tm+1 − tm in the remainder of the paper. We denote
by φm,(k) the approximation of φ(tm) at sweep (k). In the application considered here, the diffusion
and reaction terms are very stiff compared to the advection term which operates on a much slower time
scale. Therefore, in MISDC the diffusion and reaction terms are treated implicitly and discretized with a
backward-Euler method, whereas the advection term is treated explicitly and discretized with a forward-

Euler method. Based on this temporal splitting, computing φ
m+1,(k+1)
A is not necessary, and the updates

(13)-(14)-(15) simplify to the discrete update equations

φ
m+1,(k+1)
AD = φm,(k+1) + ∆tm

[
FA(φm,(k+1))− FA(φm,(k))

+ FD(φ
m+1,(k+1)
AD )− FD(φm+1,(k))

]
+ ∆tSm:m+1

(
F (φ(k))

)
, (17)

φm+1,(k+1) = φm,(k+1) + ∆tm
[
FA(φm,(k+1))− FA(φm,(k))

+ FD(φ
m+1,(k+1)
AD )− FD(φm+1,(k))

]
+ FR(φm+1,(k+1))− FR(φm+1,(k))

]
+ ∆tSm:m+1

(
F (φ(k))

)
, (18)

where Sm:m+1
(
F (φ(k))

)
is a high-order numerical quadrature approximating the last integral in (12) over

the interval between two consecutive SDC nodes using the Lagrange polynomials Lj , j ∈ {0, . . . ,M},

Sm:m+1
(
F (φ(k))

)
:=

M∑
j=0

sm+1,jF (φ(k)), (19)

with

sm+1,j :=
1

∆t

∫ tm+1

tm
Lj(τ)dτ. (20)

Weiser (2015) proposed a new class of SDC schemes in which the SDC sweep is cast as a stage of a
diagonally implicit Runge-Kutta method. The choice of quadrature weights, based on LU decomposition,
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leads to a faster convergence of the iterative correction process than simpler backward-Euler. This new
approach is also advantageous because in the resulting scheme, the sweeps remain convergent when the
underlying problem is very stiff. Here, we adapt the scheme of Weiser (2015) to our multi-implicit
framework based on Gauss-Lobatto nodes by writing the update equations for m ∈ {0, . . . ,M − 1} as

φ
m+1,(k+1)
AD = φ0 + ∆t

m∑
j=1

q̃Em+1,j

[
FA(φj,(k+1))− FA(φj,(k))

]
+ ∆t

m∑
j=1

q̃Im+1,j

[
FD(φj,(k+1))− FD(φj,(k))

]
+ ∆tq̃Im+1,m+1

[
FD(φ

m+1,(k+1)
AD )− FD(φm+1,(k))

]
+ ∆tQ0:m+1

(
F (φ(k))

)
, (21)

φm+1,(k+1) = φ0 + ∆t

m∑
j=1

q̃Em+1,j

[
FA(φj,(k+1))− FA(φj,(k))

]
+ ∆t

m∑
j=1

q̃Im+1,j

[
FD(φj,(k+1))− FD(φj,(k)) + FR(φj,(k+1))− FR(φj,(k))

]
+ ∆tq̃Im+1,m+1

[
FD(φ

m+1,(k+1)
AD )− FD(φm+1,(k)) + FR(φm+1,(k+1))− FR(φm+1,(k))

]
+ ∆tQ0:m+1

(
F (φ(k))

)
, (22)

where Q0:m+1
(
F (φ(k))

)
approximates the integral of F over the temporal interval [t0, tm+1],

Q0:m+1
(
F (φ(k))

)
:=

M∑
j=0

qm+1,jF (φ(k)), (23)

with

qm+1,j :=
1

∆t

∫ tm+1

t0
Lj(τ)dτ. (24)

We denote by Q = {qi,j} ∈ RM×(M+1) the matrix containing the weights defined in (24). We decompose
Q into its first column q ∈ RM , and the matrix containing the remaining M columns, denoted by

Q̃ ∈ RM×M . The coefficients {q̃Ii,j} in Q̃
I
∈ RM×M are obtained by setting

Q̃
I

:= Ũ
T
, (25)

where Ũ
T

is the transpose of the upper triangular matrix in the LU decomposition of Q̃
T

. We refer to
Weiser (2015) for a detailed discussion of the implications of this choice of coefficients on the convergence

of the SDC iterations in the case of Gauss-Radau nodes. Finally, the coefficients {q̃Ei,j} in Q̃
E
∈ RM×M

are set to q̃Em+1,m := ∆tm/∆t, and q̃Em+1,j 6=m+1 := 0, corresponding to forward-Euler.
In the remainder of this paper, the modified MISDC scheme of (21)-(22) will be referred to as MISDCQ.

In the convergence analysis of Section 4 and in numerical examples of Section 5, we will show that for
stiff problems, MISDCQ converges to the fixed-point solution in fewer sweeps than the standard MISDC
of (17)-(18). Next, we use MISDCQ as a basis for the construction of a parallel-across-the-method
Concurrent Implicit SDC scheme.

3.2. Concurrent implicit spectral deferred correction scheme
In the MISDC and MISDCQ schemes, the implicit solves corresponding to the diffusion and reaction

steps represent most of the computational cost of the temporal integration scheme. At each SDC node,
these solves are performed sequentially, with the reaction step following the diffusion step. These solves
can become expensive for highly resolved combustion problems with a large number of species involved in
a stiff and highly nonlinear chemical reaction path. In this section, we design a stable parallel-across-the-
method Concurrent Implicit Spectral Deferred Correction (CISDC) scheme in which the implicit diffusion
and reaction solves can be performed concurrently.
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3.2.1. Decoupling strategy

In the MISDCQ scheme (21)-(22), the diffusion step at node m + 1 depends on the output of the
reaction step at node m, denoted by φm,(k+1). Then, the output of the diffusion step at node m + 1,

denoted by φ
m+1,(k+1)
AD , is used to compute the reaction step at node m+ 1, and obtain φm+1,(k+1). The

MISDCQ algorithm is therefore inherently serial across the sweeps and cannot be parallelized without
modification. We overcome this limitation by formally decoupling the diffusion and reaction steps to
compute them concurrently.

There are multiple ways to achieve this goal. A simple strategy to decouple the diffusion and reaction

steps consists in lagging the index (k) in (21), i.e., to use a lagged diffusion term, φ
m+1,(k)
AD , in the

computation of the reaction term, φm+1,(k+1). This decoupling allows a concurrent update of the diffusion
and reaction terms at the same node, m + 1. With this approach, M steps are needed to update the
state variables at the M SDC nodes. But, we found that his approach led to unstable schemes for stiff
problems and therefore we do not further discuss it here.

Instead, we adopt a decoupling strategy that allows a concurrent update of the diffusion and reaction
terms at two consecutive SDC nodes. Specifically, in the proposed marching scheme, we solve in parallel
the diffusion step at node m+ 1 and the reaction step at the previous node, m. A sketch of this parallel
marching scheme is in Fig. 1. We highlight that this algorithm requires M + 1 steps to traverse the M
SDC nodes – that is, one additional step compared to the approach outlined in the previous paragraph
–, but remains stable for the stiff problems considered in this work, as shown in Section 4.

Diff. Stepm−1. . . Diff. Stepm Diff. Stepm+1 . . .Task T1:

. . . Reac. Stepm−1 Reac. Stepm Reac. Stepm+1 . . .Task T2:

Parallel operations Parallel operations Parallel operations Parallel operations

Figure 1: Sketch of the sweep parallelization strategy based on a decoupling of the diffusion step at m + 1 from
the reaction step at m to solve them concurrently.

