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ABSTRACT OF THE DISSERTATION 

 

Improving the understanding of the spatiotemporal variability of hydrometeorology across the 

Sierra Nevada using a novel remote sensing reanalysis approach 

 

by 

 

Laurie Susan Huning 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2017 

Professor Steven Adam Margulis, Chair 

 

While large populations worldwide depend on water derived from the seasonal 

snowpack, a detailed picture of the spatiotemporal variability of snowfall and snow water 

equivalent (SWE) across high-elevation mountain ranges remains a knowledge gap in 

understanding the hydrologic cycle. Previous studies relying on point-scale in situ measurements 

often yielded spatially incomplete characterizations of montane snow accumulation processes 

(e.g. orographic snowfall). These limitations were overcome in this dissertation by using a novel, 

high-resolution distributed snow reanalysis over Sierra Nevada, USA from 1985-2015. Across 

the 20 basins examined, over 50% of the integrated cumulative snowfall (CS) accumulated 

rapidly in less than or equal to six days or three snowstorms, on average, and the largest 

snowstorms yielded an average 27% of the seasonal CS. Results suggest that misrepresentation 

of a single snowstorm could lead to significant biases in CS. The hydroclimatology of the Sierra 

Nevada was found to be driven by extremes as manifested in the high inter-annual variability of 



 

 

iii 

its seasonally-integrated CS, 4.4-41.3 km
3
, over the record. Seasonal orographic CS gradients 

were shown to be highly variable, ranging from over 15 cm SWE/100 m to under 1 cm/100 m. 

Hence, the seasonal/elevational distribution of water storage can greatly vary with the western 

Sierra Nevada experiencing about twice as much orographic enhancement during wet years as in 

dry years. Among the largest winter snowstorms, moisture-rich atmospheric rivers (ARs) 

significantly contribute to the seasonal CS. Using both satellite-based integrated water vapor and 

reanalysis-based integrated vapor transport methods, AR-derived CS was found to be more 

orographically enhanced than non-AR derived CS above ~2200 m in the western Sierra Nevada; 

however, the understanding of the AR-derived CS distribution and enhancement is tightly 

coupled to the AR detection method applied. ARs were shown to contribute from ~33-56% of 

the seasonal CS, on average from 1998-2015, depending on the AR detection method utilized. 

Overall, more robust characterizations of the spatiotemporal variability and climatology of 

snowfall distributions, atmospheric drivers of snowfall, and accumulation rates than previously 

existed were provided. The resulting insight could be used for improving water resources 

management and hydrologic analysis as well as evaluating climate model snowpack estimates 

and improving their representation of subgrid snow processes (e.g. orographic snowfall).   
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Chapter 1: Introduction 

1.1 Background and Motivation 

With over one-sixth of the global population depending on seasonal snowmelt as their 

major source of water [Barnett et al., 2005], hydrologically-significant snow-covered montane 

systems warrant further study. Large populations across the western United States greatly rely on 

snowmelt-derived streamflow from high-elevation basins for their water resources, especially 

during seasons with low amounts of precipitation [Mote et al., 2005]. In particular, semiarid 

California, with a population approaching 40 million [US Census Bureau, 2017], derives over 

60% of its developed water resources [Downing, 2015] and 75% of its water supply for 

agriculture from the Sierra Nevada [Rosenthal and Dozier, 1996].  

Regions such as California that have a high dependence on seasonal snowmelt may be 

particularly susceptible to changes in the climate. For instance, studies have shown that the 

Sierra Nevada snowpack has shifted toward earlier melt with earlier peak streamflow due to a 

warming climate [Mote et al., 2005; Kapnick and Hall, 2010]. Changes in the distribution and 

timing of snowfall, snowmelt, and streamflow have implications on water resources management 

and operational systems, which often rely on a combination of observations and model 

predictions to assess/forecast snowfall accumulation, snowpack size, and streamflow rates. An 

improved understanding of physical snow processes, snowfall distributions, and the variability of 

the montane snowpack at sub-seasonal, seasonal, and decadal scales would therefore have direct 

societal benefits. 

Snow cover plays a critical role in both the water and energy budgets in many regions, 

impacting local and regional climate, atmospheric circulations, ecological systems, etc.  In 

mountainous regions, snowfall or snow water equivalent (SWE) accumulates during the winter 
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and acts as a ―water tower‖ [Viviroli et al., 2007] that releases water as seasonal snowmelt in the 

spring. The montane snowpack accumulates from the combination of wintertime synoptic storms 

and orographic lifting. Simply described, as moist air is forced over a mountain barrier, it cools, 

water vapor condenses, clouds form, and orographic precipitation occurs along the windward 

side of a mountain. This can result in a rain shadow that yields distinct hydroclimatologies on the 

windward and leeward sides of a mountain range.  

The snowfall that is delivered to the Sierra Nevada (Figure 1.1) each year is derived from 

relatively few snowstorms, leading to high inter-annual variability in snowfall and rapid 

accumulation rates across the range [Serreze et al., 2001; O’Hara et al., 2009; Lundquist et al., 

2015]. Among the storms that occur each season over the range, elongated moisture-rich low-

level jets known as atmospheric rivers (ARs) are often among the largest [Guan et al., 2010]. 

With their copious moisture and significant horizontal vapor transport, landfalling ARs promote 

orographic precipitation as they interact with mountainous terrain. Not only have ARs been 

estimated to yield ~30-40% of the total seasonal snowfall each winter in the Sierra Nevada 

[Guan et al., 2010], but they are often associated with some of the most costly floods across 

California [e.g. Ralph et al., 2006; Dettinger et al., 2011].  

1.2 Need for Detailed Distributed Snowfall Analysis and Existing 

Science Gaps 

Though it is well-known that montane precipitation is highly variable, previous snowfall 

studies have often utilized point-scale measurements with relatively long temporal records, but 

incomplete spatial coverage [e.g. Aguado, 1990; Dettinger et al., 2004; Rutz and Steenburgh, 

2012; Rutz et al., 2014; Guan et al., 2012, 2016; Lundquist et al., 2015]. Gridded datasets have 

been used to study montane snowfall over the Sierra Nevada [e.g. Guan et al., 2010; Kirchner et 
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al., 2014], but were often relatively coarse (1 km or more) or were high-resolution, but 

temporally sparse. Global circulation models (GCMs) and regional climate models (RCMs) have 

also been utilized to simulate montane snow processes; however, they often severely smooth 

complex topography, resulting in poor representations of snowfall distributions and orographic 

processes across mountainous terrain [Leung and Ghan, 1995; Cayan et al., 2008].  

Conclusions drawn from montane studies are largely driven by the spatial scale used to 

represent the snowpack, whereby focusing on a limited spatial extent or coarsely sampling the 

snowpack may underestimate variability in highly heterogeneous complex terrain [Clark et al., 

2011]. Although the Sierra Nevada (Figure 1.1) is one of the most densely sampled mountain 

ranges across the globe [Margulis et al., 2016], less than 1% of the range or about 1 in 700 km
2
 

is sampled by automated snow sensors [Guan et al., 2013b]. Figure 1.1 shows the distribution of 

the in situ snow pillow sensors from the California Department of Water Resources 

(http://cdec.water.ca.gov/snow/current/snow/index.html), which were used for snowfall 

verification in Chapter 2. The large topographic variability (e.g. elevation, slope, and aspect) and 

heterogeneity of the surface conditions (e.g. roughness, vegetation, albedo, etc.) in complex 

mountainous areas can contribute to localized orographic effects and atmospheric circulations 

that result in highly variable precipitation patterns [Dettinger et al., 2004; Lundquist et al., 

2010]. While synoptic atmospheric conditions often produce snowfall events, heterogeneous 

surface conditions and flow patterns impact snowfall accumulation, melt, and land-atmospheric 

feedbacks. Even through orographic snowfall/precipitation processes are known to be important 

in mountainous regions, many questions remain about the snowfall distribution (e.g. 

spatial/temporal/elevational), the cumulative snowfall (CS) volume, and snowfall variability at 

high-elevations across basins and entire mountain ranges [Lehning, 2013; Kirchner et al., 2014].   
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While the source of the snowfall measurement itself was discussed above, it is also 

important to gain better insight into how a variety of sources of atmospheric information may 

influence the diagnosed contribution of specific meteorological events (e.g. ARs) to the seasonal 

snowfall. For instance, remote sensing and atmospheric reanalyses can each be used to diagnose 

when historic ARs occurred. However, since they utilize different physical variables and 

detection algorithms, questions exist about how an AR detection method may lead to differences 

in estimating AR contributions to orographic enhancement and the seasonal snowfall across a 

mountain range.  

1.3 Science Questions  

Although significant advancements continue to further the existing understanding of the 

seasonal snowpack accumulation in complex montane terrain, the following overarching open 

science questions motivate this dissertation:  

 How is snowfall (depth and volume) distributed in space and time (e.g. inter-annually and 

climatologically) across a mountain range?  

 To what extent do large-scale atmospheric features (e.g. moisture and wind fields) drive 

the orographic enhancement of snowfall across a mountain range?  

 To what extent does the existing understanding of the importance of meteorological 

events to the seasonal snowfall distribution depend on the datasets and methodologies 

used to detect those events?  

 The primary thrust of this dissertation is to develop better physical insight into montane 

snow processes and snowfall distributions so that applications ranging from operational water 

resources management to regional climate modeling can ultimately be informed/improved from 

insight described herein. This work moves toward a more complete understanding of the 
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historical accumulation season, the reliability of snowfall estimates from a state-of-the-art snow 

reanalysis, and the sensitivity of AR-derived snowfall diagnoses to AR detection methods over 

the Sierra Nevada. To extend the current understanding of the spatiotemporal variability of snow 

processes (e.g. orographic snowfall) and states, this dissertation uses a novel, multi-decadal high-

resolution distributed snow reanalysis over the Sierra Nevada [Margulis et al., 2016] to yield 

better insight into snowfall distributions and climatology (Chapter 2), orographic enhancement 

processes (Chapter 3), and the importance of AR-derived snowfall (Chapter 4) than previously 

possible. One aim of the more comprehensive assessment of basin-scale to mountain range-scale 

processes provided herein is to fill the gap between the point-scale data-driven studies and the 

large-scale numerical studies with the use of the snow reanalysis across the major basins in the 

Sierra Nevada (Figure 1.1).  

This dissertation is driven by the following specific science questions, which were 

grouped below by chapter. The primary aim of Chapter 2 is to improve the characterization of 

the hydroclimatology of the Sierra Nevada by examining its snowfall distribution and 

accumulation rates to answer the following questions:  

 What is the climatology (spatial/elevational/seasonal distribution and inter-annual 

variability) of snowfall events and the cumulative snowfall over the Sierra Nevada?  

 When do the largest snowstorms occur during the accumulation season?  

 What fraction of the seasonal cumulative snowfall do the largest snowstorms represent 

across the range? 

Chapter 3 extends previous orographic analyses with the aim of better characterizing the inter-

annual and spatial variability of orographically-driven snowfall gradients across the Sierra 

Nevada. The main thrust of this work is to answer:  
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 How is orographically-driven snowfall manifested across the windward (western) side of 

the Sierra Nevada?  

In particular, this study also provides insight into the following:  

 How can the shapes of the cumulative snowfall versus elevation curves be characterized 

(e.g. slope, maximum, etc.) and what factors influence their shapes?  

 How and to what extent do orographic gradients vary spatially and inter-annually?  

 What characterizes a ―wet‖ versus ―dry‖ year in the Sierra Nevada in terms of 

orographically-driven cumulative snowfall? 

The overarching objective of Chapter 4 is to better understand how diagnoses of ARs have 

hydrological implications by investigating:  

 How does the selection of AR detection algorithms/methodologies, datasets, and physical 

quantities impact the understanding of snowfall processes and the relative importance of 

ARs across the Sierra Nevada?  

Specifically, two AR catalogs were utilized to understand:  

 How much snowfall is delivered to the Sierra Nevada during AR events (e.g. full 

snowfall volume, snowfall distribution, snowfall at high elevations, etc.)?  

 Are there differences in orographic enhancement between AR and non-AR driven 

elevational snowfall distributions?  

Improvements in the existing understanding of snowfall distributions, snowstorm 

contributions to snowfall, and inter-annual and climatic variability will not only yield valuable 

insight into unanswered questions and complement previous studies, but it will also generate 

historical databases of snowfall information for use in a variety of applications (e.g. informing 

water resources management/policy, model improvement/development for climate models, etc.). 
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1.4 Organization of Dissertation  

This dissertation is organized into five chapters. Chapter 2 verifies the distributed 

snowfall dataset utilized throughout this dissertation against in situ snow pillow observations. It 

also provides a detailed climatology of the snowfall distribution, accumulation rates, and 

snowfall variability across the Sierra Nevada. Chapter 2 provides the foundation for investigating 

storm-driven orographic cumulative snowfall gradients in Chapter 3. In Chapter 3, atmospheric 

drivers of wintertime orographic snowfall (e.g. moisture and wind fields) are examined across 

the mountain range during broadly defined snowstorm events. Chapter 4 characterizes snowfall 

distributions derived from a specific type of storm (i.e. an atmospheric river) across the Sierra 

Nevada in the winter. This chapter provides insight into how the existing understanding of the 

importance of ARs to the seasonal snowfall in the Sierra Nevada is connected to the detection 

method that is used to diagnose these synoptic features. Chapter 5 summarizes the originality of 

this dissertation and its key findings. It also provides insight into future work as an extension of 

this dissertation. 
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1.5 Figures 

 

Figure 1.1. Distribution of elevation (in meters) across the Sierra Nevada above 1500 m. Twenty 

major watersheds analyzed herein are outlined. Snow pillow locations are demarcated by the ‗×‘ 

symbols.   
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Chapter 2: Climatology of Seasonal Snowfall Accumulation 

across the Sierra Nevada (USA): Accumulation Rates, 

Distributions, and Variability 

2.1 Introduction  

The western USA relies heavily on melt-derived streamflow from high-elevation basins 

especially during seasons of minimal precipitation [Mote et al., 2005]. In particular, over 60% of 

the developed water resources [Bales et al., 2011; Downing, 2015] and 75% of the agricultural 

water supply [Rosenthal and Dozier, 1996] across California are derived from the Sierra Nevada. 

Montane snowfall or snow water equivalent (SWE) accumulates from the combination of 

wintertime synoptic storms and orographic lifting. As SWE accumulates it acts as a reservoir, 

which releases water in the spring as air temperature and solar radiation increase and drive melt. 

With the high variability of the topography and surface characteristics in mountainous terrain, 

orographic effects and atmospheric circulation features contribute to significant variability in the 

spatial patterns of precipitation/snowfall accumulation across a range [Dettinger et al., 2004; 

Lundquist et al., 2010; Huning and Margulis, in review, hereafter HM17].  

Since snowfall accumulation is highly variable across a mountain range, it is important to 

develop detailed insight into its distribution and accumulation rate. Previously O’Hara et al. 

[2009] presented a snowstorm climatology over the Sierra Nevada focusing on the atmospheric 

synoptic features that deliver snow to the range. The climatology characterized herein however is 

presented from a land surface perspective that focuses on the rate of snowfall accumulation and 

its distribution. Prior studies analyzing the accumulation rate of snowfall across the Sierra 

Nevada [Serreze et al., 2001; Lundquist et al., 2015] have shown that this range receives its 
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annual snowfall during an exceptionally short time period relative to other ranges in the western 

USA. However, such studies have generally relied on point-scale in situ measurements and were 

therefore unable to capture the full spatiotemporal variability of snowfall distributions across the 

range. While it is well-known that snowfall is highly variable in time and space, limited high-

resolution spatially-distributed datasets have generally inhibited our ability to quantify the 

climatological rate of snowfall accumulation across an entire mountain range. Using distributed 

information, we aim to bridge the existing gap between spatially incomplete point-scale studies 

and large-scale numerical model-based studies that are often too coarse to adequately resolve 

important sub-grid processes during the accumulation season. 

Recently there has been an increase in the number of snow studies that utilized spatially-

distributed SWE datasets to quantify the peak SWE, 1 April SWE, or SWE melt volumes [e.g. 

Dozier, 2011; Rice et al., 2011; Dozier et al., 2016; Margulis et al., 2016a and 2016b, hereafter 

M16a and M16b, respectively; etc.] as well as elevational distributions of SWE and cumulative 

snowfall (CS) during the accumulation season [e.g. Kirchner et al., 2014; HM17]. These studies 

however did not focus on quantifying the CS volume, where CS is defined herein as the 

integrated amount of storm-driven snowfall accumulated throughout the accumulation season, 

nor on the rate of snowfall accumulation across this range. Nonetheless, they showed the added 

value of spatially continuous snow information over sparse point-scale observations. It is 

important to emphasize that CS is a temporally integrated quantity that indicates accumulated 

increases in SWE, while the amount of SWE present on the ground on a specific day t (e.g. 1 

April) includes the net accumulation minus ablation. Hence, ( ) ( )CS t SWE t . 

Questions still remain about the climatological rate of snowfall accumulation and its 

inter-annual variability across entire mountain ranges and individual basins. Thus, the primary 

thrust of this paper is to provide a more detailed characterization of the snowfall distribution and 
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the seasonality of large snowstorms (i.e. timing, magnitude, and duration) and their contributions 

to the wintertime CS than currently exists across the Sierra Nevada. Quantifying these factors is 

crucial for better managing water resources, hydropower, etc. This paper aims to answer the 

following questions: 1) What is the climatology (spatial/elevational/seasonal distribution and 

inter-annual variability) of snowfall events and the cumulative snowfall over the Sierra Nevada? 

2) When do the largest snowstorms occur during the accumulation season? 3) What fraction of 

the seasonal cumulative snowfall do the largest snowstorms represent across the range? Using a 

spatially and temporally continuous SWE dataset [M16a] we provide more robust estimates of 

snowfall distributions at the basin and range scales, which have not been possible in previous 

studies over a mountain range, as well as additional insight into accumulation rates that 

complements existing literature.  

2.2 Study Domain, Data, and Methods 

2.2.1 Study Domain 

 The Sierra Nevada (Figure A.1) was subdivided into four geographic regions: northwest 

(NW), southwest (SW), northeast (NE), and southeast (SE) to elucidate the distinct precipitation 

regimes of the northern vs. southern and eastern vs. western Sierra Nevada. The subdivisions 

also help account for fluctuations in the storm track that contribute to regional snowfall 

variability across the 20 major watersheds in the range (Figure A.1a). The NW and SW Sierra 

Nevada each consist of seven basins, while the NE and SE regions each consist of three basins. 

In addition to the western (windward) basins, the Owens and Mono basins in the eastern Sierra 

Nevada also provide snowmelt-derived water to Southern California.  

All analysis was performed above 1500 m, which typically represents the lowest 

elevation that is seasonally snow-covered (i.e. average snow line) [Rice et al., 2011; Guan et al., 
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2013], for land pixels shown in Figure A.1a. Above 1500 m, the average elevation across the 

Sierra Nevada is ~2200 m and the 20 basins examined herein span nearly 50,000 km
2
. The 

northern Sierra Nevada has lower elevations than the southern basins (Figure A.1b) and the 

eastern basins have steeper slopes than the western basins. A strong rain shadow results in more 

forested areas on the western side of the range than on the eastern side with higher elevations 

being less vegetated. This range exhibits a maritime snowpack regime, which is characterized by 

the shortest accumulation seasons in the western USA [Trujillo and Molotch, 2014]. 

Traditionally, 1 April is taken to be the time of peak SWE; however, as M16a demonstrated, this 

assumption can lead to significant underestimation of the pixel-wise and basin-average peak 

SWE due to terrain variability, the timing of snowstorms, etc. 

2.2.2 Snowfall Datasets 

2.2.2.1 Sierra Nevada SWE Reanalysis  

Without additional information or methods, snowfall volumes cannot be estimated 

directly from point-scale in situ observations. Depending on the size of the domain, density of 

measurements, complexity of the topography, etc., combining point-scale measurements with 

statistical methods can yield large errors in stored water [Dozier et al., 2016]. Moreover, these 

observations cannot capture the detailed spatiotemporal variability of snowfall across 

mountainous terrain that is useful for water resources and hydrological applications. These 

limitations were overcome by characterizing the snowfall accumulation and identifying 

snowstorms over the Sierra Nevada using the 90-m gridded, daily SWE reanalysis from M16a.  

The 90-m SWE reanalysis (Section A.2) was used herein to derive CS fields during 31 

accumulation seasons spanning water years (WYs; 1 October-30 September) 1985-2015. The 

accumulation season was defined from November to the basin-average day-of-peak (DOP) SWE 
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and therefore varies inter-annually. The SWE dataset was previously utilized to investigate pixel-

wise peak SWE [M16a] and range-wide peak SWE [M16b]. Herein, we used it to analyze the 

basin-average CS and investigate snowstorms and snowfall accumulation rates. CS was similarly 

used by HM17; however, they focused on characterizing seasonal orographically-driven CS and 

associated atmospheric synoptic features.  

