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Background: Multivariable equations are recommended by primary prevention guidelines to 

assess absolute risk of cardiovascular disease (CVD). However, current equations have several 

limitations. Therefore, we developed and validated the AHA Predicting Risk of CVD EVENTs 

(PREVENT) equations among US adults aged 30-79 years without known CVD.

Methods: The derivation sample included individual-level participant data from 25 datasets 

(N=3,281,919) between 1992-2017. The primary outcome was CVD (atherosclerotic CVD 

[ASCVD] and heart failure [HF]). Predictors included traditional risk factors (smoking status, 

systolic blood pressure, cholesterol, anti-hypertensive or statin use, diabetes) and estimated 

glomerular filtration rate [eGFR]. Models were sex-specific, race-free, developed on the age-scale, 

and adjusted for competing risk of non-CVD death. Analyses were conducted in each dataset and 

meta-analyzed. Discrimination was assessed using Harrell’s C-statistic. Calibration was calculated 

as the slope of the observed vs. predicted risk by decile. Additional equations to predict each CVD 

subtype (ASCVD, HF) and include optional predictors (urine albumin-to-creatinine ratio [UACR], 

hemoglobin A1c [HbA1c]), and social deprivation index [SDI]) were also developed. External 

validation was performed in 3,330,085 participants from 21 additional datasets.

Results: Among 6,612,004 adults included, mean (SD) age was 53 (12) years and 56% were 

female. Over a mean (SD) follow-up of 4.8 (3.1) years, there were 211,515 incident total CVD 

events. The median C-statistics in external validation for CVD were 0.794 (interquartile interval 

[IQI]: 0.763-0.809) in female and 0.757 (0.727-0.778) in male participants. The calibration slopes 

were 1.03 (IQI 0.81 -1.16) and 0.94 (0.81-1.13) among females and males, respectively. Similar 

estimates for discrimination and calibration were observed for ASCVD- and HF-specific models. 

The improvement in discrimination was small but statistically significant when UACR, HbA1c, 

and SDI were added together to the base model to total CVD (ΔC-statistic [IQI] 0.004 [0.004, 

0.005] and 0.005 [0.004, 0.007] among females and males, respectively). Calibration improved 

significantly when UACR was added to the base model among those with marked albuminuria 

(>300mg/g) (1.05 [0.84-1.20] vs. 1.39 [1.14-1.65], p=0.01).

Conclusions: PREVENT equations accurately and precisely predicted risk for incident CVD 

and CVD subtypes in a large, diverse, and contemporary sample of US adults using routinely 

available clinical variables.

Keywords

risk assessment; models; cardiovascular; cardiovascular diseases; heart failure; kidney diseases; 
social determinants of health

Introduction

Assessment of absolute risk for cardiovascular disease (CVD) with multivariable risk 

prediction equations is recommended by multi-society guidelines to guide primary 

prevention efforts for CVD.1–3 This conceptual framework of risk-based prevention is 

defined by matching the intensity of the prevention efforts to the risk of an individual 

(e.g., initiation of lipid-lowering therapy based on estimated ten-year risk of atherosclerotic 

CVD [ASCVD]).1, 4 While this paradigm was originally described more than two decades 

ago at the 1996 Bethesda Conference, models to assess risk for incident CVD have evolved 

over time in terms of specific predictors included, outcomes ascertained, and populations 
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studied.5 The American Heart Association (AHA) and the American College of Cardiology 

(ACC) developed the Pooled Cohort Equations (PCEs) in 2013,2, 6 which are sex- and 

race-stratified models that estimate risk of ASCVD in White and Black adults. While the 

PCEs are currently endorsed by the 2019 AHA/ACC Primary Prevention Guidelines for use 

in US adults aged 40-79 years,1 the PCEs do not capture the total burden of CVD given the 

rising prevalence of other CVD subtypes not previously included (e.g., heart failure [HF]7, 

8). In addition, risk estimated by PCEs may not reflect population-level changes in risk 

factor prevalence9 and exposure to preventive treatment in the contemporary era.10 Further, 

the PCEs may not be generalizable to individuals of other race and ethnicity groups who 

were not included in the derivation.11 Therefore, updated prediction models are needed to 

assess CVD risk more precisely, accurately, and equitably across diverse populations.

The AHA recently convened a Science Advisory Group to address the growing burden of 

CVD, both ASCVD and HF, related to cardiovascular-kidney-metabolic (CKM) conditions 

(e.g., obesity, diabetes, chronic kidney disease [CKD]), which often cluster together.12, 13 

Poor CKM health is increasing in prevalence, is associated with earlier onset of CVD, and 

disproportionately affects racial and ethnic minoritized individuals who experience a greater 

burden of adverse social factors14–16 (e.g., residing in neighborhoods with high social 

deprivation17, 18). As such, optimal risk prediction equations are needed that incorporate 

prediction of total CVD (ASCVD and HF), integrate predictors relevant to CKM risk, and 

are applicable in younger populations. These efforts are now propelled by the growing 

armamentarium of novel cardiovascular and kidney-protective glucose-lowering therapies 

(e.g., glucagon-like peptide 1 agonists [GLP-1RA] and sodium glucose co-transporter 2-

inhibitors [SGLT2i]) that offer unique opportunities to target prevention among individuals 

identified to be at high risk for CVD.19

To address these gaps, we developed and validated the Predicting Risk of CVD EVENTs 

(PREVENT) equations to estimate risk of total CVD (and CVD subtypes) for US 

adults aged 30-79 years without CVD at baseline. The background and rationale for the 

development of a modern set of risk prediction equations are reviewed in detail in the 2023 

AHA Scientific Statement on “Novel Prediction Equations for Absolute Risk Assessment of 

Total Cardiovascular Disease Incorporating Cardiovascular-Kidney-Metabolic Health”.20

Methods

This study was approved by the institutional review board at the Johns Hopkins Bloomberg 

School of Public Health, Baltimore, Maryland, USA (#IRB00003324). Given the use of 

de-identified data in this analysis, a waiver for informed consent was approved for this 

analysis.