The parallel marching scheme described in Fig. 1 is achieved by lagging in SDC sweep the terms that
introduce a dependence on the reaction step at node m in the diffusion step at node m+ 1. Specifically,
in the diffusion solve at node m + 1 of sweep (k + 1), we replace FA(φm,(k+1)), FD(φm,(k+1)), and
FR(φm,(k+1)) with lagged values FA(φm,(k+1,0)), FD(φm,(k+1,0)), and FR(φm,(k+1,0)). Using these lagged

values, the temporal interval is traversed to compute the corrected values φ
m+1,(k+1,1)
AD and φm,(k+1,1)

in parallel at all SDC nodes using the parallelization strategy sketched in Fig. 1. The accuracy of the
approximation is improved iteratively by repeating this procedure, i.e., at iteration ` + 1, we correct

φ
m+1,(k+1,`+1)
AD and φm,(k+1,`+1) in parallel at all nodes using lagged values computed at iteration `. This

results in a loop on ` nested in sweep (k + 1). At node m + 1 ∈ {1, . . . ,M + 1}, each correction entails
solving the update equations

φ
m+1,(k+1,`+1)
AD = φ0 + ∆t

m−1∑
j=1

q̃Em+1,j

[
FA(φj,(k+1,`+1))− FA(φj,(k))

]
+ ∆t

m−1∑
j=1

q̃Im+1,j

[
FD(φj,(k+1,`+1))− FD(φj,(k)) + FR(φj,(k+1,`+1))− FR(φj,(k))

]
+ ∆tq̃Em+1,m

[
FA(φm,(k+1,`))− FA(φm,(k))

]
+ ∆tq̃Im+1,m

[
FD(φm,(k+1,`))− FD(φm,(k)) + FR(φm,(k+1,`))− FR(φm,(k))

]
+ ∆tq̃Im+1,m+1

[
FD(φ

m+1,(k+1,`+1)
AD )− FD(φm+1,(k)) + FR(φm+1,(k+1,`))− FR(φm+1,(k))

]
+ ∆tQ0:m+1

(
F (φ(k))

)
, (26)
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φm+1,(k+1,`+1) = φ0 + ∆t

m−1∑
j=1

q̃Em+1,j

[
FA(φj,(k+1,`+1))− FA(φj,(k))

]
+ ∆t

m−1∑
j=1

q̃Im+1,j

[
FD(φj,(k+1,`+1))− FD(φj,(k)) + FR(φj,(k+1,`+1))− FR(φj,(k))

]
+ ∆tq̃Em+1,m

[
FA(φm,(k+1,`))− FA(φm,(k))

]
+ ∆tq̃Im+1,m

[
FD(φm,(k+1,`))− FD(φm,(k)) + FR(φm,(k+1,`+1))− FR(φm,(k))

]
+ ∆tq̃Im+1,m+1

[
FD(φ

m+1,(k+1,`+1)
AD )− FD(φm+1,(k)) + FR(φm+1,(k+1,`+1))− FR(φm+1,(k))

]
+ ∆tQ0:m+1

(
F (φ(k))

)
, (27)

where the matrices Q̃ = {qij}, Q̃
I

= {q̃Iij}, and Q̃
E

= {q̃Eij}, are the same as in the MISDCQ method
of Section 3.1. In (26) (respectively, (27)), the lagged terms – i.e., the terms evaluated at the previous
iteration ` –, are in the third, fourth, and fifth lines (respectively, third and fourth lines). A procedure
is required to initialize these lagged terms at the first iteration. The lagged advection and diffusion
terms are initialized using the most recent advection-diffusion update, whereas the lagged reaction term
is initialized using the solution at the previous sweep, that is,

FA(φm,(k+1,0)) := FA(φ
m,(k+1,0)
AD ), (28)

FD(φm,(k+1,0)) := FD(φ
m,(k+1,0)
AD ), (29)

FR(φj,(k+1,0)) := FR(φj,(k)) j ∈ {m,m+ 1}. (30)

In the remainder of this paper, the scheme defined by (26) to (30) will be referred to as the Concurrent
Implicit SDCQ (CISDCQ) scheme, since the implicit diffusion and reaction steps can be performed in
parallel.

We highlight that unlike in MISDCQ, the CISDCQ diffusion step (26) at node m + 1 contains a
reaction correction. This correction is based on known values computed at the same iteration φj,(k+1,`+1)

(j ∈ {1, . . . ,m − 1}) in the second line of (26), and on lagged values φj,(k+1,`) (j ∈ {m,m + 1}) in the
fourth and fifth lines of (26). Therefore, if the nested iteration on ` converges, computing φm+1,(k+1,`+1)

in (26) yields an approximation of the solution obtained from an implicit fully coupled diffusion-reaction
solve. The reaction step can then be seen as a correction of the error incurred by the lagged terms in the
diffusion step. This becomes apparent when (26) is used to write (27) in the equivalent form

φm+1,(k+1,`+1) = φ
m+1,(k+1,`+1)
AD

+ ∆tq̃Im+1,m

[
FR(φm,(k+1,`+1))− FR(φm,(k+1,`))

]
+ ∆tq̃Im+1,m+1

[
FR(φm+1,(k+1,`+1))− FR(φm+1,(k+1,`))

]
. (31)

Using a linear convergence analysis in Section 4, we will demonstrate that this modification of the
MISDCQ algorithm yields a stable integration scheme whose sweeps can converge to the fixed-point
solution faster than the original MISDCQ.

3.2.2. Pipelining

The nested iteration scheme on ` used to improve the accuracy of the lagged terms in (26)-(27)
increases the computational cost of a sweep since multiple iterations may be used at each sweep. However,
this nested loop on ` can be performed efficiently, in parallel, when multiple iterations on ` are employed.
This additional degree of parallelism, similar to the technique proposed in Christlieb et al. (2010, 2012),
exploits the structure of the update equations (26)-(27).

We assume that at least two nested iterations on ` are used. As in Fig. 1, task T1, which corresponds

to the diffusion steps necessary to compute φ
m,(k+1,1)
AD (m ∈ {1, . . . ,M}), and task T2, which corresponds

to the reaction steps needed to compute φm,(k+1,1) (m ∈ {1, . . . ,M}), can be executed in parallel. But,
as soon as φ1,(k+1,1) has been computed, task T3 can be launched to perform the diffusion steps at the
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next iteration (` = 2) and obtain φ
m,(k+1,2)
AD (m ∈ {1, . . . ,M}) using the lagged values updated by task

T2. Then, once φ
1,(k+1,2)
AD is available, task T4 can be executed in parallel to compute the reaction updates

φm,(k+1,2). This approach can be generalized to the case of 2ν tasks with ν ≥ 2. A sketch of this pipelined
nested loop on ` is in Fig. 2.

The parallelism inherent in pipelining the substeps is assumed to be in addition to any spatial paral-
lelization. Hence the term processor used here denotes a group of cores performing the parallel tasks in
the CISDCQ algorithm. The number of tasks does not necessarily correspond to the number of processors
used for the implementation of the algorithm as a given processor can be reused for multiple tasks. If
three Gauss-Lobatto nodes are used (M = 2), only two diffusion steps and two reaction steps have to be
performed at each nested iteration on `. This means that when task T3 is launched, the two diffusion steps
involved in task T1 have already been performed by the first processor which is now idling. Therefore, the
first processor can be reused to perform task T3. For the same reason, the second processor is idling after
completing task T2 and can be reused to perform task T4. With this strategy, the first processor performs
tasks T1, T3, . . . , T2(ν−1)−1 while the second processor performs tasks T2, T4, . . . , T2(ν−1). Similarly, if
five Gauss-Lobatto nodes are used (M = 4), then at most four processors can be used. In the general
case, the 2ν pipelined tasks involved in CISDCQ-ν use up to max(2ν,M) processors working in parallel.

Diff. Step1,(k+1,`) Diff. Step2,(k+1,`) Diff. Step3,(k+1,`) Diff. Step4,(k+1,`)Task T2`−1:

Reac. Step1,(k+1,`) Reac. Step2,(k+1,`) Reac. Step3,(k+1,`) . . .Task T2` :

Reac. Step1,(k+1,`) Diff. Step1,(k+1,`+1) Diff. Step2,(k+1,`+1) . . .Task T2`+1:

Reac. Step1,(k+1,`) Reac. Step2,(k+1,`+1) Reac. Step1,(k+1,`+1) . . .Task T2`+2:

Parallel operations Parallel operations Parallel operations

Figure 2: Sketch of the pipelined CISDCQ sweep with 2ν tasks for five Gauss-Lobatto nodes. The diffusion step
m + 1, (k + 1, ` + 1) entails solving (26) for φ

m+1,(k+1,`+1)
AD , and the reaction step m + 1, (k + 1, ` + 1) requires

solving (27) for φm+1,(k+1,`+1).

