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Abstract

The evolutionary processes operating in the DNA regions that participate in the 

regulation of gene expression are poorly understood.  In Escherichia coli, we have 

established a sequence pattern that distinguishes regulatory from nonregulatory regions.

The density of promoter-like sequences, that are recognizable by RNA polymerase and 

may function as potential promoters, is high within regulatory regions, in contrast to 

coding regions and regions located between convergently-transcribed genes.  Moreover, 

functional promoter sites identified experimentally are often found in the subregions of 

highest density of promoter-like signals, even when individual sites with higher binding 

affinity for RNA polymerase exist elsewhere within the regulatory region.  In order to 

investigate the generality of this pattern, we have used position weight matrices 

describing the –35 and –10 promoter boxes of E. coli to search for these motifs in 43

additional genomes belonging to most established bacterial phyla, after specific 

calibration of the matrices according to the base composition of the noncoding regions of 

each genome.  We have found that all bacterial species analyzed contain similar 

promoter-like motifs, and that, in most cases, these motifs follow the same genomic 

distribution observed in E. coli.  Differential densities between regulatory and 

nonregulatory regions are detectable in most bacterial genomes, with the exception of 

those that have experienced evolutionary extreme genome reduction.  Thus, the 

phylogenetic distribution of this pattern mirrors that of genes and other genomic features 

that require weak selection to be effective in order to persist.  On this basis, we suggest 

that the loss of differential densities in the reduced genomes of host-restricted pathogens 

and symbionts is the outcome of a process of genome degradation resulting from the 

decreased efficiency of purifying selection in highly structured small populations. This

implies that the differential distribution of promoter-like signals between regulatory and 

nonregulatory regions detected in large bacterial genomes confers a significant, although 

small, fitness advantage.  This study paves the way for further identification of the 

specific types of selective constraints that affect the organization of regulatory regions 

and the overall distribution of promoter-like signals through more detailed comparative 

analyses among closely-related bacterial genomes. 
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Introduction

For both prokaryotes and eukaryotes, understanding of the organizational 

structure and mode of evolution of regulatory DNA sequences is incomplete.  Although 

in the Bacteria gene regulation involves fewer proteins and cis-regulatory DNA sites, and 

less complex interactions among them, recent findings suggest that the classical 

description of bacterial promoter regions may have been significantly oversimplified [1].

In Escherichia coli, RNA polymerase (RNAP) is composed of a core complex of α, β, β’

and ω subunits and one of a variety of σ factors, the primary one being σ70, which is 

essential for general transcription in exponentially growing cells.  The canonical model of 

the σ70 promoter is defined as a simple pair of hexamers, positioned at –35 and –10 bp 

from the transcription start (+1), with respective consensus sequences TTGACA and 

TATAAT, and separated by a spacer of 15 to 21 bp [2]. σ70 can recognize and bind –35

and –10 motifs that differ substantially from their consensus sequences, although 

mutations that bring these motifs closer to the consensi generally increase promoter 

strength [3].  On average, E. coli promoters preserve only 8 of the 12 canonical bases of 

the –35 and –10 hexamers [4,5].  It has been recently shown that most of the regulatory 

regions in E. coli do not contain a single promoter sequence, but rather display high 

densities of potential σ70 binding sites, forming clusters of overlapping promoter-like

signals.  In contrast, such signal densities are not detected in coding regions and regions 

located between convergently-transcribed genes [1].  Moreover, functional promoter sites 

identified experimentally are often found within the subregions of highest density of 

overlapping signals, even when individual sites with higher binding affinity for RNAP 

exist elsewhere within the region [1].

Even though the degeneracy of the σ70–binding promoter motifs ensures that new 

sites can evolve (i.e., appear and become fixed in populations) via local point mutation on 

short timescales [6], random fixation of mutations by neutral drift could not explain the 

different promoter-like signal densities between regulatory and nonregulatory regions of 

E. coli [1].  Moreover, it has been shown that natural selection acts to remove spurious 

occurrences of the two consensus words of the σ70 promoter (TTGACA & TATAAT) 

from both coding and noncoding regions in several eubacterial genomes, implying that it 
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is disadvantageous to maintain misplaced sites which can strongly bind σ70 and interfere 

with proper gene expression [7].  This suggests that the observed excess of promoter-like

signals in regulatory regions is likely to be the result of natural selection for some past or 

present function.

