UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
A State-Space Model For Prototype Learning

Permalink
https://escholarship.org/uc/item/3mg5w049

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 11(0)

Authors
Myung, In Jae
Busemeyer, Jerome R.

Publication Date
1989

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/3mq5w049
https://escholarship.org
http://www.cdlib.org/

A STATE-SPACE MODEL FOR PROTOTYPE LEARNING
In Jae Myung and Jerome R. Busemeyer

Department of Psychological Sciences
Purdue University

ABSTRACT

A general state-space model of prototype learning was formulated in
terms of a set of internal states and nonlinear input-output mappings. The
general model includes several previous models as special cases such as
Hintzman’'s (1986) multiple trace model, Metcalf'’'s (1982) holographic model,
and two parallel distributive memory models (Knapp & Anderson, 1984;
McClelland & Rumelhart, 1985). Two basic properties common to the three
models were defined in terms of this general model--additivity and time
invariance. An experiment was conducted to test the basic properties using
random spectral patterns as stimuli allowing possible nonlinear input and
output distortions. Especially, ordinal tests of additivity were performed
with few assumptions about internal features that subjects may use to encode
the stimulus information. The results support additivity but time-
invariance was clearly violated. Implications of these findings for models
of the human memory system are discussed.

INTRODUCTION

One of the most intriguing questions about the structure and
organization of human memory is how new experience interacts with old memory
to compose an abstraction. For example, when we meet a new person, we form a
first impression, and later, this Iimpression is changed and modified with
subsequent meetings with the same person. Somehow, later i{mpressions
interact with previous experience in memory to establish the current revised
impression. What underlying learning processes enable humans to do such an
abstraction? Recently, we have witnessed a surge of adaptive neuro-network
models of this dynamic learning process. Interestingly, many of the models
have a common core of fundamental assumptions. It would be worthwhile_ to
empirically test the validity of these assumptions before we move on to
further development of the models.

The purpose of this study was to empirically test these common
assumptions. Specifically, the present experiment was designed to test two
basic properties of memory structure assumed by several memory models--
additivity and time invariance of memory system. The memory models were
Hintzman’s multiple trace model (1986), Metcalfe's holographic memory model
(1982), and parallel distributed memory models (Knapp & Anderson, 1984;
McClelland & Rumelhart, 1985). 1In order to test the basic properties, we
chose to study prototype learning using a new experimental paradigm called
prototype production (Busemeyer & Myung, 1988). 1In the prototype production
task subjects are shown a sequence of exemplars (e.g., a series of pictures
or sounds) generated from one or more prototypes with category labels. Then
subjects are given a category label and are asked to produce their prototype
estimate of the category (e.g., draw a picture or vocalize a sound that best
represents the category). Note that in the prototype production task,
abstraction is a task requirement and so the major question is "how does
abstraction occur?”

The present article is organized as follows. First, A general state-
space model of prototype formation will be presented, followed by definitions
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of the two basic properties. Then we will discuss the three memory models in
relation to the generali model, and we will show that all three models satisfy
the two basic properties. Finally, we present experimental tests of
additivity and time-invariance followed by discussion of implications of the
experimental findings.

STATE-SPACE MODEL OF PROTOTYPE EVOLUTION

We begin by distinguishing between representations of images formed by
the subject and by the experimenter. On each trial, denoted t, an exemplar
image is presented visually (e.g., a photograph) or auditorily (e.g., a tone
sequence). We assume that the experimenter records the exemplar image by
obtaining a set of physical measurements. This record is represented by a
vector denoted E(t). Another vector, denoted f(t), is used to represent the
subject’s perceptual image of the corresponding physically defined exemplar
image E(t). The values of elements of f(t) represent feature strengths. In
prototype learning, an exemplar ensemble consists of two components, an image
f(t) and category label denoted g(t) as a vector (e.g., the title of a
picture). Then the exemplar ensemble can be represented by a vector
h(t)=g(t)|f(t) where the symbol | indicates concatenation of two vectors.
Any memory task involves some type of retrieval cue which is used to probe
memory and retrieve an image. The retrieval cue is denoted by a finite
vector v(t) and the output image retrieved by the cue is represented by the
finite vector Y(t). Finally, the output mapping of the internal image Y(t)
into an observable response R(t) in the experimenter’s coordinates is
symbolized by a monotonically increasing function J. The diagram below
illustrates the relationship among the inputs and outputs. The square box
represents the unobservable memory system which is described next. The two
functions, V and J, represent nonlinear input and output response functions,
respectively.