Study Population

The PREVENT development and validation included multiple data sources. Specifically, we 

used data from participants included in a global consortium of observational cohorts with 

individual-level participant data on CVD risk factors and outcomes, the Chronic Kidney 

Disease Prognosis Consortium (CKD-PC). While the CKD-PC infrastructure was developed 

with a specific interest in people with CKD, this consortium includes observational datasets 
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derived from both research-based cohorts and health systems without restriction for those 

with CKD and represents a broadly generalizable sample of adults. Comprehensive details 

of the origins and infrastructure of the CKD-PC have been previously published.21 For the 

current analysis, datasets were eligible for inclusion if they were US-based, had measured 

data on key risk factors of interest (systolic blood pressure [SBP], total cholesterol [TC], 

high density lipoprotein cholesterol [HDL-C], body mass index [BMI], and estimated 

glomerular filtration rate [eGFR]), and a minimum 95th percentile follow-up of 5 years.

In total, 46 cohorts had adequate data and were included. The available sample was 

divided prospectively into derivation and validation subsets by dataset to enhance validity 

and generalizability of risk prediction equations. In order to be included as part of the 

derivation sample, cohorts were required to share de-identified individual-level data with 

the CKD-PC Data Coordinating Center. Derivation samples included: (1) general population 

research-based cohorts: Atherosclerosis Risk in Communities (ARIC) Study,22 Coronary 

Artery Risk Development in Young Adults (CARDIA),23 Cardiovascular Health Study 

(CHS),24 Framingham Heart Study (FHS),25 Jackson Heart Study (JHS),26 and the Multi-

Ethnic Study of Atherosclerosis (MESA)27; and (2) real-world, contemporary clinical data 

that include deidentified administrative claims and electronic medical records (EMRs): 

Geisinger28 Health; and a random 50% selection of health systems in the Optum Labs Data 

Warehouse (OLDW)29. Validation samples included: (1) a general population-based research 

cohort: Reasons for Geographic and Racial Differences in Stroke (REGARDS),30 which 

was primarily focused on factors that account for disparities in stroke outcomes by race 

and region of residence; disease-specific research-based cohort: Chronic Renal Insufficiency 

Cohort (CRIC),31 which recruited participants with impaired kidney function (half of whom 

were diagnosed with diabetes); and the Rancho Bernardo Study (RBS),32 which recruited 

older adult residents of a suburban area of Southern California and (2) the remaining 50% 

of health systems from OLDW. None of the validation datasets contributed to the model 

derivation.

Individual-level participant data were included for adults aged 30 to 79 years without known 

ASCVD or HF at baseline. Individuals with missing data on predictors or extreme clinical 

ranges for SBP, TC, HDL-C, or BMI were excluded given the non-linear association with 

CVD and non-CVD death or pre-existing guideline-based clinical recommendations for 

treatment at these extreme values. For SBP, TC, and HDL-C, the cutoffs for exclusion were 

based on those utilized for the development of the PCEs (SBP<90 or >200 mm Hg, TC <130 

or >320 mg/dL, and HDL-C <20 or >100 mg/dL). For BMI, the excluded range was based 

on that utilized for the development of the Pooled Cohort Equations to Prevent Heart Failure 

(PCP-HF) models33 (<18.5 or ≥40.0 kg/m2).

For research cohort datasets, the baseline visit was selected as the earliest visit on or after 

January 1, 1992, based on overall availability of complete risk factor data. For health system 

datasets, the baseline visit was selected as the earliest eligible date for each participant 

between January 1, 2008, until December 31, 2017, based on availability of complete risk 

factor data and required enrollment for at least one year. Follow-up was censored at 15 

years to optimize short-term risk prediction given the majority of datasets had <10 years of 

follow-up with additional details described in Supplemental Appendix 1.
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Outcome Ascertainment: Total CVD, CVD Subtypes, and Mortality

The primary outcome was incident total CVD, which was defined as a composite of fatal 

and non-fatal ASCVD and HF events.2, 34 ASCVD included coronary heart disease (CHD: 

myocardial infarction and fatal CHD) and stroke as a composite outcome similar to the 

PCEs.2 Coronary revascularization was not included as part of ASCVD given significant 

variability in practice patterns in an approach consistent with that for the development 

of the PCEs. Other CVD subtypes were considered (specifically peripheral artery disease 

and atrial fibrillation) but not included given their incomplete ascertainment in available 

datasets. Deaths from all causes were ascertained and non-CVD deaths were treated as 

competing events. Details on how each cohort or dataset defined incident CVD (including 

International Classification of Diseases [ICD] codes) and causes of death are summarized in 

Supplemental Appendix 1.

Measurement of Traditional and Novel Predictors

Details on ascertainment of demographics, traditional risk factors, and novel predictors in 

each cohort and health system are summarized in Supplemental Appendix 1. Demographic 

data on age, sex, and race and ethnicity were included based on self-report in research-based 

cohorts or as part of clinical care in health system-based datasets. Race and ethnicity 

variables are social constructs and, thus, were not considered as predictors in risk modeling 

to eliminate propagation of race-based risk algorithms and clinical care as recommended.35 

While racial and ethnic differences in the prevalence of CVD risk factors and incidence 

of CVD are well-described, these largely reflect the downstream effects of differences in 

social determinants of health among racial and ethnic groups.15, 16 To subsequently ensure 

there was not systematic under- or over-prediction, calibration was assessed across racial 

and ethnic groups.

Risk factors included in the prediction equations were selected based on being included in 

the development of PCEs as well as being available in derivation datasets, recommended in 

target populations for screening, and readily ascertained in the primary care clinical setting. 

Measurements of traditional risk factors and kidney health, including SBP, cholesterol (TC 

and HDL-C to calculate non-HDL-C), height and weight (to calculate BMI), and estimated 

glomerular filtration rate (eGFR), were collected according to research or clinical protocols. 

