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ABSTRACT
Fourier transform infrared spectroscopy (FT-IR) has been used to predict elemental carbon (EC)
on polytetrafluoroethylene (PTFE) filter samples from the United States Environmental Protection
Agency’s Chemical Speciation Network (CSN). This study provides a proof-of-principle
demonstration of using multilevel modeling to determine thermal/optical reflectance (TOR)
equivalent EC (a.k.a., FT-IR EC) on PTFE samples collected in the CSN. Initially, spectra from nine
geographically disperse sites were pooled and calibrated directly to collocated TOR EC
measurements. The FT-IR EC quantified in test samples was deemed substandard when judged
against an earlier study, e.g., R2 D 0.760 and median absolute deviation (MAD) D 26.7%. Upon
scrutinizing each sample’s absolute prediction error and squared Mahalanobis distance, Elizabeth,
NJ predictions were found to exhibit atypical systematic errors, motivating the development of a
multilevel classification and calibration procedure. Atypical Elizabeth spectra were distinguished
from the (typical) CSN spectra by training a partial least-square discriminant analysis. Predicting EC
using calibrations dedicated to either atypical or typical samples produced a satisfactory
improvement in overall performance (R2 D 0.886, MAD D 19.8%). Analysis of the atypical FT-IR
spectra and select TOR thermal fractions suggested that Elizabeth samples contained elevated
levels of diesel particulate matter as evidenced by the use of organic nitrogen functional groups for
prediction, very low average OC/EC, and minimal charring during TOR speciation. FT-IR EC from the
other eight sites was predominately determined by aliphatic C-H, C D C aromatic, and functional
groups associated with oxidation. This study provides preliminary confirmation that FT-IR EC may be
accurately determined from source-oriented calibrations under a combined classification and
calibration methodology.

EDITOR
Paul Ziemann

1. Introduction

TheUnited States (US) Environmental Protection Agency’s
(EPA’s) Chemical Speciation Network (CSN)monitors and
assesses long-term trends in urban and suburban fine
particulate chemical composition (PM2.5, < 2.5 mm aero-
dynamic diameter) (Hand et al. 2013; Solomon et al. 2014).
Atmospheric PM2.5 comprises a complex mixture of
all organic and inorganic condensed-phase material emit-
ted from primary anthropogenic and biogenic sources, gen-
erated in the atmosphere by secondary gas-to-particle
inter-conversion processes, or formed within the particle-
phase according to second-generation “aging”mechanisms
(Kanakidou et al. 2005; Hallquist et al. 2009; Kroll et al.
2015). Although our ability to measure, evaluate, and pre-
dict the composition and evolution of PM2.5 remains a
challenge (Kroll and Seinfeld 2008), the net effect on visibil-
ity (Watson 2002; Malm and Hand 2007), climate forcing

(P€oschl 2005; Fuzzi et al. 2015), and human health (Pope
III and Dockery 2006; Anderson et al. 2012) warrant con-
tinued elucidation of PM2.5 constituents by state-of-the-art
measurement techniques andmodels.

Organic and elemental carbon (OC and EC) are two
pollutants measured in the CSN using the IMPROVE_A
thermal/optical reflectance (TOR) method (Chow et al.
1993, 2007). Aerosol speciation by the TOR method is
minimally selective, i.e., all semi- and low-volatility
carbon evolving from the quartz filter in an inert atmo-
sphere is assigned as OC (140�C–580�C) while non-vola-
tile (refractory) carbon evolving after oxidation is defined
as EC (>580�C; 98%/2% He/O2). TOR OC therefore
describes a mixture of hundreds or thousands of com-
pounds with no direct access to molecular composition
or solution properties (e.g., functionality, solubility).
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Likewise, TOR EC is assumed to be comprised of a mix-
ture of graphitic carbon species, of varying degrees of oxi-
dation, with the architects of thermal/optical analysis
intending to estimate the soot carbon fraction of atmo-
spheric samples (Huntzicker et al. 1982; Gundel et al.
1984; Novakov and Rosen 2013). Potential biases in ther-
mal analysis (EC) and optical (BC) analysis—not con-
nected to analysis artifacts—are addressed in Andreae
and Gelencs�er (2006) and more recently by Petzold et al.
(2013) and Lack et al. (2014). Where artifacts in thermal
/optical analysis are concerned, multi-wavelength meth-
ods are beginning to systematically address biases associ-
ated with light absorbing brown carbon ( D OC) being
incorrectly assigned as EC (Massab�o et al. 2016). How-
ever, the historical significance of TOR EC measurement
and its role as a “standard” measurement is important
to consider. For instance, thermal optical measurement of
EC, though slightly different from the TOR protocol but
containing a similar class of artifacts, was recently
adopted by the European Committee for Standardisation
(CEN) Technical Committee 264 (standard method EN
16909:2017).