Here we report that differential densities of promoter-like signals between 

regulatory and nonregulatory regions are detectable in most bacterial genomes, with the 

exception of those that have experienced severe size reduction.  We argue that the 

phylogenetic distribution of this differential density pattern implies that this genomic 

feature is maintained by weak natural selection, and we discuss possible functional roles 

for the high redundancy of promoter-like signals in the regulatory regions of large 

bacterial genomes. 

Results and Discussion

In order to explore whether the differential promoter signal density pattern 

discovered in E. coli is common to other bacterial species, we conducted similar analyses 

for a representative set containing 43 additional genomes belonging to different genera 

across all major bacterial phyla.  This comparison is valid given that RNAP is 

evolutionarily conserved across Bacteria.  Moreover, there seems to be only one 

housekeeping σ70 factor present in any given species [8, 9], and all eubacterial σ70 protein 

sequences can be clearly aligned and contain highly similar motifs for the recognition and 

binding of –10 and –35 promoter sequences [10] (Figure 1).  This implies that the DNA 

sequences of promoter motifs in these organisms must also be similar to those found in E.

coli.  Therefore, we used in our searches position weight matrices (PWM) describing the 

–10 and –35 sequences determined in E. coli [1] and specifically calibrated to the base 

composition of strictly noncoding regions of each analyzed genome (Figure 2). 

Table 1 reports for every genome the consensus and average score of the detected 

–10 and –35 motifs.  The consensi were obtained after applying the COVER Function [1]

on the set of promoter-like signals found by the PWM search in the functional regulatory 

regions of each genome (see methods section).  From table 1, it can be seen that all the 

additional 43 species analyzed have consensus sequences for both motifs highly similar 
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to those of E. coli, as well as average scores of comparable magnitudes.  In fact, large 

GC-rich genomes (Pseudomonas, Ralstonia and most of the alpha-proteobacteria) display 

motif scores above those of E. coli, probably due to the greater compositional difference 

between the AT-rich motifs and the background genomic sequence.  In contrast, small 

GC-poor genomes have lower motif scores, with the insect endosymbiont 

Wigglesworthia displaying the lowest.

Table 2 shows the promoter-like signal density patterns detected for all the 

genomes analyzed.  Two main alternative profiles were obtained, as illustrated in Figure 

3 (profiles for all species analyzed are available in Figure S1 at 

http://www.ccg.unam.mx/Computational_Genomics/PromoterTools/Supplemental06/prof

.html).  Regulatory and nonregulatory regions contain differential densities of promoter-

like signals in 24 genomes, including genera belonging to phyla distantly related to E.

coli, such as the Firmicutes, the Actinobacteria, the Cyanobacteria and the Thermotogae.

Clearly, the presence of the pattern is highly dependent on genome size.  All genomes 

above 4 Mb display marked differences in promoter-like signals between regulatory and 

nonregulatory regions, whereas none of the genomes under 1.5 Mb do so.  Among the 

genomes of intermediate size, the pattern is detectable in 65% of the cases.  There is also 

a notable effect of GC content.  Although the differential signal densities can be seen in 

genomes of very different GC contents (from 30% GC Lactococcus lactis to 62% GC 

Ralstonia solanacearum and Caulobacter crescentus), overall, 75% of GC-rich genomes 

display the differential pattern, in contrast to 53% of those under 50% GC.

The observations here reported strongly suggest that the differential density of 

promoter-like signals in regulatory and nonregulatory regions of large bacterial genomes 

is maintained by natural selection.  First, the fact that this pattern is observed in 

phylogenetically-distant genomes argues against mutational biases being its main source, 

since mutational biases are known to vary among genomes, particularly when there are 

large differences in GC content.  Second, differential signal density is highly dependent 

on large genome size, and is completely absent from most of the small genomes of 

animal parasites and symbionts with an intracellular or predominantly host-restricted

lifestyle (Mycoplasma, Ureaplasma, Treponema, Borrelia, Campylobacter, Rickettsia, 

Buchnera and Wigglesworthia).
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Degradation of Regulatory Functions in the Small Genomes of Host-Restricted