All available cholesterol levels were used in the analyses as clinical practice guidelines 

no longer recommend fasting for measurement of non-HDL-C given that TC and HDL-C 

are minimally affected by fasting status and prognostic value of fasting and non-fasting 

values are similar.4, 36 eGFR, was newly included as a predictor in the primary or base 

model on the basis of (1) a new holistic approach to CKM health as a broader framework 

for prevention given novel therapies that simultaneously target cardiovascular and kidney 

outcomes; (2) statistically significant and clinically meaningful hazard ratios demonstrating 

the association between eGFR and risk of CVD; (3) routine availability in clinical settings; 

and (4) examination of model performance improvement with eGFR.37, 38 The rationale for 

this is further detailed in the 2023 AHA Scientific Statement.20 In all datasets, eGFR was 

calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) 2021 

creatinine equation,39 using standardized or calibrated serum creatinine.40 Diabetes, current 
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smoking, and use of anti-hypertensive or statin medications were also included as predictors 

with detailed descriptions of how these were derived in Supplemental Appendix 1.

Optional predictors were considered that reflect kidney, metabolic, and social risk and 

evaluated in additional prediction equations to personalize risk assessment and refine 

prediction in higher-risk subgroups (e.g., CKD, diabetes). Specifically, change in model 

performance was assessed with the addition of each predictor of interest (urine albumin-to-

creatinine ratio [UACR], hemoglobin A1c [HbA1c], and social deprivation index [SDI]), and 

with the addition of all three predictors.

UACR was abstracted based on spot measurement or converted from measured urine protein 

to creatinine ratio based on published equations.41 Any available UACR values were used 

including measured or estimated levels (from proteinuria)42 regardless of diabetes or CKD 

status. UACR was considered as a novel predictor given available evidence supporting the 

robust association between UACR and CVD risk and clinical practice recommendations to 

measure UACR in individuals with CKD (e.g., eGFR <60 ml/min/1.73m2) or diabetes.43–45 

However, as UACR is not routinely recommended for screening in the general population 

and screening rates in recommended populations are low46, it was not included in the 

primary model and was not a required variable in additional model development (i.e., a 

missing UACR indicator was also included). A similar rationale was applied to HbA1c 

whereby any available HbA1c values were utilized in development, including those in 

individuals with and without diabetes, as well as a missing indicator.

The SDI was calculated at the zip code-level based on 5-year estimates from the American 

Community Survey (2015-2019) and was linked to individual-level participant data in the 

OLDW cohorts (detailed in Supplemental Appendix 1).47 Given available epidemiologic 

data demonstrating the consistent association between socioeconomic deprivation and risk of 

CVD, SDI was considered in model development as a widely available social determinant 

of health.48–50 Analyses with SDI as a predictor were restricted to available OLDW 

datasets (36 datasets). SDI integrates information on seven area-level characteristics: percent 

living in poverty, percent with <12 years of education, percent single-parent households, 

percent living in rented housing units, percent living in the overcrowded housing unit, 

percent of households without a car, and percent unemployed adults <65 years of age.47 

Individual-level social determinants of health (e.g., annual household income, highest level 

of education, perceived discrimination) were also considered but were not systematically 

available across datasets and, therefore, were not included in the current model development.

Statistical Analysis

Summary statistics of baseline demographics and risk factor levels were defined using mean 

(standard deviation) or median (interquartile intervals) and frequencies, as appropriate. All 

analyses were performed separately in each cohort and meta-analyzed to pool estimates via 

random-effects models, consistent with methods utilized in prior CKD-PC publications.38, 

51, 52 The base model to predict risk of total CVD included the following predictors: SBP, 

HDL-C, non-HDL-C, eGFR, smoking status, use of anti-hypertensive or statin medications, 

and diabetes. Diabetes and smoking status were dichotomized as yes/no. All other predictors 

were modeled continuously. A piece-wise linear spline was used to examine inflections 
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in slope. On the basis of a priori hypothesized non-linear associations, SBP, eGFR, and 

BMI were modeled with a knot. For SBP, coefficients were modeled per 20 mm Hg for 

< and ≥110 mm Hg; for eGFR per -15 mL/min/1.73 m2 for < and ≥ 60 mL/min/1.73 

m2; for BMI per 5 kg/m2 for < and ≥ 30 kg/m2. Interaction terms for each risk factor 

with age were also included since associations of risk factors with CVD vary with age,53 

consistent with development of the PCEs. Models were also developed with and without 

eGFR to examine its additive role in prognostic performance. Additional risk prediction 

equations were also developed for each CVD subtype: ASCVD (PREVENT-ASCVD) and 

HF (PREVENT-HF) and for each component of ASCVD (CHD and stroke). Additional 

or optional risk prediction equations were further developed to evaluate novel predictors 

of kidney, metabolic and social risk. Specifically, additional equations were developed 

that included linear terms for UACR (log-transformed), HbA1c, and SDI (decile-based 

categories of 1-3, 4-6, 7-10) separately as well as a set of equations that included all three 

predictors together. In the development of risk prediction equations with UACR, HbA1c, or 

SDI, a missing indicator was also modeled to represent when each factor was not available 

or not clinically indicated to allow for broader implementation and generalizability. In 

the equations with HbA1c, an interaction term with diabetes status was included. Given 

observational data demonstrating a robust independent association between obesity and 

incident HF, but not ASCVD, BMI was included as a predictor only in the HF-specific 

and death models; in contrast, given the limited association between cholesterol values and 

incident HF in prior studies, cholesterol was not included as a predictor in HF-specific and 

death models.54, 55

For model development, sex-specific associations between risk factors (predictors) and total 

CVD (and each CVD subtype or outcomes) were estimated using Cox proportional hazards 

models adjusting for competing risk of non-CVD death. We modeled participant age, rather 

than calendar time follow-up, as the time-scale,56 because age is the strongest predictor of 

incident CVD (and CVD subtypes). This approach, thus, obviates the need to model the 

functional relationship between age and CVD, which is necessary when relying on calendar 

follow-up time as the time-scale.57, 58 Models were additionally adjusted for left truncation 

(people entering the study at different ages) as recommended in prior publications when 

age is utilized as the time-scale.59 Modeling on the age-scale allows estimation of short- 

and long-term risk of CVD and is consistent with some European risk prediction algorithms 

(e.g., SCORE60).