Therefore, within the broader scope of providing
rapid and non-destructive chemical characterization
from polytetrafluoroethylene (PTFE) filters typically
used for gravimetric mass measurement, TOR OC and
EC were predicted in ambient fine aerosols using Fourier
transform infrared (FT-IR) spectroscopy and a multivar-
iate partial least-square (PLS) regression for the CSN
and Interagency Monitoring of PROtected Visual Envi-
ronment (IMPROVE) network (Coury and Dillner 2008;
Ruthenburg et al. 2014; Dillner and Takahama 2015a,
2015b; Takahama et al. 2016; Weakley et al. 2016). The
TOR equivalent OC and EC mass concentrations
estimated by FT-IR—herein denoted FT-IR OC and
EC—are accurate, precise, and repeatable across time
and location in a given network. Calibrating TOR con-
centrations directly to parallel FT-IR measurements pro-
duces regression parameters robust to interference from
the PTFE sampling filter and non-carbonaceous mixed
aerosol species. For example, FT-IR OC calibrations
developed from only six geographically dispersed
IMPROVE sites were extended to filters collected during
different years and sites (Reggente et al. 2016). This pro-
vided evidence that OC quantification using only a single
(“global”) PLS calibration may remain viable in the long
run. However, IMPROVE EC calibrations are not as
readily extrapolated to filters obtained from different
sites suggesting that certain sites exhibiting more “atypi-
cal” spectra may benefit from their own dedicated EC
calibration(s).

Addressing any apparent limitations of FT-IR EC quan-
tification is a particularly pressing matter as technological

change and policy continue to modify sources, atmospheric
processing, and the ultimate fate of carbonaceous aerosol in
the urban and rural environment (Hallquist et al. 2009;
Johnson 2009; Shindell et al. 2012; Zhao et al. 2013). The
capability for FT-IR to provide TOR-equivalent EC among
other quantities—TOR-equivalent OC (Weakley et al.
2016) and functional groups (Takahama et al. 2013;
Ruthenburg et al. 2014)—from a single PTFE filter spec-
trum can be useful when quartz filters for TOR analysis are
not available. The goal of this work is to develop a frame-
work for measuring EC in diverse sites using FT-IR spectra
given the chemical variability of EC. As a practical matter,
the long-term viability of the FT-IR method depends on an
ability to distinguish atypical from more typical EC given
only knowledge of a sample’s infrared spectrum. The first
task of the current study aims to identify atypical and typi-
cal samples using absolute prediction errors and each spec-
trum’s squared Mahalanobis distance. As a move toward
using only spectral information for distinguishing sample
types, CSN spectra are then classified as containing either
“atypical” or “typical” EC using a partial least-square dis-
criminant analysis (PLS-DA; Barker and Rayens 2003).
Samples dichotomously classified by PLS-DA are then
assigned to their respective “atypical” or “typical” calibra-
tions. Combining classification and FT-IR EC prediction in
this manner will be referred to as multilevel EC modeling.
Validation next concerns comparing multilevel EC predic-
tions to EC predicted from a single calibration (where all
samples are predicted using a single “global” calibration).
Given demonstrable reduction in EC prediction errors by
multilevel quantification, the spectroscopic and thermal/
optical behavior of atypical samples are evaluated to ascer-
tain the underlying differences that distinguish atypical
from typical behavior in prediction. Overall, this study
assesses the efficacy of combining classification and calibra-
tion to determine FT-IR EC in PTFE samples from US
aerosol monitoring networks.

2. Methods

2.1. Sampling and analysis in the CSN

Samples were acquired from 10 CSN sites (2013 sam-
pling year) located within or near the following cities:
Birmingham, AL, Boston, MA, Cleveland, OH, Elizabeth,
NJ, Fresno, CA, Phoenix, AZ, Providence, RI, Salt Lake
City, UT, Seattle, WA, and Washington, DC. The Boston
and Cleveland sites have two collocated CSN samplers.
Samplers were configured to collect ambient aerosol
for 24 h (midnight to midnight) on both PTFE (What-
man PM2.5 membranes, 47 mm) and quartz filters (Pall,
25 mm). Quartz filters were used for TOR analysis.
PTFE filters were used for gravimetric mass, elemental
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analysis using X-ray fluorescence (XRF), and FT-IR anal-
ysis. SASS samplers (MetOne, Grant’s Pass, OR, USA)
were configured to pass 6.7 liters per minute of ambient
air through PTFE filters resulting in 9.65 m3 of total air
sampled. The URG-3000N (URG, Chapel Hill, NC,
USA) sampler passed ambient air though quartz filters at
22 liters per minute resulting in 31.7 m3 of total air sam-
pled. All samples were shipped and stored cold (4�C).
The quartz filters were shipped for TOR analysis at the
Desert Research Institute (Reno, NV, USA) and the
PTFE filters were first shipped to Research Triangle
Institute (Research Triangle Park, NC, USA) for gravi-
metric and XRF analysis. FT-IR analysis was performed
at the University of California, Davis (Davis, CA, USA).

Collocated quartz sampling at two CSN sites facili-
tated a quality assessment of the TOR measurements
prior to FT-IR calibration. Here, the integrity of the
TOR data was assessed for drift that may have occurred
as a result of instrument malfunction, poor sampler
maintenance, or reasons unknown. The methods used to
establish the quality of TOR samples can be found in
Weakley et al. (2016). After quality assessment, samples
from the Birmingham and one of the collocated Cleve-
land sites were determined to be substandard due to
excessive drift. Nine sites were therefore retained for PLS
modeling leaving 927 total samples containing 30 field
blanks for calibration and prediction. Twenty-nine collo-
cated samples from Boston were used to estimate errors
related to aerosol sampling and TOR analysis.