Bacteria

Acquisition of such obligate dependence on a host is known to have many 

deleterious consequences, collectively known as genome degradation or genome 

reduction [12]. Reduced genomes have independently evolved many times within several 

bacterial phyla, repeatedly undergoing rapid sequence evolution and acquiring extremely 

low GC content, often with clearly maladaptive consequences, including accumulation of 

deleterious amino acid substitutions and loss of adaptive codon biases [13,14]. Typical

changes also include a large increase in the frequency of mobile elements in the early 

phases of genome degradation, chromosomal rearrangements mediated by recombination 

among these elements, pseudogene formation, and deletions of varying size.  There is 

recent evidence that genome degradation also affects gene regulation, due to losses of 

certain promoter sequences, specialized σ factors and regulatory proteins [15-17].  These 

common changes likely reflect a diminished capacity of reduced genomes to respond to 

natural selection, conducing to the accumulation of all types of moderately deleterious 

mutations that would normally be purged from the genomes of free-living bacteria.  This 

lowered effectiveness of purifying selection is due to the subdivided population structure 

imposed by confinement within a host, which limits the effective size of the bacterial 

population by subjecting it to recurrent bottlenecks and by thwarting opportunities for 

recombination with close relatives [18].  In addition, different types of molecular 

evolutionary analyses indicate that the rate of generation of point mutations is accelerated 

in reduced genomes [19, 20].

We argue that a decrease in the efficiency of purifying selection in host-restricted

bacteria allows promoter-like signals to rapidly accumulate all along the genomic 

sequence of these organisms, causing the loss of differential signal density patterns.  This 

interpretation is based on the following evidence: (i) simulation results demonstrating

that transcription factor binding sites can rapidly appear as a consequence of local point 

mutations on short timescales without invoking selection [6]; (ii) the observation that 

natural selection can act to remove spurious transcription factor binding sites from 

nonregulatory regions in many bacterial genomes, with a weak strength similar to that of 
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selection on adaptive codon bias [7]; (iii) empirical and theoretical results demonstrating 

that the effectiveness of selection is diminished in the small, highly-structured

populations of host-restricted bacteria [12-18]; (iv) the finding that promoter-like

sequences in these organisms show a certain degree of degradation reflected in their 

decreased scores for the –10 and –35 motifs (table 2), suggesting an overall reduction of 

the efficiency of selection on regulatory function; and (v) the fact that the nonregulatory 

regions of host-restricted bacteria present a frequency of promoter like-signals similar to 

the highest frequency peak found inside the regulatory regions of their commensal or 

free-living relatives (Fig. 4).  Figure 4 shows the frequency of promoter-like signals in 

Buchnera aphidicola, Mycoplasma genitalium and their relatives Escherichia coli and 

Bacillus subtilis.  The increased frequency of promoter-like signals could have regulatory 

implications by making it more difficult for RNAP to correctly identify regulatory 

regions and the functional promoters within them.  In that case, one could expect a slow 

response to changes in cellular conditions and/or a decreased level of gene expression. 

To further test whether genome degradation produces loss of differential signal 

densities, we decided to compare signal density patterns between a genome that has 

recently entered a process of degradation and close relatives evolving under stronger 

purifying selection.  Our initial analyses pinpointed Mycobacterium leprae, the obligate 

intracellular pathogen that causes leprosy, as one of the rare genomes above three Mb for 

which differential promoter signal densities are not detected.  However, although the 

genome of M. leprae remains relatively large (3.27 Mb) and GC-rich (58% overall), it is 

clearly decreasing in size and GC content relative to its closest relative, M. tuberculosis 

(4.41 Mb and 65.6% overall GC).  Genome comparisons between different mycobacterial 

species indicate that M. leprae has also undergone massive gene decay by 

pseudogenization and deletion, as well as numerous genomic rearrangements likely due 

to the proliferation of IS elements [21].  As we expected, analyses of promoter-like

signals in two strains of M. tuberculosis do reveal the differential signal densities 

characteristic of large genomes (Figure 4).  Both M. tuberculosis  strains display higher 

average scores than M. leprae for the –35 and –10 promoter motifs (Table 3), supporting 

the idea that the leprosy bacillus is undergoing a general degradation of its regulatory 

sequences.



8

Potential Functions of the Promoter-like Signals.