2.2.2.2 Snow Pillow Observations 

M16a validated the posterior estimates of peak SWE against in situ observations across 

the Sierra Nevada. Since herein we investigate snowfall accumulation as opposed to peak SWE, 

we verified CS information derived from the SWE reanalysis (i.e. the posterior). The comparison 

was performed relative to over 100 snow pillows in the Sierra Nevada from the California 

Department of Water Resources Data Exchange Center (CDEC; 

http://cdec.water.ca.gov/snow/current/snow/index.html) over WYs 1985-2015. After performing 

quality control (described in Section B.3), over 3000 station years went into the daily median CS 

comparison and nearly 2700 station years were available for the seasonal CS verification 

(described below).  

Not only do the snow pillow observations differ in spatial resolution relative to the 90-m 

snowfall dataset, but they do not adequately sample all elevations and physiographic conditions 

across the range because they are typically confined to low/mid-elevations located in cleared, flat 

terrain. In addition, <1% of the snow-dominated Sierra Nevada is sampled by this relatively 

―dense‖ snow pillow network [Guan et al., 2013; M16a]. Nonetheless, these in situ observations 

provide a means for independently verifying SWE and snowfall estimates across the range since 

they were not used in the assimilation framework.  
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2.2.3 Wet and Dry Year Classification 

While our primary focus is on the 31-year climatology, we also classified a subset of 

years as wet or dry based on the total integrated CS anomalies as a percent difference relative to 

the 31-year average. We identified wet and dry years as those with percent differences >20% and 

<-20%, respectively, following M16a. These distinctions promote a better understanding of inter-

annual variability and thereby the differences among wet-year, dry-year, and long-term (31-year) 

climatologies of snowstorms, snowfall rates, and CS patterns. Herein, wet years include WYs 

1986, 1993, 1995, 1998, 2005, 2006, 2008, and 2011 and dry years include WYs 1987, 1988, 

1990, 1992, 1994, 2001, 2007, and 2012-2015. For consistency, these years were defined for the 

entire range and therefore are not basin-specific. 

2.2.4 Snowstorm Definition and Metrics 

To fully leverage the distributed nature of the snowfall ( S ) information, we developed a 

snowstorm definition based on the CS volume and applied it to each basin. The definition (as 

discussed below and depicted in Figure 2.1) differs from previous techniques that identified 

snowstorms of a given duration (e.g. 3-day or 5-day events, Serreze et al., 2001, Lundquist et al., 

2015) and those that required a given fraction of stations to register a specified amount of 

snowfall [e.g. O’Hara et al., 2009]. Instead we used daily increases in SWE, 0S SWE   , at 

the highest elevations (elevations above the 75
th

-percentile of a basin or 
75EL , Figure A.1b) as an 

indicator to define when basin-wide snowstorms occurred. A basin-relative elevation, rather than 

a fixed one, prevented basins from having a disproportionate number of pixels used to identify 

snowstorms (relative to other basins). These elevations were used because the largest 

snowstorms typically occur at the highest elevations and extend downslope with fluctuations in 
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the snow line. Using the daily increases in snowfall from pixels in the top quartile of the basin, 

the daily-integrated snowfall volume (V ) was computed as follows:  

 
1

( ), fo) r ( ) 0(
N

i

i ix y S t SV t WE t


      (2.1) 

where the daily increase in SWE (i.e. snowfall) was computed for all pixels i  above 
75EL  and 

N  is the total number of pixels above 
75EL  within a basin. Each pixel has a uniform horizontal 

resolution (i.e. 90mx y    ). As shown in Figure 2.1a, only days contributing ≥1% of the 

seasonally-integrated CS volume at these elevations (
TotV ) were further considered (i.e. 

( ) 0.01 TotV t V ), where 
TotV  is given by: 
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Consecutive days satisfying the above criterion were grouped into a single snowstorm 

―event‖. An event therefore can consist of a series of sequential days or a single day (shaded 

regions in Figure 2.1). The 1% threshold was defined to capture the largest snowfall events. It 

prevents negligible CS increases across a basin from being identified as an unrealistically long or 

continuous event. Integrating the CS accumulated only during snowstorms results in ≤100% of 

the seasonal CS as observable in Figure 2.1. During years when the snowstorm-derived CS was 

<100% of the seasonal CS, the remaining CS accumulated during small and/or localized snowfall 

events (Figure 2.1). The 1% threshold is conservative given that an estimated 10 snowstorms 

occur annually in the Sierra Nevada [O’Hara et al., 2009], meaning that on average with 

everything equal, one snowstorm contributes 10% of the seasonal CS. After events were 

identified, further analysis was generalized to the entire basin to determine CS storm totals 

(numerals in Figure 2.1a). It is important to make the distinction that herein snowfall and CS 

were quantified in units of equivalent water depth, rather than snow depth.  
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In the Sierra Nevada, previous studies have shown that the largest or ―leading‖ 

snowstorm is often an atmospheric river (AR) and provides a significant fraction of the CS [e.g. 

Serreze et al., 2001; Guan et al., 2010]. Although ARs (long, narrow low-level jets with high 

moisture and high horizontal vapor transport) deliver an average of 30-40% of the seasonal CS in 

the Sierra Nevada [Guan et al., 2010], herein we investigate snowstorms including ARs, frontal 

systems, etc., but in a more general framework. Using in situ Snowpack Telemetry (SNOTEL) 

measurements, Serreze et al. [2001] estimated that the leading (3-day) snowstorm of a season 

yielded an average 17% of the total CS. Therefore to examine the contribution of the largest 

snowstorm using distributed data across the range, we defined a basin-wide leading event for a 

given year as the snowstorm that yielded the largest total integrated CS volume over the basin 

that year (Figure 2.1a). While storm events were quantified basin-wise, ―storm snow days‖ were 

quantified pixel-wise during each event to capture the spatial heterogeneity in CS accumulation 

rates. A storm snow day ( SSD ) was defined for a specific pixel if 0ii SWS E   on a given 

storm day (i.e. for each pixel, days with increases in CS within shaded snowstorm periods in 

Figure 2.1b). Hence, the maximum possible number of SSDs  during a snowstorm would 

correspond to the total snowstorm duration. The size of a snowstorm was defined as the average 

increase in CS that the basin or pixel experienced during the event.   

We quantified the seasonal snowfall accumulation rate with two approaches: 1) 

chronological and 2) ranked. During each season the chronological approach characterizes the 

rate of accumulation in a time-dependent, sequential daily manner (i.e. calendar days, CDs , or 

the day of the accumulation season starting 1 November), while the ranked method requires 

sorting and ranking the snowstorm data. Snowstorms were ranked based on their integrated CS 

from the leading storm to the smallest identified snowstorm volumes. SSDs  were similarly 
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sorted for each pixel and arranged in descending order based on (daily) ( )( 0) ii SWES t t  . 

The ranking approach highlights how the largest events yield the greatest contribution to the CS, 

whereas the chronological approach provides information on the seasonality of events. They 

yield complementary insight into the seasonal accumulation rate and the length of the season 

itself. The number of CDs  or SSDs  to accumulate at least p  percent of the CS is denoted with a 

subscript (e.g. pCD , where 50p   corresponds to the number of CDs  to accumulate 0.5CS ). 

2.3 Verification, Results, and Discussion 

2.3.1 CS Verification 

Figure 2.2 compares the median CS time series between the snow pillows (observed, red) 

and the snowfall dataset (estimated, blue) across the pillow stations in the Sierra Nevada for the 

31 study years. The median CS time series was constructed by taking the median of the 

individual station CS time series each year. If a consistent set of sensors existed throughout the 

season, the median CS time series would not exhibit any decreases. However, since a variable 

number of sensors resulted from missing data, the median CS curve can decrease (e.g. WY 1989) 

although the individual station time series monotonically increase.  

Although the SWE reanalysis was generated to improve seasonal estimates of SWE, 

concurrent increases in the median CS estimated and observed time series in Figure 2.2 indicate 

that the snowfall dataset represents the timing of the observed snowfall events well. This is 

manifested in the strong positive correlations ( 0.97r  , 0.00p  ) between the two time series 

each year. The majority of years in Figure 2.2 exhibit relatively small differences between the 

daily observed and estimated CS. The time series show increases of comparable magnitudes 

particularly when large events are observed. This is further demonstrated in Figure 2.2 (bottom 

right), which shows that the estimated daily CS values from each of the 31 median CS time 
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series have a low root-mean-square error (RMSE) of 5 cm and mean error (ME) or bias of -3 cm 

relative to the observations. A negative ME value indicates that the snowfall dataset 

underestimates CS relative to observations. Although the two curves track one another during 

WYs such as 1998-1999 and 2012-2015, they exhibit larger biases throughout the majority of the 

accumulation season and increase the RMSE and ME values. Nonetheless, the RMSE and ME 

are relatively low as CS differences can be accumulated over the course of a season.  

To further evaluate the SWE reanalysis as a snowfall dataset, the seasonally-integrated 

CS was examined at individual stations and at a larger scale with the median in Figure 2.3. Note 

that in situ observations were available in all basins except Cosumnes. As shown in Figure 2.3, 

the observed and estimated (reanalysis) CS values are strongly correlated with statistically 

significant correlation coefficients ranging from 0.90-0.98 across all watersheds. Due to scale 

disparities, it is expected that the CS observations (―point-scale‖ or ~3 m × 3 m) will vary from 

the estimates (90 m × 90 m). Differences are expected to be the largest at the individual station 

scale because snow pillows are generally located in flat clearings, while forest cover may be 

included in the 90-m pixel. Moreover, the pillows are subject to localized wind-blown snow that 

may not be represented at the 90-m scale. Hence, the grid-averaged 90-m reanalysis pixels 

should not be expected to represent the same values as observed at the pillows.  

Considering all stations and years for each of the basins in Figure 2.3, the RMSE and ME 

range from 7 cm to 20 cm and from -1 cm to -16 cm, respectively. When all individual years and 

stations are considered (‗o‘ symbols, bottom right), the RMSE and ME are 12 cm and -4 cm, 

respectively. These values are larger than the RMSE and ME of the median across all stations for 

each year (‗+‘ symbols, bottom right), which are 4 cm and -2 cm, respectively. The RMSE and 

ME associated with the seasonal median CS computed over all years for each station (‗×‘ 

symbols, bottom right) is also low (8 cm and -4 cm, respectively).  
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While a comparison of CS at the station-level is presented in Figure 2.3, the analysis 

utilizing the median across all stations provides a more robust comparison. The station analysis 

is subject to more spatial variability, resulting in higher RMSE and ME values. Despite the 

limitations in the SWE reanalysis (described in Section A.2, e.g. fixed rain-snow partitioning air 

temperature) and the inherent disparities between 90-m CS estimates and point-scale snow 

pillow observations, we find that the estimated snowfall dataset is capable of representing 

snowfall timing and snowstorm magnitudes. This is evidenced by the reanalysis-derived CS 

exhibiting strong positive correlation coefficients, low RMSE, and low ME values when 

compared to observations. 

Note that for the verifications above, 1 April was taken as the end of the season for 

consistency with previous snowfall studies. However, for the snowfall analysis presented 

hereafter, the end of the accumulation season was taken to be the basin-average DOP SWE. 

2.3.2 CS Distribution and Volume 

Prior to analyzing snowstorms and rates of CS accumulation, it is worthwhile to develop 

an understanding of the climatology of the CS spatial distribution and its inter-annual variability 

across the range (as shown in Figure 2.4). Moreover, the amount of CS has not been thoroughly 

documented over the range due to limitations in data as well as the general emphasis of high-

elevation snow studies to focus on SWE volumes at a given time [e.g. Dozier, 2011; M16a-b], 

instead of CS over the accumulation season. Across all three climatological CS maps in Figure 

2.4a, the western basins accumulate a larger fraction of the CS than the eastern basins. The size 

of the rain shadow varies inter-annually with greater spillover onto the leeward (eastern) side 

observed during wet years (middle) than dry (right) years. Overall, higher elevations receive 

more CS than lower elevations, which was similarly demonstrated by the orographic CS 

quantified in HM17.  
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As the differences among the maps in Figure 2.4a suggest, there is substantial inter-

annual variability in the CS depth (Figure 2.4b) across the range. The wet-year and dry-year 

average integrated CS are 35.0 km
3
 and 13.0 km

3
, respectively. The large difference in values is 

nearly equal to the 31-year average integrated CS, which illustrates the high variability of the 

hydroclimatology that exists across the Sierra Nevada. Similar to precipitation totals across 

California [Dettinger et al., 2011; Dettinger and Cayan, 2014; Dettinger, 2016], the CS over the 

Sierra Nevada is often a story of extreme wet and dry years as shown in Figure 2.4. Across 

basins in Figure 2.4b, the CS depth ranges from an average 0.17 m (Tule) to 0.87 m (Yuba) with 

standard deviations of 0.34 m and 0.12 m, respectively. The high inter-annual variability that 

occurs across the 20 basins is reflected by the standard deviations for each basin representing 

38.8-55.2% of their respective 31-year mean values. The range (Figure 2.4b, bottom row) has an 

average CS of 0.46 m with a standard deviation of 0.19 m (41.8% of mean). This corresponds to 

a 31-year average integrated CS volume of ~22.4 km
3
 and a standard deviation of 9.4 km

3
 at the 

range-scale. The large standard deviations further emphasize that the hydroclimate of the Sierra 

Nevada does not have a ―normal‖ state; rather, it is dictated by extreme conditions.  

As shown in Figure 2.4b, the integrated CS ranged from 0.09 m (or 4.4 km
3
) in WY 2015 

(19.7% of the 31-year average) amidst an exceptionally severe drought [M16b] to 0.85 m (or 

41.3 km
3
) in WY 1993 (184.7% of the 31-year average). The 31-year average CS, which 

intentionally excludes accumulation season melt, serves as a complement to the 31-year average 

estimates of pixel-wise peak SWE and range-wide peak SWE volumes of 20.0 km
3
 [M16a] and 

18.6 km
3
 [M16b], respectively. Even with varying definitions of the accumulation season, the 

31-year basin-average CS volume is larger than the SWE volumes estimated by M16a-b.   
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2.3.3 Range-scale Characteristics of Snowstorms and Storm Snow Days 

On average, an estimated 11 snowstorms occur annually in the Sierra Nevada (Figure 

2.5a) with an average of nine and thirteen events during dry (red) and wet (blue) years, 

respectively. Hence, dry years generally have approximately four fewer storms than wet years. 

As illustrated in Figure 2.5a, the average number of events ranged from about seven snowstorms 

in WY 2015 to more than double that (~16 snowstorms) in WYs 2002 and 2006. The average 

number of SSDs  (Figure 2.5b) is ~21 days/year, with ~17 and 24 SSDs  occurring on average 

during dry and wet years, respectively. As shown in Figure 2.5b, the average number of SSDs  

was the lowest in WY 2015 (driest in Figure 2.4b) with only about nine SSDs . In contrast, WY 

1993 (wettest in Figure 2.4b) had the highest number of SSDs  with ~30 (over three times as 

many as in 2015). Seven out of eight wet years (~88%) correspond to years with cool November-

March range-wide air temperature anomalies, while eight out of eleven dry years (~73%) are 

associated with warm anomalies relative to the 31-year mean. 

2.3.3.1 Descriptors of Integrated CS 

Unlike the number of snowstorms, the number of SSDs  more clearly differentiates the 

wettest and driest years over this record. In fact, the average number of SSDs  explains ~70% of 

the variance in the integrated CS over the Sierra Nevada, while the average number of 

snowstorms per year explains only ~43% of the variance. Thus, the total number of SSDs  

(which represents the cumulative snowstorm duration) over a season, rather than the number of 

events, is a better indicator of whether a year will yield higher (or lower) snowfall accumulation 

over the range (i.e. a wet vs. dry year). This is demonstrated in Figure 2.5c, which depicts the 

relationships between the integrated CS and the average number of snowstorms (left) and SSDs  
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(right) each year. The relationship between CS and snowstorms (left) shows greater scatter (i.e. 

weaker relationships) than observed between CS and SSDs  (right). 

Estimates of the integrated CS volume over the entire range serve as an important step in 

improving water resources management. While it is often difficult to estimate CS at high 

resolutions as done herein, it is generally more feasible to estimate the average number of SSDs  

and/or snowstorms that occur across the range during a given year. Therefore, regression models 

were developed to estimate the integrated CS (in km
3
) from the number of snowstorms ( SS ): 

 2.045CS SS  (2.3) 

and the number of storm snow days ( SSD ): 

 
20.045 0.115CS SSD SSD   (2.4) 

as shown in Figure 2.5c in purple. Higher order polynomials and other functional forms 

exhibited a negligible gain in performance over the linear model (Eq. (2.3), left panel in Figure 

2.5c) and its coefficient of determination ( 2 0.43R  ) when SS  was utilized as the predictor of 

CS. However, the quadratic model in Eq. (2.4) (Figure 2.5c, right) showed improvement over a 

linear fit for the CS-SSD data when comparing the sum of squared errors/residuals. The 

quadratic model explains ~72% of the observed variability in CS. These models could serve as 

valuable tools for water managers and hydrologic applications since they provide new methods 

for estimating the seasonally-integrated CS from more easily estimated quantities. They improve 

upon and complement traditional methods that simply rely on estimates of the 1 April SWE to 

indicate whether a given season was wetter or drier than average. Previous studies have shown 

that relying on 1 April SWE as a measure of peak SWE can introduce biases [Montoya et al., 

2014; M16a].  
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2.3.3.2 Distributions of Snowstorms, SSDs, and Leading Snowstorms 

 Both the average number of snowstorms per basin (not shown) and SSDs  (Figure 2.6) 

are larger along the western slope than the eastern slope of the mountain range for the 31-year, 

wet-year, and dry-year averages. This coincides with higher CS across the western basins (Figure 

2.4a), which results from the roughly perpendicular orientation of the terrain to the prevailing 

winds that promotes orographically-driven CS enhancement [Grubišić et al., 2005; HM17]. As 

the snowstorms rise over the range, they may dissipate before (or while) descending the leeward 

side of the range resulting in lower CS and fewer SSDs . Synoptic features such as higher zonal 

wind speed at 700 hPa and larger vapor transport enhance CS gradients across the western basins 

during wet years [HM17], leading to the overall increase in CS across elevations as seen in 

Figure 2.4a.  

While the number of snowstorms does not vary within a basin like SSDs , it does vary 

among basins. More snowstorms tend to occur across the northern basins (e.g. Upper 

Sacramento, Yuba, American, Carson, etc.) than in the southern Sierra Nevada (e.g. San Joaquin, 

Kings, Mono, Owens, Kern, etc.) (not shown). Variations in the number of snowstorms result 

from the movement and location of the storm track during the wintertime (discussed below). 

Correspondingly, the northern basins also have more SSDs  than the southern basins (Figure 

2.6). The total number of SSDs  can be thought of as an analog to the length of the snow 

accumulation season as it varies with elevation and geographic location. Hence, Figure 2.6 

shows that, on average, the southern basins have shorter accumulation seasons and faster 

accumulation rates. Also, lower elevations accumulate their CS more rapidly (i.e. fewer SSDs ) 

than higher elevations. Low elevations are also most susceptible to temperature fluctuations that 
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shift the snow line and alter the duration of the accumulation season. SSDs  are further discussed 

below to characterize the climatological rate of CS accumulation regionally and elevationally.  

Since previous studies using (spatially) sparse in situ data often led to generalized range-

wide conclusions, regional variability of snowstorms (Figure A.2) is discussed here. The NW has 

the longest duration snowstorms and the greatest number of snowstorms. As expected, the 

number of snowstorms decreases with duration across each region. Roughly two-thirds of all 

snowstorms last 1-2 days with ~93-96% of the storms lasting five days or less. In contrast, the 

duration of the leading snowstorms exhibits a distribution that more closely resembles a normal 

distribution. The leading snowstorms most frequently have durations of four days, except in the 

NW where 6-day leading events occur most often. On average, the duration of leading storms 

ranges from ~4.7 days (SW) to 5.7 days (NW). Snowstorms typically last ~2.4 days, while 

leading storms persist for ~5.1 days, on average, over the range. All basin-wide leading storms 

occurred for at least 2 days and tend to last longer than smaller snowstorms.  

Strictly enforcing fixed storm durations (e.g. 3-day storms) would mainly misrepresent 

the leading storms of a season by breaking them up and thereby underestimating their total 

contribution to the seasonal CS (Figure A.2a). This provides one explanation for why our results 

show larger leading storm contributions to seasonal CS than Serreze et al. [2001] and Lundquist 

et al. [2015]. Furthermore, differences also arise from our ability to more adequately capture the 

high degree of heterogeneity of the CS distribution than in previous studies.   