To estimate absolute risk of CVD, age- and sex-specific baseline hazards were estimated 

from the median of the cohort-specific hazards. In each sex-stratified model, a cubic spline 

in log age with knots at 35, 55, 65, 75 and 85 years (based on rounded percentiles of 

1, 25, 50, 75 and 99) was fit to the log baseline cumulative hazard in each cohort. Age-

specific hazards were calculated for each cohort and their median value was estimated 

and modeled using a linear regression of log hazard vs. age thus yielding a parametric 

equation for baseline log hazard. Absolute risk calculations accounting for non-CVD death 

as a competing cause were subsequently performed by combining the age- and sex-specific 

hazards of CVD and non-CVD death (each calculated from their baseline hazard, relative 

hazards, and risk factor levels) to estimate 10-year, and 30-year cumulative risk. These time 

horizons were selected as they have been employed previously in risk prediction models1, 2 
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and are currently recommended by the 2019 AHA/AHA Primary Prevention Guidelines1 to 

guide clinician-patient discussions.

Model performance, including discrimination and calibration, of PREVENT was assessed 

separately in each dataset in the derivation and validation samples and meta-analyzed using 

random-effects models. Model discrimination was assessed with the Harrell C-statistic.61 

Change in model discrimination using enhanced risk prediction equations when each novel 

predictor (UACR, HbA1c, and SDI) was added individually or when all three were added 

together was assessed with the change in C-statistic and categorical net reclassification 

improvement (NRI) (based at event rate), for each dataset and then summarized. The NRI 

at event rate was selected due to its adaptability to outcomes with different incidence rates 

and optimal statistical properties for assessment of change in predictive utility.62 Calibration 

was first assessed visually by plotting deciles of predicted versus observed risk of CVD 

and second by calculation of a slope of this relationship. A slope of 1.0 indicates optimal 

calibration, a slope of less than 1.0 indicates lower observed than predicted risk (e.g., 

over-prediction), and a slope of greater than 1.0 indicates higher observed than predicted risk 

(e.g., under-prediction).63 Observed risk was calculated using a cause-specific risk model for 

each CVD event, competing with non-CVD mortality. Model performance was additionally 

assessed among key subgroups, including sociodemographic (age, sex, race and ethnicity as 

a social construct, zip code-level SDI), and CKM conditions of interest (obesity including 

Class III obesity ≥40.0 kg/m2, diabetes, CKD).

Several secondary analyses were conducted. We first performed a direct comparison 

between risk estimates derived from PREVENT and PCEs. Specifically, we assessed 

discrimination and calibration statistics of the PCEs in both the derivation and validation 

samples. We also examined correlations between predicted risk estimates and compared 

cumulative percentile distribution from the PREVENT and PCE models. Second, we 

examined potential differences in the magnitude and direction of associations between 

predictors and outcomes by baseline calendar year to determine if changes in risk factor 

prevalence, treatment, or period cohort effects may influence estimates. Third, we examined 

potential differences in the analysis by dataset type (research cohort vs. health system 

dataset). For these two analyses, we estimated the association of the relative hazards for 

each predictor with CVD (and CVD subtypes) using meta-regression and used Bonferroni-

corrected p-value thresholds to determine statistical significance. Fourth, calibration was 

also assessed truncating follow-up to 5-years to assess for differences across datasets with 

limited follow-up.

Simplified regression approximations to estimate risk of CVD and CVD subtypes were 

calculated (see detailed methods in Supplemental Appendix 1.2). All analyses were 

performed using STATA 16 (College Station, TX). A two-sided p-value of <0.05 was 

considered statistically significant unless otherwise noted. We utilized analytic approaches 

and reporting standards as recommend by TRIPOD for risk prediction.64 The study was 

designed and completed by the AHA CKM Science Advisory Group in collaboration with 

members of the CKD-PC and representatives of the included cohorts. Data used for the 

current study are available upon reasonable request and approval through direct contact with 

the individual cohorts according to cohort-specific policies. STATA code for calculation of 
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the PREVENT equations are available upon request from the authors, including simplified 

regression approximations.

Role of the funding source

The funders had no role in the study design, data collection, analysis, data interpretation, 

or writing of the report. JC had full access to all analyses and all authors had final 

responsibility for the decision to submit for publication, informed by discussions with 

collaborators.

Data Sharing Statement

Under agreement with the participating cohorts, CKD-PC cannot share individual 

data with third parties. Inquiries regarding specific analyses should be made to 

ckdpc@nyulangone.org. Investigators may approach the original cohorts regarding 

their own policies for data sharing (e.g., https://aric.cscc.unc.edu/aric9/researchers/

Obtain_Submit_Data for the Atherosclerosis Risk in Communities Study).

Results

Baseline Characteristics

In the derivation sample, there were 1,839,828 female and 1,442,091 male participants 

from 25 individual datasets with mean (SD) age 53 (13) and 52 (12) years, respectively 

(Table 1; details by dataset in Supplemental Table S1). Among female participants, 78% 

were White, 10% Black, 6.0% Hispanic, and 2.6% Asian; prevalence of diabetes was 

10% and use of anti-hypertensive and statin medications were 23% and 14%, respectively, 

among female participants. Among male participants, 80% were White, 8.0% Black, 5.3% 

Hispanic, and 2.5% Asian; prevalence of diabetes was 12% and use of anti-hypertensive 

and statin medications were 27% and 17%, respectively, among male participants. Mean 

eGFR was 91 mL/min/1.73m2 in both female and male participants. The median UACR 

was 8 mg/g in both females and males; mean HbA1c was 7.3% and 7.6% in females 

and males, respectively; and the median SDI decile was 4 among female participants 

and 3 among male participants. The validation sample comprised of 1,894,882 female 

and 1,435,203 male participants from 21 individual datasets with similar distribution of 

sociodemographic characteristics, traditional cardiovascular risk factor burden, and kidney 

health as the derivation sample. In addition, median levels of UACR, HbA1c, and SDI were 

similar in the validation compared to the derivation sample.

Incident CVD Events

In the derivation sample, over a mean follow-up time of 4.8 years among female 

participants, 53,258 total incident CVD events occurred. Over a mean follow-up time of 

4.6 years among male participants, 53,403 total incident CVD events occurred. The number 

of ASCVD and HF events is shown in Table 1. Incident CVD, ASCVD, and HF events in 

each dataset are detailed in Supplemental Table S1.
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Associations between Predictors and CVD Events

Associations between predictors and each outcome (total CVD and CVD subtypes [ASCVD, 

HF]) in the derivation sample are displayed in Table 2 for the primary base model that 

includes traditional CVD risk factors, eGFR, and age-risk factor interactions. Hazard ratios 

for predictors in the base model were similar in the model with eGFR excluded, as well 

as when novel predictors (UACR, HbA1c, SDI) were added to the base model individually 

(Supplemental Tables S2–S4) or all together (Table 3).