In the course of our analyses, we identify two types of promoter-like signal 

densities: a global density and a local density [Figure 4 and 7 in reference 1]. The global 

density is obtained during the search for the -10 and -35 motifs using position weight 

matrices.  In E. coli, this search produces an average of 38 signals per 250 bp regulatory 

region, which may be distributed evenly across the sequence or present different levels of 

overlap. The second type of density, the local density, results from applying the COVER 

function on the set of 38 signals; it produces 4.7 signals in average, most of which exist 

as a series of overlapping potentially competing RNA polymerase binding sites. The 

average size of these clusters of overlapped signals is 42 bp. 74% of the E. coli

experimentally mapped promoters are embedded in this kind of clusters [1].   We suggest 

that each of these types of densities may be maintained by natural selection for very 

different reasons.

Global density of promoter-like signals in regulatory regions.

It is most likely that the global density is largely built by promoter-like signals 

that do not substitute the function of the primary promoter which has to respond to a 

given cellular condition; this would be the case if the majority of detected signals could 

bind RNAP and form a closed complex but were not able to proceed with the subsequent 

steps required to initiate transcription.  However, a subset of these promoter-like signals 

could be just a single point mutation away from being able to operate as active 

transcription initiation sites.  These could be called cryptic promoters, in analogy to 

cryptic genes that can be activated by single mutations.  Some cryptic promoters could be 

relics of ancient promoters, indicating the high frequency of changes in regulatory 

regions.  This high frequency correlates with the observed high flexibility in the evolution

of transcriptional regulators in bacteria [22].

The permanence of cryptic promoters in the regulatory regions of bacteria could 

be facilitated by different kinds of evolutionary processes.  First, they could constitute a 

collection of “back up” promoter sequences, maintained by selection for robustness.

Bacteria having redundant signals capable of acquiring functionality with a single base 
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change would increase in frequency in the population, because a fraction of their 

descendent cells would carry such activating mutations and would be able to survive in 

the advent of a deleterious mutation that destroyed the main promoter.  In other words, 

the existence of multiple potential promoters would minimize the deleterious effects of

genetic mutations on gene expression.  In addition, for bacterial species prone to 

encounter a variety of environments, the existence of cryptic promoters of different 

strength could also allow for rapid evolution of changes in gene expression allowing 

adaptation to environmental changes.  Taking into account that for sigma 70 

transcription, the precise positioning of the regulatory proteins strongly determines their

positive or negative role [23], this large availability of promoters-like sequences provides 

a fertile ground for quick changes in the role of regulatory proteins. Those changes have 

been proposed to depend on the demand of gene expression in a model where selection 

governs changes in gene regulation [24].

It is also possible that some of the signals detected in regulatory regions are not 

cryptic, but rather fully functional promoters that are utilized only in special conditions.

Although, in general, the site of transcription initiation is known to be rather precise, 25% 

of the reported regulatory regions in E. coli are known to harbor multiple functional 

promoters, three on average [1, 25].  The simultaneous availability of alternative 

promoters for a given gene would provide plasticity of gene expression in response to 

different conditions regularly encountered by the bacterial cell. 

The regulatory region of the E. coli lac operon exhibits signals of both types. Six 

promoter sequences have been experimentally detected in close proximity to the primary 

lac promoter (lacP1).  Four signals were created via single base pair mutations in the 

wild sequence, and two were detected in vivo as weak promoters that function when the 

primary promoter is impaired and its activator protein is absent [26,27].

Finally, the global density of promoter-like motifs in the regulatory regions could

be bringing the polymerase near to the promoter during the random DNA search prior to 

forming closed complexes, by attracting the enzyme to the general vicinity of the 

functional promoter.  However, kinetic studies suggest that this might only result in a 

minor increase of the rate of formation of closed complexes (Jay D. Gralla personal 
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communication).

Local density of overlapping promoter-like signals .

 Overlapping promoter-like signals could play a regulatory role through functional

interaction with the true promoter sequence, and their effect on regulation could be 

negative or positive.

Overlapping signals could negatively affect regulation by:

1) Competition.  The overlapping promoter-like signals might play a negative role 

if their interaction with RNAP were competitive. When two or more promoters are in 

close proximity, the potential exists for competition between them for the binding of 

RNAP [28]. Regulatory proteins play an important role in helping RNAP to choose the 

functional promoter sequence according to specific conditions.  The regulation of the gal

gene is an example of the effect of regulatory proteins on the positioning of RNAP 

between two competing promoters [29].