2.2. TOR EC measurements

TOR EC measurements were acquired from the EPA’s
Air Quality System (AQS) database on July 27, 2015
(https://aqs.epa.gov/api). During TOR analysis the car-
bonaceous compounds leaving the quartz filter are con-
verted to CO2, methylated, and the products passed to a
flame ionization detector (FID). Although thermal speci-
ation is continuous during TOR, the formation of
unwanted organic pyrolysis products (OP; “char”) is
minimized by fractionating OC according to four tem-
perature set points—designated OC1, OC2, OC3, and
OC4 on analysis thermograms (Chow et al. 2007).

Char formation is rarely eliminated by fractionation
alone, with OP remaining bound to filter media until the
addition of oxygen that defines the first EC fraction
(EC1). Distinguishing the OP artifact from real aerosol
species contained in EC1 involves monitoring the reflec-
tance of a helium-neon (633 nm) laser off the quartz fil-
ter during thermal analysis. Specifically, a continuous
drop in He-Ne reflectance is often observed during the
OC fractionation process. This decrease in reflectance sig-
nifies the formation of OP since char is characteristically

more light absorbing than OC precursor compounds.
After OC4 fractionation, oxygen introduced into the
chamber causes both char and EC to oxidize whereby
sample reflectance increases rapidly. When sample reflec-
tance returns to its initial value, it is assumed that all
nascent OP artifacts have been removed leaving only
refractory aerosol species on the filter. OC, OP, and EC
are then determined by analysis of the TOR thermograms
with total OC equal to the sum of the OC fractions and
OP (OC D OC1COC2COC3COC4COP) and EC the
sum of the EC thermal fractions less OP (EC D
EC1CEC2CEC3-OP). TOR OC and EC measurements
are reported on the AQS database as mass concentrations
(mg/m3).

2.3. FT-IR analysis

Absorption spectra of PTFE filters were acquired on the
Bruker Tensor 27 FT-IR spectrometer (Bruker Optics,
Billerica, MA) equipped with a liquid nitrogen cooled
mercury-cadmium-telluride detector. Measurements were
acquired in transmission mode with the infrared beam
interrogating the center of the PTFE filter. Instrument
parameters included collection at 4 cm¡1 nominal resolu-
tion (aperture diameter D 6 mm) with a spectral range
from 4000 cm¡1 to 420 cm¡1 (2.5–24 mm). The sampling
compartment was dry air purged of both water vapor and
carbon dioxide for 4 min prior to acquiring a background
spectrum (PureGas LLC, Broomfield, CO, USA). Absor-
bance spectra were calculated after ratioing a single beam
spectrum of the empty sample compartment against the
filter spectrum. The precise details of FT-IR collection
can be found in Ruthenburg et al. (2014).

Ambient aerosol and the PTFE filter both attenuate
infrared radiation by three primary mechanisms: absorp-
tion, scattering, and specular reflection. Scattering and
reflection by the PTFE filter fibers, and to a lesser extent
the collected aerosol, introduce a very broad baseline and
offset in the infrared spectra that is superimposed on the
much narrower absorption bands. Estimating and
removing baseline from the spectra is accomplished in
this study using the smoothing splines baseline correc-
tion method (Kuzmiakova et al. 2016). Default parame-
ter selection criteria were used to select the optimal
effective degrees of freedom ( D 2). Furthermore, the
smoothing spline method also truncates spectra at
»1426 cm¡1 thus assuming that any aerosol bands
<1426 cm¡1 are either totally or partially confounded by
PTFE (Liang and Krimm 1956). Baseline corrected and
truncated spectra therefore contain a total of 2002
absorption measurements available for EC calibration.

Each TOR measurement (y) and matching spectrum
(½X�) is next sorted by site and date. Calibration and test
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samples are then partitioned by placing every third sam-
ple-pair in the test set (for validation) with the remaining
two thirds in a calibration set (for model training). Parti-
tioning samples in this way aims to produce single-model
EC predictions that are insensitive to any sample-to-sam-
ple variations in aerosol composition that may be linked to
seasonality and/or a host of other factors inaccessible by
FT-IR and TOR analysis (e.g., sources, mixing state). Plac-
ing every third sample in the test set ensures that the same
factors are represented during model validation. Partition-
ing results in 588 samples for calibration and 329 samples
for method testing.

2.4. FT-IR EC: Single and two-model prediction

2.4.1. FT-IR EC predictions using a single calibration
An FT-IR calibration was first developed from all avail-
able calibration samples, making no distinction between
atypical or typical EC, in an effort to identify and then
evaluate to what extent atypical samples degrade EC
predictions (N D 588). First, developing and validating
FT-IR calibrations of this type has been extensively cov-
ered in previous work (Dillner and Takahama 2015b;
Weakley et al. 2016). An abridged version of model
development and validation is therefore presented. First,
the number of PLS components used for calibration
are selected according to a minimized root-mean-square
error of five-fold cross-validation (Arlot and Celisse
2010). Regression coefficients (b̂) are then estimated
using the nonlinear iterative partial least-square
(NIPALS) algorithm (Wold et al. 2001). Note that an
additional optimization step was applied to the calibra-
tion using backward Monte Carlo unimportant variable
elimination (BMCUVE) to identify only the wavenum-
bers considered absolutely essential to determine EC
(Weakley et al. 2014).