\ J
E(t) ———— f(t) —=———————> Y(t+l) 4——> R(t+1)

The general memory model that describes the dynamics of the memory
system (the square box in above diagram) can be elegantly expressed by the
discrete time state space representation of system theory (Csaki, 1977). The
model is based on a system of three equations:

z(t)=8[h(t)] (L)
X(t+l)=¥[t,X(t),z(t)] (2)
Y(t+1)=U[X(t+1),v(t+1)) (3)

In the first equation, 8 specifies how category label features, g(t), and
exemplar image features, f(t), are associated to produce a memory trace,
z(t). In other words, the two types of information in h(t) are somehow
combined or associated to form a single memory trace, which is subsequently
fed into the memory system to preserve an experience. In general, the memory
trace, z(t), is some matrix function 6 of h(t). We may interpret the matrix
function ©® as the memory encoding process. Later, we will show how the
precise form of 8 varies depending on each specific memory model. 1In the
second equation, ¥ is a matrix function that specifies how the memory system
is organized and updated. In this sense, ¥ may be interpreted as the
learning process used to preserve an experience. Each input z(t) contributes
to update the present state of knowledge, represented by the real valued
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state matrix X(t). In the state space representation, the state matrix X(t)
retains all the relevant information obtained from a sequence of exemplars
presented up to trial t-1. Thus X(t) is interpreted as the memory of the
system.

When subjects are asked to respond to the experimenter’s Instruction
after observing a sequence of exemplar patterns, somehow they have to
transform the internal state X(t) into a proper image for output. This
process to build the retrieved image Y(t) from the preserved knowledge X(t)
upon a given retrieval cue v(t) is characterized by a function, U. The
function U can be interpreted as the memory retrieval process.

DEFINITIONS OF THE TWO BASIC PROPERTIES

The two basic properties can be defined in terms of functional
characteristics of the updating function ¥ and the retrieval function U.
Additivity

Additive systems are defined by Equation 5 below, which states that the
retrieved image can be expressed as a weighted sum of the effects of each of
the input memory traces. Equation 5 can be derived from two separate
assumptions regarding the functions ¥ and U. The first assumption is that ¥
is a linear dynamic system:

X(t+l) = %[, X(t),z(t)] = ®(t)X(t) + H(t)z(t) (4)
where ®(t) and H(t) are, in general, time dependent matrix functions, which
can be interpreted as the system matrix and the weight matrix for new
information, respectively.

The second assumption is that the retrieval function U is a linear
transformation with respect to the first argument. Then we can derive the
retrieved image,

Y(e)=U[®(t-1)--2(0)X(0),v(t)] + Z U[Q(t,k)H(k)z(k),v(t)]. (5)
Thus, assuming that both ¥ and U are linear, one can express the retrieved
image, Y(t), as a weighted sum of the effects of the memory traces z(k) for
trials k=1, ..., t-1 as in Equation 5,
Time-invariance

Time-invariant systems are systems with updating functions, ¥, that are
not an explicit function of time coordinate, t:

X(t+l) = ¥[X(t),z(t)] (6)
where ¥ can be any linear or nonlinear function. If the system defined by
Equation 6 is in the same state at two different points in time, and the same
input is applied at these two time points, then the same output will be
generated at these two time points. In other words, the system does not
change solely as a function of time.

MEMORY MODELS

In this section the three memory models will be briefly described and
interpreted in terms of the general state-space model. More rigorous
derivations will be given elsewhere (Myung & Busemeyer, manuscript under
preparation).
Multiple Trace Model

Hintzman’'s (1986) schema abstraction model assumes that each exemplar
presentation produces a separate memory trace, a retrieval cue contacts all
traces simultaneously, activating each according to its similarity to the
cue, and information retrieved from memory reflects the summed content of all
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Table 1; Characteristic functions in equations (1), (3), & (4) assumed
by each memory model. The last column only applies to the blocked
prototype productior task.

Memory 8[h(t)] o(t) H(t) U(x,v) w(t-k)
Model

Multiple 1(t)h(t) "’ a v X'(xv)3  [yatk(grg))3
Trace

Holographic g(t)*f(t) a + viX vat-k

Memory

Hebb Rule  g(t)f(t)’ a » X'v at- “(E 8)
Delta Rule g(t)f(t)' TI-yg(t)g(t)’ v X'v Tg ot

activated traces responding in parallel.

This model can be represented by the general state-space model as
follows. The state matrix X(t) would be a Nxp matrix with a very large N.
The 8 function is given by 8(h(t))=1(t)h(t)' where 1(t) is a Nxl row vector
with zeros on all locations except row t and an apostrophe represents the
transpose of a vector and matrix. The state matrix X(t) is updated according
to the following time-invariant linear system (X(0) = 0):

X(t+l)=aX(t) + yz(t) (7)
where ¢(t)=a > 0 and H(t)=y > 0 are scalars. Note that X(t) has nonzero
elements only up to row t-1 and all zeros afterwards. Therefore, as shown in
above equation, each exemplar h(t) is being separately preserved in the state
matrix as a distinct row vector. The retrieved image Y(t) can be computed
from the state matrix X(t) and the retrieval cue v(t) by the following.
function:

Y(£)=U[X(t),v(t)]=X(t)" [x(t)v(t))3 (8)
where AT symbolizes the element-by-element power, (A“)i =-(Ag In general,
the retrieval function in above equation 1is nonlinear for argitrary Nxp
matrices X. But U does satisfy linearity for the special form of X(t)
defined in this model.