PREVENT Model Performance Characteristics

Model performance, including discrimination and calibration for prediction of total CVD 

and CVD subtypes (ASCVD, HF) for derivation datasets and validation datasets are 

displayed in Supplemental Table S5A and Table 4. The primary PREVENT model 

(base model) for prediction of total CVD that included traditional CVD risk factors 

and eGFR had a median C-statistic (interquartile interval [IQI]: 25th, 75th percentile of 

cohorts) of 0.789 (0.7778, 0.810) in the derivation sample and 0.794 (0.763, 0.809) in 

the validation sample among female participants. Among male participants, the median 

C-statistic (IQI) was 0.745 (0.734, 0.760) and 0.757 (0.727-0.778) in the derivation and 

validation samples, respectively. Discrimination was similar for PREVENT when ASCVD 

(PREVENT-ASCVD) and HF (PREVENT-HF) were each modeled as secondary outcomes. 

Specifically in the validation samples, among females, the median C-statistic (IQI) was 

0.774 (0.743, 0.788) and 0.830 (0.816, 0.850) for ASCVD and HF, respectively. Among 

males, the median C-statistic (IQI) was 0.736 (0.710, 0.755) and 0.809 (0.777, 0.827) for 

prediction of ASCVD and HF, respectively, in the validation samples. Similar estimates 

of discrimination were observed among race and ethnicity subgroups in the derivation and 

validation datasets (Supplemental Table 5B). Specifically, Black individuals had similar 

C-statistics when compared with White individuals for total CVD, ASCVD, and HF. When 

comparing model performance with vs. without eGFR, there were statistically significant 

but minimal improvement in discrimination (ΔC-statistic [95% CI]) among females (0.005 

[0.004-0.006]) and males (0.004 [0.003-0.005) for prediction of total CVD in the validation 

samples with similar results in derivation samples (Supplemental Table S5C).

Calibration plots of the base model (observed vs. predicted risk deciles) in the validation 

samples are displayed in Figure 1 (derivation samples in Supplemental Figure S1). 

Among females in the validation samples, the calibration slope median (IQI) was 1.03 

(0.81, 1.16), 1.09 (0.93, 1.33), and 1.00 (0.55, 1.15) for total CVD, ASCVD, and HF, 

respectively. Among males in the validation sample, the calibration slope was 0.94 (0.81, 

1.13), 1.04 (0.95, 1.19), and 0.89 (0.49, 1.07), respectively. Similar calibration slopes 

were observed among race and ethnicity subgroups (Black individuals (1.11 [0.79-1.24]), 

Asian individuals (0.87 [0.73-0.97]), non-Hispanic White individuals [1.01 [0.82-1.14], 

and Hispanic individuals [0.94 [0.80-1.05]) for total CVD in the validation datasets 

(Supplemental Table S6). Calibration estimates for ASCVD- and HF-specific models in the 

validation datasets and in the derivation datasets by sex and other subgroups (Supplemental 

Tables S7–8) was similar. Supplemental analyses among people with BMI greater than 40 

kg/m2 demonstrated modest underestimation of risk (calibration slope 1.30 [0.96, 1.47]). 

When follow-up was restricted to 5-years, calibration was similar with slopes 0.94 (0.84, 
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1.13), 1.08 (0.89, 1.33), and 0.93 (0.40, 1.05) for total CVD, ASCVD, and HF, respectively, 

for the PREVENT base model in the validation datasets. Calibration was similar when 

the model was compared with and without eGFR in the overall sample and was modestly 

improved among those with CKD defined as an eGFR <60 mL/min/1.73 m2 (1.29 [0.98, 

1.48] to 1.02 [0.83, 1.22]) in the validation sample (Supplemental Table S5D).

Optional PREVENT Equations

Model performance (C-statistic, calibration slope) and change in model performance (ΔC-

statistic, NRI at event rate) with addition of novel predictors (UACR, HbA1c, and SDI) 

individually or together to the base model is displayed in Table 4. There were minimal 

statistically significant improvements in discrimination (ΔC-statistic [95% CI]) when novel 

predictors were added among females (UACR: 0.002 [0.002, 0.003], HbA1c: 0.002 [0.001, 

0.003], and SDI: 0.001 [0.001, 0.002]) for prediction of total CVD in the validation samples. 

The median NRI at event rate (interquartile range [IQI] across cohorts) for UACR added to 

the base model was 0.011 (-0.009, 0.023), for HbA1c added to the base model was 0.002 

(-0.002, 0.005), and for SDI added to the base model was 0.003 (0.000, 0.009) among 

females for prediction of total CVD. Among males, the ΔC-statistic (95% CI) for addition of 

UACR, HbA1c, and SDI was 0.004 (0.003, 0.004), 0.003 (0.002, 0.004), and 0.002 (0.001, 

0.003), respectively, for total CVD. The median NRI at event rate (IQI across cohorts) was 

0.031 (0.013, 0.049) when UACR was added to the base model, was 0.004 (0.001, 0.010) 

when HbA1c was added to the base model, and was 0.005 (-0.002, 0.018) when SDI was 

added to the base model among males for prediction of total CVD. Similar results were 

observed for change in model discrimination when ASCVD and HF were considered as 

endpoints.

In higher-risk subgroups, calibration was assessed in additional models predicting total CVD 

(Supplemental Table S6). When UACR was added to the base model in CKD subgroups, 

calibration in the validation sample was 1.05 (0.84, 1.20) among individuals with UACR 

>300 mg/g, which was significantly improved compared with the base model without UACR 

(p=0.01). When HbA1c was added to the base model, calibration in the validation sample 

was 1.00 (0.66, 1.14) among individuals with diabetes, which was similar to the model 

without HbA1c. When SDI was added, calibration in the validation sample was 0.96 (0.72, 

1.11), which was similar to the model without SDI.