To assess the computational cost reduction generated by the CISDCQ algorithm, we assume that the
cost of a diffusion step (respectively, a reaction step) is a constant ΥAD (respectively, ΥR). NM (respec-
tively, NC) denotes the number of sweeps required to achieve convergence with MISDCQ (respectively,
CISDCQ). For a time interval [tn, tn+1] decomposed into M subintervals using M + 1 temporal nodes,
the computational cost of MISDCQ, CM, is given by

CM = NMM(ΥAD + ΥR). (32)

In the evaluation of the computational cost of CISDCQ, CC, we neglect the communication costs and
assume that ν iterations on ` are nested in each sweep to improve the accuracy of the lagged terms.
First, we compute the cost of iteration `+ 1 in sweep (k + 1), i.e., the cost of the operations performed
in tasks T2`+1 and T2`+2 (see Fig. 2). These operations include the initial diffusion step to compute

φ
1,(k+1,`+1)
AD , followed by (M − 1) parallel diffusion and reaction steps, and by the final reaction step to

compute φM,(k+1,`+1). Therefore, the cost of an iteration on ` nested in sweep (k + 1) is

ΥAD + (M − 1) max(ΥAD,ΥR) + ΥR. (33)

Task T2`+1 can only start after task T2`−1 has computed φ
2,(k+1,`)
AD and after task T2` has used this updated

value to calculate φ2,(k+1,`). The total cost of these two operations is ΥAD + ΥR. Using this result along
with (33), we find by induction on ` that the cost of the CISDCQ sweep with ν nested iterations on ` is

ν(ΥAD + ΥR) + (M − 1) max(ΥAD,ΥR). (34)

The ratio of the computational cost of MISDCQ over that of CISDCQ-ν – i.e., CISDCQ with ν nested
iterations on ` –, denoted by Rν , is therefore given by

Rν :=
CM

CC
=

NMM(ΥAD + ΥR)

NA

(
ν(ΥAD + ΥR) + (M − 1) max(ΥAD,ΥR)

) . (35)
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The CISDCQ-ν algorithm reduces the computational cost compared to MISDCQ whenever Rν > 1. With
the introduction of the ratio α as

α :=
ΥAD + ΥR

max(ΥAD,ΥR)
, (36)

the ratio Rν comparing the respective computational costs of CISDCQ and MISDCQ simplifies to

Rν :=
NM

NC
× αM

αν +M − 1
. (37)

We note that α = 2 whenever ΥAD = ΥR. In (37), the first ratio compares the convergence of the
MISDCQ sweeps with that of the CISDCQ-ν sweeps, while the second ratio compares the computational
cost of a single sweep for the two schemes. This decomposition illustrates the two mechanisms leading to
a parallel speedup. The first mechanism results from the modification of the update equations (26)-(27)
with the introduction of a reaction correction in the diffusion step. It consists in achieving convergence
to the fixed-point solution in fewer sweeps with CISDCQ-ν to increase the ratio NM/NC. This enhanced
convergence rate can be obtained by increasing the number of iterations on ` in the nested loop to improve
the accuracy of the lagged terms of (26). But, performing more nested iterations is in contradiction to
the second mechanism that can be leveraged to reduce the computational cost, which is the reduction of
the cost of a single sweep thanks to parallelization to increase the ratio αM/(αν+M −1). This trade-off
will be explored with numerical examples in Section 5.

For completeness, we also compare the computational cost of CISDCQ-ν to that of an SDC scheme in
which advection is treated explicitly, while diffusion and reaction are treated implicitly in a fully coupled
fashion. This scheme, referred to as IMEXQ, is a variant of the IMEX scheme introduced in Minion
(2003), and is based on the LU factorization of the integration matrix explained in Section 3.1. The ratio
of the computational cost of IMEXQ over that of CISDCQ-ν reads

R′ν :=
NI

NC
× βM

βν +M − 1
, (38)

where the coefficient β is defined as

β :=
ΥADR

max(ΥAD,ΥR)
. (39)

where NI is the number of sweeps needed by IMEXQ to converge to the fixed-point solution, and ΥADR

is the cost of solving the fully coupled advection-diffusion-reaction system. In Section 4, we show that
the IMEXQ sweeps converge faster than the CISDCQ-ν and MISDCQ sweeps for stiff problems. But,
one expects β to be very large for multidimensional problems with stiff chemistry, since solving the global
nonlinear system is expensive and requires efficient physics-based preconditioners for the linear systems.

3.3. Application to low-Mach number combustion

We now describe the application of the CISDCQ time integration scheme to the low-Mach number
equation set presented in Section 2. The governing equations are discretized in space using a finite-volume
formulation with uniform grid spacing. The fourth-order discretization in space is the same as in Pazner
et al. (2016), and relies on the operators found in the finite-volume literature (McCorquodale and Colella,
2011; Zhang et al., 2012). We also use the same volume discrepancy method based on a correction to the
divergence constraint. This correction is needed because even if the initial state satisfies the EOS, the
variables are updated with fluxes that vary linearly over the time step. Due to the nonlinearity of the
EOS, there is no guarantee that each component will evolve in a way that the new state will also satisfy
the EOS. The purpose of the δχ-correction to the divergence constraint is to adjust the face velocities so
that a conservative mass and enthalpy update will end up satisfying the EOS.

For the description of the CISDCQ integration method, we assume that the integration is based on
M + 1 Gauss-Lobatto nodes, NC sweeps, and ν iterations on ` nested in each sweep. The algorithm to
advance the solution from tn to tn+1 is described below.

Initialization

10



Concurrent Implicit SDC Scheme for Low-Mach Number Combustion

I1. Set (ρh, ρY )0,(k) := (ρh, ρY )n for all k ∈ {0, . . . , NC}, i.e. the solution at temporal node m = 0 is
a copy of the solution at tn for all CISDCQ sweeps.

I2. Set (ρh, ρY )m,(0) := (ρh, ρY )n for all m ∈ {1, . . . ,M}, i.e. the solution for k = 0 is a copy of the
solution at tn for all temporal nodes.

I3. Define a divergence constraint correction for each temporal interval, δ
m−1:m,(k)
χ , as in Pazner et al.

(2016). This correction will be applied to the divergence constraint at each node to ensure consis-

tency with the EOS. Initialize the correction to δ
m−1:m,(0)
χ := 0 for all m ∈ {1, . . . ,M}.

I4. Compute face-averaged velocities at tn by solving the divergence constraint (7)

∇ · Un = Sn, (40)

which in one dimension can be done by writing Uni+1 = Uni +
∫ xi+1

xi
S. Then, set U0,(k) := Un

for all k ∈ {0, . . . , NC}. In addition, evaluate the right-hand side of the discretized species and
enthalpy equations obtained from (1) and (2), respectively. These terms will be used to evaluate
Q0:m+1[F (φ(0))] in the first CISDCQ sweep.

Sweeps

for k = 0 to NC − 1 do

S1. Set ω̇m,(k+1,0) := ω̇m,(k) for all m ∈ {0, . . . ,M}, i.e. the reaction term at iteration ` = 0
at sweep (k + 1) is a copy of the state of the system at the end of sweep (k). The vector of

production terms is ω̇m,(k+1,0) = [ω̇
m,(k+1,0)
1 , . . . , ω̇

m,(k+1,0)
N ]T .

for ` = 0 to ν − 1 do
for m = 0 to M − 1 do

S2. Update the density ρm+1,(k+1,`+1) explicitly by applying the CISDCQ correction (26)
to the discretized continuity equation obtained from (5). Since (5) only contains
advection terms, (26) simplifies to

ρm+1,(k+1,`+1) = ρ0

+ ∆t

m−1∑
j=1

q̃Em+1,j

[
−∇ · (Uρ)j,(k+1,`+1) +∇ · (Uρ)j,(k)

]
+ ∆tq̃Em+1,m

[
−∇ · (Uρ)m,(k+1,`) +∇ · (Uρ)m,(k)

]
+ ∆tQ0:m+1

[
−∇ · (Uρ)(k)

]
, (41)

where the advection flux at substep m and sweep (k+ 1) in the third line is lagged in
iteration on `.