FT-IR EC mass-concentrations are simultaneously
determined in the 329 test samples by matrix multiplying
test spectra by regression coefficients (yFTIR D ½X�b̂). Pre-
diction errors, eD yFTIR ¡ yTOR, are next used to judge
model performance on six figures of merit including:
R2, median absolute error, concentration-normalized
median absolute deviation (MAD, %), concentration-
normalized bias (%), minimum detection limit (MDL),
and precision. Field MDLs were estimated as three times
the standard deviation of predicted test set blanks (Com-
mittee 1987). Duplicate precision was estimated from
FT-IR EC determined from collocated Boston samples.

Determining FT-IR EC using two independent mod-
els (atypical and typical) is only considered worthwhile
if the figures of merit for single-model predictions are
considerably worse than previously reported (Dillner
and Takahama 2015b; Reggente et al. 2016). Given that

previous IMPROVE studies collected aerosol on PTFE
filters with the (nominal) mass per square centimeter
roughly 10–11 times greater than these CSN samples
(McDade et al. 2009), only mass-normalized figures of
merit metrics are used to judge a calibration’s perfor-
mance. Namely, a calibration showing an R2 > 0.85,
normalized bias < j 3 j%, and normalized error <25%
is considered an acceptable model.

2.4.2. Identifying atypical EC
Reggente et al. (2016) demonstrated that atypical and
typical samples are distinguishable by plotting squared
Mahalanobis distance (D2

i ) against absolute prediction
error ( j ei j ). Conceptually, plots developed from these
metrics constitute a two-dimensional map, useful in eval-
uating a spectrum’s degree of dissimilarity to the other
test spectra (D2

i ) and whether the dissimilarity is associ-
ated with poorer EC predictions ( j ei j ). Samples are
judged as poorly predicted if they exceed the spectrum
dissimilarity threshold defined by absolute errors exceed-
ing 3.5 times the mean absolute error of calibrated EC
( j ei j>3.5 j e j ) and squared Mahalanobis distance
exceeding three times that of the mean calibration spec-
trum (D2

i>3 D2).
For the CSN samples used in this study, atypical sam-

ples are poorly predicted by the single EC calibration but
do not exceed the spectra dissimilarity threshold. In
other words, the expectation that only major differences
in FT-IR absorption bands yield poor predictions (e.g.,
due to interferences or matrix effects) are not apparent
in atypical samples, implying that subtle differences in
the EC composition must distinguish atypical spectra
from more typical ones. Moreover, since differences in
FT-IR spectra between atypical and typical samples are
slight, they are only distinguishable by taking into
account the relationship between predicted values and
TOR reference measurements (yTOR).

Figure 1a identifies most atypical samples as collected
from the Elizabeth, NJ monitoring station. Specifically,
Elizabeth, NJ spectra show no major differences in infra-
red absorption according to the squared Mahalanobis
distance (D2

i;NJ<3 D2) but many EC predictions fall
above the estimated absolute error threshold (Figure 1a).
Upon further inspection, Elizabeth, NJ EC predictions
actually become increasingly less accurate as the mass of
aerosol on the filters increases (Figure 1b). This regres-
sion behavior signifies that systematic differences— pos-
sibly linked to EC composition—exist between Elizabeth,
NJ samples and those from the other eight sites. As
hypothesized above, a calibration dedicated exclusively
to atypical samples (Elizabeth, NJ, USA) should control
for the effect of aerosol composition in a multilevel
modeling framework.

AEROSOL SCIENCE AND TECHNOLOGY 645



Figure 1 exposes atypical behavior in several CSN
samples; most of which are Elizabeth, NJ samples. There-
fore, we first hypothesize that atypical behavior stems
exclusively from heterogenous soot on Elizabeth, NJ
samples. Two calibrations are therefore developed: one
for Elizabeth, NJ samples ( D atypical EC) and another
for typical EC from the other eight sites ( D typical EC).
Figure 1b in particular demonstrates that this approach
to multilevel modeling is altogether justified: Elizabeth
predictions appear to systematically deviate from the
other eight sites down to 0 mg/m3, i.e., absolute predic-
tion errors scale with the mass of ambient aerosol on
Elizabeth filters. This implies that most Elizabeth, NJ EC
is likely atypical but that atypical behavior is not detect-
able below »2 mg/m3 in Figure 1a. Furthermore, if mul-
tilevel predictions, performed by developing a calibration
for Elizabeth EC separately from the other eight sites, are
judged sufficient this provides evidence as to the validity
of multilevel modeling along these lines (see Section
2.4.1). Finally, if the wavenumbers used for a Elizabeth
quantification are plausibly connected to aerosol sources
distinct from typical samples, this provides support for
our hypothesis that atypical Elizabeth EC is chemically
different from typical EC.

2.4.3. Two-model predictions
After distinguishing atypical from typical samples, data
partitioning for calibration and method testing is again
performed. Typical samples are partitioned at a 2-to-1
ratio (identical to the single-model case) with 528 and
298 samples in the calibration and test set, respectively.
Atypical samples are partitioned at an approximately
1-to-1 ratio with 46 used for calibration and the other 45

were for validation. Partitioning atypical samples in this
manner ensures that uncertainties related to low sample
number in figures of merit are minimized to the extent
possible. Overall, the combined training and test sets
contain a total of 574 and 343 samples, respectively.