2) Pause induction. The promoter-like signals could also induce pauses in the 

early steps of elongation when σ70 is still bound to core RNAP. The strongest evidence 

indicating that σ70 can play a functional role during elongation comes from studies of the 

bacteriophage λ PR’ promoter and the lacUV5 promoter. Biochemical experiments have 

shown that σ70-dependent pause occurs during early elongation in these promoters after 

RNAP has escaped from the promoter and synthesized a 16- or 17-nt transcript. This 

pause is mediated by protein-DNA interaction between σ70 and a DNA sequence element 

in the initially transcribed region that resembles a promoter -10 element [30, 31].

Positive effects of overlapping signals may include: 

1) Alternate transcription. The promoter-like signals could be noncompetitive 

weak promoters that, in the absence of activation of the primary promoter, produce basal 

transcription of downstream genes.  For example, transcription units that encode their 

own regulator would require constitutive levels of basal transcription.

2) Repositioning. The overlapping promoter-like signals might also play a 

positive role by collecting RNAP molecules which could then be channeled to the 
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primary promoter sequence [32].

Conclusion.

Clearly, the distribution of the differential pattern of promoter-like signal 

densities among bacterial genomes mirrors that of genes and other genomic features that 

require weak selection to be effective in order to persist. This implies that the differential 

density of promoter-like signals between regulatory and nonregulatory regions confers 

some small but significant fitness advantage. Therefore, the outcome of gene regulation 

can be affected by factors much beyond the sequence of a single pair of RNAP binding 

sites in a given regulatory region, including the general abundance and organization of 

promoter-like signals in the region, as well as the presence of signals in the non-

regulatory portions of the genome. Identification of the specific types of selective 

constraints that shape the number, position and arrangement of promoter-like signals 

across the different genomic regions of large bacterial genomes will require further 

comparative analyses among closely-related bacteria.

Materials and Methods

The promoter model we adopted for our searches was Matrix_18_15_13_2_1.5

(Figure 2), defined through a thorough evaluation of more than 200 E. coli matrix pairs 

that optimized different criteria [1].  This model contains the canonical consensus 

sequences for both the –10 and –35 motifs, and outperformed all others according to 

measures of sensitivity, specificity, precision and accuracy [1].

The strategy to find promoters-like signals in other genomes involved several 

steps:

(i) The base composition of the strictly noncoding regions of the genome to 

be analyzed was obtained and used to define the a priori probabilities of 

each base.

(ii) The frequency matrices obtained from the E. coli genome for the –10 and 

–35 boxes were calibrated with the a priori  probabilities of the analyzed 

genome using the PATSER program [33, 34]:
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where f(b,l) is the relative probability of the base b at the position l of the 

input E. coli matrix and p(b) is the a priori probability of base b in the 

analyzed genome (calculated in (i)).

(iii) In order to define which motifs would be considered significant promoter-

like signals in the different target genomes, we determined minimal cutoff 

scores that would retain 98% of the original motifs from functional σ70

promoters that were used in generating the E. coli frequency matrices.

With this aim, the original E. coli motifs were rescored according to the a

priori probabilities by means of PATSER and the statistical distribution 

(mean and standard deviation) of E. coli motif scores in that genome was 

obtained.  For each of the genomes, the score, Iseq, of a motif of size L,

according to the corresponding a priori probabilities calculated in (i), was 

obtained as:
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where n is the number of sequences in the input E. coli matrix alignment.

(iv) To conduct the density analysis, three kinds of regions were defined in 

each genome according to NCBI annotations: coding, convergent, and 

strictly noncoding (which excludes the convergent regions).  Convergent 

regions are analyzed separately because they are not expected to contain 

any functional promoters. Using PATSER, we searched each genomic 

region for -10 and -35 motifs with the corresponding calibrated matrices, 

and retained the motifs that scored above the respective cutoff.

(v) An analysis of under/over-representation using a log-likelihood statistic 

was done to determine if the genome had an excess density of promoter-

like signals in potentially regulatory regions (the strictly non-coding
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regions) when compared against coding and noncoding regions between 

convergent genes. 