The smallest snowstorm sizes (average CS over basins during snowstorms, Figure A.2b) 

are the most prevalent. Regionally, ~36-64% of storms yield an average increase in CS of <2 cm, 

while 75-91% of snowstorms result in <6 cm. About 95% of all storms across the range result in 

an increase of CS <14 cm with ~66% of those storms having <4 cm of average accumulation 

across the range. The leeward basins (in particular the SE) have the highest percentages of small-
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sized storms and leading snowstorms and the lowest snowfall intensities (not shown) when 

compared to the windward basins. These differences are indicative of the windward side 

enhancement of snowfall that contrasts the leeward side (i.e. the rain shadow effect). Since the 

regional distributions of all snowstorm intensities are similar to that of leading snowstorms, this 

indicates that the longer durations of leading snowstorms are the main driver of their larger CS 

accumulation/size. This also explains why the number of SSDs  serves as a better predictor of CS 

than snowstorms (Figure 2.5c). 

2.3.4 Seasonality of Snowstorms and Leading Storm Contributions 

 Similar to previous literature the (largest) snowstorms occur most frequently from 

December-March across the range [e.g. O’Hara et al., 2009], with ~17-24% occurring during 

each of these months. December-January-February (DJF) account for roughly two-thirds of the 

snowstorms that occur and there is a relatively uniform distribution of snowstorms spanning 

DJF. The majority of accumulation season storms happen during these three months since the 

storm track moves southward in the wintertime from its otherwise more northern location. As the 

storm track moves northward during the springtime, the number of large snowstorms diminishes 

and the accumulation season concludes. The storm track spends more time over the northern 

basins [O’Hara et al., 2009], resulting in a larger fraction of leading snowstorms occurring late 

in the season in the north as well as more snowstorms and SSDs  in that region, on average 

(Figure 2.6).  

Few studies have explored the regional distributions of basin-wide leading snowstorms 

and their contributions to CS across the range as presented herein because prior studies have 

largely quantified snowstorm events based on in situ measurements. While the seasonality of all 

storms exhibited a similar distribution across the range (not shown), the distribution of leading 
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storms (Figure 2.7) displays stronger regional variability. Leading storms in the NW generally 

exhibited a bimodal distribution with February, followed by December, having the largest 

fractions of leading storms. Historically, the largest storms in the NW have more frequently 

occurred earlier in the season during December (30.0%) than in the SW (22.6%), NE (23.7%), or 

SE (18.3%). It is important to recognize differences in leading storm timing across the range 

because if a very large storm occurs in one region, it does not necessarily mean that the entire 

range will similarly experience its largest snowstorm. The southern basins show an increasing 

number of leading storms November-February, after which the number decreases as the melt 

season approaches. The NE basins experienced the same number of leading storms in December 

and January, but nearly twice as many in February as in either of those months.  

Understanding when snowstorms and specifically the leading snowstorms of each season 

occur is important since water managers are often interested in the 1 April snowpack, which is 

used to estimate the potential seasonal snowmelt contribution to streamflow [Serreze et al., 

2001]. As demonstrated in Figure 2.7, leading snowstorms tend to occur well before 1 April. 

Across the range, ~89% of the leading storms occurred during DJF, with ~41% of the leading 

storms occurring in February alone and contributing, on average, ~29% of the seasonal CS. 

Since March only accounted for ~8% of the leading storms, the likelihood that the largest storm 

of a season will occur very close to 1 April (i.e. after February) is low. Leading snowstorms that 

occurred in March generally contributed less to the CS than snowstorms occurring in February, 

with the largest difference in the SE at ~13% less. In the western and eastern basins, this 

amounts to ~3% and 10% less on average, respectively. Overall when snowstorms do occur in 

March, they should not be expected to yield the largest contribution to the seasonal CS. Also, 

relatively few leading snowstorms occurred in November; however, when they did occur, they 

yielded >20% of the seasonal CS, on average. 
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On average, DJF leading storm contributions are relatively uniform ~26.0-28.9% of the 

CS at the range-scale (Figure 2.7), but significant variability exists. For instance, of the leading 

events that occurred during December in the NW, the inter-decile range of contributions (not 

shown) was 28.2%, which is greater than the average leading snowstorm CS contribution during 

that month across the domain, excluding the SE. This again elucidates the importance of a single 

storm as well as how spatially and temporally variable snowstorm contributions and the regional 

hydroclimate can be. 

2.3.5 Climatological Rate of Snowfall Accumulation and Inter-annual 

Variability 

2.3.5.1 CS Cumulative Distribution Functions 

 Figure 2.8 presents the relationship between the number of snowstorms and SSDs  during 

a season and their relative contribution to the seasonal CS for each basin, respectively. While an 

average of 11 storms occurs annually across the range (Figure 2.8a, vertical line), the average 

number of snowstorms varies from ~9-12 for individual basins. Figure 2.8a was constructed 

similarly to a cumulative distribution function (CDF) where the average contribution of less than 

or equal to a given number of storms was considered up to the maximum number of basin-wide 

storms that occurred over the record (i.e. 13-23 storms). The CDFs in Figure 2.8b were similarly 

constructed for SSDs . Consequently, all years were considered at each point along the curves. 

As the number of snowstorms or SSDs  increases, its relative contribution to the seasonal CS 

decreases in Figure 2.8. Recall that the snowstorm definition herein was designed to identify the 

largest events of a season as opposed to all increases in CS (Figure 2.1). Therefore, the 31-year 

average CDFs in Figure 2.8 indicate that large snowstorms accounted for ~83-93% of the CS 

across basins, leaving smaller events to deposit the remaining ~7-17% of CS.  
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Despite significant variability among the watersheds (e.g. elevations, geographic 

locations, CS volume, etc.), the CDFs in Figure 2.8a demonstrate that the climatological rate of 

snowfall accumulation exhibits a similar response over the entire range. The leading storm 

typically contributes ~27% of the total CS volume during a season (Figure 2.8a), which ranges 

from ~23.4-34.6% across basins, on average. The inter-decile range for basin-wide leading 

snowstorm contributions is large with the most extreme 10
th

/90
th

-percentiles for basins being 

13.4-60.6% (not shown). For comparison, Lundquist et al. [2015] estimated that the largest 3-day 

and 5-day events contributed about 9-25% (median 15%) and 12-29% (median 19%) of the 

annual snowfall, respectively. Serreze et al. [2001] estimated that leading 3-day snowstorms 

contributed an average 17% to the CS across the range, which is larger than their estimates of 

~12% in the Pacific Northwest, ~11% in Utah, and ~10% in Colorado. Both of these previous 

studies used point-scale in situ measurements and 3-day or 5-day events. In addition, Figure 2.8 

was constructed using the CS volume over each basin, which could not be directly quantified 

using sparse point-scale measurements alone. Therefore, our estimate provides a more robust 

representation of accumulation across the range.  

Typically, the second largest storm of the season increases the snowstorm contribution to 

~44% (Figure 2.8a). On average, all basins accumulate >50% of the CS within the largest three 

storms of a season, with basins accumulating as much as 65% of their CS within those three 

storms (31-year average). About five storms or fewer result in at least ~71% of the seasonal CS 

volume, on average, (Figure 2.8a) with this ranging from ~45-95% in the most extreme cases 

(10
th

/90
th

-percentiles, not shown). Not only are the 31-year basin averages similar in Figure 2.8a, 

but such relationships are also observed in Figure 2.8b. 

The large contributions that a few storms make to the accumulation of snowfall over this 

range greatly elucidate the importance of each wintertime storm in the Sierra Nevada (Figures 
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2.7-2.8). The presence of one or a few larger/smaller storms than average can be the difference 

between a wet and a dry year. Dettinger et al. [2011] drew similar conclusions regarding 

precipitation patterns across California. Persistent atmospheric phenomena that alter the storm 

track could have a substantial impact on the CS over the Sierra Nevada. For instance, the 

resilient high pressure ridge that recently deflected the storm track north of the range [e.g. Swain 

et al., 2014; Seager et al., 2015], manifested itself in an exceptionally strong multi-year drought 

beginning in WY 2012 [M16b]. Hence during any given year, a shift in the storm track could 

greatly impact the amount of precipitation/snowfall and the water supply across California. 

Dettinger [2013] showed that one or two large storms in California could make a significant 

difference in drought recovery and local/regional water resources. Often the Sierra Nevada 

experiences one to a few exceptionally large snowstorms each year that make up the majority of 

the CS (Figure 2.8a).  

The deflection of a few large snowstorms would also result in fewer SSDs  and lead to 

nonlinear decreases in the integrated CS volume (Eq. (2.4) and Figure 2.5c, right). When the 

SSDs  were ranked pixel-wise and the resulting CS was integrated across the basin for each year, 

the 31-year average CDFs in Figure 2.8b indicate that, on average, one SSD  can result in 10.3-

18.5% of the CS. Remarkably if the most extreme 10
th

/90
th

-percentile cases were considered, one 

SSD  can yield 6.6-27.2% of the CS (not shown), where the 90
th

-percentile value is on the order 

of the 31-year average leading snowstorm contribution. The largest five SSDs  yield 36.8-53.5% 

of the integrated CS across basins, on average. Although leading storms are typically five days 

long, each of these days may not be classified among the greatest five days of increases in CS for 

each pixel as represented in Figure 2.8b. Nonetheless, these values represent another metric for 

evaluating how rapidly the snowfall typically accumulates. Selecting any of the curves in Figure 
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2.8 and analyzing the rate of accumulation up to say 50% or 75%, would result in similar 

conclusions: few snowstorms and SSDs  result in the majority of the CS across the mountain 

range. 

2.3.5.2 Spatial Distribution of Calendar Days and Storm Snow Days  

Detailed maps of accumulation rates have not been previously available across an entire 

mountain range as shown in Figure 2.9. Figure 2.9a presents the 31-year average number of CDs  

it takes to accumulate 50, 75, and 100% of the CS, respectively, across the range. Recall that 1 

November corresponds to one CD . The spatial average of the 31-year climatology 
50CD  maps 

corresponds to 85.2 days or 24 January and the 
50CD  accumulation rates vary from ~53.1-108.2 

days across the entire domain shown in Figure 2.9a (left). Furthermore, the spatial averages of 

the climatology maps demonstrate that on average 
75CD  corresponds to 106.7 days or 15 

February (~63.0-125.5 days) and 
100CD  corresponds to 129.2 days or 9 March (~67.5-142.8 

days) across the Sierra Nevada, where the ranges of CDs  in parentheses indicate the 31-year 

average minimum and maximum values observed across the domain in each map. Cayan et al. 

[2003] estimated that ~67% of the annual precipitation across California accumulates in ~90-120 

days on average, which is shorter than any other state (~150-250 days/year). As demonstrated 

here, the Sierra Nevada often accumulates its CS faster than the total precipitation accumulation 

rates over the entire state.  

The difference between the minimum and maximum values (presented above) across 

each of the climatological maps in Figure 2.9a represents substantial variability in the 

accumulation rates over the domain, ~55-75 days (or ~2-2.5 months). However, the standard 

deviations across the climatological maps in Figure 2.9a are small, 5.3-9.0 days (or <1-2 weeks). 

Since CDs  are a measure of the length of the accumulation season and the seasonality or timing 
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of snowfall, the magnitude of the standard deviation is consistent with the concept of event 

coherence Serreze et al. [2001] identified across the range. The range in the 31-year average 

100CD  accumulation rates by the DOP (Figure 2.9a, right) illustrates that the accumulation 

season often ends significantly before 1 April, i.e. 152 days. While it takes ~85 days to 

accumulate 50% of the CS, it only takes an additional ~21.5 days to achieve 75% in mid-

February and another ~22.5 days to reach 100% accumulation in early March, on average. This 

demonstrates that large CS increases (~50% of the CS), not simply leading storms, often occur in 

February.  

When SSDs  are ranked pixel-wise to generate the climatological maps in Figure 2.9b, 

the rapid rate of accumulation is more clearly identified. Since SSDs  were defined during 

snowstorm events, Figure 2.9b does not provide a map of the time to achieve 100% 

accumulation for the same reasons that the CDFs do not reach 100% in Figure 2.8. The pixels 

across the range accumulate ≥50% of the CS, on average, in only ~6.4 SSDs  (long-term spatial 

average). Lundquist et al. [2015] estimated that it took ~10 days (median) to achieve 50% 

accumulation using station data across the Sierra Nevada. We further estimate that the 31-year 

spatial average of 
75SSD  corresponds to 12.4 days/year. As depicted in Figure 2.9, the leeward 

basins accumulate their CS in the fewest number of days compared to the rest of the range. 

Moreover, southern basins often accumulate their CS at a more rapid rate than northern basins 

(Figure 2.9b).  

The brevity of the accumulation season is further exemplified by considering the 

maximum number of SSDs  across each of the maps in Figure 2.9b as these values still represent 

markedly few days. On average, all pixels across the domain achieve ≥50% and ≥75% of their 

CS in <13 SSDs  and <24 SSDs , respectively. Considering the larger context of the state of 
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California, Dettinger et al. [2011] estimated that ~33-50% of the annual precipitation over the 

state was achieved in ~5-10 wet days/year; however, their estimate included comparatively few 

data points over the Sierra Nevada. Our estimated average rate of 50% accumulation (~6.4 SSDs

) is near the lower bound of their estimate for the entire state, while the maximum value of 
50SSD  

(~13 SSDs ) is close to the upper bound for the state. 

As the percent accumulation increases from 50% to 75%, the SSD  patterns in Figure 2.9b 

more closely resemble that of the 31-year average CS distribution (Figure 2.4a, left). Higher 

elevations with more CS also have higher values of pSSD  than lower elevations. While a high-

elevation pixel takes longer to accumulate a given fraction of its CS, an increase of p % likely 

represents significantly more CS at higher elevations than at lower ones (Figure 2.4).  

2.3.5.3 Elevational Distribution of Accumulation Rates 

Since in situ measurements primarily sample low and mid-elevations, snowfall 

accumulation rates at the highest elevations remain largely unknown. Figure 2.10 aims to fill this 

gap by expanding upon the spatial distribution of accumulation rates shown in Figure 2.9 to more 

fully characterize how the rates vary with elevation. Figures 2.10a and 2.10b present the same 

percentages p , utilized in Figures 2.9a and 2.9b for pCD  and pSSD , respectively. Since higher 

elevations tend to receive snowfall earlier in the season than lower elevations, the 31-year 

average 
50CD  curves (blue) indicate that ≥50% of the CS is reached earlier with increasing 

elevation (Figure 2.10a). However, the shape of the curves is altered from 50% to higher values 

of p  since higher elevations receive snowfall over a longer fraction of the season than lower 

elevations.  

Regional differences in accumulation rates as a function of elevation are apparent among 

the 31-year average curves (solid lines) in Figure 2.10. In Figure 2.10a for instance, the SW 
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typically accumulates CS at a relatively constant rate with elevation as opposed to regions such 

as the SE where pCD  exhibits a stronger elevational dependence. Similar relationships are also 

observed between the western and eastern basins, which reflect rain shadow features. Although 

high inter-annual variability exists (shaded areas), on average, windward basins tend to 

experience CS increases at similar times throughout the season regardless of the elevation. Since 

most snowfall events are due to westerlies, spillover results in snowfall accumulation on the 

eastern side of the mountain range, which means that the highest elevations often receive more 

CS and have more opportunities to experience increases in CS than the lowest ones (subject to 

warmer and drier atmospheric conditions). Thus, there is greater elevational variability exhibited 

by the 31-year average curves on the leeward side. While lower elevations have fewer CDs  and 

SSDs  overall (Figure 2.10) due to fluctuations in the snow line, the fastest accumulation rates 

are observed among the eastern basins where negligible CS often occurs (Figure 2.4a). 

With larger CS totals, higher elevations generally receive snowfall over a greater fraction 

of days during the season (Figure 2.10b). The shapes of the pSSD  curves resemble the shapes of 

the basin-wide orographic CS curves presented in HM17 along the western slope: 1) increasing 

or 2) increasing to a maximum and then decreasing with elevation. These shapes are similarly 

observed for the regional accumulation rates in Figure 2.10b range-wide. It is not surprising that 

orographic snowfall processes are tightly coupled to accumulation rates. HM17 hypothesized that 

declines in CS at the highest elevations resulted from gravitational and wind redistribution as 

well as atmospheric moisture exhaustion. These processes would similarly explain the decreasing 

pSSD  curves at the highest elevations in Figure 2.10b. 

While the inter-annual variability of pSSD  increases with elevation (Figure 2.10b), it 

remains large throughout for pCD  (Figure 2.10a). Not only does Figure 2.10a show substantial 
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inter-annual variability (much greater than in Figure 2.10b), but the 
50CD  and 

75CD  

interquartile ranges can largely overlap with one another. Thus, high variability is associated 

with the inter-annual timing of snowfall accumulation (often more than one month at a given 

elevation) as well as when the larger-sized storms occur. It also indicates that the length of the 

accumulation season can greatly vary inter-annually and elevationally across the range since the 

100CD  curves/interquartile ranges represent the end of the season (i.e. DOP SWE). The narrow 

inter-annual variability associated with pSSD  (Figure 2.10b) demonstrates that relatively few 

days are needed for the range to accumulate p % of the CS. In fact, across nearly all regions and 

elevations, the 75
th

-percentile of 
50SSD  is <10 days. The 75

th
-percentile of 

75SSD  is <25 days in 

all regions. The inter-annual variability is the largest for 
50CD  (Figure 2.10a), whereas it is the 

smallest for 
50SSD  (Figure 2.10b). The timing of when 50% of the CS accumulates will greatly 

vary from year-to-year while the largest accumulation always occurs very rapidly over the course 

of a few days and/or storms when ranked (Figures 2.8-2.10). 

Although Figures 2.8-2.10 quantify the climatological rate of snowfall accumulation 

using different metrics (i.e. snowstorms, CDs , and SSDs ), all approaches illustrate the brevity of 

the snowstorm-driven accumulation season despite regional and elevational heterogeneities. 

Furthermore, the relatively small number of storms and SSDs  that make up large fractions of the 

total CS elucidates the importance of accurate estimates of the CS and how rapidly the CS 

accumulates. Inaccurate forecasts of the storm track or poor estimation of a few (or even a 

single) snowstorm could result in large accumulation errors across the range causing significant 

water resources management implications. 



 

 

39 

2.4 Conclusion 

 Using a multi-decadal spatially-distributed SWE dataset, we provided a more detailed 

characterization of the climatological CS timing, distribution, and accumulation rate over the 

entire Sierra Nevada than previously existed. Insight into the occurrence of leading storms and 

the end of the accumulation season (generally before 1 April) as well as the development of 

models for estimating the integrated CS should lead to more informed water resources 

management decisions. Regardless of the metric used, the rapid rate CS accumulates was 

consistently observed across all elevations and regions in the Sierra Nevada. Given the fast 

accumulation rates and substantial contributions of the largest snowstorms, inadequately 

capturing the impact of a single snowstorm (or storm snow day) may result in poor 

representations of the seasonal CS. This is evidenced by the leading storm of a season yielding 

an average 27% of the CS annually.  

 With future climate projections indicating that there may be more frequent and long 

lasting droughts across the western USA, California may be particularly susceptible if several 

storms will be deflected north of the Sierra Nevada as in the case of the ―Ridiculously Resilient 

Ridge‖ [Swain et al., 2014]. With the deflection of a few large storms during a given season or 

multiple consecutive seasons, CS will likely be low. The recent drought could serve as a case 

study for understanding the potential implications on snowstorm-driven snowfall accumulation, 

reservoir operations (e.g. timing of releases), and water management.  

With the climatology presented herein, and such efforts across other hydrologically 

relevant mountain ranges, we can work toward improving existing models and developing more 

robust parameterizations to describe seasonal snowfall. Results from this study can be used to 

evaluate how well climate models can represent the spatiotemporal variability of CS and its rate 
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of accumulation, the rain shadow effect, and elevational CS distributions. Such future work is 

important because climate models generally yield biased estimates of precipitation and snowfall. 

This work could provide guidance on physical constraints used in modeling accumulation rates, 

storm sizes, etc. Understanding the extent to which climate models can represent the historical 

CS is valuable for quantifying uncertainties in climate models and interpreting projections in the 

hydroclimate of snow-dominated montane regions. 
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2.5 Figures 

 
Figure 2.1. Illustration of snowstorm definition and metrics. a) Representative time series of the 

daily CS volume ( )V t  accumulated at elevations above 
75EL  over the accumulation season for an 

example basin (Kaweah) and season (WY 1986). Snowstorm events (shaded) were defined for 

consecutive days where ( )V t  was ≥1% of the seasonally-integrated CS above 
75EL  as 

demarcated by the horizontal line. Boldface numerals represent the integrated basin CS storm 

volumes (over all pixels) with the value of the leading storm event boxed. b) For the same basin 

and year, three pixels of differing elevations were selected to illustrate pixel-wise variability in 

the number of storm snow days.  
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Figure 2.2. Median CS time series for observations (red) at snow pillows and estimates (blue) from the (posterior) SWE reanalysis for 

31 accumulation seasons (1 November-1 April). Bottom right: Comparison of daily median estimated and observed CS for 31 seasons. 