Holographic Memory Model

Metcalfe’s (1982) holographic memory model (CHARM) is an associative
memory model based on convolution and correlation algebra. The holographic
memory model represents the interactive association between the category
label and exemplar features, denoted g(t) and f(t), in the memory encoding
step as the convolution of the two vectors, z(t)=8(g(t),f(t))=g(t)*f(t).

The resulting memory trace z(t) is used to update the state vector,
X(t), according to the same linear time-invariant system as Equation 7.

The retrieved image Y(t) is a correlation of the state matrix X(t) with
the cue v(t),

Y(£)=U[X(t).v(t)]=v(t)#X(t) (9)
Note that the correlation operation '#' is a linear retrieval U function.
Parallel Distributed Memory Models
Parallel distributed memory models (Knapp & Anderson, 1984; McClelland
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& Rumelhart, 1985), assume that each trial involves three events--first an
input i{s presented to the memory system, this input generates an output, and
finally this output is compared to a target as a desired output for that
trial. Learning is viewed as a gradual change of connectivity strength among
basic memory units.

In this model, the associative memory trace on trial t between the i-th
input feature g{(t) and the j-th target feature f4(t) is the product of the
two feature elements, zyj(t)= gi(t)fj(t)' The coilection of zy4(t)'s forms a
matrix z(t)= G(g(t).f(t); - g(t)f(t)". Then the memory trace z{c) is used to
update the state matrix, X(t), called the connection matrix, which represents
the present state of connection strengths between the {-th input feature and
the j-th output feature. The connection matrix X(t) as a state matrix {s
assumed to be updated according to either a Hebb rule or a delta rule and the
image retrieved by a cue v(t) is a matrix product of X(t) and v(t).

Table 1 summarizes the relations between each of the memory models and
the general state-space model. As can be seen in the Table, all of the
nemory models does satisfy additivity and all but one (the delta rule)
satisfy time-invariance. However, for the experimental procedure used in the
present study the delta rule also obeys time-invariance (see next section).

APPLICATION OF THE THREE MODELS TO THE PROTOTYPE PRODUCTION TASK

The experiment reported below used a blocked procedure in conjunction
with the prototype production task. In the blocked procedure, subjects learn
a sequence of exemplar images associated with a single category label within
a block of trials, and after completing the block, they move to another block
of trials with an unrelated category label. In this situation, the models
are greatly simplified. Within each block of trials, the category label
features g(t) of the exemplar ensemble h(t) are fixed, h(t)=g(t)|f(t)=-g|f(t).
Furthermore, the retrieval cue is also fixed to the same category label
within a block. Finally, the category labels across blocks are completely
unrelated (i.e., orthogonal vectors). For this condition, it can be shown
that all three models are consistent with the following special case of
(assuming X(0) - 0 and £(0)=0)

Yi(t+l) - Z w(t-k)fj(k). for k=1, ...y E; (10)
where the weight w(t-k) is a scalar function of the lag (t-k) and is shown in
Table 1 for each memory model.

As shown in Equation 10, the general definitions of two basic properties
given in the earlier section can be reinterpreted in the present task in
terms of the relationships between the input and retrieved feature vectors,
f(t) and Y(t). This equation states that the exemplar image features from
different trials are combined according to an additive composition rule to
produce the prototype image. Time-invariance follows from the assumption
that the weight w(t-k) depends upon only on the lag or recency (t-k) of the
exemplar image.

METHOD
The experiment was conducted on a microcomputer with all the procedures
preprogrammed. The stimuli were mass spectra of fictitious chemical samples
as shown in Figure 1, where chemical names correspond to category labels g(t)
and mass spectra correspond to exemplar patterns f(t). For a given category
label, subjects received four different exemplar patterns of the category and
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Figure 1. A typical stimulus pattern shown on a video screen.

they were asked to estimate the true pattern for each category based on the
four distorted patterns. On each trial, subjects were shown stimulus
patterns in the upper half of a video screen, then the pattern was erased and
the subjects were asked to draw their estimate of a prototypic spectrum in
the lower half of the same screen. After finishing the fourth pattern of a
category, they moved to another four trials of a different category. There
were two different groups of subjects. One group (Group A) was instructed to
provide their estimate after each trial and the other group (Group B) was
asked to provide a drawing only at the end of the fourth trial. Each subject
received 100 categories (400 exemplar patterns). The subjects were 16
students attending Purdue University. Eight subjects were randomly assigned
to each group.