A PLS-DA classifier is next trained to assign a test
spectrum to an appropriate model for EC quantification
(Figure 2). Training and validating the PLS-DA classifier
requires first coding each calibration sample’s true affilia-
tion as either “atypical” or “typical” using numeric class
labels. Atypical samples were assigned a value of C1 and
typical samples were assigned -1. Class labels corre-
sponding to calibration samples were then placed in a
vector and matched to their respective FT-IR spectra.
Our variant of PLS-DA divides classification into two
distinct steps. First, the FT-IR spectra are regressed onto
the vector of class labels using the NIPALS algorithm.
Second, the PLS scores (e.g., t1 and t2) derived from the
PLS regression are used to estimate class-conditional
(normal) probability densities, equivalent to defining the
linear discriminant boundary shown in Figure 2a (Dixon
and Brereton 2009; Hastie et al. 2009). In this context,
the PLS scores are estimated as a linear combination of
the FT-IR absorption measurements with the combina-
tion coefficients (a.k.a, PLS components) determined by
considering the covariance between the spectra and class
labels (see Takahama et al. 2016 for detailed description
of the PLS algorithm applied to ambient aerosol spectra).
Geometrically, the PLS components project FT-IR spec-
tra onto a low-dimensional basis prior to performing dis-
criminant analysis or regression. The PLS scores contain
the coordinates of each spectrum in this new basis. For
example, Figure 2a illustrates a mapping of each spec-

Figure 1. Each FT-IR test spectrum’s squared Mahalanobis distance (D2
i ) plotted against absolute error ( j ei j ; a) and cross plot compar-

ing FT-IR predictions to TOR EC (b). Elizabeth, NJ samples are distinguished from the other eight sites as triangles (red) in both plots.
Boundaries and complementary 95% confidence intervals were calculated as three times the mean-squared Mahalanobis distance and
3.5 times mean absolute error of the calibration samples, denoted as an encircled X (a). Dashed lines (b) qualify the systematic deviation
in Elizabeth, NJ samples from the other eight sites via robust least-square regression.
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trum—which originally contains up to 2002 absorption
measurements in smoothing spline spectra—onto a set
of coordinates, t1 and t2, which are the first two PLS
components. Practically speaking, performing discrimi-
nant analysis using the PLS scores instead of the FT-IR
spectra ensures that a suitable solution is found, given
that the PLS scores are free from the excessive collinear-
ity in the spectra (Næs and Mevik 2001).

Once this boundary has been estimated from calibra-
tion samples, test samples are then classified as either
typical or atypical depending on their position relative
to the boundary. Depending on the number of trans-
formed variables used for analysis, the boundary may
be a line (as in Figure 2a), plane (three variables), or
hyperplane (>3 variables). In the current study, the
number of variables chosen for PLS-DA was deter-
mined according to a minimized five-fold cross-vali-
dated misclassification rate.

Following test sample classification, atypical and typi-
cal calibrations are developed individually using the
same sequence of steps for single-model development,
i.e., samples are partitioned into calibration and test sets,
cross-validation is performed to determine model com-
plexity, PLS parameters are estimated, and predictions
are validated across six figures of merit (e.g., R2). Again,

each model is optimized using BMCUVE. Optimization
is used not only to improve EC predictions but more
importantly to elucidate the absorption bands most use-
ful for atypical and typical EC quantification.

2.5. Chemometric and statistics software

The MatlabTM base, statistics toolbox, and signal proc-
essing toolbox were used for most data manipulation
and visualization purposes (2015a, The MathWorks,
Inc., Natick, MA, USA). The NIPALS algorithm and sin-
gle-pass MCUVE filter function were available from the
open-source libPLS package (v1.9, Changsha Nice City,
China). The BMCUVE wavenumber selection protocol
was programmed by the authors.

3. Results and discussion

FT-IR EC is not accurately determined using only a sin-
gle PLS calibration (Table 1, Single). Relative to an ear-
lier IMPROVE network study (Hybrid model from
Dillner and Takahama 2015b in Table 1), the R2, bias,
MAD, and % below MDL are all unacceptable. Taken
together with Figure 1 (above), comparing FT-IR EC to
TOR EC reference measurements sufficiently motivates

Table 1 . FT-IR EC determined using either the single or multilevel model. MDLs were determined separately for the typical and atypical
calibrations with the later not estimable given only one test set blank classified as atypical.

Model R2 Bias (%) Error (mg/m3) MAD (%) MDL (mg/m3) % below MDL Precision (mg/m3)

Single 0.760 5.2 0.13 26.7 0.37 24.2 0.08
Multilevel 0.884 2.7 0.11 19.8 [0.17, –] [4.8, –] 0.04
Hybrid model Dillner and Takahama (2015b) 0.956 ¡2.6 — 19.5 — 0.7 —

Figure 2. Example of classifying an unknown spectrum (x�) as either atypical or typical using PLS-DA (a). In this context, the PLS scores
(t1 and t2) may be thought of as transformed FT-IR spectra where each point represents a spectrum, distinguished here according to
class label. For the purpose of this illustration, 200 atypical and typical samples were simulated from two Gaussian distributions with a
mean of (¡2, ¡2) and (6,6), respectively. Simulated class variances are equal (s2

ii D 4, s2
ij D 0). Estimating the mean of each class and

pooled-covariance matrix defines the boundary used to classify and then allocate an unknown test spectrum (star; a) to the appropriate
FT-IR calibration (dashed path; b).
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identifying, classifying, and then independently deter-
mining atypical and typical EC. As visualized in
Figure 1b, FT-IR EC is over-predicted in Elizabeth, NJ
samples below 1 mg/m3 and then increasingly under-
predicted suggesting that the PLS regression parameters
(e.g., b̂) for most CSN sites are inappropriate for Eliza-
beth, NJ samples. Non-Elizabeth EC shows only a small
deviation from the 1:1 line.