S3. Compute the new mass fractions Y
m+1,(k+1,`+1)
i,AD by applying the CISDCQ correction

(26) to the discretized species equation obtained from (1). We write the implicit
banded linear system solved with a direct solver during this step as

(ρYi,AD)m+1,(k+1,`+1) = (ρYi)
0 +Amass +Dmass +Rmass

+ ∆tQ0:m+1
[
−∇ · (UρYi)(k) +∇ · Γ(k)

i + ω̇
(k)
i

]
. (42)

In the explicit advection correction, Amass, the advection mass flux at substep m and
sweep (k + 1) is lagged in iteration on ` as follows:

Amass = ∆t

m−1∑
j=1

q̃Em+1,j

[
−∇ · (UρYi)j,(k+1,`+1) +∇ · (UρYi)j,(k)

]
+ ∆tq̃Em+1,m

[
−∇ · (UρYi)m,(k+1,`) +∇ · (UρYi)m,(k)

]
. (43)
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Similarly, in the implicit diffusion correction, Dmass, the diffusion mass flux at substep
m and sweep (k + 1) is lagged in iteration on `,

Dmass = ∆t

m−1∑
j=1

q̃Im+1,j

[
∇ · Γj,(k+1,`+1)

i −∇ · Γj,(k)i

]
+ ∆tq̃Im+1,m

[
∇ · Γm,(k+1,`)

i −∇ · Γm,(k)i

]
+ ∆tq̃Im+1,m+1

[
∇ · Γm+1,(k+1,`+1)

i,AD −∇ · Γm+1,(k)
i

]
, (44)

where the lagged discrete diffusion flux at substep m+ 1 is

Γ
m+1,(k+1,`+1)
i,AD :=

{
ρm+1,(k)Dm+1,(k)

i ∇Y m+1,(k+1,`+1)
i,AD if ` = 0

ρm+1,(k+1,`)Dm+1,(k+1,`)
i ∇Y m+1,(k+1,`+1)

i,AD otherwise.
(45)

Finally, in the implicit reaction correction, Rmass, the reaction terms at substeps m
and m + 1 at sweep (k + 1) are lagged in iteration on `. The reaction correction is
therefore defined as

Rmass = ∆t

m−1∑
j=1

q̃Im+1,j

[
ω̇
j,(k+1,`+1)
i − ω̇j,(k)i

]
+ ∆tq̃Im+1,m

[
ω̇
m,(k+1,`)
i − ω̇m,(k)i

]
+ ∆tq̃Im+1,m+1

[
ω̇
m+1,(k+1,`)
i − ω̇m+1,(k)

i

]
. (46)

S4. Compute the new enthalpy h
m+1,(k+1,`+1)
AD by applying the CISDCQ correction (26)

to the discretized energy equation obtained from (2). This step involves using a direct
solver to solve the implicit system

(ρhAD)m+1,(k+1,`+1) = (ρh)0 +Aenergy +Ddiffdiff
energy +Ddiff

energy (47)

+ ∆tQ0:m+1
[
−∇ · (Uρh)(k) +∇ · λ

(k)

c
(k)
p

∇h(k) +
∑
i

∇ · h(k)i

(
Γ
(k)
i −

λ(k)

c
(k)
p

∇Y (k)
i

)]
.

As in the mass fraction update (41), the explicit advection piece in the previous
equation, denoted by Aenergy, is based on a lagged advection flux at substep m and
sweep (k + 1). Specifically, we write

Aenergy = ∆t

m−1∑
j=1

q̃Em+1,j

[
−∇ · (Uρh)j,(k+1,`+1) +∇ · (Uρh)j,(k)

]
+ ∆tq̃Em+1,m

[
−∇ · (Uρh)m,(k+1,`) +∇ · (Uρh)m,(k)

]
. (48)

As in Pazner et al. (2016), the differential diffusion terms corresponding to the sum
in the right-hand side of (2) are evaluated explicitly to simplify the linear system that
needs to be solved. Therefore, the differential diffusion correction, Ddiffdiff

energy , is

Ddiffdiff
energy = ∆t

m−1∑
j=1

q̃Em+1,j

[∑
i

∇ · hj,(k+1,`+1)
i

(
Γ
j,(k+1,`+1)
i − λj,(k+1,`+1)

c
j,(k+1,`+1)
p

∇Y j,(k+1,`+1)
i

)
−∇ · hj,(k)i

(
Γ
j,(k)
i − λj,(k)

c
(k)
p

∇Y j,(k)i

)]
+ ∆tq̃Em+1,m

[∑
i

∇ · hm,(k+1,`)
i

(
Γ
m,(k+1,`)
i − λm,(k+1,`)

c
m,(k+1,`)
p

∇Y m,(k+1,`)
i

)
−∇ · hm,(k)i

(
Γ
m,(k)
i − λm,(k)

c
(k)
p

∇Y m,(k)i

)]
. (49)
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Following the approach of (44), the diffusion correction, Ddiff
energy, contains a lagged

diffusion flux at substep m and sweep (k + 1)

Ddiff
energy = ∆t

m−1∑
j=1

q̃Im+1,j

[
∇ · λ

j,(k+1,`+1)

c
j,(k+1,`+1)
p

∇hj,(k+1,`+1) −∇ · λ
j,(k)

c
j,(k)
p

∇hj,(k)
]

(50)

+ ∆tq̃Im+1,m

[
∇ · λ

m,(k+1,`)

c
m,(k+1,`)
p

∇hm,(k+1,`) −∇ · λ
m,(k)

c
m,(k)
p

∇hm,(k)
]

+ ∆tq̃Im+1,m+1

[
∇ ·
( λ
cp

)m+1,(k+1,`+1)

AD
∇hm+1,(k+1,`+1)

AD −∇ · λ
m+1,(k)

c
m+1,(k)
p

∇hm+1,(k)
]
,

where the diffusion coefficient at substep m + 1, denoted by
(
λ/cp

)m+1,(k+1,`+1)

AD
, is

lagged using the same method as in (45). After the enthalpy update, we can set

(ρh)m+1,(k+1,`+1) = ρm+1,(k+1,`+1)h
m+1,(k+1,`+1)
AD , (51)

since there is no contribution due to reactions in the enthalpy update. If ` = 0,
recompute the diffusion terms in the right-hand side of the discrete species and en-
ergy equations. Following (28)-(29), these terms will be used to define the quantities
evaluated at m+ 1, (k + 1, 0) at the next iteration ` = 1.

S5. Compute the new mass fractions Y
m+1,(k+1,`+1)
i by applying the CISDCQ correction

(31) to the discretized species equation

(ρYi)
m+1,(k+1,`+1) = ρm+1,(k+1,`+1)Y

m+1,(k+1,`+1)
i,AD

+ ∆tq̃Im+1,m

[
ω̇
m,(k+1,`+1)
i − ω̇m,(k+1,`)

i

]
+ ∆tq̃Im+1,m+1

[
ω̇
m+1,(k+1,`+1)
i − ω̇m+1,(k+1,`)

i

]
. (52)

To obtain the new mass fractions from (52), we form the backward-Euler type nonlin-
ear system

ρm+1,(k+1,`+1)Y −∆tq̃Im+1,m+1ω̇
m+1,(k+1,`+1)(Y ) = b, (53)

where we defined a right-hand side b obtained from (52). The density and the enthalpy
have been computed in the previous steps of the algorithm and are known. The system
is solved with Newton’s method in which the initial guess is the solution at the previous
nested iteration on `. The Jacobian matrix is computed analytically (Perini et al.,
2012).

S6. Increment the divergence constraint correction by setting

δm:m+1,(k+1,`+1)
χ := δm:m+1,(k)

χ +
2

p0

(pm+1,(k+1,`+1)
EOS − p0

∆tm
)
, (54)

where the thermodynamic pressure, pEOS, is defined in (4). Then, solve the divergence
constraint (7)

∇ · Um+1,(k+1,`+1) = Sm+1,(k+1,`+1) + δm:m+1,(k+1,`+1)
χ . (55)

Finally, recompute the diffusion terms in the right-hand side of the species and en-
thalpy equations (1)-(2).

end for (end loop over temporal nodes m)

end for (end loop over nested iterations `)
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S7. Set (ρY , ρh)m,(k+1) := (ρY , ρh)m,(k+1,ν), i.e., we save the solution at the last iteration ν of
sweep (k + 1).

end for (end loop over CISDCQ sweeps k)

We highlight that by construction, steps S2, S3, and S4 at node m+ 1, (k+ 1, `+ 1) can be executed
without knowing the state of the system at m, (k + 1, ` + 1) thanks to the decoupling method based on
lagging (see Section 3.2). Therefore, if enough processors are available, a given processor executes task
T1, i.e., it performs the advection and diffusion steps, S2, S3, and S4, at m+ 1, (k + 1, 1) while another
processor computes task T2 corresponding to the reaction step and right-hand side update (S5 and S6)
at m, (k + 1, 1). If more iterations on ` are used, the pipelining strategy sketched in Fig. 2 is used. The
accuracy and efficiency of the numerical methodology for low-Mach number combustion will be assessed
with a flame simulation in Section 5.

4. Convergence of the SDC sweeps

A key property of all SDC-based methods is their convergence with iteration to the collocation solution
used to advance each time step. This is to be distinguished from the convergence (in the more traditional
sense) of the temporal discretization with decreasing time step size. In this section, we explore the
former using a parameterized linear model problem, which allows us to demonstrate the behavior of the
time stepping scheme in the various limits of competing stiffnesses between the advection, diffusion and
reaction components of the system. A simple model problem for this purpose is given by the ODE{

φ′(t) = aφ(t) + dφ(t) + rφ(t), a, d, r ∈ R
φ(0) = φ0,

(56)

where a, d, and r represent advection, diffusion, and reaction processes, respectively. In order to quantify
the convergence of the sweeps, we recast the generalized update equations (26)-(27) into an iteration
matrix for CISDCQ (and similarly for MISDC and MISDCQ), and we analyze the spectrum of this
matrix.