The 1:1 line is shown in red. All correlations are statistically significant with 0.00p  . 
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Figure 2.3. Comparison of estimated (reanalysis) and observed (snow pillows) CS on 1 April 

over the 31 years for each basin. Bottom right: Seasonal median CS over all stations for each 

year (‗+‘ symbols), seasonal median CS over all years for each station (‗×‘ symbols), and 

seasonal CS for all stations and years (‗o‘ symbols) with correlation coefficients 0.96r  . The 

1:1 line is shown in red. All correlations are statistically significant with 0.00p  . 

 



 

 

44 

 
Figure 2.4. a) Thirty-one-year, wet-year, and dry-year average CS maps, respectively. b) Array of the average CS depth for each basin 

and the full mountain range over WYs 1985-2015. The rightmost column contains the 31-year average. Wet and dry years are denoted 

with ‗W‘ and ‗D‘, respectively.
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Figure 2.5. Time series of the average number of a) snowstorms and b) storm snow days ( SSDs ) 

across the Sierra Nevada. Dashed lines demarcate the 31-year average. c) Integrated CS volume 

over all basins and the average number of (left) snowstorms and (right) SSDs  for each of the 31 

years. Each fit is statistically significant with 0.00p  . In all panels, wet years and dry years are 

colored blue and red, respectively. 
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Figure 2.6. Thirty-one-year, wet-year, and dry-year averages of the total number of SSDs . 
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Figure 2.7. Seasonality of snowstorms. Bars indicate the frequency of the leading storm 

occurrence in a given month over the 31 seasons. Of those leading snowstorms, the curve 

indicates the average contribution leading storms made to the seasonal-integrated CS volume for 

each basin in the region. 
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Figure 2.8. Thirty-one-year average cumulative distribution functions (CDFs) showing the 

contribution of (ranked) a) snowstorms and b) SSDs  to the integrated CS for each basin. 

Individual basins were not identified by color since the CDFs are similar. Vertical green lines 

demarcate the range-wide mean number of snowstorms and SSDs  in a) and b), respectively. 
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Figure 2.9. Thirty-one-year average number of a) CDs  (chronological) and b) SSDs  (ranked) to 

accumulate at least 50% (first column), 75%, and 100% (third column) of the CS, respectively. 

Refer to the text for the discussion explaining why the 100% maps were excluded from b). The 

(spatially-averaged) range-wide statistics are provided for each 31-year average map. Dates were 

rounded to the nearest day.  
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Figure 2.10. Elevational distribution of a) CDs  and b) SSDs  for the same percentages of CS 

shown in Figures 2.9a and 2.9b, respectively. Solid lines represent the 31-year average and 

shaded regions represent the interquartile range. Elevation bins with >0.5% of the regional area 

above 1500 m are shown following Grünewald et al. [2014] and HM17.  
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Chapter 3: Investigating the Variability of High-elevation 

Seasonal Orographic Snowfall Enhancement and its Drivers 

across Sierra Nevada, California 

3.1 Introduction  

Wintertime orographic precipitation is an important process controlling the accumulation 

and distribution of the snowpack in high-elevation montane watersheds. Orographic precipitation 

results from the forced ascent of moist air over a mountain barrier. While orographic 

precipitation is known to be an important process in mountainous terrain [e.g. Barros and 

Lettenmaier, 1994; Roe, 2005; Houze, 2012], an accurate assessment of high-elevation gradients 

in total precipitation and snowfall across montane regions is still missing [Lehning, 2013]. 

Limited in situ measurements generally inhibit a full spatiotemporal characterization of 

orographic precipitation from the basin to mountain range scales [Kirchner et al., 2014]. Without 

a more complete understanding of where water is stored across mountain ranges and the rate of 

increase in snowfall and snow water equivalent (SWE) accumulation with elevation, vital water 

resources are more challenging to quantify, predict, and manage. 

Due to the high variability of the topography and surface characteristics in complex 

mountainous regions, there is often significant variability in the spatial patterns of snow 

accumulation resulting from localized orographic effects and atmospheric circulations [Dettinger 

et al., 2004; Lundquist et al., 2010]. When compared to high-resolution distributed snow depth 

measurements, Kirchner et al. [2014] found that point-scale snow pillow observations were not 

representative of the spatial variability of the montane snowpack. Many prior studies have 

utilized point-scale in situ measurements [e.g. Aguado, 1990; Dettinger et al., 2004; Lundquist et 
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al., 2015], which can provide relatively long temporal records, but spatially incomplete 

characterizations of orographic processes. Furthermore when gridded datasets have been used, 

they were generally temporally sparse and/or (spatially) coarse: a single high-resolution snapshot 

in time over a limited domain [e.g. Kirchner et al., 2014], coarse-resolution (several kilometers) 

gridded datasets and climate models [e.g. Colle, 2004; Galewsky and Sobel, 2005], etc. Coarse 

resolutions smooth out the heterogeneities (e.g. elevation) that control the variability of snowfall, 

snow states, and orographic processes over complex terrain [Leung and Ghan, 1995; Cayan et 

al., 2008]. Hence coarse resolutions, point-scale measurements, and temporal sparseness can 

result in an incomplete picture of the high spatiotemporal variability of montane snowfall. 

To overcome these limitations, we used a new multi-decadal, high-resolution distributed 

SWE reanalysis over the western Sierra Nevada [Margulis et al., 2016] to yield better insight 

into orographic enhancement, the inter-annual variability of orographically-driven cumulative 

snowfall (CS) gradients, and the drivers of orographic processes in cold-season snowfall 

accumulation. Previous studies have not been able to capture the inter-annual variability of 

orographic snowfall at the basin-scale across an entire mountain range (due to limitations in data 

and resolution) nor have they concentrated on a thorough comparison of snowfall gradients 

among all windward basins in the Sierra Nevada (Figure 3.1a). A detailed climatology of 

orographic CS gradients does not currently exist at the range-scale nor have wet-year/dry-year 

implications in CS gradients been explored. Herein, the CS was defined as the integrated amount 

of snowfall occurring over the course of the accumulation season. 

This paper therefore extends previous work to better understand the inter-annual and 

spatial variability of orographically-driven snowfall gradients at high-elevations across the Sierra 

Nevada by answering the following questions: 1) How is orographically-driven snowfall 

manifested across the windward (western) side of the Sierra Nevada? 2) How can the shapes of 
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the cumulative snowfall versus elevation curves be characterized (e.g. slope, maximum, etc.) and 

what factors influence their shapes? 3) How and to what extent do orographic gradients vary 

spatially and inter-annually? 4) What characterizes a ―wet‖ versus ―dry‖ year in the Sierra 

Nevada in terms of orographically-driven cumulative snowfall?  

3.2 Wintertime Atmospheric Conditions Driving Orographic 

Enhancement 

The Sierra Nevada receives the majority of its seasonal snowfall from a few large 

snowstorms each year, leading to high inter-annual variability in CS and SWE across the range 

[O’Hara et al., 2009; Lundquist et al., 2015; Huning and Margulis, in review, hereafter HM17]. 

With the rapid snowfall accumulation rates over the Sierra Nevada [Serreze et al., 2001; 

Lundquist et al., 2015; HM17], the heavy reliance on snowmelt across California [Bales et al., 

2011; Downing, 2015; Rosenthal and Dozier, 1996; etc.], and shifts in peak streamflow/melt due 

to climate change [Cayan et al., 2001; Mote et al., 2005; Barnett et al., 2005; Kapnick and Hall, 

2010], it is important to investigate the processes that lead to the wintertime snowfall 

accumulation across the Sierra Nevada, and in particular, how orography enhances snowfall 

accumulation.   

Figure 3.2 presents a simplified picture of factors that tend to favor orographic 

enhancement during the wintertime. Moisture must be available for orographic precipitation to 

occur (Figure 3.2a). Even if all other factors promote orographic enhancement, without moisture, 

clouds will not form and precipitation will not be generated. Higher wind speeds promote greater 

orographic enhancement [Luce et al., 2013] because they result in larger vertical uplift velocities 

when encountering an obstacle (Figure 3.2b). Mountains with higher peak altitudes are more 

favorable for enhancement than lower mountains or hills because greater uplift is possible 
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(Figure 3.2c). For the highest mountains, the elevation corresponding to the maximum CS (

maxCSz ) is typically reached before the mountain peak (
maxz ). In lower ranges however, this 

elevation may occur at the peak or on the leeward side of the mountain due to spillover. While 

steeper slopes force uplift at a greater rate than a gradual slope, there is also greater potential for 

gravitational redistribution of the snow (e.g. avalanching, Grünewald et al., 2014) causing lower 

enhancement to be observed as depicted in Figure 3.2d. Also, terrain aspects facing into the 

prevailing wind tend to be more favorable for orographic enhancement than hillslopes oriented 

away from the prevailing wind (Figure 3.2e).  

The Sierra Nevada provides a suitable domain for studying orographic enhancement 

because the (western) basin-average aspects generally face into the wind with minimal upwind 

obstacles (Figure 3.1a; Grubišić et al., 2005). Previous studies have shown the importance of 

atmospheric rivers (e.g. Ralph et al., 2006; Guan et al., 2010) and the Sierra Barrier Jet (SBJ; 

e.g. Lundquist et al., 2010; Hughes et al., 2009, 2012) in determining the precipitation/snowfall 

patterns across the Sierra Nevada. Long, narrow, moisture-rich low-level jets known as 

atmospheric rivers (ARs) promote orographic precipitation when they interact with topography. 

On average, ARs yield an estimated 30-40% of the CS across the Sierra Nevada annually [Guan 

et al., 2010]. SBJs are also low-level jets that form parallel to the western side of the range 

(Figure 3.2f). They transport moisture northward, impacting the distribution of precipitation 

across the Sierra Nevada when stable air masses slow and cannot ascend the western slope 

(blocking) [e.g. Lundquist et al., 2010; Neiman et al., 2013]. Precipitation can also result from 

enhanced vertical uplift of air masses that are capable of ascending the terrain/barrier. 

Nonetheless, we do not focus on specific storm mechanisms or meteorological events because 

this paper provides a seasonal study as opposed to an event-based analysis. Therefore, our 

analysis considers all storm mechanisms (e.g. frontal systems, ARs, etc.) that yield snowfall 



59 

 

across the Sierra Nevada. Herein, we analyze atmospheric quantities such as integrated vapor 

transport (IVT), integrated water vapor (IWV), etc. during storm periods and ARs, SBJs, etc. are 

implicit in the moisture and wind fields to the extent that the atmospheric regional reanalysis 

(described below) represents these events.  

Previous studies utilizing precipitation information from in situ observations [Pandey et 

al., 1999; Dettinger et al., 2004; Lundquist et al,. 2015] found that southwesterly winds tend to 

correspond to the largest storm events over the Sierra Nevada, while westerly/northwesterly 

winds generally yield greater orographic enhancement. Lundquist et al. [2015] showed that the 

heightened enhancement observed during northwesterly winds results from snow pillows 

recording increases in SWE while only minimal increases were recorded at precipitation gauges. 

They found that this could result in up to six times more mountain precipitation than valley 

precipitation with northwesterly winds as opposed to ~2-3 times more with southwesterlies. 

Since climatologies in California tend to be dominated by more total precipitation during 

southwesterlies, this can impact the accuracy of datasets that are trained on climatologies 

(Lundquist et al. 2015). The snowfall dataset used herein was not conditioned on climatologies 

and thus should yield robust estimates of orographic gradients via a probabilistic snow reanalysis 

framework (Margulis et al. 2016).  

3.3 Data and Methods 

3.3.1 Snowfall Dataset 

For the 14 study basins along the windward side of the Sierra Nevada (Figure 3.1a), 

snowfall was defined as increases in the 90-m daily SWE fields derived from the snow reanalysis 

[Margulis et al., 2016]. This SWE reanalysis was generated using the process briefly described 

here and extensively documented in Margulis et al. [2015]. An ensemble of meteorological 
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forcings derived from the National Land Data Assimilation (NLDAS-2, Xia et al. 2012) dataset 

was used to drive a snow model and generate prior state estimates. These estimates were 

seasonally conditioned on Landsat fractional snow covered area images within a Bayesian data 

assimilation framework to yield posterior estimates such as daily, 90-m SWE fields.   

The land surface model used within this framework utilized a fixed air temperature 

threshold of 2°C [Lundquist et al., 2008] to classify precipitation as either rain or snow at a given 

time. This simplification would likely have the largest impact on lower elevations that are more 

prone to experiencing a mixture of rain and snow during a storm due to their warmer 

temperatures. Given this framework and that the analysis herein focuses on snowfall gradients, 

not rainfall or total precipitation gradients, an air temperature dependence is removed during 

snowstorms when only considering air temperatures that yield snowfall and not melt or rainfall. 

The SWE reanalysis was extensively verified for CS over 31 accumulation seasons in the 

Sierra Nevada with more than 2600 station years of snow pillow observations [HM17] and for 

peak SWE over the same time period [Margulis et al., 2016]. HM17 demonstrated that the SWE 

reanalysis could be utilized to examine snowfall accumulation across the Sierra Nevada by 

verifying the seasonal CS and snowfall timing with observations over the range. They found a 

root-mean-square error (RMSE) and mean error (ME) of 4 cm and -2 cm, respectively, for the 

median seasonal CS across all stations relative to observations. A negative ME indicates an 

underestimation of CS relative to observed. As expected, when all stations and years were 

considered, the RMSE and ME were larger (12 cm and -4 cm, respectively). Although the ME 

indicates a negative bias, the bias is minimal over the course of a season and differences between 

the 90-m CS and point-scale observations are expected due to spatial disparities and 

representativeness issues [HM17]. 
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3.3.2 Orographic Gradients  

The orographic gradient (  ) was defined as the rate of increase in CS with elevation. 

Gradients serve as robust metrics for quantifying orographic distributions of CS since they not 

only quantify the difference in magnitude of CS, but they also account for elevational 

differences. Unlike an orographic ratio [e.g. Lundquist et al., 2015] of CS at higher elevations to 

that observed at lower elevations,   does not vary depending on which two points are selected 

along an elevational transect. Two locations separated by a smaller elevational difference would 

likely yield significantly different orographic ratios than two separated by a larger elevational 

difference. However, a single orographic gradient,  , governs the CS across all of these 

locations. Gradients fully leverage the spatial nature of the underlying CS information to 

explicitly and robustly describe the distribution of CS across a watershed.  

It is important to emphasize that herein snowfall is described in units of equivalent water 

depth and should not be confused with snow depth. Moreover CS, as opposed to SWE on the 

ground at a specified time, is used throughout this paper to prevent the introduction of artificially 

large gradients if lower elevations have undergone ablation when higher elevations are 

continuing to accumulate SWE at a given time. This study was constructed to minimize the air 

temperature impact on orographic CS gradients by eliminating intermittent melt effects during 

the accumulation season. Rather than assuming that the peak SWE field was representative of the 

total accumulated winter snowfall, CS was computed by integrating snowfall accumulated 

throughout the season similar to HM17. Although HM17 quantified CS over the entire Sierra 

Nevada, they focused on accumulation rates, while herein we investigate orographic CS 

gradients and enhancement across the windward basins.  
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3.3.2.1 Construction of Orographic CS Curves 

A minimum daily snowfall ( S ) of 0.254 cm [Serreze et al., 2001] was used herein to 

remove negligible increases in SWE (i.e. 0.254cmS SWE   ). Moreover, to prevent 

exaggerating orographic gradients with the inclusion of pixels with very low or no seasonal 

snowfall accumulation, we only considered pixels j  that received at least 2 cm of CS by the end 

of a given season as defined by: 

 ( ) 2cm
DOP

j

t 1Nov

jS SC t


   (3.1) 

Analysis was performed at high-elevations (above the average 1500 m snow line) during the cold 

season, November through the basin-average day-of-peak (DOP) SWE (as denoted in Eq. (3.1)), 

for each watershed over 31 water years (WYs; 1 October-30 September) 1985-2015. As shown 

in Figure 3.1, we divided the Sierra Nevada into the northwest (NW) and southwest (SW) to 

elucidate the distinct precipitation regimes of the northern Sierra Nevada (which tends to receive 

more precipitation) and the higher elevation southern Sierra Nevada. All land pixels in the 

western (W) basins (Figure 3.1a) were considered herein. The gridded data was divided into 100-

m elevation bins where bins with <0.5% of the total number of pixels in the basin (above 1500 

m) were neglected to remove the potential for relatively few pixels dictating orographic 

relationships [Grünewald et al., 2014]. Based on the combination of the seasonal CS and 

elevation bin criteria above, different numbers of pixels and bins were used annually in 

computations to account for fluctuations in the snow line.  

Since a single linear fit does not necessarily describe the orographic snowfall 

accumulation observed across different regimes [Grünewald et al., 2014], herein a piece-wise 

least squares regression, using a maximum of three line segments, was applied to the CS-

elevation curves. These elevational relationships for each basin were derived using mean values 
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within each bin. The segments were fit to the data between: 1) the lowest elevation and ~2500 m, 

2) ~2500 m and the elevation corresponding to the 31-year average maximum CS (
maxCSz ), and 

3) 
maxCSz  and the maximum elevation (

maxz ). Not all three segments (within elevation zones 
iEZ

, where 1-3i  ) exist for each basin; however where possible, the 31-year average orographic 

CS gradient is denoted as ( )iEZ . The approximate upper bound of 2500 m was chosen for 
1EZ  

because it captures the linear relationship at the lowest elevations considered. While nearly all 

basins span these elevations, some do not have a noticeable fraction of area above 2500 m (based 

on the 0.5% threshold described above). Therefore, the elevation of the binned data with a mean 

value closest to 2500 m was used as the upper bound of 
1EZ . Figure 3.1b shows the spatial 

distribution of the elevation zones. Elevation maps (Figure 3.1) and other physiographic 

characteristics were derived from Margulis et al. [2016]. 

3.3.3 Wet and Dry Year Selection 

An important missing piece in understanding the inter-annual variability of CS is a 

thorough assessment of wet-year and dry-year orographic CS and how synoptic atmospheric 

conditions in the Sierra Nevada contribute to orographic enhancement at the basin-scale. To 

examine the potential drivers of orographic enhancement (e.g. moisture transport, wind 

speed/direction, etc.) and understand the inter-annual variability of orographically-driven 

snowfall, the 31 years were sub-divided into wet and dry years following HM17, and the same 

years were analyzed herein. Wet years include WYs 1986, 1993, 1995, 1998, 2005, 2006, 2008, 

and 2011 and dry years include WYs 1987, 1988, 1990, 1992, 1994, 2001, 2007, and 2012-2015. 

The classifications were defined based on the integrated basin-averaged CS across the range for 

consistency across all basins. Although the number of wet years (eight) and dry years (eleven) 
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differ, the orographic features remain similar to when an equal number of wet and dry years are 

analyzed.  

3.3.4 Orographic Enhancement 

Throughout this paper, we investigate the distribution of CS with elevation and how CS 

varies spatially and inter-annually across the range. As such, we defined ―orographic 

enhancement‖ corresponding to conditions where there were increases in CS with elevation or 

conditions where higher values of the CS gradients were observed relative to lower ones. This 

latter form of the definition can therefore be applied to specific years, elevation zones, or 

regions. Furthermore for each EZ , the degree of orographic enhancement exhibited during wet 

years relative to dry years was defined as the ratio /w d  , where w  and d  are the average 

wet-year and dry-year gradients, respectively.  

3.3.5 Snowstorm Conditions 

3.3.5.1 Snowstorm Characterization 

We used the basin-wide snowstorms that were identified in HM17 to investigate potential 

controls on the inter-annual variability of orographic snowfall processes. Using the SWE 

reanalysis, HM17 defined snowstorms to be those days during the accumulation season that 

contributed at least 1% of the integrated seasonal CS volume across a basin at the highest 

elevations (i.e. elevations above the 75
th

-percentile). Consecutive days satisfying this condition 

were grouped into a single event. Their approach was designed to capture the largest events of 

the season that most-significantly drive CS. Those same snowstorm periods were used herein to 

assess the synoptic storm features that lead to differences in orographic enhancement and 

characterize wet versus dry years throughout the domain. As noted by HM17, basin-wide 

snowstorms were identified to account for differences in storm track location/timing and local 
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interactions. We defined the ―leading event‖ for a given year as the snowstorm that yielded the 

largest integrated CS volume over a basin.   

3.3.5.2 Synoptic Atmospheric Conditions 

Synoptic atmospheric conditions during snowstorm events were diagnosed with the North 

American Regional Reanalysis (NARR; Mesinger et al., 2006). NARR was selected for its 

relatively high resolution (3-hourly, 32-km) and its connection to the near-surface fields used to 

force the land surface model in Margulis et al. [2016] (i.e. NLDAS-2). It is important to 

emphasize that the SWE reanalysis was forced by precipitation derived from NLDAS-2 (which 

was derived from observational data via the Climate Prediction Center (CPC) precipitation gauge 

network). NARR was used herein to diagnose atmospheric fields such as IVT, etc.; however, as 

shown in Hughes et al. [2012], NARR may not be able to fully represent features such as the 

SBJ.  