Figure 3 summarizes multilevel EC predictions as well
as the classification accuracy of PLS-DA. First, PLS-DA
does not misclassify any typical samples as atypical (sen-
sitivityD 100%,) but does misclassify seven atypical sam-
ples as typical (specificity D 84%). All incorrectly
classified Elizabeth, NJ samples fall within the scatter of
the typical samples suggesting that misclassification has
a negligible influence on regression figures of merit
(Figure 3a). As shown in Figure 3b, the atypical EC sam-
ples from Elizabeth, NJ are no longer biased when deter-
mined by their own dedicated calibration.

Multilevel EC modeling dramatically improves pre-
diction accuracy (Table 1, Multilevel), confirming that
misclassifying some atypical Elizabeth, NJ samples as
typical does not noticeably affect EC quantification. In
fact, the multilevel model performs comparably to the
hybrid IMPROVE model, with the notable exception of
R2 and possibly the percentage of samples below MDL.
Given that a more “reasonable” R2 is observed for the
hybrid IMPROVE calibration (R2 D 0.956) while predic-
tion errors are nearly identical to the multilevel model
developed in this study (MAD D 19.5% vs. 19.8%), it
seems plausible that the lower R2 in the multilevel model
is likely connected to the roughly 10–11 times lower
aerosol mass-per-filter area on CSN (PTFE) filters rela-
tive to filters collected in the IMPROVE network.

Rather than pooling predicted test set blanks to calcu-
late a single MDL for the multilevel model, we chose to
calculate an MDL for the atypical and typical calibrations
separately. Under this particular framework of multilevel
modeling, a pooled MDL is not theoretically suitable
given that each calibration (presumably) utilizes infrared
absorption related to potentially distinct aerosol EC (dis-
cussed below). By virtue of this, we expect that the prob-
ability of correctly distinguishing FT-IR EC from
background in an unknown field sample (definition of
MDL) is strongly controlled by the composition of EC
on a sample as used by each calibration. Therefore, the
differences in aerosol composition/absorption used by
each calibration require their own dedicated MDLs and a
range for the MDL should, in principle, be reported for
the multilevel model. However, because there was only
one blank classified as atypical, an MDL and % below
MDL are not calculable nor reported in Table 1.

3.1. Infrared band assignments for typical
calibration

Figure 4 shows a typical CSN spectrum and PTFE field
blank overlaid on all spectra collected for this work.
The wavenumbers selected by the BMCUVE algorithm
for calibration are indicated by vertical bars. Bands used
in the typical CSN calibration between 3400 and
3200 cm¡1 are assigned to several broad and unresolved
modes. N-H stretches, from either primary and/or sec-
ondary amines (3400–3250 cm¡1) as well as hydrogen-
bonded and/or conjugated O-H stretches (3300–
3200 cm¡1) possibly connected to oxidized soot are all
plausible assignments in this range (Akhter et al. 1985a;
Shurvell 2002).

Figure 3. TOR EC plotted against FT-IR EC for typical (a) and atypical (b) model predictions. Typical samples and atypical samples are dis-
tinguished as bullets (black) and triangles (red), respectively. Seven atypical Elizabeth, NJ samples were misclassified as typical explain-
ing their affiliation with the typical model (a). No typical samples were misclassified as atypical (b). Dashed lines are calculated using
robust least squares and qualify any systematic deviations present in either model’s predictions.
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More confident assignments include the C-H stretches
from aliphatic and aromatic functional groups between
3100 and 2800 cm¡1 (Shurvell 2002). Specifically, absorp-
tion concentrated around 3090 cm¡1 and 3050 cm¡1 are
assigned to aromatic C-H stretches, the former showing
some prominence in certain substituted polycyclic aro-
matics identified in combustion soot (e.g., 1-methyl-pyr-
ene) (Russo et al. 2014). Features between 3000 and
2800 cm¡1 are assigned to aliphatic C-H stretches associ-
ated with multiple functionalities. Antisymmetric stretch-
ing of CH3 and CH2 (2960 cm¡1; 2930 cm¡1) as well as
CH2 symmetric stretching (2830 cm¡1) are assigned to
absorption in this range (Shurvell 2002). Symmetric CH2

stretches in normal and branched alkanes are usually con-
fined to a fairly narrow wavenumber range at 2850 §
10 cm¡1, this being 10–20 cm¡1 higher than the wave-
numbers used in the calibration (Mayo 2004a). Interest-
ingly, CH2 symmetric stretching at 2830 cm¡1 has been
assigned to saturated five- and six-member ring species
(e.g., 1,2,3,4-tetrahydronapthelene) in combustion soot
and condensed polycyclic aromatics rich in naphthalenic
moieties (Russo et al. 2014; Gargiulo et al. 2015). Alterna-
tively, a C-H stretch associated with amines may be
assigned to 2830 cm¡1 with frequency lowering attributed
to the Bohlmann effect (Chen et al. 2007).