Similar findings of good to excellent discrimination and calibration were observed for 

ASCVD- and HF-specific models when additional predictors (UACR, HbA1c, SDI) were 

added to the base model (Table 4, Table S5, Supplemental Tables S7–8). When CHD and 

stroke were examined as individual endpoints, the magnitude of association for cholesterol 

(non-HDL-C and HDL-C) was greater for CHD compared with stroke, as expected 

(Supplemental Tables S9–S10). Model discrimination and calibration were good to excellent 

when developed for each subtype of ASCVD (MI and stroke) as displayed in Supplemental 

Table S5 and S11. Correlation between predicted risk of ASCVD and HF model was also 

high (median [IQI] of 0.899 [0.883, 0.909]).
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Predicted 10- and 30-Year CVD Risk

Estimates for ten-year (Figure 2) and thirty-year (Figure 3) predicted risk based on 

PREVENT are displayed using the primary base model for each outcome (total CVD, 

ASCVD, and HF). The predicted risk for a given age and combination of optimal to 

suboptimal risk factors varied substantially with a higher estimate with older age and a 

dose-dependent relationship with a greater number of elevated risk factor levels. Regression 

models were developed for translation and implementation of each of the models to estimate 

10- and 30-year predicted risk for each outcome, which provided excellent approximations 

of predicted risk of CVD (R2 ≥ 0.99 for 10-year risk estimates and ≥0.97 for 30-year risk 

estimates) (Supplemental Table S12, A–J; and implemented on the AHA website at https://

professional.heart.org/prevent). For example, the estimated 10-year CVD, ASCVD, and HF 

risk for a 50-year old woman with the following risk factor profile (TC of 240 mg/dL, 

HDL-C of 55 mg/dL, no statin use, treated SBP of 160 mmHg, no diabetes, no smoking, 

BMI of 35 kg/m2, and eGFR 90 ml/min/1.73m2) was 5.4%, 3.6%, and 2.5%, respectively; 

if smoking, the predicted risk was estimated at 9.3%, 6.0%, and 4.7%, respectively. The 

estimated 30-year CVD, ASCVD, and HF risk for the same individual was more than 3-fold 

higher at 31%, 20%, and 19%, respectively; if smoking, the predicted risk was estimated at 

40%, 26%, and 26%, respectively.

Secondary Analyses

Model performance of the PCEs in the validation datasets was directly compared with 

PREVENT. Model discrimination of the PCEs was good at 0.772 (0.729-0.782) for 

females and 0.733 (0.701-0.751) for males (Table 4). The PREVENT model discrimination 

was marginally but statistically better with a ΔC-statistic (95% CI) 0.007 (0.006-0.009) 

and 0.005 (0.004-0.006) for females and males, respectively. Calibration of the PCEs 

demonstrated over-estimation of ASCVD risk that was significantly lower than the 

calibration slopes obtained with PREVENT (PCEs median [IQI] of 0.54 [0.47, 0.61] and 

0.50 [0.39, 0.52] in females and males, respectively, p<0.0001 for both). Similar results 

were obtained in the derivation datasets for discrimination (Supplemental Table S13) and 

calibration (overall and across subgroups: Supplemental Table S14). Correlations between 

predicted ten-year risk of ASCVD estimated for the new base model and the PCEs were 

high (Supplemental Table S15). Based on a PCE risk estimate of 7.5%, the median 

PREVENT risk estimate was 8.4 (7.7-9.0) and 5.9 (5.7-6.3) for total CVD and was 4.9 

(4.4-5.3) and 3.7 (3.6-4.0) for ASCVD among females and males, respectively.

Coefficients for the association between predictors and outcomes were similar in research 

and health system-based datasets with no statistically significant differences after Bonferroni 

adjustment for multiple comparisons (Supplemental Table S16). There were also no 

statistically significant differences by baseline exam year despite significant differences 

across epochs in baseline statin treatment (<7% in those with baseline year <2000; 21% 

between 2000-2009; and 15% in ≥2009: Supplemental Table S17A and S17B).
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Discussion

Based on data from more than 6 million individuals from 46 datasets, we derived and 

validated the PREVENT equations, a suite of sex-specific, race-free models to predict short- 

and long-term risk for incident CVD (and CVD subtypes) among US adults aged 30-79 

years using variables routinely available in the clinical setting. These newly developed 

models offer several conceptual and methodological advances for CVD risk prediction 

particularly in the context of CKM health as summarized in Figure 4 and as outlined 

in the 2023 AHA Scientific Statement that details the need for novel approaches to risk 

prediction.20 First, the models remove race from risk prediction to support more equitable 

care in CVD prevention because race is a social construct and not a biological predictor.35, 

65 Second, we vastly expand the sample size used in derivation and validation leveraging 

data from contemporary cohorts and health system datasets, which resulted in broad 

generalizability with good to excellent discrimination and calibration across subgroups, 

including by race and ethnicity. This also resulted in significantly improved calibration for 

PREVENT when compared with the PCEs. This was demonstrated by a slope of observed 

to predicted risk of close to 1 for PREVENT indicating a well-calibrated model. In contrast, 

the slope of the PCEs ranged from 0.50-0.54 for ASCVD, which represents overestimation 

of risk by about 50%. Third, the outcome of interest was broadened to include HF both as 

part of a composite of total CVD as well as individually with separate risk estimates for 

ASCVD and HF. Fourth, models were developed to include adults starting at age 30 years 

and predict short- (10-year) and long-term (30-year) risk estimates. This was accomplished 

by using age as a time-scale, which enables flexible modeling of risk for different age- 

and time-horizons even when individual datasets have limited follow-up and obviates the 

need for historical and outdated data from >30 years ago. In addition, competing risk of 

non-CVD death was accounted for, which is particularly relevant when estimating lifetime 

or longer-term risk. Fifth, the models newly include eGFR as a predictor in the base model 

and offer a set of optional add-on predictors of kidney and metabolic health to allow 

personalization of risk assessment among higher-risk subgroups with CKM (e.g., use of 

UACR with CKD). This offers the opportunity to comprehensively assess risk in the context 

of often co-occurring comorbidities in patients with obesity, diabetes, CKD who are at 

high-risk for CVD.