NARR grid cells overlapping each watershed were identified and atmospheric variables 

were averaged to characterize basin-wide atmospheric dynamics. IVT, which accounts for both 

the wind field (direction and speed) and humidity in the overlying atmosphere, was computed 

from the surface to 100 hPa to characterize typical snowstorm conditions. Based on Lavers et al. 

[2012], the magnitude of the IVT vector is given by:   

 

2 2
10,000 Pa 10,000 Pa

-1 -1 1 1
kgm s

sfc sfcp p
IVT qudp qv dp

g g

   
       

   
   (3.2) 

where g  is the acceleration due to gravity in m s
-2

, sfcp  is the surface pressure in Pa, q  is the 

specific humidity in kg kg
-1

, u  and v  are the zonal and meridional wind in m s
-1

, and p  is the 

pressure. The direction of the IVT vector is determined using geometric relationships. The 

magnitude of the horizontal vapor transport along an atmospheric profile is defined as: 
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We computed the IWV between the same levels used for IVT from NARR as follows: 

  
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
   (3.4) 

where 
w  is the density of water in kg m

-3
. Zonal winds at 700 hPa (

700u ) were also obtained 

from NARR. 

3.4 Results and Discussion 

3.4.1 Shape of Orographic CS Curves 

To characterize the general shape of the CS-elevation curves, we first focus on the 31-

year average (black curve) for each of the basins (Figure 3.3). For reference, the histogram 

indicates the (static) elevational distribution of area within each basin. As demonstrated in Figure 

3.3, NW basins are characterized by increasing orographic curves that reach their maximum in 

their highest elevation bin. They do not exhibit a negative slope after a maximum is reached like 

the majority of higher elevation SW basins. Only American, Mokelumne, and Stanislaus in the 

NW extend beyond 
1EZ  and into 

2EZ  (Figures 3.1b and 3.3). At the lowest elevations, every 

basin has a strong linearly increasing CS-elevation relationship. By definition, CS continues to 

increase linearly with elevation for each of the basins in 
2EZ  (shaded gray, Figure 3.3). Only six 

SW basins have orographic curves that extend into 
3EZ  (Figures 3.1b and 3.3) where each 

exhibits a negative slope. As such, the basin-wide shapes of the climatological CS-elevation 

curves found in the Sierra Nevada can be classified into two groups: 1) increasing and 2) 

increasing to a maximum and then decreasing.  
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 As demonstrated in Figure 3.3, the elevation of the (31-year) maximum CS occurs at the 

highest elevations for all NW basins and Merced. Consequently, the elevation of 
maxCSz

 
for the 

remaining six SW basins is governed by other physical processes that dominate the higher 

elevations. In these six SW basins, 
maxCSz  ranges from ~2850 m (Tule) to 3650 m (Kern), which 

is similar to values found in literature (e.g. 3300 m, Kirchner et al., 2014; ~2000-3000 m (sub-

catchment scale) and up to ~3400 m (transect-scale), Grünewald et al., 2014). Although values 

of 
maxCSz  have been theoretically estimated [e.g. Alpert, 1986] or observed, previous studies have 

not shown whether these elevations were relatively constant for basins over long records (i.e. 

multiple decades) as shown here in Figure 3.4. For a given basin, 
maxCSz

 
has low inter-annual 

variability and is confined to relatively few elevation bins concentrated around 
maxCSz . Figure 3.4 

indicates that given the geometry of a basin, 
maxCSz  is relatively constant at the seasonal-scale. 

We hypothesize that a combination of factors dictate 
maxCSz , including: A limited moisture 

holding capacity at high altitudes that reduces the amount of snowfall that occurs (i.e. 

atmospheric moisture is exhausted, e.g. Kirchner et al., 2014). Gravitational processes 

[Grünewald et al., 2014] and wind redistribution also contribute to negative slopes in 
3EZ  across 

these highest elevations that are more exposed and less vegetated [Margulis et al., 2016]. Since 

the gradients observed in 
3EZ  were constructed with fewer pixels, primary focus is on 

1EZ
 
and 

2EZ  below. 

3.4.2 Characterization of Orographic Gradients and Enhancement 

3.4.2.1 Long-term Average Orographic Gradients 

Overall, the largest orographic gradients occur in 
1EZ  across the Sierra Nevada (Table 

3.1 and Figure 3.3). Table 3.1 indicates that five basins have 31-year averaged gradients ≥7.0 cm 
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SWE/100 m elevation in 
1EZ , with the steepest gradient found in Cosumnes (7.5 cm/100 m). 

Tuolumne and Kings display the smallest 31-year average gradients in 
2EZ  of ~1.1-1.4 cm/100 

m. Although the orographic curves continue to increase from 
1EZ  to 

2EZ , a reduction in the rate 

of orographic enhancement (i.e. 2 1( ) ( )EZ EZ  ) is observed. 1( )EZ  is ~1.3 (Tule) to 6.5 

(Tuolumne) times larger than 2( )EZ . On average, this ratio is ~2.5. The 31-year average 

gradients in 
3EZ  range from -0.3 (Kaweah) to -2.8 cm/100 m (Tule).  

 Based on the 31-year averages in 
1EZ  and 

2EZ  in Table 3.1, the NW exhibits greater 

orographic enhancement than the SW basins by ~1 cm/100 m. However when comparing 

individual basins in the two regions, 1( )EZ  can differ on the order of 4 cm/100 m. The 

negative slopes in 
3EZ  observed in the SW have the smallest absolute values of all gradients. 

The magnitudes of the orographic gradients tend to decrease with elevation from 
1EZ  to 

3EZ . 

Note that this does not always hold for an individual year (Figure 3.5).  

3.4.2.2 Inter-annual Variability of Orographic Gradients 

Over the 31 years of orographic gradients presented in Figure 3.5, negative slopes did not 

occur at the lowest elevations (Figure 3.5a). Although uncommon, some basins/years did exhibit 

small negative gradients in 
2EZ
 
(Figure 3.5b) as well as positive gradients in 

3EZ  (Figure 3.5c). 

Across all years in Figure 3.5, the steepest (magnitude) gradient for each basin ranged from 8.8 

(Feather, WY 2006) to 15.0 cm/100 m (Cosumnes, WY 1986) in 
1EZ , 5.6 (Kings, WY 1986) to 

15.2 cm/100 m (Tule, WY 1986) in 
2EZ , and -2.7 (San Joaquin, WY 1995) to -7.6 cm/100 m 

(Tule, WY 2010) in 
3EZ . Out of the steepest gradients for each basin across 

1EZ  and 
2EZ , 

~58% of these gradients exceeded 10 cm/100 m. About 63% of the gradients with the smallest 

magnitude for each basin in these two zones had magnitudes <1 cm/100 m (Figures 3.5a-b). 
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Further discussion of the wet-year and dry-year gradients and their ratios (i.e. /w d  ) is 

presented below.  

3.4.3 What Makes a Wet Versus Dry Year in the Sierra Nevada? 

HM17 showed that, on average, 11 snowstorms occur annually in the Sierra Nevada with 

dry years experiencing approximately four fewer snowstorms and roughly 30% fewer storm 

snow days than wet years. They determined that, on average, large snowstorms contribute ~83-

93% of the seasonal CS within a basin. Hence, we used the snowstorm periods from HM17 to 

examine synoptic drivers of elevational gradients in CS and understand how synoptic features 

impact wet-year and dry-year orographic CS accumulation.  

3.4.3.1 Representative Average Snowstorm Conditions 

 Figure 3.6 compares the seasonal and average snowstorm characteristics of two 

representative basins, Mokelumne (NW) and Kaweah (SW), during WY 1986 and 2015. The 

basins exhibit the typical CS-elevation relationships and snowstorm characteristics observed in 

the NW and SW. These two years generally represent those with the greatest and least 

orographic enhancement (i.e. highest/lowest gradients) over the range in 
1EZ  (Figure 3.5a) and 

correspond to a wet and dry year, respectively. Figure 3.6a depicts the elevational variation of 

CS during WYs 1986 (blue) and 2015 (red) for both basins and indicates that a stark contrast 

between wet-year and dry-year orographic CS gradients exists. WY 1986 yielded orographic 

gradients of 14.5 (Mokelumne) and 11.4 cm/100 m (Kaweah) in 
1EZ  (as shown in Figures 3.5a 

and 3.6a) while WY 2015 only yielded 2.7 (Mokelumne) and 1.4 cm/100 m (Kaweah). Hence, 

WY 1986 had orographic gradients ~5.4 and 8.5 times larger than during 2015 for Mokelumne 

and Kaweah, respectively. Inter-annual variability of orographic CS gradients is further 

examined below. 
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 Synoptic features (i.e. 
700u , IVT, and IWV) are presented in Figures 3.6b-d for the 

average snowstorm and leading snowstorm conditions during WY 1986 and 2015 across 

Mokelumne and Kaweah. Although there is variability between the synoptic conditions 

associated with each basin, the differences between a year with strong vs. weak orographic 

enhancement are highlighted. The zonal wind speeds are higher in both basins averaged across 

storms (i.e. seasonal-scale) and at the leading snowstorm-scale during the wet year (Figure 3.6b). 

Similarly IVT is larger in 1986 than in 2015 (Figure 3.6c) for both basins. While 
700u  and IVT 

are generally larger during wet years than dry years, Figure 3.6d suggests that IWV is not 

necessarily as strong of an indicator of wet-year enhancement as the other two synoptic 

variables. Not only does IWV show minimal variability between years, the IWV is actually 

larger for both the average and leading snowstorm conditions in Mokelumne during 2015. The 

opposite is observed in Kaweah. Furthermore across the Sierra Nevada, stronger and statistically 

significant correlations between   and IVT were observed as opposed to correlations between   

and IWV (not shown), which often were not statistically different from zero since 0.05p  . Rutz 

et al. (2014) similarly found precipitation to be more strongly correlated to IVT than to IWV 

over the mountainous western U.S. during the cold season. Hence, further quantification of 

synoptic conditions focuses on 
700u  and IVT is expanded to each watershed below. 

3.4.3.2 Wet-year and Dry-year Orographically-driven CS 

 Figure 3.7 extends the analysis of orographic CS to all wet and dry years across the 14 

basins and demonstrates how the snowstorm characteristics discussed above manifest themselves 

in wet-year and dry-year orographic enhancement. Wet years are more orographically enhanced 

than dry years, which is evidenced by the lack of a simple vertical translation in the CS-elevation 

curve between wet and dry years (Figure 3.7). In other words, Figure 3.7 demonstrates that the 
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average dry-year curve (red) is not simply shifted upward along the y-axis because the snowfall 

distribution varies between wet and dry years. If such a shift/translation took place, this would 

preserve the slope or orographic gradient of the dry-year curve while yielding the average wet-

year curve (blue) with a higher CS. Rather, there is an increase in w  that may be considered a 

―scaling‖ or ―stretching‖ of the dry-year curve because the orographic distribution of CS highly 

varies inter-annually. As shown in Figure 3.7, the greater orographic enhancement occurring 

during wet years can be represented by the relative rate of enhancement or the ratio of the wet to 

dry year gradients exceeding unity (Table 3.1). This is observed across all basins (except 

Tuolumne) in both 
1EZ  and 

2EZ .   

As summarized in Table 3.1, the largest values of w  and d  in 
1EZ  were observed to 

be 11.8 (Tuolumne) and 5.5 cm/100 m (Cosumnes), respectively. The SW has larger orographic 

gradients than the NW Sierra Nevada in 
1EZ  during wet years; however, this is reversed in the 

next elevation zone and during dry years. The relative rate of enhancement (i.e. /w d  ) in the 

SW is ~3.1 and 2.1 in the first two zones whereas values of 2.0 and 2.4 occur, respectively, in the 

NW. Thus the degree of wet-year enhancement varies by region and elevation zone. Overall, the 

western Sierra Nevada experiences roughly twice as much enhancement during wet years as in 

dry years in 
1EZ  and 

2EZ . The rate of decline in CS is ~10 times larger during wet years in 
3EZ  

in the SW. However, neglecting the extremely large ratio (Kern) and negative ratio (Kaweah) in 

Table 3.1, the average ratio is ~3.1. At the individual basin scale, the relative rate of 

enhancement is generally lower in 
2EZ  than 

1EZ  indicating that elevations below ~2500 m tend 

to be relatively more orographically enhanced. 

In Figures 3.5a-b and 3.7, wet years dominate the largest orographic gradients observed 

in 
1EZ  and 

2EZ  across all watersheds. Considering the largest gradient for each basin in these 
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two elevation zones, WY 1986 produced ~67% of the largest gradients. Overall, wet years 

yielded ~87% of the steepest gradients and they produced all but one of the steepest gradients in 

1EZ  and 
2EZ . Similarly, dry years make up the largest fraction of years with the most gradual 

CS-elevation increases for each basin (Figure 3.5). They account for well over the majority of 

these gradients across elevation zones with WYs 2001 and 2015 accounting for the largest 

number of dry years. Dry years did not produce any of the steepest gradients and only once did a 

wet year yield one of the smallest magnitude slopes for a basin (American in WY 2008, Figure 

3.5b). 

3.4.4 Attribution of Orographic Enhancement  

3.4.4.1 Horizontal Moisture Transport and Wind Patterns  

Large-scale moisture transport and wind predominantly come from the southwest and 

west during snowstorms across the Sierra Nevada (Figure 3.8). The basin-average terrain aspect 

of the majority of basins corresponds to southwest/west-facing terrain (dashed line in Figure 

3.8), while Kern and Feather have south-facing basin-average terrain aspects. Therefore, 12 of 

the 14 basins have average terrain aspects that are more prone to being aligned with the dominant 

winds that transport moisture to this range (i.e. facing into the wind). Note that while the basin-

average terrain aspect of the Upper Sacramento is similar to the other basins, its overall 

configuration is different (Figure 3.1a). Lower elevations (in particular) in both Kern and Feather 

tend to be more sheltered or obstructed by terrain such that localized rain shadows can form. 

This is manifested by these two basins having the lowest orographic gradients in 
1EZ
 
over each 

averaging period (Table 3.1). Furthermore Figure 3.5a shows that at these lowest elevations, both 

basins have the smallest maximum gradients out of all basins at 8.8-9.0 cm/100 m. While 

alignment between the prevailing wind direction and the terrain aspect would be expected to 
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provide the greatest orographic enhancement (Figure 3.2e), there tends to be a relatively narrow 

range of prevailing IVT directions during the snowstorms analyzed herein (Figure 3.8). Thus, 

―perfect‖ alignment is not necessarily achieved across basins; however, the basin-average terrain 

aspects generally face into the prevailing wind field, which promotes orographic enhancement.  

Figure 3.8 presents the distribution of prevailing transport directions during all 

snowstorms in a basin for wet and dry years in lighter shades of blue and red, respectively. It 

indicates that the percent of storms from the SW is often greater during wet years; however, 

directions do not greatly vary between years. While the IVT directions may be similar, the IVT 

magnitudes (and inherently wind speeds) can greatly differ between storms and years, leading to 

differences in orographic enhancement as shown in Figures 3.3 and 3.5-3.7 and further discussed 

below. Figure 3.8 also demonstrates that the predominant direction that leading snowstorms 

(darker/thicker curves) originate from is the same direction as when all snowstorms 

(lighter/thinner curves) are considered; however, a larger percentage of the leading snowstorms 

tend to originate from these prevailing directions than when all storms are considered. Since the 

snowstorm definition [HM17] targeted the largest snowstorms of the season, it is not surprising 

that southwesterly winds dominate the snowstorm record, given previous literature [e.g. 

Lundquist et al., 2015]. Overall, transport from the SW yields the largest snowstorms of the 

season that have high water vapor and favorable alignment with the terrain aspect, and thereby 

promote orographic enhancement.  

Maps of average IVT conditions during snowstorms over the range are presented in 

Figure 3.9. They depict both the magnitude and direction of IVT ranging from multi-year 

composites of average storm conditions in Figure 3.9a to single events in Figure 3.9d. Across 

each set of percent difference maps (rightmost maps in Figures 3.9a-d), wet years and their 

leading snowstorms have higher IVT than dry years with large relative differences observed 
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along the western basins. Although the directions of the vectors are markedly similar between 

the leading storm composites in Figure 3.9b, the percent differences relative to the dry years are 

large (32.7-104.4%). The greatest relative differences between wet and dry years are evident at 

the leading storm-scale with a maximum difference of 219.4% (Figure 3.9d).
 
Even when the IVT 

vectors are similar in the northernmost basins in WY 1986 and 2015 (Figure 3.9c), the storm 

conditions still indicate higher overall IVT during the wet year, which had more storms (and 

longer integrated storm duration) than 2015 (HM17). Therefore, while these maps (near/over the 

western basins) are consistent with the dominant transport directions identified in Figure 3.8, 

they provide additional information about the variability of IVT magnitudes and storm directions 

across the range within the broader context of California.  

3.4.4.2 Atmospheric Synoptic Features and Orographic CS Gradients 

Of the average synoptic snowstorm conditions considered above (i.e. 
700u , IVT, and 

IWV), 
700u  wind speeds and IVT magnitudes are further investigated to better understand the 

drivers of orographic enhancement and how these synoptic features impact the inter-annual 

variability of orographic gradients across the Sierra Nevada. The above discussion and Figures 

3.2, 3.6, and 3.9 suggest strong correlations between orographic gradients and both IVT and 
700u

. For the abovementioned reasons, our primary focus is on both 
1EZ  and 

2EZ , which make up 

the largest fraction of the area among basins. 

Table 3.2 shows the correlation coefficients between seasonal orographic CS gradients in 

each elevation zone and 
700u  and IVT for the 14 basins. The stronger correlations overall 

(boldface) generally occur between the orographic gradients and IVT, with higher correlations 

most evident in 
2EZ . Roughly half of the largest correlation coefficients in 

1EZ  are split 

between   and 
700u  (column a) and   and IVT (column b). In the northernmost (Feather, Yuba, 
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and American) and southernmost (Kings, Kaweah, and Tule) basins in 
1EZ , correlations 

between   and 
700u  are larger than those between   and IVT, while the opposite is generally 

observed in the central Sierra Nevada. The correlations in Table 3.2 are statistically significant, 

with only two basins (Cosumnes and Kern) having weak (statistically insignificant) correlations 

in 
1EZ . The weakest correlations found in 

1EZ
 
were in Kern, which likely resulted from its 

North-South orientation that largely shelters the lowest elevations from the prevailing wind. In 

addition, the complex terrain upwind of Kern (e.g. Kaweah and Tule basins to the west of Kern, 

etc.) may also impact the correlations observed for Kern. Both Cosumnes and Kern have the 

weakest correlations between CS and slope (not shown), which may contribute to the 

correlations between the synoptic features and CS gradients not being statistically different from 

zero in Table 3.2. On average, the   and IVT correlations are larger in 
2EZ  than those 

associated with 
700u .  

The combination of higher wind speeds and higher precipitable water leads to increased 

IVT, which enhances orographic CS gradients (Table 3.2). To illustrate this, Figure 3.10 shows 

the average wet-year (blue line), dry-year (red line), and 31-year (dashed line) snowstorm 

horizontal vapor transport profiles above the surface for each basin. The inter-annual variability 

in the wet-year and dry-year profiles is demarcated by the shaded regions in their respective 

colors. These profiles represent average atmospheric profiles during a broadly defined set of 

snowstorms. While the snowstorms considered herein would include specific atmospheric 

structures such as precipitation-intensive AR events, our analysis more generally considers both 

small/weak and large/intense snowfall events.  

As shown in Figure 3.10, higher vapor transport occurs near or above the highest 

elevations in the Sierra Nevada. Moving upslope within a watershed, vapor transport ―builds up‖ 
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with elevation leading to greater potential enhancement. In other words, both wind and moisture 

at downwind locations can have a cumulative (integrated) effect with elevation and promote 

orographically-enhanced CS at higher elevations. Stronger overall correlations between   and 

IVT are therefore observed in 
2EZ  as opposed to 

1EZ . In addition, we hypothesize that higher 

correlations are observed in 
2EZ  because of the presence of the SBJ that influences the 

atmospheric controlling layer during the season [Neiman et al., 2013]. The SW basins that have 

larger correlations in 
1EZ  between   and 

700u  than between   and IVT (Table 3.2) tend to 

have lower vapor transport values than in other basins at the lowest elevations (Figure 3.10). In 

addition, there is often significant overlap between the wet-year and dry-year interquartile ranges 

for these basins (e.g. Kings, Kaweah, and Tule). Along with Feather and Yuba, they also have 

lower inter-annual variability in the vapor transport at these altitudes. Basins in the central Sierra 

Nevada exhibit the largest inter-annual variability and the strongest correlations overall (Table 

3.2). The profiles in Figure 3.10 therefore explain the relationships exemplified in Table 3.2. 