Absorption spanning 1600–1591 cm¡1 is plausibly
assigned to graphitic C D C stretches and has been iden-
tified previously in the spectra of combustion soot and
model elemental carbons (Akhter et al. 1985b; Kosti�c
et al. 2009; Lechner et al. 2016). However, a few qualifica-
tions regarding this assignment are necessary. First, non-
graphitic aromatic species (e.g., precursor PAHs) also
absorb in this range implying possible interference from
semi-volatiles on the PTFE filters. However, given that
the primary mechanism for PAH partitioning onto aero-
sols are by surface adsorption (Liang et al. 1997), on a
mass basis it is expected that this is a small contribution.
Second, the C D C atoms confined to a graphitic carbon
lattice (e.g., as stacked graphene planes) have very few

symmetry-allowed transitions in the mid-infrared (Kim
et al. 2005; Kosti�c et al. 2009; Kuhlmann et al. 1998).
Moreover, even in the perturbed (“turbostratic”) mor-
phology of soot carbon, it is unlikely that the symmetry
conditions are relaxed such that this particular lattice
vibration at »1585 cm¡1 is experimentally observed in
transmission spectra (Andreae and Gelencs�er 2006;
Lechner et al. 2016). For example, only a very weak and
broad C D C stretch is observed in the transmission
spectra of graphite (ground under vacuum) even with
areal densities are on the order of »1000 mg-EC/cm2

(Smith et al. 1975). CSN PTFE filters contain roughly
»1 mg-EC/cm2. However, the infrared investigation of
single-walled carbon nanotubes (SWNTs), activated car-
bons, and flame-derived soot demonstrate that oxidation
introduces defects into elemental carbons, breaking ring
symmetries and enhancing C D C absorption between
1620 cm¡1 and 1580 cm¡1 (Akhter et al. 1985a; Figueir-
edo et al. 1999; Kirchner et al. 2000; Kuznetsova et al.
2000; Mawhinney et al. 2000; Hamon et al. 2001; Galvez
et al. 2002). Enhancement is particularly dramatic when
heteroatom substituents are conjugated to phenyl rings
(Smith and Chughtai 1995; Mayo 2004b). Considering
the inherently weak absorption of defect-free elemental
carbons coupled with low areal density of EC on these
samples, absorption between 1600 and 1591 cm¡1 is
probably related to C D C bonds conjugated to oxygen
or nitrogen-containing substituents. Since the features
between 1657 and 1644 cm¡1 were used for calibration
and likely assignable to ring-conjugated C D O groups
(e.g., possibly surface quinone defects), this lends cre-
dence to our hypothesis (Wexler 1967; Jang and McDow
1997; Olariu et al. 2002). Again, the limited molecular
selectivity of FT-IR prevents assigning the stretching
between 1600 and 1590 cm¡1 exclusively to either soot
or PAH derivatives, a fact not lost on other experiment-
ers (Clague et al. 1999; Santamar�ıa et al. 2006). These
limitations apply to the tentatively assigned C D C aro-
matics stretches at 1615 cm¡1 as well.

Figure 4. Typical CSN spectra (light gray). A representative typical CSN spectrum (solid line; blue), PTFE blank (dashes; red), and wave-
numbers used for calibration (vertical bars) are designated. Note, negative absorption is an artifact of baseline correction. Thicker verti-
cal bars indicate that several adjacent wavenumbers were chosen for calibration.
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Finally, several weak PTFE combination bands are
present in these CSN spectra in key regions (Liang
and Krimm 1956; Brown 1964). Although it is often
customary to ignore overtone and combination bands,
the absorption of many PTFE fundamentals is on the
order of 1–3AU or roughly 2–4 orders of magnitude
larger than those of aerosol carbon. Considering this,
we hypothesize that the single wavenumber from a
well-resolved PTFE band at 1780 cm¡1 (»0.015AU)
serves to adjust PLS regression coefficients for posi-
tive interference from PTFE bands at »1640 cm¡1

and »1590 cm¡1.

3.2. Infrared band assignments for atypical
calibration

Figure 5 shows that the atypical EC calibration utilized
very few wavenumbers for calibration, mostly aliphatic
C-H stretching between 3000 and 2680 cm¡1 (18 of the
27 wavenumbers). Aliphatic C-H stretches calibrated to
atypical spectra were centered at 2970 cm¡1 and
2926 cm¡1 which correspond to CH3 and CH2 antisym-
metric stretches, respectively (Shurvell 2002). Stretches
at 2915 cm¡1 have been identified in combustion soot
and tentatively assigned to either C-H stretching in ter-
tiary (methine) carbons or as possibly related to symmet-
ric CH2 Fermi resonance bands (Lu et al. 2005; Russo
et al. 2014). The C-H stretching of aldehydes and/or O-
CH3 (methoxy) functional groups are tentatively
assigned to features at 2750 cm¡1 and 2687 cm¡1. Unlike
the typical calibration no aromatic C-H stretches were
used to model atypical EC. Notably, OH and NH groups
as well as the C D C stretches (»1590 cm¡1) were also
absent from the atypical calibration implying that atypi-
cal (Elizabeth, NJ) soot may show a lesser degree of
oxidation.