(vi) For genomes with significant over-representation of promoter-like signals 

in regulatory vs. convergent noncoding regions (p < 0.001), we estimated 

the most likely functional promoters in the genome.  To this aim, we 

predicted transcriptional units (single genes and operons) with the method 

of Moreno-Hagelsieb and Collado-Vides [11], which relies on the 

distribution of distances between genes in a given genome.  The set of 250 

bp sequences upstream of the first gene of every transcription unit is likely 

to constitute the smallest set of regulatory regions required for the 

expression of all genes in a genome, and should contain the highest 

proportion of true functional promoters.  We applied the COVER function 

on the collections of PATSER motifs from this set of regulatory sequences 

having scores above the cutoff value. COVER has been designed to select 

the most likely functional promoters from a conglomerate of promoter-like

signals by means of a “divide and conquer” strategy based on partial 

sorting [1].   The resulting COVER-predicted promoters in these 

regulatory regions were taken as the most likely functional promoters in 

that genome. 
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Figure Legends

Figure 1. Schematic representation of the main interactions of RNAP with

promoter DNA and alignment of the σ70 motifs for recognition and binding of –10

(2.4 region) and –35 promoter sequences (4.2 region) for representative eubacteria.

CLUSTALW was used to generate the alignment with default parameters 

(http://www.ebi.ac.uk/clustalw) [35].

Figure 2.  Frequency matrices for the –10 and -35 motifs of σ70 promoters in E. coli.

This matrix pair (Matrix_18_15_13_2_1.5) was selected for searching across bacterial 

genomes from a collection of optimized matrices defined for E. coli in [1].  Note that in

order to compare these matrices with the canonical patterns (TTGACA and TATAAT), 

the spacers of 13 bp to 19 bp between the two boxes correspond to the 15 bp to 21 bp 

reported in the literature, as the TGT triplet is considered as part of the -10 box.  Before

searching for promoter-like signals, these matrices were calibrated using the base 

composition of each target genome.

Figure 3. Signal Density in regulatory vs nonregulatory regions of large and small 

eubacterial genomes. Regulatory regions are the ones found between divergent genes; 

they include 500 bases upstream and 500 bases downstream of the start of the gene 

(position 0).  Coding regions contain genes with sizes above 1Kb; from those genes, the 

middle point was taken as the position 0 and 500 bases upstream and 500 bases 

downstream of this position were included.  For Convergent regions, the end of the 3’ 

gene was taken as position 0 and 500 bases upstream and 500 bases downstream of this 

position were included.  The number of signals was averaged within intervals of 10 bp. 

Figure 4. Signal density in regulatory vs nonregulatory regions of M. tuberculosis

and M. leprae. Region definition and methodology as in Figure 3. 
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Tables

Table 1. -10 and -35 consensi and corresponding average scores for σ70 promoter-

like signals in representative bacterial genomes. Promoter-signal searches were 

performed with E. coli Matrix_18_15_13_2_1.5 (Figure 2), calibrated with the base 

composition of the strictly noncoding regions of the corresponding genome, as described 

in Material and Methods. Consensi and average scores are reported for the subset of 

promoter-like signals most likely to contain functional promoters within each target 

genome.

Table 2.  Density patterns of σ70 promoter-like signals in eubacterial genomes.

Species are ordered by genome size to highlight the impact of this character on the 

presence of the differential density pattern.  The overall similarity to E. coli is a measure 

based on the similarities of all orthologs between two genomes [36]. The values in the 

last three columns are based on the most likely functional promoters selected by COVER 

and were obtained only for those genomes showing an excess of signals in regulatory vs. 

convergent noncoding regions by a log-likelihood test (p < 0.001).