Both moisture and sufficient wind speeds (i.e. transport mechanisms) should exist at a given 

location or downslope for orographic precipitation to occur. 

Furthermore, humidity profiles decrease with altitude (Figure 3.11, dotted line). While 

the vapor transport (Figure 3.10) and wind speed profiles (Figure 3.11, blue and red) tend to 

exhibit a noticeable difference (or separation) between the profiles in wet and dry years, this is 

typically not observed in the humidity profiles (Figure 3.11, cyan and magenta), which have low 

inter-annual variability. Although lower elevations tend to have higher humidity, high moisture 

does not necessarily indicate that orographic enhancement will occur without sufficient wind 

speeds. This explains why IVT and 
700u  display a stronger relationship with orographic 

gradients than IWV. While 700 hPa corresponds to a geopotential height of roughly 3000 m, 
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higher 
700u  winds are generally indicative of higher zonal winds at all altitudes since wind 

speeds typically increase with altitude (Figure 3.11) and the westerlies are strong across 

California. Higher wind speeds favoring orographic enhancement were often observed during 

snowstorms in wet years (Figure 3.11), which supports the presence of positive correlations 

between 
700u  and   even at lower elevations.  

Not only do these findings explain the wet-year enhancement exemplified in Figures 3.5-

3.7, but also the correlations presented in Table 3.2. Thus, while wind speed and moisture are 

both important components in the generation of orographically-driven CS, wind speeds are more 

important in the Sierra Nevada. At elevations with a higher cumulative vapor transport effect 

(e.g. 
2EZ ),   tends to be more highly correlated to IVT than 

700u . When transport is lower 

(Figure 3.10), the 
700u  correlations dominate in the case of the lowest elevations (Table 3.2). 

While Figure 3.2 depicts higher wind speed as a factor promoting orographic enhancement, IVT 

exerts a more complex control on orographic enhancement because it combines moisture 

availability (Figure 3.2a) with wind fields (Figure 3.2b). Other ranges similar to the Sierra 

Nevada are expected to respond likewise to higher IVT and 
700u , which promote greater 

orographic enhancement and lead to wet years displaying greater enhancement than dry years. 

Stronger correlations in the Sierra Nevada are generally found between the orographic 

gradients and 
700u  at higher elevations (i.e. 

2EZ  vs.
 1EZ ), which is similar to Luce et al. [2013] 

who found stronger correlations between cumulative precipitation and 
700u  at higher elevations 

in the Pacific Northwest. As demonstrated here, higher wind speeds promote orographic 

enhancement at higher elevations where it can be more pronounced. At the lowest elevations, the 

prevailing wind has the greatest probability of being obstructed by the terrain or features such as 

the SBJ, which would result in localized wind patterns at these elevations that differ more from 
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the large-scale wind (taken as 
700u ). However as noted above, higher 

700u  is often indicative of 

higher wind speeds even at lower altitudes.  

3.5 Conclusion 

This paper utilized a high-resolution spatially-distributed snowfall dataset to investigate 

31 years of orographically-driven CS gradients across 14 windward basins in the western Sierra 

Nevada. It provided a more comprehensive analysis of the inter-annual variability of 

orographically-enhanced CS, wet-year vs. dry-year enhancement, and the key drivers of 

enhancement than previously available for high-elevation mountain ranges. Variability in 

orographic gradients indicates changes in the elevational distribution of CS, which has water 

resources and climate change implications [Pavelsky et al., 2012].  

An important implication of higher wind speeds and IVT observed during wet years is 

that while windy conditions promote enhancement, these are the same conditions that often lead 

to increased under-catch by gauges/sensors [Rasmussen et al., 2012]. Thus, such conditions 

would likely result in misrepresentations of orographic snowfall distributions that may be 

exacerbated by the general under-sampling of high elevations by in situ measurements. 

Furthermore, a warmer climate will allow the atmosphere to hold more water vapor. As a result, 

IVT is projected to increase in the future in the mid-latitudes along the west coast of North 

America [Lavers et al., 2015]. Lavers et al. [2015] found that a potential increase in IVT of ~20-

40% may occur in the wintertime, which thereby could increase orographic gradients. Our 

findings show that future modulation of IVT fields would have significant implications across 

the Sierra Nevada, altering the distribution of CS and orographic enhancement. These findings 

are likely extensible to other similar mountain ranges.  
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Insights presented herein could be used to evaluate the ability of climate models to 

accurately diagnose high-elevation CS gradients and distributions in montane regions. Since 

climate models often struggle with the representation of orographic snowfall processes, results 

could also be used to develop parameterizations that leverage the resolved synoptic atmospheric 

features in climate models (i.e. IVT and 
700u ) and their strong relationships to orographic CS 

gradients to better predict future orographic CS distributions across mountain ranges. Such 

parameterizations may also be utilized in downscaling applications from sparse station data 

and/or coarse gridded precipitation information to improve climate studies.  
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3.6 Tables 

Table 3.1. Thirty-one-year, wet-year, and dry-year averaged orographic gradients (  , w , and 

d , respectively) and the relative orographic enhancement ( /w d  ) for each basin and elevation 

zone ( EZ ). Regional/range averages were computed using the tabulated basin values. Values in 

3EZ  are the same for the SW and W since NW basins do not extend into this zone. 

 


 

(cm/100 m) 
w  

(cm/100 m) 
d  

(cm/100 m) 

/w d 
 

( - ) 

Basin 1EZ
 2EZ

 3EZ  
1EZ  

2EZ  
3EZ  

1EZ
 2EZ  

3EZ  
1EZ  

2EZ
 3EZ  

Upper Sac. 6.5 - - 8.6 - - 4.5 - - 1.9 - - 

Feather 4.6 - - 5.4 - - 3.2 - - 1.7 - - 

Yuba 7.0 - - 8.5 - - 4.9 - - 1.7 - - 

American 7.0 3.5 - 9.4 5.3 - 4.5 2.5 - 2.1 2.1 - 

Cosumnes 7.5 - - 9.2 - - 5.5 - - 1.7 - - 

Mokelumne 7.0 3.8 - 9.7 5.6 - 4.6 2.0 - 2.1 2.8 - 

Stanislaus 6.2 3.1 - 9.1 4.4 - 3.5 1.9 - 2.6 2.3 - 

Tuolumne 7.4 1.1 -2.6 11.8 0.8 -3.5 3.7 1.3 -1.2 3.2 0.6 2.9 

Merced 6.4 3.3 - 10.0 4.1 - 3.6 2.5 - 2.8 1.7 - 

San Joaquin 5.6 2.2 -0.8 8.6 3.5 -1.2 3.2 1.4 -0.7 2.7 2.5 1.6 

Kings 5.6 1.4 -2.3 9.3 2.1 -3.8 2.9 0.9 -0.9 3.2 2.4 4.1 

Kaweah 5.9 3.0 -0.3 9.7 4.3 -0.4 3.1 2.2 0.7 3.1 1.9 -0.5 

Tule 5.8 4.5 -2.8 10.3 6.6 -4.3 3.0 2.6 -1.2 3.5 2.5 3.7 

Kern 3.3 2.5 -1.6 6.0 4.2 -3.4 1.9 1.4 -0.1 3.2 3.0 49.0 

NW Average 6.6 3.4 - 8.6 5.1 - 4.4 2.1 - 2.0 2.4 - 

SW Average 5.7 2.6 -1.7 9.4 3.7 -2.8 3.1 1.8 -0.6 3.1 2.1 10.1 

W Average 6.1 2.9 -1.7 9.0 4.1 -2.8 3.7 1.9 -0.6 2.5 2.2 10.1 
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Table 3.2. Correlation coefficients between the seasonal orographic gradients (  ) in each 

elevation zone and average snowstorm a) 
700u  and b) IVT in each basin. All correlations are 

statistically significant ( 0.05p  ), except where indicated. Strongest statistically significant 

correlations for each basin and EZ  are in bold. 

 a)   and 
700u  b)   and IVT 

Basin 1EZ
 2EZ

 3EZ  
1EZ

 2EZ
 3EZ

 

Upper Sac. 0.49 - - 0.52 - - 

Feather 0.52 - - 0.43 - - 

Yuba 0.64 - - 0.61 - - 

American 0.56 0.68 - 0.52 0.66 - 

Cosumnes 0.34
a
 - - 0.28

a
 - - 

Mokelumne 0.64 0.77 - 0.65 0.80 - 

Stanislaus 0.55 0.60 - 0.67 0.72 - 

Tuolumne 0.40 0.50 -0.52 0.42 0.68 -0.49 

Merced 0.48 0.67 - 0.43 0.84 - 

San Joaquin 0.45 0.40 0.01
a
 0.46 0.62 -0.04

a
 

Kings 0.44
 0.36 -0.58 0.43 0.54 -0.51 

Kaweah 0.66 0.45 0.04
a
 0.55 0.54 -0.07

a
 

Tule 0.53 0.59
b
 -0.39 0.37 0.59

b
 -0.30

a
 

Kern 0.25
a
 0.57 -0.54

b
 0.18

a
 0.65 -0.54

b
 

a
 Not statistically significant ( 0.05p  ) 

b
 Strongest statistically significant correlations appear in both (a) and (b) (i.e. 

the absolute value of the difference in correlation coefficients between column 

(a) and column (b) is negligible) 
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3.7 Figures 

 
Figure 3.1. a) Elevation map (in meters) over the Sierra Nevada for elevations above 1500 m and 

b) distribution of the three elevation zones (
iEZ ) over the western basins. Basins in the 

northwest and southwest are identified.   
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Figure 3.2. Wintertime conditions promoting orographic enhancement: a) moisture availability, 

b) wind speed, c) mountain height, d) terrain slope, and e) direction of prevailing wind relative to 

terrain aspect. 
maxz  is the ridge height and 

maxCSz  is the elevation of maximum CS. More 

favorable conditions for orographic enhancement are presented moving toward the right. The 

terrain configuration is shown in brown. A vertical reflection of the terrain orientations in e) 

would result in the same relationships as depicted here. Configurations where the aspect of the 

terrain points away from the prevailing direction likely result in equally unfavorable conditions 

for enhancement. f) Barrier jet and blocking redistribute moisture. 
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Figure 3.3. Elevational distribution of CS where the solid line indicates the 31-year average and the dashed lines correspond to the 

lines of best fit for each elevation zone. The histogram displays the (static) elevational distribution of pixels as a fraction of the total 

area above 1500 m. Each bar represents >0.5% of the total area. 
2EZ  is shaded in gray. 



85 

 

 
Figure 3.4. Percentage of the 31 years that 

maxCSz  was located within 100-m elevation bins for 

each basin. Red lines demarcate the upper bound of the bin containing the maximum elevation, 

maxz , for each basin.  
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Figure 3.5. Basin-wide CS gradients (in cm/100 m) for a) 

1EZ , b) 
2EZ , and c) 

3EZ  over the 31 

years. Wet and dry years are denoted with ‗W‘ and ‗D‘, respectively.  
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Figure 3.6. Seasonal and snowstorm characteristics for Mokelumne and Kaweah during WYs 

1986 (blue) and 2015 (red). a) Seasonal orographic CS curves, where ‗o‘ and ‗×‘ symbols 

represent Mokelumne and Kaweah, respectively. 
2EZ  is shaded gray. It spans the entire shaded 

region for Kaweah, but the dashed line demarcates the upper bound of 
2EZ  for Mokelumne. 

Average synoptic snowstorm and leading storm b) 
700u , c) IVT, and d) IWV. Lighter shades of 

blue/red correspond to Mokelumne, while darker shades correspond to Kaweah in all panels.
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Figure 3.7. Elevational distribution of CS where solid lines indicate the wet-year (blue) and dry-year (red) averages. Dashed lines 

correspond to the lines of best fit for each elevation zone. 
2EZ  is shaded in gray. 
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Figure 3.8. IVT direction of origin as a percent of the total number of snowstorms over all wet 

(blue) and dry (red) years for each basin using 15°-bins. Lighter and darker lines represent all 

snowstorms and leading snowstorms, respectively. Dashed lines demarcate the basin-average 

terrain aspect values. Negligible fractions of storms originated outside of those directions shown.
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Figure 3.9. a)-d) (first two maps) Average IVT (in kg m

-1
 s

-1
) across all storms in a) wet and dry years and c) WY 1986 and 2015 and 

leading storms in b) wet and dry years and d) WY 1986 and 2015, respectively. (third map) Arrows denote IVT vector difference (first 

minus second vector fields) and shading indicates percent difference given by  1 2 2%difference / 100%IVT IVT IVT   , where 

 and 2IVT  are the magnitudes of the first and second IVT maps in each set, respectively. 1IVT
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Figure 3.10. Wet-year (blue line), dry-year (red line), and 31-year average (dashed line) 

horizontal vapor transport profiles. Interquartile ranges for wet and dry years are shaded in their 

respective colors. Elevation zones are shaded in light gray (
1EZ  and 

3EZ ) and dark gray (
2EZ ), 

where appropriate.
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Figure 3.11. Same as Figure 10, except the wet-year/dry-year profiles are shown in cyan/magenta 

for specific humidity ( q ) and blue/red for wind speed (U ), respectively. 
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Chapter 4: Implications of Atmospheric River Detection 

Methods on Characterizing Their Contribution to Seasonal 

Snowfall across the Sierra Nevada (USA) 

4.1 Introduction  

Long, narrow moisture-laden low-level jets, known as atmospheric rivers (ARs), play 

significant roles in the hydrology and water resources of the western United States. An estimated 

20-50% of the precipitation across California is derived from ARs, on average [Dettinger et al., 

2011]. In northern California, Ralph et al. [2016] found that 92% of the days with extreme daily 

precipitation occurred on the day of or the day after an AR. When ARs interact with topography, 

their abundant moisture and strong vapor transport promote orographic precipitation. On average 

in the Sierra Nevada, ~30-40% of the seasonal snowfall has been attributed to ARs [Guan et al., 

2010]. With the intense precipitation that ARs deliver across regions such as California, they can 

beneficially fill reservoirs and increase the snowpack [e.g. Guan et al., 2010, 2013a; Rutz and 

Steenburgh, 2012; Rutz et al., 2014] and/or lead to destructive and costly flooding [e.g. Ralph et 

al., 2006; Dettinger et al., 2011].  

Since ARs are often among the largest storms of a winter season in the Sierra Nevada, 

and the range accumulates a significant fraction of its snowfall during a few large snowstorms 

each year [Serreze et al., 2001; O’Hara et al., 2009; Guan et al., 2010; Huning and Margulis, 

2017a], it is important to accurately diagnose ARs over this hydrologically-relevant region 

(Figure B.1). ARs have been traditionally diagnosed using satellite-derived integrated water 

vapor (IWV) [e.g. Ralph et al., 2004; Neiman et al., 2008; Ralph et al., 2016; etc.] and more 

recently using reanalysis-based integrated vapor transport (IVT) approaches [e.g. Lavers et al., 
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2012; Rutz et al., 2014; Guan and Waliser, 2015; etc.]. It is important to understand the potential 

implications of utilizing different AR detection algorithms to estimate AR-derived snowfall 

across mountainous terrain at climatological and annual scales.  

Although Huning and Margulis [2017b] did not specifically focus on AR events, they 

found that stronger correlations existed between orographic cumulative snowfall (CS) gradients 

and IVT than between the orographic gradients and IWV across the Sierra Nevada. Rutz et al. 

[2014] similarly concluded that IVT was more strongly correlated to precipitation over the 

mountainous western U.S. Guan and Waliser [2015] also determined that IVT is a better 

indicator of enhanced precipitation along the western U.S. coastline. Such findings motivate this 

study and the driving question for this work: How does the selection of AR detection 

algorithms/methodologies, datasets, and physical quantities impact the understanding of the 

relative importance of ARs across the Sierra Nevada? Since the hydrologic implications of 

different AR diagnoses have not been previously explored, this study aims to fill this knowledge 

gap. To answer this question, two AR catalogs were selected to specifically investigate: 1) How 

much snowfall is delivered to the Sierra Nevada during AR events (e.g. full snowfall volume, 

snowfall distribution, snowfall at high elevations, etc.)? 2) Are there differences in orographic 

enhancement between AR and non-AR driven elevational snowfall distributions?  

4.2 Data and Methods 

Independent datasets were used to diagnose AR events and snowfall across 20 basins in 

the Sierra Nevada (Figure B.1). While all basins were used to quantify the range-wide CS 

volumes, only basins in the northwest (NW) and southwest (SW) were used to investigate 

orographic CS distributions along the windward (i.e. western) side of the range.  
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4.2.1 Atmospheric River Catalogs 

AR occurrences were diagnosed using two AR catalogs derived from: 1) a satellite-based 

approach described in Neiman et al. [2008] and 2) an atmospheric reanalysis-based approach 

introduced in Guan and Waliser [2015]. They are among several AR catalogs that have been 

previously developed. It is worth emphasizing that all CS information was derived from the 

snowfall dataset described below and the AR catalogs were used solely to identify days on which 

ARs occurred (hereafter, AR days).  

4.2.1.1 Satellite-based IWV AR Catalog 

Using the Special Sensor Microwave Imager (SSM/I) and Special Sensor Microwave 

Imager Sounder (SSMIS), Neiman et al. [2008] identified landfalling ARs in western North 

America when at least 2 cm of IWV was observed over a contiguous region >~2000 km long and 

<1000 km wide. They cataloged AR landfall dates along the California coastline (32.5°N-

41.0°N) during water years (WYs; 1 October-30 September) 1998-2005 when the above criteria 

were satisfied for two consecutive passes of the satellite (spanning at least 12 hours) on a 

calendar day. The record used herein was expanded through 2015 to include 18 years. Hereafter, 

this AR catalog is referred to as N08IWV .  

4.2.1.2 Atmospheric Reanalysis-based IVT AR Catalog 

 The second AR catalog utilized herein was derived using IVT from the 6-hourly, 1.5-

degree atmospheric fields of the ECMWF Interim atmospheric reanalysis (ERA-Interim; Dee et 

al., 2011). Among other observational information, clear-sky radiance from SSM/I was 

assimilated in ERA-Interim [Dee et al., 2011]. The AR algorithm, described in detail in Guan 

and Waliser [2015], used an IVT intensity threshold (monthly, location-dependent 85
th

-

percentile), IVT direction criteria (overall coherence in direction), and geometrical constraints 
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(length >2000 km and length-to-width ratio >2) to identify ARs every six hours globally. 

Hereafter, this catalog is referred to as 
GW15IVT . For comparison with 

N08IWV , an AR day from 

GW15IVT
 
was defined when at least three consecutive time steps (i.e. 18 hours) on a calendar day 

indicated that an AR structure occurred [Guan and Waliser, 2015] within the dashed region in 

Figure B.1. Note that the IVT threshold used in 
GW15IVT  accounts for seasonal and latitudinal 

variations in the atmospheric fields, whereas the 2 cm IWV threshold used in 
N08IWV  is invariant 

in space and time. Also, the horizontal resolution of 
GW15IVT  is roughly four times coarser than 

N08IWV . 

4.2.2 Snowfall Dataset 

 Previous studies that examined AR impacts on snowfall in the Sierra Nevada generally 

used point-scale in situ measurements [e.g. Rutz and Steenburgh, 2012; Rutz et al., 2014; Guan 

et al., 2012, 2016] while fewer studies utilized distributed snowfall products [Guan et al., 2010, 

2013a]. This is an important distinction because point-scale estimates are unable to capture the 

large heterogeneity of snowfall across the Sierra Nevada since they sample <1% of the snow-

covered area and tend to be located at low/mid-elevations in flat clearings [Guan et al., 2013b; 

Margulis et al., 2016]. Point-scale observations alone cannot directly estimate the seasonal 

range-wide CS or AR-derived CS volumes as done herein, and previous studies using gridded 

snow information have not quantified the AR impact on the CS volume. This paper extends the 

work of previous studies such as Guan et al. [2010, 2013a] who suggested that a better 

understanding of the response of snow water equivalent (SWE) to ARs would benefit from more 

detailed and distributed snow information, which this study aims to provide.  

The 90-m, daily Sierra Nevada snow reanalysis [Margulis et al., 2016] provided the 

snowfall accumulation information (above 1500 m) used herein. As detailed in Margulis et al. 
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[2015], spatially-distributed SWE fields were derived within a Bayesian framework where 

Landsat fractional snow-covered area images were assimilated over the mountain range. Huning 

and Margulis [2017a] verified CS derived from this reanalysis with over 2600 station years of in 

situ observations. Relative to observations, they found root-mean-square and mean errors of 

seasonal CS to be 12 cm and -4 cm, respectively, demonstrating that the reanalysis could be 

utilized as an accurate snowfall dataset.  