Olariu et al. (2002) resolved a pattern of infrared
absorption at »1680 cm¡1, »1630 cm¡1, and 1574 cm¡1

in a product spectrum of o-, m-, and p-cresol photoxida-
tion after subtracting the spectra of known products
(e.g., 4-methyl-1,2-dihydroxybenzene). The resulting dif-
ference spectra were not identified with any particular
standards but bands were assigned to either nitro
(RNO2) or organic nitrate (RONO2) functional groups.
Interestingly, the atypical EC calibration utilizes nearly
this exact pattern of absorption. Therefore, we assign fea-
tures at 1680 cm¡1 to either quinone C D O stretches or
possibly to R-ONO—the later identified in hexane soot
at 1660 cm¡1 (Smith and Chughtai 1995). Features at
1630 cm¡1 and 1572 cm¡1 are assigned to NO2 antisym-
metric stretching in RONO2 and NO2 antisymmetric
stretching in RNO2, respectively (Kirchner et al. 2000;
Coates 2006). Other possible assignments include the C
D O stretch of amides (1680 cm¡1) as well as the N-H
bends of amines and/or particulate water at 1630–
1625 cm¡1 (Allen et al. 1994; Coates 2006).

3.2.1. Comparative analysis and interpretation
of atypical behavior
Organic nitrogen functional groups appear as strong pre-
dictors of atypical (Elizabeth, NJ) EC and glaringly absent
from the typical calibration. Notably, aerosols containing
elevated quantities of diesel particulate matter (DPM) also
contain elevated quantities of co-emitted organic nitrogen
in the form of nitrated PAHs (NPAHs), several of which
are used as DPM tracers (Zielinska et al. 2004; Schulte
et al. 2015). Geographically, the Elizabeth, NJ monitoring
station resides next to a toll station on the New Jersey
Turnpike which seems a likely source of DPM. Further-
more, other researchers have shown that filters heavily
loaded with DPM and analyzed by the IMPROVE_A
TOR protocol have much lower OC/EC and show mini-
mal propensity for charring compared to other sources
(Khan et al. 2012). For the CSN samples used in this
work, the thermal/optical behavior of Elizabeth, NJ sam-
ples conforms to that of DPM: Figure 6 compares the

Figure 5. Atypical CSN spectra (light gray). A representative “typical” spectrum (solid line; blue), PTFE blank (dashes; red), and wavenum-
ber used for calibration (vertical bars) are labeled. Thicker vertical bars indicate that several adjacent wavenumbers were chosen for
calibration.
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distribution of Elizabeth, NJ OC/EC and OP/EC to those
of the other eight sites. Specifically, OC/EC are lower on
average in Elizabeth, NJ samples (mean OC/EC D 0.55 vs.
1.22), falling within the experimental uncertainty of the
mean DPM OC/EC of an earlier study (Khan et al. 2012).
Furthermore, Elizabeth, NJ samples exhibit minimal char-
ring during TOR analysis with 76.9% of Elizabeth, NJ
samples falling below the median char concentration (OP
D 0.19 mg/m3) and also show the lowest frequency of
charring during TOR analysis (OP D 0 mg/m3; 18% of
samples). This is especially noteworthy given the relatively
high mass-concentration of EC on NJ filters, motivating
the comparison of OP/EC distributions between typical
and atypical Elizabeth, NJ samples.

4. Conclusions

FT-IR EC has been predicted in fine aerosols from nine
sites in the US Chemical Speciation Network. An initial
single calibration developed from baseline-corrected FT-
IR spectra determines EC on PTFE filters with unaccept-
able figures of merit (error and bias of 29% and 4%)
when judged against previous IMPROVE network stud-
ies. Therefore, a formal multivariate classification proce-
dure (PLS-DA) was used to allocate “atypical” spectra
from Elizabeth, NJ and those containing a more “typical”
CSN EC spectroscopic profile to their own dedicated cal-
ibrations. The result of independently predicting atypical
and typical EC using a multilevel modeling framework
improves the overall performance of the FT-IR method
considerably, with CSN EC figures of merit closely repro-
ducing IMPROVE EC figures. Reasons for the lower-
than-anticipated R2 of the multilevel EC model likely
stems from the low-mass-per-unit area of EC on CSN
filters.

The proximity of the Elizabeth, NJ sampler to a major
toll station on the New Jersey turnpike as well as limited
evidence of soot oxidation in infrared spectra further sup-
ported classifying Elizabeth samples as relatively atypical.
The Elizabeth, NJ samples used to develop the atypical cal-
ibration were likely impacted by soot carbon sourced from
fresh motor vehicle exhaust emissions. Elizabeth, NJ ther-
mal-optical measurements, including the TOR pyrolysis
artifacts (OP) and OC/EC distribution, were consistent
with previous work that used IMPROVE_A protocol to
speciate diesel particulate matter. This work demonstrates
the principle of multilevel FT-IR EC modeling which may
accommodate aerosol source differences across a broad
range of samples within and outside the CSN.

This work extends the capability of FT-IR for rapid and
non-destructive chemical characterization of PM using fil-
ters typically collected for standard gravimetric mass meas-
urements. We demonstrate that the approach of Dillner
and Takahama (2015a) for predicting TOR-equivalent EC
is not limited to the IMPROVE network, but also the CSN
network which has substantially lower areal mass density
and PM with distinctly urban character. Furthermore, we
demonstrate that our statistical calibrations can accommo-
date aerosols with diverse composition through a multi-
level modeling framework. This approach would not be
limited to TOR EC but can potentially be extended to other
measurements such as BC or multiwavelength TOR, with
FT-IR possibly providing additional insight into the most
important infrared vibrations associated with new meas-
urements as demonstrated here and previous work.
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