In matrix notation, the approximate solutions obtained with CISDCQ at the end of sweep (k + 1)

are denoted by Φ(k+1) = [φ1,(k+1), . . . , φM,(k+1)]T ∈ RM . This vector is computed iteratively using ν
successive nested iterations on ` applied to the M substeps of the temporal interval. For m ∈ {0, . . . ,M−
1} and ` ∈ {0, . . . , ν − 1}, the intermediate solutions at nested iteration ` + 1, after substep m + 1, are
stored in the vector

Φ
(k+1,`+1)
m+1 := [φ1,(k+1,`+1), . . . , φm+1,(k+1,`+1), 0, . . . , 0]T ∈ RM . (57)

The vector Φ
(k+1,`+1)
AD,m+1 storing the intermediate solutions after the diffusion update is defined analogously.

In Appendix A, we use the matrix form of the update equations (26)-(27) to show by induction on m
and ` that the following relationship holds for all m ∈ {0, . . . ,M − 1} and ` ∈ {0, . . . , ν − 1}:

Φ
(k+1,`+1)
m+1 = M

(`+1)
1,m+1

[
φ01 + s∆tφ0q + ∆t

(
sQ̃− aQ̃

E
− (d+ r)Q̃

I)
Φ(k)

]
+ M

(`+1)
2,m+1Φ

(k), (58)

where s = a + d + r. The matrices M
(`+1)
1,m+1, M

(`+1)
2,m+1 ∈ RM×M depend on the matrices Q̃, Q̃

I
, and

Q̃
E

, on the scalars m, `, ∆t, a, d, and r, and can be computed iteratively as explained in the Appendix.
The vector q is the first column of the matrix Q defined by (24). Assuming that the scheme is based on

M + 1 temporal nodes and ν nested iterations on `, (58) yields an expression of Φ(k+1) as a function of

the previous iterate, Φ(k), given by

Φ(k+1) = Φ
(k+1,ν)
M = M

(ν)
1,M

[
φ01 + s∆tφ0q + ∆t

(
sQ̃− aQ̃

E
− (d+ r)Q̃

I)
Φ(k)

]
+ M

(ν)
2,MΦ(k). (59)
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Taking the difference between two consecutive iterates in (59), we obtain

Φ(k+1) −Φ(k) = G(Φ(k) −Φ(k−1)). (60)

The iteration matrix, G ∈ RM×M , is defined as

G := M
(ν)
1,M∆t

(
sQ̃− aQ̃

E
− (d+ r)Q̃

I)
+ M

(ν)
2,M . (61)

We compare the properties of the CISDCQ iteration matrix with those of MISDCQ and IMEXQ. We
reiterate that the IMEXQ scheme is used to illustrate the convergence of the spectral correction process
when advection is treated explicitly while diffusion and reaction are treated implicitly in a fully coupled
fashion. Using these results, we analyze the correction process, which is convergent if and only if the
spectral radius of the iteration matrix G is strictly smaller than one, that is

γ(G) < 1. (62)

In Fig. 3, we first compute the spectral radius of the iteration matrix while keeping the ratio d/r fixed.
With this approach, we evaluate the asymptotic convergence rate of the schemes when the diffusion and
reaction terms become stiff simultaneously. We assume a fixed unit time step size ∆t = 1, and we use
Gauss-Lobatto nodes. When the problem is not stiff (|r| < 1), the advection term dominates and all
the schemes, including IMEXQ, converge in sweeps to the fixed-point solution at the same asymptotic
rate. When the problem becomes very stiff (|r| > 103), the IMEXQ sweeps retain a fast convergence
rate and one can show that lim(d+r)→−∞ γ(G) = 0 (see Weiser (2015)). But, this property does not hold
when the diffusion and reaction updates are computed in two separate steps. Therefore, the asymptotic
convergence rate of the MISDCQ and CISDCQ sweeps deteriorates significantly for large negative values
of d and r. Finally, for intermediate values of r (1 ≤ |r| ≤ 103), we observe that the number of nested
iterations on ` has a strong impact on the asymptotic convergence rate of CISDCQ. If only one nested
iteration on ` is used, the CISDCQ-1 sweeps converge slightly slower than with MISDCQ. However, with
respectively three and six nested iterations, the CISDCQ-3 and CISDCQ-6 sweeps converge faster than
with MISDCQ. In particular, the CISDCQ-6 sweeps achieve the same convergence rate as IMEXQ for a
relatively larger fraction of the parameter space.
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Figure 3: Spectral radius of the iteration matrix, G, as a function of the reaction coefficient, r. The advection
and diffusion coefficients are set to a = 1 and d = r/2, respectively. In 3(a), three Gauss-Lobatto nodes are used,
whereas in 3(b), five Gauss-Lobatto nodes are used.

In Fig. 4, we explore another dimension of the parameter space. We compute the spectral radius of
G while keeping the diffusion coefficient d constant and varying the ratio d/r to evaluate the asymptotic
convergence rate of the sweeps when the reaction term strongly dominates the diffusion term, or conversely
vanishes. We still assume that the time step size is constant, equal to one. We observe that with all
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the schemes, the sweeps converge at the same rate when the reaction term vanishes (|r| ≤ 1), in which
case (56) reduces to an advection-diffusion problem. But, if |r| is increased with a constant diffusion
strength, increasing the number of nested iterations on ` improves the convergence rate of the sweeps,
even when the problem is very stiff (|r| ≥ 103). In this configuration, the CISDCQ-1 sweeps still do not
converge as fast as the MISDCQ sweeps. But, CISDCQ-3 and CISDCQ-6 converge in sweeps faster than
the reference scheme.
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Figure 4: Spectral radius of the iteration matrix, G, as a function of the reaction coefficient, r. The advection
and diffusion coefficients are set to a = 1 and d = −5, respectively. In 4(a), three Gauss-Lobatto nodes are used,
whereas in 4(b), five Gauss-Lobatto nodes are used.

5. Numerical examples

For simplicity, we assess the reduction in computational cost obtained with CISDCQ using (37). This
provides a fair comparison between the time integration methods while using a serial code to simulate
parallelism in CISDCQ. The implementation of a truly parallel version of CISDCQ on a shared-memory
platform is a non-trivial task left for future work.

5.1. Validation of convergence analysis – Linear model

Next, we confirm the analysis above by evolving the linear model problem (56) with the initial condi-
tion φ0 = 1, for several representative values of the stiffness parameters, a, d, and r. For these cases, we
discretize the temporal interval ∆t = 1 with five Gauss-Lobatto nodes (M = 4). We keep the advection
coefficient constant equal to a = 1 and we vary the diffusion and reaction coefficients d, r ∈ R− to assess
the stability and convergence rate of the CISDCQ scheme when the problem becomes very stiff. We
reiterate here that performing the 2ν pipelined tasks involved in CISDCQ-ν requires up to max(2ν,M)
processors working in parallel. Given that M = 4 in this section, the CISDCQ-1, CISDCQ-3, and
CISDCQ-6 schemes use respectively up to 2, 4, and still 4 processors to compute the solution.

Following the approach of Section 4, we first fix the ratio r/d = 2 and increase the absolute value of
the coefficients d and r at the same rate. Fig. 5 shows the convergence rate of the difference between two
iterates, |φM,(k+1) − φM,(k)|, as a function of the number of sweeps for r = −4, −20, −100. In each case,
the convergence rate of this quantity is consistent with the analysis of Section 4. Specifically, for the non-
stiff problem of Fig. 5(a), the CISDCQ-1 sweeps converge at a slower rate than those of MISDCQ, whereas
the CISDCQ-3 and CISDCQ-6 sweeps converge slightly faster than those of MISDC and MISDCQ. As the
problem becomes stiffer in Figs. 5(b) and 5(c), CISDCQ-3 and CISDCQ-6 converge in sweeps significantly
faster than MISDC and MISDCQ. We also note that for the stiff cases, performing six nested iterations on
` instead of three produces a faster convergence of the CISDCQ sweeps. However, increasing the number
of nested iterations beyond three does not necessarily improve the efficiency of CISDCQ, as shown by the
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ratio Rν computed with (37) and the assumption that ΥAD = ΥR. Considering the number of sweeps
necessary to achieve |φM,(k+1) − φM,(k)| ≤ 10−14, the values of Rν for each configuration are in Table 1.

r Rν=1 Rν=3 Rν=6

-4 1.4 1.5 0.9

-20 1.1 2.6 1.6

-100 0.9 1.8 2.0

Table 1: Ratio of the computational cost of MISDCQ over that of CISDCQ-ν for the linear model problem (56)
with a = 1 and a fixed ratio r/d = 2.
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Figure 5: Convergence of |φM,(k+1)−φM,(k)| as a function of the number of sweeps for the linear model problem
(56) with φ0 = 1 and a = 1. The diffusion and reaction coefficients are set to d = −2, r = −4 in 5(a), d = −10,
r = −20 in 5(b), and d = −50, r = −100 in 5(c).