Table 3. -10 & -35 consensi and average scores for the degrading genome of M.

leprae and its close relative M. tuberculosis. The %GC is for noncoding DNA.
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#NCBI Species -10 box Consensus -10
Average

Score

-35 box Consensus -35
Average

Score
NC_000853 Thermotoga_maritima G T T A T A A T 2.26 A A C T T G A A A 1.53
NC_000907 Haemophilus_influenzae G T T A A A A T 2.15 A A A T T G A A A 1.42
NC_000908 Mycoplasma_genitalium G T T A A A A T 1.86 A A A T T G A A A 1.43
NC_000911 Synechocystis_PCC6803 G T T A A A A T 2.62 A A A T T G A A A 1.55
NC_000912 Mycoplasma_pneumoniae A T T A A A A T 2.26 C|T T A T T T A A A 1.58
NC_000913 Escherichia_coli_K12 G T T A T A A T 2.79 A A A T T G A A A 1.77
NC_000915 Helicobacter_pylori_26695 T T T A A A A T 2.44 A A A T T T A A A 1.39
NC_000918 Aquifex_aeolicus T T T A A A A T 2.52 A T C T T T A A A 1.47
NC_000919 Treponema_pallidum G G T A T A A T 2.52 C T C T T G A C G 1.54
NC_000964 Bacillus_subtilis G T T A T A A T 2.77 A T A T T G A A A 1.66
NC_001318 Borrelia_burgdorferi T T T A T A A T 1.94 A A A T T T A A A 1.33
NC_002162 Ureaplasma_urealyticum T T T A A A A T 1.68 A A A T T T A A A 1.26
NC_002163 Campylobacter_jejuni T T T A A A A T 2.41 A A A T T T A A A 1.34
NC_002179 Chlamydophila_pneumoniae_AR39 T T T A T A A T 2.34 A T A T T T A A A 1.48
NC_002488 Xylella_fastidiosa G T T A T A A T 2.53 C A A T T G A A A 1.70
NC_002505 Vibrio_cholerae G T T A A A A T 2.35 C A A T T G A A A 1.57
NC_002516 Pseudomonas_aeruginosa G T T A T A A T 3.75 C T C T T G A A A 2.51
NC_002620 Chlamydia_muridarum T T T A T A A T 2.29 A T A T T G A A A 1.44
NC_002662 Lactococcus_lactis G T T A A A A T 2.28 A A A T T T A A A 1.44
NC_002663 Pasteurella_multocida G T T A T A A T 2.40 A A A T T G A A A 1.50
NC_002677 Mycobacterium_leprae G T T A A A A T 2.90 C A A T T G A C A 1.60
NC_002678 Mesorhizobium_loti A T C A A T A|C T 2.98 A A C T T G A C A 1.95
NC_002696 Caulobacter_crescentus G T T A T C A T 3.27 C G C T T G A C G 2.00
NC_002758 Staphylococcus_aureus_Mu50 T T T A T A A T 2.21 A A A T T T A A A 1.33
NC_003030 Clostridium_acetobutylicum T T T A T A A T 2.14 A A A T T T A A A 1.24
NC_003047 Sinorhizobium_meliloti G T T A T A A T 2.99 C G C T T G A A A 2.17
NC_003062 Agrobacterium_tumefaciens_C58 G T T A T A A T 2.67 C T A|C T T G A C A 1.96
NC_003098 Streptococcus_pneumoniae_R6 G T T A T A A T 2.43 A A A T T G A A A 1.55
NC_003103 Rickettsia_conorii G T T A T A A T 2.06 A A A T T T A A A 1.38
NC_003112 Neisseria_meningitidis_MC58 G T T A A A A T 2.79 A A A T T G A A A 1.76
NC_003198 Salmonella_typhi G T T A T A A T 2.99 A A A T T G A A A 1.94
NC_003212 Listeria_innocua G T T A T A A T 2.36 A A A T T G A A A 1.41
NC_003272 Nostoc_sp G T T A A A A T 2.34 A A A T T G A A A 1.53
NC_003295 Ralstonia_solanacearum G T T A T A A T 3.75 C A A T T G A A G 2.25
NC_003317 Brucella_melitensis G T T A T A A T 2.87 A A A T T G A A A 1.97
NC_003366 Clostridium_perfringens T T T A T A A T 1.94 A A A T T T A A A 1.17
NC_003450 Corynebacterium_glutamicum G T T A A A A T 2.77 A A A T T G A A A 1.80
NC_003454 Fusobacterium_nucleatum T T T A T A A T 1.88 A A A T T T A A A 1.21
NC_004088 Yersinia_pestis_KIM G T T A T A A T 2.73 C A A T T G A A A 1.66
NC_004337 Shigella_flexneri_2ª G T T A T A A T 2.96 C T A T T G A A A 1.82
NC_004344 Wigglesworthia_brevipalpis T T T A T A A T 1.55 A A A T T T A A A 0.67
NC_004463 Bradyrhizobium_japonicum G C T A A A A T 3.32 A A C T T G A C A 2.03
NC_004545 Buchnera_aphidicola T T T A A A A T 1.93 A A A T T T A A A 0.74