The inclusion of HF in PREVENT is a timely and clinically important endpoint given 

significant increases in HF-related mortality7 and HF hospitalizations66 in recent years and 

the availability of new classes of medications that prevent incident HF.67 The PREVENT 

models build upon existing multivariable models that each predict risk separately for 

ASCVD (e.g., PCEs2) and HF (e.g., PCP-HF33). However, the multiplicity of these 

algorithms may be a critical barrier to clinical implementation of these distinct models 

whereas PREVENT offers a singular and comprehensive risk framework to estimate risk 

for total CVD as well as for ASCVD and HF. The present work builds upon prior risk 

prediction efforts to predict total CVD, such as the multi-modality model developed by de 

Lemos et. al., that included variables from electrocardiogram (left ventricular hypertrophy), 

coronary artery calcium, N-terminal pro B-type natriuretic peptide, high sensitivity troponin 

T, and high-sensitivity C-reactive protein with an improvement in C-statistic from 0.74 
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to 0.79, which is larger than the differences observed here.68 However, this prediction 

model was derived in a single cohort that may not be representative of the US population 

and the use of a multi-modality strategy including biomarkers and imaging not routinely 

performed in clinical care may limit its utility and implementation on a population-scale. 

The growing burden supports utility of including HF as an outcome in CVD risk prediction, 

but it is possible that the heterogeneity of HF and its distinct pathophysiology compared 

with ASCVD may result in suboptimal risk prediction for each outcome. To address this, 

the PREVENT models separately modeled and developed risk equations for total CVD, 

ASCVD, and HF. Estimates for each CVD subtype are important because a clinician 

may target risk assessment and preventive measures for each specific endpoint (e.g., lipid-

lowering therapy to reduce risk of ASCVD1, 4 or SGLT2i to reduce risk of HF69). Use of 

multivariable risk models to predict risk for HF for primary prevention was also recently 

endorsed, for the first time, in the 2022 AHA/ACC/Heart Failure Society of America 

Guideline for the Management of Heart Failure as a class IIa recommendation.69 While 

it is well-established that risk factors for ASCVD and HF overlap,70 and those with multiple 

risk factors have higher absolute risk of ASCVD and HF events,3 PREVENT refines the 

estimation for each CVD subtype as well as inclusion of BMI as a predictor for HF for a 

more comprehensive assessment of risk.71

The PREVENT models further account for CVD risk associated with impaired CKM 

health with the addition of eGFR for prediction of CVD, which directly addresses the call 

for action outlined in the 2023 CKM Presidential Advisory and Scientific Statements to 

prioritize and promote CKM health.12, 13 The inclusion of eGFR is also aligned with 2019 

Primary Prevention Guidelines included CKD as a risk-enhancing factor based on the robust 

evidence base for the dose-dependent association of kidney function and CVD, markers 

of kidney function (e.g., eGFR or UACR) were not incorporated into the PCEs.1 Other 

investigations have previously incorporated kidney measures in risk prediction but have 

demonstrated their predictive utility separately for ASCVD and HF in the general population 

and among people with CKD.38, 51, 72 The add-on PREVENT models consider UACR 

when clinically indicated and available.41 While the changes in risk discrimination with 

the addition of eGFR and UACR were minimal, they were statistically significant. Further, 

the improvement in calibration among individuals with CKD suggest their utility may be 

important in this high-risk group. In addition, their inclusion in risk prediction can offer a 

potential platform for future implementation research to determine if inclusion of guideline-

recommended predictors in risk models can improve uptake of appropriate screening for 

risk markers, such as UACR or HbA1c, among individuals with CKD or diabetes.46, 73 

Future research should also evaluate the impact of inclusion of these predictors in the 

uptake of guideline-recommended therapies that are both cardio- and kidney-protective with 

the combined benefit of CVD risk reduction and promotion of kidney health (e.g., renin-

angiotensin system antagonists, SGLT2i and non-steroidal mineralocorticoid antagonists).74–

76

The PREVENT models account for competing risk of non-CVD death to prevent over-

estimation of CVD risk and over-estimation of benefit of treatment. This is particularly 

relevant among subgroups (e.g., poor CKM health) where competing risk for non-CVD 

death is high.77–79 The burden of poor CKM health is growing in the US.80 Age-adjusted 
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prevalence for obesity is estimated to exceed 40% and for diabetes 10% in the US adult 

population based on contemporary data from population-based samples (National Health 

and Nutrition Examination Survey: 2017-2020).8 The prevalence of CKD (defined as eGFR 

<60 ml/min/1.73m2 or UACR≥30 mg/g) is nearly 15%.8 It is important to note that the 

presence of any of these CKM risk factors is associated with not only with higher risk of 

CVD but also of non-CVD death.8 In addition, poor CKM health is associated with earlier 

onset of CVD.81–83 Therefore, the approach in the PREVENT models to incorporate age as 

a time scale, which also allows estimation of longer term risk (e.g., 30-year time horizon) 

and targeted prevention earlier in the life course. Thus, PREVENT addresses the fact that 

risk for CVD is not able to be calculated in those <40 years and is under-estimated among 

younger individuals when relying only on short-term risk. This gap has been highlighted 

recently by federal funding agencies as a key area where prevention trials are needed in 

risk-enriched subsets of the young adult population.84, 85

Limitations

There are several limitations to note. We derived risk prediction models in a sample 

of primary prevention adults from 46 datasets, including 36 EMR-based datasets, after 

excluding those with extreme clinical values for SBP, TV, HDL-C, or BMI. EMR data 

are obtained for clinical care and, therefore, may be limited by the lack of research-based 

measurements of predictors, lack of adjudication of outcomes, and potential for non-random 

missingness of data. However, secondary analyses demonstrated consistent risk associations 

between risk factors and CVD across research cohorts and EMR datasets. Further, the use of 

a large, contemporary, and diverse sample from EMR data covering all US census regions 

sources add to the real-world representativeness of the PREVENT equations with more 

generalizable risk estimates for CVD. Second, the baseline for the included datasets spanned 

>3 decades, which may lead to differences in risk factor prevalence, treatment, and period 

effects. However, secondary analyses demonstrated no clinically meaningful differences in 

the directionality and magnitude of HRs between predictors and outcomes per decade. This 

is also consistent with recent analyses that demonstrate no difference in the association 

between treated and untreated cholesterol levels and CVD risk in research cohorts and 

clinical samples.86, 87 Third, models were developed using age as the time scale. While this 

enables the flexibility of modeling longer-term estimates without requiring all datasets to 

have long-term follow-up, this may result in over-estimation of 30-year risk. However, we 

modeled the risk of CVD utilizing risk factor levels at baseline and adjusted for competing 

risk of non-CVD death to address potential over-estimation of risk. Alternative approaches 

requiring at least 30-years of follow-up would limit available datasets for prediction and 

result in use of historical data that are not generalizable to a contemporary US population. 