Next, we study the computational cost of CISDCQ for multiple ratios r/d to make sure that the scheme
remains stable when the diffusion term dominates the reaction term, and vice-versa. The convergence of
|φM,(k+1)−φM,(k)| as a function of the number of sweeps for these cases is in Fig. 6. The CISDCQ-3 and
CISDCQ-6 sweeps converge faster than those of MISDCQ when the absolute magnitude of the diffusion
term is 20 times larger than that of the reaction term (d = −100, r = −5) in Fig. 6(a), when the two terms
have the same magnitude (d = r = −5) in Fig. 6(b), and when the absolute magnitude of the diffusion
term is 20 times smaller than that of the reaction term (d = −5, r = −100) in Fig. 6(c). We observe
again that increasing the number of nested iterations on ` beyond three accelerates the convergence of
the sweeps but can degrade the reduction in computational cost obtained with CISDCQ. The ratio Rν
for a tolerance of 10−14 is in Table 2. This highlights the need for an adaptive mechanism to select the
optimal number of nested iterations on ` at each sweep based on the stiffness of the problem, the number
of SDC nodes, and the number of available processors. Such a strategy would in particular stop the
nested iterations before the CISDCQ performance starts degrading. This will be explored in future work.

d r Rν=1 Rν=3 Rν=6

-100 -5 1.0 1.2 1.2

-5 -5 2.1 1.5 1.1

-5 -100 1.1 1.6 1.4

Table 2: Ratio of the computational cost of MISDCQ over that of CISDCQ-ν for the linear model problem (56)
with a = 1 and multiple values of the ratio r/d.
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Figure 6: Convergence of |φM,(k+1)−φM,(k)| as a function of the number of sweeps for the linear model problem
(56) with φ0 = 1 and a = 1. The diffusion and reaction coefficients are set to d = −100, r = −5 in 6(a), d = −5,
r = −5 in 6(b), and d = −5, r = −100 in 6(c).

5.2. Nonlinear test PDE

It is instructive to verify that the results of the previous section can predict reasonably well the
performance of CISDCQ on a more complex nonlinear coupled problem. The one-dimensional advection-
diffusion-reaction model,

φt(x, t) = aφx + dφxx + rφ(φ− 1)(φ− 1/2) for (x, t) ∈ [0, 20]× [0, T ],

φ(0, t) = 1,

φ(20, t) = 0,

φ(x, 0) = φ0(x),

(63)

captures many of the generic features and coupling of the low-Mach combustion system, yet avoids
complexities associated with parameterized equations of state, transport properties, and reaction physics.
A suitable initial condition is given by

φ0(x) =
1

2

(
1 + tanh(20− 2x)

)
. (64)

This PDE is solved with the method of lines based on a finite-volume approach. The advection term is
discretized using a fourth-order operator, A(φ), and the diffusion term is approximated with a fourth-
order Laplacian operator, D(φ). This discretization scheme leads to the nonlinear system of ODEs

φt = A(φ) +D(φ) +R(φ), (65)

where R(φ) = rφ(φ − 1)(φ − 1/2) denotes the reaction term. This system is solved with the MISDC,
MISDCQ, and CISDCQ schemes based on five Gauss-Lobatto nodes to compare their accuracy and
number of sweeps needed to achieve convergence to the fixed-point solution. As in the previous section,
CISDCQ-1, CISDCQ-3, and CISDCQ-6 allow to use respectively up to 2, 4, and 4 parallel processors.

We first perform a refinement study in time to assess the accuracy of CISDCQ. We verify that each
CISDCQ sweep increases the temporal order of accuracy by one for mildly stiff problems. To this end,
we refine the time step size while keeping the grid spacing fixed to ∆x = 0.1 (nx = 200). We set the
coefficients in (63) to a = 1, d = 2, and r = 4. Here, the error is quantified using the L1-norm

||φ− φref||1 =
1

nx

nx∑
i=1

|φ(xi, tfinal)− φref(xi, tfinal)|, (66)

where nx is the number of cells and φ (respectively, φref) denotes the approximate solution (respectively,
the averaged reference solution). The results are compared to a reference solution generated with MIS-
DCQ for ∆tref = ∆x/32 = 0.003125, which corresponds to an advective CFL number of σref = 0.03125.
Fig. 7 shows the L1-norm of the error with respect to the reference solution as a function of the time step
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size. The error obtained with CISDCQ-1 – i.e., the CISDCQ scheme based on only one nested iteration
on ` – decreases at the same rate as with MISDC and MISDCQ when the time step size is reduced.
Specifically, CISDCQ-1 achieves second-order accuracy with two sweeps, and fourth-order accuracy with
four sweeps. With eight sweeps, the asymptotic range is not reached and the three schemes only exhibit
a seventh-order accuracy. The results obtained with CISDCQ-3 and CISDCQ-6, based on three and six
nested iterations, respectively, are similar to those of CISDCQ-1 and are therefore not presented.
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Figure 7: L1-error of the MISDC, MISDCQ, and CISDCQ-1 solutions with respect to the reference solution
as a function of time for the nonlinear test PDE (63) with a = 1, d = 2, r = 4. The dashed lines indicate
the theoretical order of accuracy of the MISDC-type schemes. The solid lines corresponding to the MISDCQ and
CISDCQ-1 schemes are on top of each other.

Next, we consider a single time step and we investigate the convergence of the iterative spectral
deferred correction process for different levels of stiffness as in Section 5.1. The spatial discretization is
still based on nx = 200 cells and the time step is fixed to ∆t = ∆x/2 = 0.05. The advection coefficient
is still set to a = 1, which corresponds to an advective CFL number of σ = 1/2. We consider three cases
with increasingly large value of the diffusion and reaction coefficients d and r. The convergence of the
L1-norm of the difference between two iterates, ||φM,(k+1) − φM,(k)||1, as a function of the number of
sweeps for the first time step of the simulation is in Fig. 8.
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Figure 8: Convergence of ||φM,(k+1) − φM,(k)||1 as a function of the number of sweeps for the nonlinear test
PDE (63) with a = 1. The diffusion and reaction coefficients are set to d = 2, r = 4 in 8(a), d = 8, r = 16 in
8(b), and d = 16, r = 32 in 8(c).

To evaluate the computational cost of CISDCQ-ν after 15 sweeps, we first compute the value ε ∈ R+

such that ||φM,(15)−φM,(14)||1 = ε, where φM,(14) and φM,(15) are the approximate solutions generated by
MISDCQ after 14 and 15 sweeps, respectively. Then, we compute the number of sweeps NC necessary to
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achieve ||φM,(NC)−φM,(NC−1)||1 ≤ ε with CISDCQ-ν. Finally, using (37) and the assumption that ΥAD =
ΥR, we compute the ratio Rν for the CISDCQ-ν integration scheme as Rν = 15/NC × 2M/(2ν+M − 1).
The results can be found in Table 3.

In Fig. 8(a), the sweeps of the integration methods based on the LU decomposition of the integration
matrix, namely, MISDCQ and CISDCQ, converge at the same rate. The MISDC sweeps converge signif-
icantly slower and this scheme requires almost twice as many sweeps to achieve ||φM,(k+1) − φM,(k)||1 ≤
10−11. For this mildly stiff problem, increasing the number of iterations on ` in the nested loop does not
accelerate the convergence of the CISDCQ sweeps. Therefore, it is more advantageous to use CISDCQ-1
– i.e., only one iteration in the nested loop –, which has a computational cost ratio of Rν=1 = 1.6 when
d = 2 and r = 4. In CISDCQ-3 and CISDCQ-6, the overhead caused by the nested loop is not com-
pensated for by an enhanced convergence of the sweeps, which is why we only obtain Rν=3 ≈ 0.9 and
Rν=6 ≈ 0.5 for d = 2 and r = 4.