RESULTS

The following results were based on the observed responses averaged
across category labels and eight subjects in each group.
Test of Additivity

Additivity (Equation 5) was assessed by testing joint independence
properties among patterns. Roberts (1973, p. 210) has described sufficient
conditions for an additive system. However, joint-independence is the only
property that is empirically testable in the present experiment. Thus, the
following joint-independence condition was tested to support or refute
additivity.

qurs > Rpnrs <> Rpqol > Rmnol (11)
where Rpqrs represents the prototype estimate after observing a sequence of
exemplar patterns, (Pp, Pq, Py, Pg). Both the prototype estimate and

exemplar pattern are recored as 7xl column vectors where the j-th element is
the height of the j-th vertical bar. This relationship should hold for all
seven elements of the prototype estimate vector as well as for all trials of
prototype production. Note that the test is relatively free of assumptions
about how an exemplar pattern is transformed into the subject’'s internal
memory representation. Therefore, additivity across exemplars was tested
without mentioning anything about the internal state representation (i.e.,
the state vector, X(t)) that the memory system actually uses to encode the
exemplar information. In this sense, the test of additivity can be considered
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Table 2: Test of additivity by counting the number of wviolations of
Independence property. Figures in parenthesis indicate the total number
of possible independent relations.

Trial (t) Group A Group B
2 0 (8) 5
3 0 (72) -
4 0 (448) 1 (448)

a feature-free test.

All possible joint-independence relations were tested to assess
additivity. The result is shown in Table 2, which summarizes the number of
significant violations of the joint independence using the confidence
interval of a=.05 level. As can be seen in Table 2, no significant
violations for Group A and only a single violation for Group B were observed.
Considering the fact that the total number of independence relations was 528
for Group A and 448 for Group B, it can be concluded that additivity holds
quite well for both conditions. The percentage of violations was still
reasonably small even when zero confidence interval was used (5.3% for Group
A and 10.7% for Group B).

Test of Time-invariance

Time-invariance was tested by fitting the following model:

R(t+1)=J[Z w(t, k)f(k)] for k=1, ..., t. (12)
If time-invariance holds, then we should have w(t,k)=w(t-k) for all t and k.
Thus, the magnitude of the effect of each exemplar depends only on the lag,
(t-k). Both the output response function J and the weights were estimated
using a powerful estimation technique called the B-spline method (see DeBoor,
1978). The estimated response function J turned out to be a slightly
nonlinear S shaped (not reported in this article). Table 3 contains the
estimated weights for different t and k values.

Time-invariance implies that the weight w(t,k) should be solely a
function of the lag (t-k), not depending upon the number of exemplars that
subjects have seen, that is, trial t. As can be seen in Table 3, time-

Table 3: Test of time-invariance by estimating the weights w(t, k).
Figures in parenthesis are predictions from the Hebb rule with time-
variable parameters, a(t)=1-1/t? & y(t)=1/t? in Equation 7, where the
least squares estimate of the exponent was a=.953.

Group Trial Lag (t-k)
Condition (t) 0 1 2 3
A 2 .49 (.52) .48 (.48) - -
A 3 .41 (.35) .30 (.34) 29 (.31) -
A 4 .28 (.27) .24 (.26) 22 (.25) .26 (.23)
B 4 .26 (.27) .23 (.26) 23 (.25) .26 (.23)
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invariance is clearly violated (for example, see the second column at the
lag (t-k)=1). 1In general, as trial t increases, the estimated weights
decrease with both primacy and recency effects. The observed data was fit
with a time-variable Hebb rule in which the learning rate y(t) can vary
according to a power function, i.e., 1/t®. Note that a=1 gives the simple
arithmetic averaging model. As illustrated in Table 3, the best-fit model
was the one with the exponent a=.953. This model accounts for most of
qualitative observations except the primacy effect. Allowing y(t) to be an
arbitrary function of t can produce both recency and primary effects though
it would be less parsimonious.

CONCLUSIONS

The goal of this study was to explore how abstraction occurs in human
memory system. Specifically the present experiment was designed to
empirically test two basic properties of prototype evolution using the
prototype production paradigm-- additivity across exemplars and time-
invariance of the memory system. The results indicate that additivity held
reasonably well but time-invariance was clearly violated. The additivity
result is somewhat surprising because it provides evidence for a linear
dynamic memory system. It indicates that we don’'t have to resort to complex
nonlinear dynamic models of memory for understanding prototype abstraction.
The violation of time-invariance suggests that adaptive network models need
to include a time-varying learning rate parameter of the form 1/t? to
simulate the abstraction process.
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