The CS was computed using daily increases in SWE [Huning and Margulis, 2017a,b] as 

given by: 

 

1Apr

1Nov

( )
t

CS S t


  , for 0S SWE     (4.1) 

where snowfall ( S , quantified in units of equivalent water depth) is accumulated over the winter 

season, defined as 1 November-1 April herein. The high-resolution, distributed CS information 

allows for the examination of AR-derived CS (hereafter, AR CS) volumes, high-elevation AR 

CS, and the rate of change of AR CS with elevation compared to non-AR driven CS.  

Following Neiman et al. [2008] and Guan et al. [2010, 2012, 2013a], AR CS was 

computed by considering the snowfall that occurred the day of an AR as well as one day before 

and one day after the AR event. An AR ―event‖ was defined as a single, isolated AR day or a set 

of consecutive AR days. The ±1 day window accounts for potential lead- and lag-time response 

since analysis was performed on the daily time scale. Days included within this temporal 

window were defined as CS-contributing days and differ from the (diagnosed) AR days defined 

above. Snowfall that is not associated with an AR (hereafter, non-AR CS) is equal to the 

difference between the total (seasonal) CS and the AR CS. The fraction of the total CS that was 

derived from ARs is denoted as 
ARf . The rates of change of AR and non-AR CS with elevation (

z ) are denoted as /ARdCS dz  and /non-ARdCS dz , respectively. 
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4.2.3 AR Detection Statistics 

 The difference in the number of AR days between the two catalogs is examined below. 

AR days were used to compare the performance of AR detection from the two catalogs by 

counting the number of AR hits, false alarms, misses, and correct negatives (defined in Section 

B.2). To understand the relative performance of 
N08IWV  and 

GW15IVT  and expand upon Guan and 

Waliser [2015], the threat score, false alarm ratio (FAR), probability of detection (POD), and 

probability of false detection (POFD) were also computed following Wilks [2006] as defined in 

Section B.2. Two sets of statistics were produced by toggling the relative roles of the two 

catalogs between ―reference‖ and ―estimate‖ as presented below.  

4.3 Results and Discussion 

The total CS climatology over the Sierra Nevada (Figure B.2) results from the 

combination of AR-driven snowfall and other snowstorm-driven snowfall. Over the 18-year 

period, the range received an average 21.0 km
3
 of CS or ~44 cm of CS annually. The distinct 

rain shadow effect is observable when comparing the CS on the windward (western) and leeward 

(eastern) sides of the Sierra Nevada. The climatology exhibits a distinct orographic CS signature 

where more CS occurs at high elevations [Huning and Margulis, 2017a,b]. The analysis below 

explores how the total CS (Figure B.2) is partitioned between AR and non-AR amounts 

depending on AR detection approaches.   

4.3.1 AR Cumulative Snowfall Distribution 

4.3.1.1 Satellite-based IWV AR Catalog (
N08IWV ) 

 The spatial patterns observed in the 18-year climatology of the 
N08IWV -derived AR CS 

(Figure 4.1a, left) resemble those of the total CS climatology (Figure B.2). To examine 

orographically-driven CS, Figure 4.1a (middle and right) presents both the climatology and inter-
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annual variability of the CS in the NW and SW regions as it is partitioned into the AR (blue) and 

non-AR (red) components. The middle panel demonstrates that for each elevation, the average 

AR and non-AR CS accumulation is larger in the NW than in the SW, likely due to a more 

persistent storm track farther north. The inter-annual variability increases with elevation in both 

regions. Across all elevations, the AR contribution to the total CS is greater in the NW than in 

the SW both in terms of the AR CS depth and 
ARf  (black). ARs contribute ~40% of the CS at the 

highest elevations (2700-2800 m) in the NW. In the SW, 
ARf  increases with elevation up to 

~3000 m before 
ARf  becomes relatively constant at ~37% and the rate of change of CS with 

elevation becomes negative (i.e. / 0dCS dz  , due to atmospheric moisture depletion).   

The rate of change of AR CS with elevation (blue) is greater in the NW than the SW 

(Figure 4.1a, right). While ARs are known to promote orographic enhancement, less is known 

about the degree to which ARs yield greater orographic enhancement relative to non-AR driven 

(red) mechanisms. Based on 
N08IWV , AR CS is more orographically enhanced than non-AR CS 

above ~2100-2300 m, which is termed the ―transition elevation‖ herein, in both the NW and SW 

(Figure 4.1a, right). In other words, AR CS changes faster with elevation than non-AR CS above 

the transition elevation. Neglecting negative rates of change, above the transition elevation AR 

CS consistently changes faster with elevation than non-AR CS and /ARdCS dz
 
can be as much 

as 2.1 to 2.3 times larger than /non-ARdCS dz
 
in the NW and SW, respectively.  

4.3.1.2 Reanalysis-based IVT AR Catalog (
GW15IVT ) 

The effects of utilizing 
GW15IVT  to understand the spatial and elevational distribution of 

AR CS are similarly examined in Figure 4.1b. The 18-year average AR CS shows strong 

elevational dependence across the Sierra Nevada. On average in the SW, ARs contribute over 

half of the seasonal CS above ~2200 m, which increases to ~59% of the CS above ~2800 m 
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(Figure 4.1b, middle). All elevations in the NW receive over 47% of the seasonal CS from ARs 

and more than 60% above ~2400 m. Similar to Figure 4.1a (middle), Figure 4.1b (middle) 

indicates that at each elevation ARs contribute more CS in the NW than in the SW. The average 

ARf  increases by over 14% in the NW and 20% in the SW from the lowest to highest elevations 

using either AR catalog. The inter-annual variability of AR and non-AR CS tends to show 

greater elevational dependence than 
ARf , which remains comparatively constant. Greater inter-

annual variability is observed in the AR CS than non-AR CS at the highest elevations, indicating 

that the non-AR elevational distribution has a lower variance (Figure 4.1b, middle). This 

relationship is reversed in Figure 4.1a (middle). 

 Using 
GW15IVT , Figure 4.1b (right) shows that AR CS exhibits greater orographic 

enhancement than non-AR CS. This was similarly demonstrated in Figure 4.1a (right); however, 

/ARdCS dz  is unconditionally larger than /non-ARdCS dz  in Figure 4.1b (right). Again, only 

positive values were considered. Therefore, the transition elevation observed in Figure 4.1a 

(right) at ~2100-2300 m with 
N08IWV  is not present with 

GW15IVT . The transition elevation 

results from differences in the methodologies between the two AR diagnoses with IWV vs. IVT 

likely playing an important role. Using IWV-based diagnostics, ARs have been found to be 

warmer storms than other wintertime storms, which would correspond to ARs having a higher 

snow line and accumulating less AR CS at lower elevations compared to colder non-AR events 

[Neiman et al., 2008; Guan et al., 2010, 2016; Kim et al., 2013]. However it is hypothesized that 

since 
GW15IVT  identified more ARs (shown below), this AR catalog captured cooler ARs than 

N08IWV  resulting in a lower diagnosed snow line. Moreover, wind and moisture as opposed to 

only moisture (in the case of 
N08IWV ) play a role in the 

GW15IVT -diagnosed ARs. Increasing air 

temperature allows more moisture to be held in air parcels and therefore is the key driver in the 
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N08IWV  algorithm, whereas having high wind speed/transport can result in an AR detected in 

GW15IVT  even with cooler air temperatures and lower IWV. Nonetheless, the general shapes of 

the curves in Figures 4.1a and 4.1b are similar between the 
N08IWV - and 

GW15IVT -partitioned CS.  

Figure 4.1b (right) demonstrates that the AR CS changes up to 3.0 and 3.8 times faster 

with elevation than the non-AR CS in the NW and SW, respectively, at ~2500-2600 m. The 

largest 18-year average rates of change of AR CS are 6.6 cm SWE/100 m elevation in the NW at 

~1900-2000 m and 3.9 cm/100 m in the SW at ~2000-2100 m. The corresponding ratios of 

/ARdCS dz  to /non-ARdCS dz  at these elevations are 1.8 and 1.9, respectively. Below 3000 m, the 

AR CS derived from 
GW15IVT  consistently shows greater orographic enhancement than with 

N08IWV  and /ARdCS dz  relative to /non-ARdCS dz  is larger when utilizing 
GW15IVT . Using either 

AR catalog it can be concluded that, on average, ARs yield greater orographically-enhanced CS 

than non-AR mechanisms at the highest elevations across the western Sierra Nevada. 

Unconditional enhancement of AR CS is exhibited when diagnosed from 
GW15IVT , whereas AR 

CS is only conditionally enhanced (i.e. above ~2100-2300 m) when diagnosed from 
N08IWV . 

Moreover, the degree of enhancement shown in the right panel of Figures 4.1a and 4.1b greatly 

varies between catalogs. Overall, the understanding of the AR CS distribution and enhancement 

is tightly coupled to the AR detection method applied.  

4.3.2 Inter-annual Variability  

4.3.2.1 AR Cumulative Snowfall  

 Figure 4.2 quantifies the seasonal AR and non-AR CS volumes based on 
N08IWV  (top) 

and 
GW15IVT  (bottom). For a given year, the total CS (i.e. total height of the bar) in Figure 4.2 is 

equal in both panels; however, the partitioning between AR and non-AR CS is determined by the 
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AR detection method. Using 
N08IWV  (Figure 4.2, top), ARs yield ~6.8 km

3
 of the 21.0 km

3
 of 

total CS, on average, or ~32.5% of the CS annually. Guan et al. [2013a] characterized the 

seasonal AR CS depth using 
N08IWV  and in situ snow sensors over WYs 1998-2011. For 12 out 

of the 14 seasons in common with Guan et al. [2013a], lower 
ARf  values were estimated herein 

(Figure 4.2, top). Thus, the 14-year average 
ARf  value estimated herein is roughly 5% lower than 

their estimate of ~37%. Differences between these two studies should be expected because 

herein area-averaged 90-m CS was used to derive the CS volume, whereas Guan et al. [2013a] 

utilized point-scale CS depth observations. Therefore, the snowfall dataset used herein should 

provide a more robust representation of the range-wide impact of ARs than possible with point-

scale observations. Using 
N08IWV  and a 1-km distributed SWE dataset, Guan et al. [2010] 

similarly estimated 
ARf  in the Sierra Nevada using CS depth during WYs 2004-2010. Each of 

their 
ARf  estimates was higher than herein, resulting in a 7-year average 

ARf  of 38.5% or ~9.4% 

more than estimated herein for those years. Although both studies used gridded snow datasets, a 

large scale disparity exists and the 90-m resolution framework can better represent the large 

heterogeneity of the snowfall that occurs within a 1-km grid. 

 Figure 4.2 demonstrates that ARs are important during both wet and dry years. The 

wettest year in the record was WY 2011 (40.6 km
3
 of total CS), where ARs contributed an 

estimated 53.0% of the total CS based on 
N08IWV  (Figure 4.2, top). This corresponds to 21.6 

km
3
, or roughly equal to the 18-year average total CS, which clearly demonstrates that ARs 

contributed to making 2011 a very wet year. Interestingly, ARs contributed an estimated 63.1% 

of the total CS during WY 2015 (driest year) when only 5.1 km
3
 of total CS occurred across the 

range. Moreover, without the occurrence of ARs, 2015 would have been an even drier year 
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receiving under 2 km
3
 of CS. Similar relationships highlighting the importance of ARs are 

observed in Figure 4.2 (bottom) when 
GW15IVT  is examined.  

Corresponding to the higher 
GW15IVT -based AR CS depths in Figure 4.1b (left and 

middle), larger AR CS volumes are observed in Figure 4.2 (bottom) relative to 
N08IWV  (Figure 

4.2, top). Based on 
GW15IVT  (Figure 4.2, bottom), the average seasonal AR CS is 11.9 km

3
, which 

is ~1.8 times larger than estimated using 
N08IWV . The AR CS ranged from 3.1 km

3
 in WY 2015 

to 23.0 km
3
 in WY 2011. Although the AR catalogs yield relatively consistent 

ARf  values for 

these two years, the average 
ARf  values greatly differ between the catalogs: ~56.1% (

GW15IVT ) 

vs. 32.5% (
N08IWV ). ARs yielded a negligible contribution to the total CS in WY 2001 based on 

N08IWV , whereas a contribution of ~35.8% was estimated using 
GW15IVT  for that year because 

winter storms were cool, having low IWV, but enhanced vapor transport. Both 
ARf  values were 

the lowest for each catalog. In both panels, the standard deviation of 
ARf  is large at 15.6% (

N08IWV ) and 12.4% (
GW15IVT ). When 

GW15IVT  is utilized, ~82% of the variance in the total CS is 

explained by the variability in AR CS. This is larger than the ~64% explained when 
N08IWV  is 

used. Overall, both catalogs indicate that ARs play an important role in driving the inter-annual 

variability of the total CS. Implications of using the CS-contributing days as opposed to the AR 

days when computing AR CS were examined in Section B.3 and Figures B.3-B.4. 

4.3.2.2 Number of AR Days 

While the contribution of ARs to the total CS is clearly significant, the attribution of CS 

to ARs greatly varies with the catalogs. Using 
GW15IVT , ARs were estimated to contribute an 

average of 23.7% more of the seasonal CS. The main driver of the attribution difference is the 

number of AR days that each methodology identified (Figure 4.3, top). On average, 
N08IWV
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identified 10.1 AR days/year, while 
GW15IVT  identified over twice as many (21.7 AR days/year). 

Across the 18 winter seasons, ~6.6% and 14.2% of days were diagnosed as AR days by 
N08IWV  

and 
GW15IVT , respectively. Note that IWV is only available over the ocean from the SSM/I sensor 

and therefore, the length requirement used in 
N08IWV  is more restrictive than the same 

requirement when AR length can be computed over land and ocean. 

Although 
GW15IVT  consistently identified more AR days than 

N08IWV , the inter-annual 

variability shown in Figure 4.3 (top) is similar between approaches; there is a statistically 

significant correlation of 0.60 between the two time series ( 0.009p  ). It is not surprising to 

observe a difference in the number of AR days diagnosed by the two methods given differences 

in the physical variables, algorithms, and datasets/information (satellite vs. reanalysis) used to 

diagnose ARs. Previous studies [e.g. Rutz et al., 2014; Barth et al., 2017] have also shown that 

IVT methods tend to diagnose more AR days than with IWV across the western U.S.  

4.3.3 Comparison of AR Dates Detected  

 Although Figure 4.3 (top) indicates that 
N08IWV  diagnosed fewer AR days than 

GW15IVT , 

it does not provide insight into how frequently the catalogs identify the same AR days. For every 

day of the accumulation season across the 18 years, Figure 4.3 (bottom) shows when each 

method detected an AR. Using a ±1 day search window, Guan and Waliser [2015] found that 

94% of the time that 
N08IWV  identified an AR day, 

GW15IVT  also identified an AR occurrence 

along western North America. Figure 4.3 (bottom) shows that although 
GW15IVT  often identified 

an AR when 
N08IWV  detected one, there were many ARs that 

GW15IVT  diagnosed that were not 

identified by 
N08IWV . In total, 

N08IWV  diagnosed 182 AR days, which is 2.1 times fewer ARs 

than diagnosed by 
GW15IVT  (390 days). Based on 

GW15IVT , the average duration of an AR event is 
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~1.7 days or only ~0.3 days longer than estimated by 
N08IWV . It is important to recognize that 

these estimates were based on the presence of ARs across a region with a minimum duration of 

one day. This differs from other studies such as Ralph et al. [2013] who observed average AR 

duration at a fixed location to be sub-day. 

Previous literature [e.g. Lavers et al., 2012; Guan and Waliser, 2015; Barth et al., 2017] 

has often taken 
N08IWV  to be the ―reference‖ dataset even when IVT-based AR diagnoses were 

examined. Nonetheless, a similar question was asked herein: To what extent do the 
GW15IVT  

detections agree with 
N08IWV ? However, the reverse was also posed herein to understand relative 

performance/agreement when each catalog was taken as the reference (defined in Section B.3). 

Hence, no assumption about whether one dataset is the ―truth‖ was made. 

Using Figure 4.3 (bottom), the number of hits, misses, false alarms, and correct negatives 

was tabulated in Table B.1. As shown in Table B.1, 63% of the time that 
N08IWV

 
detected an 

AR, 
GW15IVT  also detected one; however, only 29% of the time that 

GW15IVT  detected an AR did 

N08IWV  also diagnose the same AR day. The threat score indicates that 25% of the diagnosed 

ARs were detected by both datasets. Since 
N08IWV  diagnosed fewer ARs, its POFD was only 3% 

as opposed to 11% from 
GW15IVT . As a result, the FAR of 71% for 

GW15IVT  was substantially 

higher than for 
N08IWV  (37%). While perfect agreement between datasets would mean that 

POD=1, POFD=0, and FAR=0, perfect agreement between approaches utilizing different 

physical quantities and detection considerations should not be expected. Therefore, open 

questions remain about how closely AR diagnoses should be expected to agree with one another 

when methodologies utilizing fundamentally different physical quantities and datasets are 

compared. Nonetheless, the two catalogs should be considered largely complementary to each 

other. 
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4.4 Conclusion 

 This study illustrates the importance of understanding the potential differences that the 

selection of an AR catalog can have on quantifying the AR CS over a region, such as the Sierra 

Nevada, where ARs deliver significant amounts of snowfall. Moreover, it indicates that open 

questions exist regarding the extent to which an AR identification methodology/catalog 

underestimates or overestimates a given process/mechanism. Although both catalogs used herein 

indicated that ARs were important for delivering CS to the mountain range, the relative 

contribution of ARs can be skewed by over 20% between the two methods. 
GW15IVT  diagnosed 

more AR days than 
N08IWV  and consequently its estimate of the AR contribution to the seasonal 

CS was larger. An average of 56% of the total range-wide CS was attributed to ARs when ARs 

were diagnosed from GW15IVT  vs. only 33% from N08IWV . Regardless of the AR catalog used 

here, ARs were shown to yield greater orographic enhancement than non-AR mechanisms above 

~2200 m across the windward side of the Sierra Nevada. However, AR CS consistently exhibited 

more enhancement across all elevations with 
GW15IVT  in both the NW and SW. Future studies 

should work toward a better understanding of how AR algorithms, datasets, and physical 

quantities (IWV vs. IVT) have implications on hydrological studies over a region. It is not only 

important to understand how ARs contribute to the snowfall accumulation, but also how they 

contribute to precipitation, streamflow, and flooding estimates given different AR diagnoses. 
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4.5 Figures 

 
Figure 4.1. AR dates were derived from a) 

N08IWV  and b) 
GW15IVT  for: (left) Eighteen-year 

average AR CS distribution. (middle) Elevational distribution of AR (blue) and non-AR (red) CS 

using 100-m bins for NW and SW basins. Only bins representing over 0.5% of the area above 

1500 m were considered [Huning and Margulis, 2017a,b]. The fraction of total CS derived from 

ARs (
ARf ) is shown in black. Lines indicate the 18-year average. Shaded regions represent the 

interquartile range. (right) Rates of change of 18-year average AR and non-AR CS with 

elevation.   
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Figure 4.2. Range-wide CS time series (bars) with ARs derived from (top) 

N08IWV  and (bottom) 

GW15IVT . Black curve denotes 
ARf . 
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Figure 4.3. (top) Number of AR days diagnosed by 

N08IWV  (black) and 
GW15IVT  (red) during the 

winter season. (bottom) Time series showing the day an AR was identified with 
N08IWV  (‗|‘ 

symbols) and 
GW15IVT  (‗o‘ symbols), for each day of the winter season. 
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Chapter 5: Conclusion and Future Work 

5.1 Original Contributions and Notable Findings 

The results from this dissertation provide improved characterizations of the montane 

snowfall accumulation that complement previous work across the Sierra Nevada and other snow-

dominated mountain ranges. With the extensive validation of the cumulative snowfall (CS) 

dataset derived herein from the snow reanalysis [Margulis et al., 2016], it was demonstrated that 

the reanalysis could be utilized as an accurate CS dataset. Thus, the potential utility of the snow 

reanalysis has been extended beyond its original peak snow water equivalent (SWE) 

applications. This is important because a high-resolution snowfall dataset provides different 

insight into snow processes that cannot be obtained by simply analyzing peak SWE. For 

example, understanding snowfall accumulation rates and distributions could be used to improve 

models and/or forecasts for water resources, weather, avalanches, climate, etc. applications in 

mountainous terrain. Moreover, its use in this dissertation enabled the seasonally-integrated CS 

volume to be characterized (inter-annual variability, climatology, etc.), which remained 

previously unquantified likely because it cannot be estimated with in situ measurements alone. 