But, in Figs. 8(b) and 8(c), we clearly see that the nested iterations on ` have a positive impact on the
convergence of the CISDCQ-3 and CISDCQ-6 sweeps when the problem becomes stiffer. For instance,
the convergence of the CISDCQ-1 sweeps deteriorates significantly when d and r increase, whereas that
of CISDCQ-6 is not affected by the stronger stiffness of the problem. However, this enhanced convergence
of the CISDCQ-3 and CISDCQ-6 sweeps is not sufficient to yield a significant reduction in computational
cost. In fact, in these two configurations, it is still more efficient to use CISDCQ-1 to reduce the cost,
as shown by the values of Rν . We obtain Rν=1 ≈ 1.4, Rν=3 ≈ 0.8, and Rν=6 ≈ 0.6 for d = 8 and
r = 16. When d = 16 and r = 32, we achieve Rν=1 ≈ 1.2, Rν=3 ≈ 0.7, and Rν=6 ≈ 0.7. As in the
previous example, an adaptive strategy to stop the nested iterations before Rν starts decreasing would
considerably benefit the CISDCQ algorithm.

d r Rν=1 Rν=3 Rν=6

2 4 1.6 0.9 0.5

8 16 1.4 0.8 0.6

16 32 1.2 0.7 0.7

Table 3: Ratio of the computational cost of MISDCQ over that of CISDCQ-ν for the nonlinear test PDE (63)
with a = 1 and multiple values of d and r.

5.3. Dimethyl Ether Flame

In this section, we assess the performance of CISDCQ using a one-dimensional unsteady simulation
of a premixed flame based on a 39-species, 175-reaction dimethyl ether (DME) chemistry mechanism
(Bansal et al., 2015). This example is challenging for the SDC schemes discussed in this work because
the DME chemistry mechanism is very stiff. The system is evolved on the relatively slow advection time
scale to evaluate the ability of the schemes to capture the nonlinear coupling between the faster diffusion
and reaction processes. The domain length is d = 0.6 cm. The inlet stream at T = 298 K, p = 1 atm, has
composition, Y (CH3OCH3 : O2 : N2) = (0.0726 : 0.2160 : 0.7114), obtained from the one-dimensional
solution computed with the PREMIX package (Kee et al., 1985). We arbitrarily set the inlet velocity to
5 cm.s−1. The initial pressure in the domain is constant, equal to 1 atm. The initial mixture composition
is also constant, equal to the inlet stream composition given above. Finally, the initial temperature field
is set to

T (x) = Tmin + (Tmax − Tmin) exp

[
− 1

2

(
x− d/2

κ

)2]
x ∈ [0, 0.6], (67)

with Tmin = 298 K, Tmax = 1615 K, and κ = 0.0275. We simulate this test case using a constant time step
size subdivided with three Gauss-Lobatto nodes. We note that with this small number of SDC nodes
(M = 2), we use up to two processors to perform the 2ν pipelined tasks employed by CISDCQ-ν. That
is, CISDCQ-2, CISDCQ-3, and CISDCQ-4 all allow to use two processors working in parallel.

We first make sure that the CISDCQ scheme has the same order of accuracy as MISDCQ upon
refinement in space and time. This is shown in Table 4, in which we perform a refinement study for a fixed
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advective CFL number of σ ≈ 0.65, starting from nx = 128 and ∆t = 4× 10−6 s. The system is evolved
for 8.8× 10−5 s. The reference solution is obtained with MISDCQ with nx = 1024 and ∆t = 5× 10−7 s.
The schemes are tested with eight sweeps per time step, as in Pazner et al. (2016). Table 4 demonstrates
that MISDCQ and CISDCQ-2 have the same order of accuracy for the main thermodynamic variables as
well as for the mass fraction of dioxygen. This shows that CISDCQ is as accurate as MISDCQ even when
a relatively small number of nested iterations on ` is used. For this extremely stiff example, the MISDC
sweeps fail to converge. The MISDC scheme is therefore significantly less accurate than MISDCQ and
CISDCQ-2. The same is true for CISDCQ-1, whose results are therefore not included in Table 4. We note
that for the initial setup (67) and the levels of spatio-temporal refinement used here, none of the schemes
is in the asymptotic convergence regime, and more sweeps would be required to reach the formal order
of accuracy of the schemes. This is why MISDCQ and CISDCQ-2 do not achieve fourth-order accuracy
even though the spatial and temporal discretizations are formally fourth-order accurate.

Variable L128
1 r128/256 L256

1 r256/512 L512
1

MISDC

YO2
2.62E-03 1.05 1.26E-03 0.34 1.00E-03

ρ 1.15E-05 0.87 6.29E-06 0.31 5.07E-06

ρh 6.99E+04 0.86 3.84E+04 0.31 3.11E+04

T 2.86E+01 0.92 1.51E+01 0.31 1.21E+01

MISDCQ

YO2 8.91E-04 2.42 1.67E-04 2.27 3.45E-05

ρ 4.61E-06 2.33 9.19E-07 2.25 1.93E-07

ρh 2.78E+04 2.33 5.51E+03 2.26 1.15E+03

T 1.07E+01 2.37 2.08E+00 2.27 4.32E-01

CISDCQ-2

YO2
8.89E-04 2.42 1.66E-04 2.27 3.44E-05

ρ 4.60E-06 2.32 9.18E-07 2.25 1.92E-07

ρh 2.77E+04 2.33 5.50E+03 2.25 1.15E+03

T 1.07E+01 2.36 2.07E+00 2.26 4.32E-01

Table 4: L1-norm of the error with respect to the reference solution as a function of the level of space-time
refinement for the DME flame simulation. For brevity, this table only reports the mass fraction YO2 , but similar
results are observed for the other species in the system. The convergence rate is defined as rc/f = log2(L

c
1/L

f
1 ).

In Fig. 9, we evaluate the magnitude of the thermodynamic drift as a function of the level of space-time
refinement for the different schemes. To evaluate the magnitude of the drift, we use the L∞-norm

||pEOS − p0||∞ = max
i∈{1,...,nx}

(
|pEOS(xi, tfinal)− p0|

)
, (68)

where the thermodynamic pressure, pEOS, is defined in (4). We still use a constant time step size
corresponding to a CFL number σ ≈ 0.65 and eight sweeps per time step. For this problem, MISDC
yields a thermodynamic drift that is multiple orders of magnitude larger than that of the MISDCQ
and CISDCQ schemes. MISDCQ and CISDCQ-2 achieve a similar thermodynamic drift for all levels of
refinement, which is consistent with the results of Table 4. Increasing the number of nested iterations on
` yields a smaller norm of the drift. Specifically, CISDCQ-3 and CISDCQ-4 produce mass and energy
fields that are more consistent with the EOS for the coarse levels of refinement (nx = 128, 256).

Finally, we assess the convergence of the correction process in the last time step of the DME flame
simulation, for a level of refinement of nx = 512 and ∆t = 10−6 s, still yielding a CFL number σ ≈ 0.65.
The system is now evolved for 10−4 s. We compute the L1-norm of the difference between two consecutive
iterates for the key variables as a function of the number of sweeps. The result, shown in Fig. 10, is
consistent with those of Sections 4 and 5.2. The MISDC sweeps fail to converge to a fixed point solution
because of the stiffness of the DME chemistry mechanism. This is particularly visible after sweep 15
in Figs. 10(c) and 10(d). The other schemes achieve convergence at different rates. CISDCQ-3 and
CISDCQ-4 have practically converged at sweep 20. But, for CISDCQ-2 and MISDCQ, the convergence
rate is relatively slower and more than 40 sweeps are required to reach convergence (not shown in Fig. 10).
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Figure 9: Convergence of the L∞-norm of the thermodynamic drift as a function of the level of space-time
refinement at the end of the DME flame simulation.

Using the same methodology as in Section 5.2, we compare the respective computational costs of the
schemes after 20 and after 25 sweeps for the density (Fig. 10). The computational cost ratios Rν are
in Table 5. We find that the convergence of the sweeps to a fixed-point solution is too slow to achieve
a computational cost reduction when only two nested iterations are used (Rν=2 = 0.8 after 25 sweeps).
But, with three iterations, the significantly faster convergence of the sweeps leads to a reduction in
computational cost (Rν=3 = 1.6 after 25 sweeps). Finally, using four nested iterations does not improve
the ratio Rν due to the increase in the cost of the sweep (Sν=4 = 1.2 after 25 sweeps). As stated before,
an adaptive method to vary the number of nested iterations on ` at each sweep would increase, up to a
certain extent, the computational cost reduction obtained with CISDCQ.

NM Rν=2 Rν=3 Rν=4

20 sweeps 0.8 1.4 1.1

25 sweeps 0.8 1.6 1.2

Table 5: Ratio of the computational cost of MISDCQ over that of CISDCQ-ν for the DME flame simulation
after 20 sweeps and after 25 sweeps.