Table 1. 
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Species Genome
Size(Mb)

%GC in
NonCoding

DNA

%Overall
Similarity
to E.coli

%Identity to 
E.coli rpoD

Over
Representation

of Signals

%Genes
with

Clusters

Signals
by

Cluster

%Signals
in

Clusters

M_genitalium 0.58 33 28 -- no - - -
B_aphidicola 0.62 18 57 74 no - - -
W_brevipalpis 0.70 15 55 73 no - - -
U_urealyticum 0.75 23 28 49 no - - -
M_pneumoniae 0.82 34 27 -- no - - -
B_burgdorferi 0.91 23 29 31 no - - -
C_muridarum 1.07 37 28 38 no - - -
T_pallidum 1.14 55 27 36 no - - -
C_pneumoniae_AR39 1.23 35 28 40 no - - -
R_conorii 1.27 31 32 45 no - - -
A_aeolicus 1.55 41 30 38 no - - -
C_jejuni 1.64 25 31 38 no - - -
H_pylori_26695 1.67 32 30 37 yes 100 3.66 88
H_influenzae 1.83 34 57 67 no - - -
T_maritima 1.86 42 28 57 yes 88 2.76 75
S_pneumoniae_R6 2.04 34 30 65 yes 98 3.53 83
B_melitensis 2.12 50 34 49 yes 77 2.35 72
F_nucleatum 2.17 25 31 60 no - - -
P_multocida 2.26 35 56 71 yes 99 3.64 85
N_meningitidis_MC58 2.27 46 42 52 yes 90 2.91 78
L_lactis 2.37 30 31 61 yes 99 3.59 85
X_fastidiosa 2.68 47 40 59 yes 83 2.65 75
A_tumefaciens_C58_Cereon 2.84 53 34 47 yes 70 2.13 70
S_aureus_Mu50 2.88 29 31 61 no - - -
V_cholerae 2.96 43 54 76 yes 94 3.21 84
L_innocua 3.01 34 32 61 yes 98 3.52 83
C_perfringens 3.03 24 31 68 no - - -
M_leprae 3.27 54 29 48 no - - -
C_glutamicum 3.31 48 29 54 yes 89 3.03 81
Synechocystis_PCC6803 3.57 42 29 59 yes 96 3.31 81
S_meliloti 3.65 58 34 48 yes 62 1.82 65
R_solanacearum 3.72 62 40 57 yes 63 1.82 70
C_acetobutylicum 3.94 27 31 63 no - - -
C_crescentus 4.02 62 32 49 yes 43 1.15 55
B_subtilis 4.21 38 32 68 yes 90 2.84 76
Y_pestis_KIM 4.60 42 70 91 yes 97 3.76 84
S_flexneri_2a 4.61 44 97 100 yes 95 3.38 82
E_coli_K12 4.64 43 100 100 yes 92 3.12 80
S_typhi 4.81 44 87 98 yes 97 3.32 84
P_aeruginosa 6.26 61 45 66 yes 60 1.79 69
Nostoc_sp 6.41 36 28 60 yes 98 3.63 84
M_loti 7.04 58 33 48 yes 55 1.53 60
B_japonicum 9.11 60 33 46 yes 58 1.71 64

Table 2.
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Species Genome
Size(Mb) %GC -10 box Consensus

-10
Average

Score
-35 box Consensus

-35
Average

Score
M. leprae 3.27 54 G T T A A A A T 2.90 C A A T T G A C A 1.60
M. tuberculosis 
CDC1551 4.40 64 G T T A T C A T 3.08 C A C T T G A C G 1.76

M. tuberculosis 
H37Rv 4.41 62 G T T A T A A T 3.17 C A C T T G A C A 1.78

Table 3. 

Supporting Information

Figure S1. Signal Density in regulatory vs nonregulatory regions for all analyzed

eubacterial genomes.  Figure S1 can be viewed at 

http://www.ccg.unam.mx/Computational_Genomics/PromoterTools/Supplemental06/prof

.html.
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