One of the overarching novelties of this work is the addition of the high-resolution spatial 

dimension of snowfall analysis across an entire mountain range, which has been utilized to yield 

in-depth insight into the snowfall climatology and inter-annual variability (including the CS 

volume), accumulation rates, orographic snowfall enhancement, atmospheric river (AR)-derived 

CS, etc. The results provided herein have thereby aided in developing a more complete picture of 

montane hydrometeorological processes. For instance, rather than using a range-wide approach 

to analyze snowstorm timing and seasonality as done in many previous studies, basin-wide 

snowstorms were examined in this study to better understand regional and basin responses. This 
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analysis was performed with a new approach allowing for the diagnosis of variable duration 

storms. A variable duration storm can better capture characteristics of the largest snowstorms 

(e.g. CS amount and storm duration) than a fixed duration (e.g. 3-day) storm, which may 

misrepresent CS amounts.  

The degree to which the hydroclimatology of the Sierra Nevada is driven by extremes 

was not only demonstrated by comparing the differences in snowfall distributions and 

snowstorms, but also through specific investigations of wet-year and dry-year orographic CS 

gradients. This dissertation provides an unprecedented analysis and database of orographic 

snowfall gradients spanning over three decades across the entire windward side of a mountain 

range. The extent to which snowfall during wet years is more orographically enhanced than dry 

years was quantified in this study. Results revealed that CS during wet years is about twice as 

enhanced as during dry years due to differences in large-scale atmospheric drivers of the 

enhancement. Not only was the orographic CS curve as it varies across the entire western Sierra 

Nevada shown to take on two distinct shapes, but the elevation of the maximum CS that occurred 

for each basin, annually, was found to be relatively static over the 31 study years. Such findings 

indicate that there is potential for the development of orographic snowfall parameterizations and 

predictability.  

Lastly, this dissertation investigated the extent to which the diagnosed contribution of 

ARs to the seasonal CS is related to the AR detection approach utilized. Not only can one 

method indicate that ARs are nearly twice as important as another method indicates, in terms of 

AR contributions to the seasonal CS, but results also show that the detection methods impact the 

understanding of the AR-driven orographic enhancement. The analysis and results presented 

above serve as a key step forward in understanding how a meteorological diagnosis can have 

implications in hydrological studies. It serves as a cautionary example of how the selection of 
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algorithms and datasets can skew and/or modulate the relative importance that is attributed to a 

given process. Overall, these findings are important for interpreting previous and future 

hydrological studies related to ARs and snowfall. While results confirm that ARs are significant 

drivers of snowfall across the Sierra Nevada, they also highlight future areas of research. The 

findings from this dissertation have the potential to inform AR tracking and detection algorithms 

that are used in applications including hydrology, water resources, weather forecasting, climate 

analysis, etc.  

5.2 Future Work 

 This dissertation provides the foundation for several future investigations across snow-

covered mountainous terrain. Some of these potential research directions are described below. 

5.2.1 Near-term Extensions  

In addition to increasing the amount of water stored in the snowpack, extreme weather 

events such as snowstorms can have significant economic and/or human effects, inhibit travel, 

etc. [Grumm and Hart, 2001; O’Hara et al., 2009]. Therefore, it would be useful to examine 

extreme snowstorm events and understand the return periods of different sized storms. This is 

particularly timely for California given the many ARs that occurred during this winter, i.e. 2017, 

following the significant multi-year snowpack drought deficit 2012-2016 in the Sierra Nevada. 

Moreover, storm-scale analysis would provide a complement to the longer scales already 

examined herein. Orographic analysis at shorter scales (e.g. daily, multi-day storm) would 

provide sub-seasonal insight and a better understanding of the factors that contribute to the 

seasonal patterns discussed in this dissertation. This work could be extended to include analysis 

of rainfall and total precipitation distributions, rain-on-snow events, spatial patterns and temporal 
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trends, the influence of barrier jets on the precipitation distribution, etc. at sub-seasonal to 

climatological scales. 

Utilizing insight into the relationship between atmospheric drivers of orographic 

enhancement and the CS gradients, orographic snowfall parameterizations could be derived from 

this dissertation. Such models could have several potential applications including: statistical 

downscaling, predicting future changes in orographic CS, estimating the snowfall distribution 

using point-scale in situ measurements, etc. 

The two AR catalogs compared in Chapter 4 were chosen to represent both a traditional 

and more recent approach to diagnosing ARs while providing insight into how different 

diagnoses can influence snowfall attribution and hydrological analysis. Although this 

comparison provided meaningful insight, further evaluations and comparisons between AR 

catalogs are warranted. It is important not only to accurately diagnose atmospheric phenomena, 

but also to better understand how atmospheric/meteorological diagnoses impact hydrological 

studies. Similar evaluations to those provided above could be made between AR catalogs that 

utilize the same algorithm, but were derived from a variety of different atmospheric datasets. 

5.2.2 Long-term Extensions 

 One overarching motivation of the analyses performed in this dissertation is to provide 

insight into the snowfall distribution that could be utilized by water resources managers. Hence, 

an extension of this dissertation could include integrating high-resolution snowfall information, 

orographic snowfall parameterizations, etc. with existing water management assessments and 

models. As shown above, models relating the number of snowstorms and snow storm days can 

be used to estimate the CS volume, which is generally difficult to quantify for the mountain 

range. Moreover, the findings provided herein could be combined with other datasets/data 

streams, e.g. satellite-based remote sensing, snow measurements from wireless in situ snow 
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networks, etc., to improve the spatial and temporal representation of snow processes and 

hydrometeorology across mountainous terrain and derive high-resolution, distributed, near-real 

time snowpack information for a variety of applications. 

While orographically-driven snowfall distributions and orographic CS gradients were 

studied along the windward side of the Sierra Nevada, there is also value in understanding the 

extent to which the CS patterns on the leeward side may differ with those quantified on the 

windward side because basins on both sides of the mountain range supply water to large 

populations. Since storms generally move across California with the prevailing westerlies, it 

would be valuable to examine the predictability of precipitation patterns on the leeward side 

given upstream estimates of atmospheric fields that are more easily quantifiable and predictable 

along the windward side of the range.  

 Another major thrust of this dissertation was to enhance the current knowledge of snow 

hydrology (seasonality, inter-annual variability, elevational/spatial distribution) that is not well 

resolved at regional (or global) resolutions nor well represented at the point-scale. As a result, 

historical databases of orographic snowfall gradients, snowstorm characteristics, snowfall 

distributions, etc. were produced as part of this dissertation. These databases and corresponding 

insight could be utilized to evaluate cold season accumulation parameterizations and validate 

regional climate model (RCM) simulations. The findings herein would provide detailed pictures 

of snowfall occurring at the subgrid-scale of a RCM. Moreover, these datasets would provide a 

more robust validation approach for climate model output than the traditional verification, which 

verifies large-scale area-averaged quantities with point-scale measurements: fundamentally 

different quantities with a large spatial disparity. Ultimately extensions of this work should move 

toward not simply identifying climate model deficiencies, but rather also improving the 

representation of snowstorm frequency, duration, timing, and snowfall amounts as well as 
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snowfall patterns, orographic snowfall distributions/gradients, accumulation rates, and 

meteorological drivers of snowfall accumulation in climate models. Ultimately, novel 

parameterizations derived from this work (as described above) can be incorporated into regional 

and/or global climate models to improve their simulations over snow-dominated mountainous 

terrain. 

While this dissertation focused on understanding snowfall processes and distributions 

during the accumulation season, it is important to understand how differences in the 

accumulation season manifest themselves in melt season variability. Thus paralleling the 

historical accumulation season analyses performed in this study, historical melt season analyses 

could similarly be performed to better characterize the ablation season as well as understand the 

connection between the accumulation and melt seasons and ultimately streamflow.  
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Appendix A: Supporting Information for Climatology of 

Seasonal Snowfall Accumulation across the Sierra Nevada 

(USA): Accumulation Rates, Distributions, and Variability 

A.1 Introduction  

This appendix provides supporting information for Chapter 2. It contains a map of the 

elevations across the Sierra Nevada study domain and the distribution of elevations across the 

study basins above 1500 m (Figure A.1). A description of the Sierra Nevada snow water 

equivalent (SWE) reanalysis and an explanation of the methods applied to quality control the 

snow pillow observations for the cumulative snowfall (CS) verification are provided in Sections 

A.2 and A.3, respectively. Figure A.2 provides information about the distribution of storm 

durations and sizes for all snowstorms and leading snowstorms identified across the 31 study 

years.   

A.2 Sierra Nevada Snow Water Equivalent Reanalysis 

The snow reanalysis was developed using a particle batch smoother data assimilation 

approach, which is detailed in Margulis et al. [2015] and briefly described here. Uncertainty was 

added to near-surface meteorological forcings (e.g. precipitation, humidity, air temperature, etc.) 

derived from the National Land Data Assimilation System phase 2 dataset (NLDAS-2, Xia et al., 

2012) to form an ensemble of meteorological inputs for a forward model run. Within a Bayesian 

framework, the ensemble of land surface estimates (i.e. the prior) was conditioned using Landsat 

fractional snow covered area (fSCA) images. It is important to note that although NLDAS-2 

relies heavily on the North American Regional Reanalysis (NARR, Mesinger et al., 2006) for 

many surface forcing variables, its precipitation fields are not derived from NARR. Rather, its 
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precipitation fields are derived from precipitation gauges in the NOAA Climate Prediction 

Center (CPC) network (i.e. observational data). Therefore, precipitation timing in the SWE 

reanalysis is implicitly derived from the CPC precipitation gauges.  

The prior uncertainty in precipitation was represented by scaling NLDAS-2 precipitation 

by an ensemble of equally likely seasonally invariant multiplicative factors (drawn from a 

lognormal distribution) for each pixel. The posterior estimates were obtained via updated 

weights for each ensemble member derived using a likelihood function that assigned larger 

weights to ensemble predictions that were more likely, or closer to the observations, while 

reducing the weights for the predictions that were less probable, or farther from the observations. 

While this approach utilized information derived from the fSCA images (primarily during the 

ablation season), it yielded state estimates throughout the entire season. Due to the multiplicative 

nature of the scaling factors, only storms present in the prior (implicitly those observed in the 

CPC network) can be present in the posterior SWE reanalysis. Storm durations as estimated by 

the posterior SWE fields cannot exceed those present in the prior. Thus, snowfall timing cannot 

be adjusted (i.e. storms cannot be ―created‖) and snowfall events can only be shortened, not 

extended in duration. In addition, a fixed air temperature threshold of 2°C [Lundquist et al., 

2008] was used to partition precipitation into rainfall or snowfall at a given time. The snow 

reanalysis provides estimates of the daily net effect of precipitation on the snowpack. It both 

downscales a coarse set of atmospheric forcings and bias corrects them. 

A.3 Snow Pillow Quality Control Methods 

Based on the techniques described in Lundquist et al. [2015], we applied quality control 

to the snow pillows at both the daily and seasonal time scales from 1 November-1 April as 

described below. Snowfall ( S ) was designated as missing on days for: 
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1) an unrealistic snowfall (i.e. 140mmS  ) or 

2) three sequential days with repeated snowfall values (i.e. ( ) ( 1) ( 2)S t S t S t    ). 

Stations were excluded from the seasonal CS verification if: 

1) no snowfall occurred by 1 April, 

2) more than 30% of the days between 1 November and 1 April were excluded as missing 

data, 

3) the station accumulated 100% of its season total CS prior to the median of the snow 

pillows achieving 40% of its season total CS, or 

4) the station accumulated no snowfall by the day the median of the snow pillows 

accumulated 60% of the seasonal CS 

because the sensor was assumed to have broken either during part of or throughout the entire 

season.  

The representative pixel chosen for comparison used the same approach as in Margulis et 

al. [2016a] or M16a, which was utilized to account for uncertainties in geolocation and 

representativeness (i.e. physiographic characteristics, scale discrepancies, localized wind-blown 

effects, etc.). For consistency, days or years that were excluded from the snow pillow time series 

were also removed from the reanalysis time series. Daily accumulated snowfall values of less 

than 0.254 cm were removed from the snow reanalysis dataset to simulate the resolution of a 

sensor [Serreze et al., 2001].  
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A.4 Figures 

 
Figure A.1. a) Elevation map (in meters) over the Sierra Nevada (90-m resolution) where major 

watersheds are identified. Elevations at or below 1500 m and pixels outside of the study domain 

are colored white. b) Distribution of elevations for each basin above 1500 m. Dashed lines 

extend to the most extreme elevations not considering outliers (not shown). Black circles 

demarcate mean elevations. Color coding here designates regional information used in 

subsequent figures where basins have been grouped into the northwest (NW), southwest (SW), 

northeast (NE), and southeast (SE). 
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Figure A.2. Regional distribution of snowstorm a) duration and b) size for all basin-wide storms 

and leading storms over the 31 years. Daily bins were used for the durations in a). Snowstorm 

sizes were grouped in 2-cm bins in b), where the bars were centered on the upper limit of the 

bins (e.g. the first set of bars represents snowstorm sizes 0 2cmx  ), except at the far right 

(i.e. 28cmx  ). In each panel, blue and gray bars represent all basin-wide snowstorms and 

leading snowstorms over the 31 years, respectively. 
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Appendix B: Supporting Information for Implications of 

Atmospheric River Detection Methods on Characterizing 

Their Contribution to Seasonal Snowfall across the Sierra 

Nevada (USA) 

B.1 Introduction  

This appendix provides supporting information for Chapter 4. It contains an elevation 

map across the Sierra Nevada study domain (Figure B.1). Terminology used in the contingency 

table (Table B.1) and atmospheric river (AR) detection statistics is defined in Section B.2. Figure 

B.2 shows the 18-winter average total cumulative snowfall (CS) climatology across the range 

between water year (WY) 1998 and 2015, inclusive. Section B.3 explores the impact of utilizing 

one day before and one day after an AR event is detected on the amount of AR CS that is 

estimated. Figures B.3 and B.4 quantify the impact of the number of CS-contributing days on the 

AR CS estimates and the AR CS contribution to the total CS ( ARf ), respectively. Table B.1 

compares the number of AR hits, false alarms, misses, and correct negative diagnoses and 

corresponding detection statistics between the two AR catalogs (i.e. N08IWV  and GW15IVT ).  

B.2 AR Detection Statistics 

 Following Wilks [2006], the relationship between ARs as diagnosed by N08IWV  and 

GW15IVT  was examined. Although contingency tables commonly use the term ―observation‖, 

instead the term ―reference‖ was used herein to refer to the AR catalog that is being compared to. 

Also, rather than using the term ―forecast‖, the term ―estimate‖ was used herein to refer to the 

second AR catalog since neither AR catalog is a forecast (i.e. satellite-derived and reanalysis-
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derived diagnoses). Both the case where 
N08IWV  was taken to be the reference dataset as well as 

the case where 
GW15IVT  was taken to be the reference dataset were considered. A ―false alarm‖ is 

defined as the number of days that an AR was estimated, but was not ―observed‖ by the 

reference. Note that herein the term ―observed‖ was used to refer to an AR that was detected or 

diagnosed by the reference, while the term ―estimated‖ referred to the AR diagnosed by the 

second AR catalog. The false alarm ratio (FAR) is defined as the ratio of the number of false 

alarms to the number of total ARs estimated. Since throughout the year non-AR days (i.e. non-

occurrences) are more common than AR days (i.e. occurrences), the threat score was used to 

quantify the number of correct ARs estimated (i.e. agreement on AR occurrence diagnoses or 

―hits‖) relative to the total number of times that an AR was estimated and/or observed. A ―miss‖ 

is taken to be the number of times that an AR was observed, but not estimated. While a hit 

indicates that an AR was correctly estimated (i.e. it was also observed), a ―correct negative‖ 

indicates that the estimate correctly diagnosed a non-AR day. The probability of detection (POD) 

is defined as the ratio of the number of correct AR estimates to the number of times that an AR 

day was observed. POD ranges from 0 to 1, where a value of unity indicates perfect agreement. 

The probability of false detection (POFD) is defined as the total number of false AR days 

relative to the total number of non-AR days observed. POFD ranges from 0 (perfect agreement) 

to 1. 

B.3 Implications of Lead- and Lag-Time on AR CS Estimates 

It is important to note that Figures 4.1-4.2 were generated using CS-contributing days, 

which follows the assumption that the ±1 day window should be utilized to account for lead- and 

lag-time differences between when an AR is diagnosed (Figure 4.3) and when snowfall occurs. 

Here, the extent to which the ±1 day window around an AR event impacts the amount of the 
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seasonal CS that is attributed to ARs at both the inter-annual and climatological scales was 

examined. The following terminology was defined to explore how the seasonal AR CS can be 

broken down into occurring on days when an AR was diagnosed vs. adjacent days in the larger 

window of time. The term ―during‖ is used to refer to the day of the diagnosed AR (i.e. AR days 

shown in Figure 4.3).  ―Before‖ and ―after‖ refer to the day before and the day after an AR event, 

respectively. A day classified as ―overlap‖ is one that occurred the day after one AR event and 

the day before another AR event. Therefore, the overlapping day is the day that falls between 

two AR events that are separated by a single day. Days were not double counted. The 

designation of ―all‖ days considers each day that falls into one of the abovementioned categories 

(i.e. before, during, and after an AR event and overlap).  

Figure B.3 indicates that the largest amount of AR CS occurs during diagnosed AR 

events with an average of 3.7 km
3
 ( N08IWV ) and 7.0 km

3
 (

GW15IVT ) of AR CS accumulating on 

AR days each winter. While the number of CS-contributing days that occur before and after an 

AR event is equal, the amount of AR CS that occurs the day after an AR event tends to be 

greater than the amount that occurs the day before. This is observed using both AR catalogs. 

Over the course of a season, ~0.7 km
3
 of AR CS occurs on days before the AR event, while ~2.2 

km
3
 tends to accumulate after the event when using N08IWV . Using GW15IVT , an average 1.2 km

3
 

and 3.1 km
3
 of AR CS occurs before and after an AR event, respectively. The inclusion of these 

days (and the overlapping days) results in a larger contribution in terms of the AR CS volume 

based on GW15IVT  than with N08IWV . About 2.6-2.9 times more AR CS occurs throughout a 

season on the day after than the day before, on average. On average, the inclusion of all CS-

contributing days results in ~3.0 km
3
 and 4.9 km

3
 more AR CS annually than by only 

considering the (diagnosed) AR days for N08IWV  and GW15IVT , respectively. Therefore including 
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the ±1 day window results in ~1.7-1.8 times more AR-derived CS than only considering the 

exact AR days shown in Figure 4.3.  

Figure B.4 illustrates the extent that the inter-annual 
ARf  percentages are related to the ±1 

day window. In Figure B.4 (top), the black (
N08IWV ) and red (

GW15IVT ) curves are the same as 

the 
ARf  time series provided in Figure 4.3 in the top and bottom panels, respectively. The gray 

and light red curves show the reduction in the total CS that is attributed to ARs for N08IWV  and 

GW15IVT , respectively, when only the AR days were considered (i.e. not the CS-contributing 

days). This can result in a reduction of ARf  from 0.0-25.6% ( N08IWV ) and 8.5-37.0% ( GW15IVT ) 

for individual years. In this case, the average ARf  values are 17.8% and 32.5% using N08IWV  and 

GW15IVT , respectively. 
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B.4 Tables 

Table B.1. Contingency table and AR detection statistics (defined in Section B.2) for 
N08IWV  and 

GW15IVT . 

Reference Estimate Hits 

False 

Alarms Misses 

Correct 

Negatives 

Threat 

Score FAR POD POFD 

N08IWV  
GW15IVT  114 276 68 2282 0.25 0.71 0.63 0.11 

GW15IVT  
N08IWV  114 68 276 2282 0.25 0.37 0.29 0.03 
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B.5 Figures 

 
Figure B.1. Elevation map (in meters) identifying 20 major basins over the Sierra Nevada at 90-

m resolution. Windward basins used in the orographic CS analysis are highlighted and grouped 

into the northwest (NW) and southwest (SW) regions. White regions represent pixels outside of 

the study domain or with elevations at or below 1500 m. Dashed lines demarcate the region used 

to identify AR occurrence from the GW15IVT  AR catalog used herein and defined later.  
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Figure B.2. Eighteen-year (WY 1998-2015) average total CS distribution. Total CS is the sum of 

the AR and non-AR contributions to CS during the winter.  
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Figure B.3. Range-wide seasonal AR CS broken down into snowfall occurring on the day of and 

adjacent days of AR events as defined in Section B.3. The total length of the bars in the left 

panel correspond to the AR CS time series shown in Figure 4.2 (top) and (bottom), respectively. 

The mean and outlier seasonal AR CS values are demarcated with ‗o‘ and ‗+‘ symbols, 

respectively, in the right panel. N08IWV  and GW15IVT  are colored black and red, respectively.  
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Figure B.4. (top) Comparison of the fraction of the total CS that was derived from ARs ( ARf ) for 

all CS-contributing days (―all‖) and only the AR days (―during‖) for both N08IWV  and GW15IVT . 

(bottom) Difference between the ARf  values estimated with and without the ±1 day window for 

N08IWV  and GW15IVT . 
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