6. Conclusions

In this work, we consider the time integration of the advection-diffusion-reaction systems arising
from the spatial discretization of the equations governing low-Mach number combustion with complex
chemistry. The problem is advanced in time on the scale of the relatively slow advection process, which
makes it challenging to efficiently capture the nonlinear coupling with the faster diffusion and reaction
processes. In the serial MISDC algorithm of Pazner et al. (2016), this entails solving expensive implicit
diffusion and reaction systems at each substep. We first present an improved multi-implicit scheme,
MISDCQ, whose sweeps retain excellent convergence properties on stiff problems. Then, to reduce the
time-to-solution, we modify MISDCQ to design a parallel-across-the-method integration scheme based
on spectral deferred corrections. The scheme, referred to as Concurrent Implicit SDCQ (CISDCQ), is
obtained by decoupling the diffusion step from the reaction step in serial MISDCQ. This allows concurrent
implicit diffusion and reaction solves performed by different processors to reduce the time-to-solution.
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Figure 10: Convergence of the L1-norm of the difference between two consecutive iterates for the last time step
of the DME flame simulation performed with nx = 512 control volumes. The density, temperature, and mass
fractions YO2 and YCH3OCH2O2 are in Figs. 10(a), 10(b), 10(c), and 10(d), respectively.

We study the accuracy, stability, convergence rate, and theoretical computational cost of the proposed
parallel scheme. The linear convergence analysis demonstrates that CISDCQ is stable for stiff problems
and that the CISDCQ iterative correction process can converge at a faster rate than that of the standard
serial MISDC scheme. We propose a numerical methodology to apply CISDCQ to the discretized low-
Mach number equation set with complex chemistry. The numerical results – including a stiff premixed
flame simulation – confirm the findings of the convergence analysis and demonstrate the robustness and
parallel efficiency of the new scheme.

Future work includes extending the method presented here to multidimensional simulations. In multi-
ple dimensions, the efficiency of the scheme could be improved by exploiting local variations in temporal
stiffness. We plan to exploit local variabilities by combining SDC-based algorithms (CISDC, and Multi-
Level SDC of Speck et al. (2015)) with block-structured adaptive refinement techniques, which will be
used to concentrate the computational effort – small time steps and finer spatial meshing – near local
structures in the flow. This will allow us to simultaneously deal with variability in temporal and spatial
resolution requirements, which typically are coincident in combustion problems. A further improvement
would consist in amortizing the cost of the fine sweeps by performing them in parallel, as in the Parallel
Full Approximation Scheme in Space and in Time (PFASST) scheme (Emmett and Minion, 2012).

As a final note, we mention an important but somewhat indirect benefit of our proposed concurrent
update scheme. Linear solvers play a key role in the implementation of the low-Mach projection algo-
rithm in multiple dimensions, both for the implicit diffusion and for the velocity projection operators.
However, linear solvers are notoriously difficult to scale up to the large processor counts typical of modern
massively parallel computing hardware. But because each of the algorithmic components in our scheme
are managed by a partitioned subset of the processors working in an “embarrassingly parallel” mode
with the other partitions, the requirements of the combined algorithm are reduced directly, by a factor
equal to the number of available concurrent tasks. In the DME model discussed in this work for example,
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the implicit diffusion of 39 chemical species can be performed independently, and independent of the
chemistry integration. While the parallelization of the diffusion step over the species can be implemented
in the original MISDC scheme, the results in this paper verify that we have developed an algorithm that
will allow unique access to a new axis of parallelism. Whether it can be exploited effectively depends
on the cost of communicating the subproblems across the machine, relative to the gains afforded by the
smaller pool of compute processors. Exploration of that trade-off will be the subject of future work.
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Appendix A. Derivation of the CISDCQ iteration matrix

We prove by induction on ` and m that the matrix form of the CISDCQ update equations (26)-(27)

leads to a relationship between Φ
(k+1,`+1)
m+1 and Φ(k) in the form of (58). We first introduce the matrices

Aκ,m+1 := I − κ∆tDm+1Q̃
I
, κ = {d, r} (A.1)

where I ∈ RM×M is the identity matrix, and Dm+1 ∈ RM×M contains only one non-zero entry, equal to
one, in slot (m+ 1,m+ 1), with the convention that D0 = 0. We first consider the first nested iteration
(` = 0). With the initialization procedure of (28) to (30), the diffusion update (26) in matrix form reads

Dm+1Φ
(k+1,1)
AD,m+1 = Dm+1

[
φ01 + s∆tφ0q + ∆t

(
sQ̃− aQ̃

E
− (d+ r)Q̃

I)
Φ(k)

]
+ a∆tDm+1Q̃

E(
(I −Dm)Φ(k+1,1)

m + DmΦ
(k+1,1)
AD,m+1

)
+ d∆tDm+1Q̃

I(
(I −Dm)Φ(k+1,1)

m + DmΦ
(k+1,1)
AD,m+1 + Dm+1Φ

(k+1,1)
AD,m+1

)
+ r∆tDm+1Q̃

I(
(I −Dm)Φ(k+1,1)

m + (Dm + Dm+1)Φ
(k+1,0)
m+1

)
. (A.2)

By construction of the vectors Φ
(k+1,`+1)
m+1 and Φ

(k+1,`+1)
AD,m+1 , only the (m + 1)th entry is modified at the

(m+ 1)th substep. Therefore, the following equalities hold

(I −Dm+1)Φ
(k+1,`+1)
AD,m+1 = Φ

(k+1,`+1)
AD,m , (A.3)

(I −Dm+1)Φ
(k+1,`+1)
m+1 = Φ(k+1,`+1)

m . (A.4)

Summing (A.2) and (A.3), and then multiplying the resulting equation by A−1d,m+1, we obtain

Φ
(k+1,1)
AD,m+1 = A−1d,m+1Dm+1

[
φ01 + s∆tφ0q + ∆t

(
sQ̃− aQ̃

E
− (d+ r)Q̃

I)
Φ(k)

]
+ A−1d,m+1

(
Bm+1Φ

(k+1,1)
m + Cm+1Φ

(k+1,1)
AD,m + Em+1Φ

(k+1,0)
m+1

)
, (A.5)

where the matrices Bm+1, Cm+1, and Em+1 depend on the matrices Q̃, Q̃
I
, and Q̃

E
, and on the scalars

m, ∆t, a, d, and r. The expression of these matrices is omitted for brevity. Next, we consider the reaction
update. In matrix form, the reaction update (27) is

Dm+1Φ
(k+1,1)
m+1 = Dm+1Φ

(k+1,1)
AD,m+1 + r∆tDm+1Q̃

I
(Dm + Dm+1)

(
Φ

(k+1,1)
m+1 −Φ

(k+1,0)
m+1

)
, (A.6)

which gives, after using (A.5) to eliminate Φ
(k+1,1)
AD,m+1,

Dm+1Φ
(k+1,1)
m+1 = Dm+1A

−1
d,m+1Dm+1

[
φ01 + s∆tφ0q + ∆t

(
sQ̃− aQ̃

E
− (d+ r)Q̃

I)
Φ(k)

]
+ Dm+1A

−1
d,m+1

(
Bm+1Φ

(k+1,1)
m + Cm+1Φ

(k+1,1)
AD,m + Em+1Φ

(k+1,0)
m

)
+ r∆tDm+1Q̃

I
(Dm + Dm+1)

(
Φ

(k+1,1)
m+1 −Φ

(k+1,0)
m+1

)
. (A.7)
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Summing (A.4) and (A.7), and then multiplying the equation by A−1r,m+1 leads to

Φ
(k+1,1)
m+1 = A−1r,m+1Dm+1A

−1
d,m+1Dm+1

[
φ01 + s∆tφ0q + ∆t

(
sQ̃− aQ̃

E
− (d+ r)Q̃

I)
Φ(k)

]
+ A−1r,m+1

(
Rm+1Φ

(k+1,1)
m + Sm+1Φ

(k+1,1)
AD,m + Tm+1Φ

(k+1,0)
m+1

)
. (A.8)

The expressions of Rm+1, Sm+1, and Tm+1 are obtained using (A.7). They depend on the matrices Q̃,

Q̃
I
, and Q̃

E
, and on m, ∆t, a, d, and r. Considering that (Dm +Dm+1)Φ

(k+1,0)
m+1 = (Dm +Dm+1)Φ(k),

we can use (A.5)-(A.8) to show by induction on m that (58) holds for ` = 0 and derive the expressions

for M
(1)
1,m+1, M

(1)
2,m+1, N

(1)
1,m+1, and N

(1)
2,m+1. The proof for ` ≥ 1 is analogous and is omitted here.
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