Fourth, individual-level social determinants of health were not routinely available in all 

datasets, and thus were not included in the development of PREVENT.88 Zip code-level 

SDI was selected as a widely available measure of area-based deprivation that may be 

implemented while health systems continue to evolve data collection on broader measures 

of social determinants of health, which has been recommend by CMS and will become 

mandatory by 2024. However, SDI was only available in the health system datasets from 

OLDW, and the addition of SDI only minimally improved discrimination. This may, in part, 

be a result of the inherent limitations of a zip code-based measure, which incompletely 
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assesses the broader context of multi-level social drivers of health. Therefore, the approach 

in PREVENT is a first step but future models should account for individual-level and 

area-based social determinants of health that more comprehensively reflect aspects of the 

lived experience. Fifth, biomarkers representing target-organ damage (e.g., high sensitivity 

troponin [hsTn], brain natriuretic peptide [BNP]), inflammation (e.g., high sensitivity c-

reactive protein), or subclinical disease (e.g., coronary artery calcium) were considered 

but not included in PREVENT model development. These biomarkers are not routinely 

recommended for screening in primary prevention samples by guidelines and, data on 

these were limited in clinical datasets and not consistently present in all research datasets. 

Prior models have utilized these biomarkers in risk prediction (e.g., Astro-CHARM89, de 

Lemos et. al.68, and others90), but these models were developed in smaller sample sizes 

on the basis of limited datasets with comprehensive ascertainment of these biomarkers. 

Given that hsTn and BNP are clinically available, these should be considered in future risk 

models when more widely incorporated into risk assessment frameworks for the general 

population. Thus, the current PREVENT approach is aligned with current clinical practice 

guidelines1, which suggest a Bayesian sequential approach that allows for qualitative 

consideration of these predictors as risk-enhancing factors after an initial risk estimate is 

calculated. Finally, total CVD and its components, including ASCVD, heart failure, CHD, 

and stroke, were each modeled separately. An individual may develop one or more of these 

outcomes. Therefore, the predicted risk for each composite outcome (e.g., CVD, ASCVD) 

is less than the sum of its components. Future research may also consider the quantitative 

incorporation of additional risk factors through add-on methodologies (e.g., patch) as has 

been previously applied to the PCEs.72 This is also discussed in greater detail in the AHA 

Scientific Statement on “Novel Prediction Equations for Absolute Risk Assessment of Total 

Cardiovascular Disease Incorporating Cardiovascular-Kidney-Metabolic Health”.20

In conclusion, the PREVENT models represent a novel set of sex-specific, race-free, 

prediction equations to assess risk of total CVD and CVD subtypes. The PREVENT 

models were well-calibrated across racial and ethnic and higher-risk subgroups (e.g., 

CKD, diabetes), which support their broad generalizability in a diverse sample of primary 

prevention adults. Thus, PREVENT can be successfully implemented in clinical care to 

guide short- and long-term risk communication in the general primary prevention population 

with or without CKD or diabetes. The developed models accurately discriminate risk of 

CVD with routinely available clinical variables and leverage optional models with add-on 

predictors that may further personalize risk estimation.
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Clinical Perspective

What is New?

• We derive and validate novel sex-specific, race-free models to predict risk of 

total cardiovascular disease (and components of atherosclerotic cardiovascular 

disease and heart failure) in adults aged 30-79 years from a sample of >6 

million people.

• The prognostic performance of the risk model demonstrates good 

discrimination and calibration in the overall population and among 

demographic and cardiovascular-kidney-metabolic subgroups (e.g., obesity, 

diabetes, and chronic kidney disease).

• The base model includes estimated glomerular filtration rate and add-on 

models offer the flexibility to include additional measures of kidney (urine 

albumin-to-creatinine ratio), metabolic (hemoglobin A1c), and social (social 

deprivation index) risk.

What are the Clinical Implications?

• Removal of race from risk prediction and inclusion of a measure of place-

based social disadvantage support a more equitable approach to CVD 

prevention.

• Absolute risk assessment for total cardiovascular disease supports more 

comprehensive clinician-patient risk communication and preventive decision-

making.

• Inclusion of predictors for kidney and metabolic health offers support 

for a holistic approach to screening, risk assessment, and prevention of 

cardiovascular disease among patients with or at risk for cardiovascular-

kidney-metabolic conditions of obesity, diabetes, and chronic kidney disease.
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Figure 1. 
Sex-specific calibration plots in the validation sample for the PREVENT base model for 

total CVD, ASCVD and HF. Predicted vs. observed risk by decile within each validation 

cohort (OLDW cohorts are shown in gray).
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Figure 2. 
Estimated 10-year risk of total cardiovascular disease, atherosclerotic cardiovascular disease 

and heart failure stratified by sex (females on the left and males on the right for each 

outcome) at varying ages (35, 50 and 65 years) according to the number of elevated 

risk factors (from 0 to 5) adjusted for competing risks of non-CVD death. Optimal risk 

factor levels are defined as non-HDL cholesterol (3.5 mmol/L; 135 mg/dl), high density 

lipoprotein cholesterol (1.5 mmol/L, 58 mg/dl), SBP 120 mmHg, no diabetes, no smoking, 

no hypertension medications, no statin use, and eGFR 90 ml/min/1.73m2. Elevated risk 

factor levels included non-high density lipoprotein cholesterol (5.5 mmol/L; 213 mg/dl), 

SBP 150 mmHg, diabetes, or smoking and eGFR 45 ml/min/1.73m2. For multiple elevated 

risk factors, the risk shown is the average risk of all combinations.
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Figure 3. 
Estimated 30-year risk of total cardiovascular disease, atherosclerotic cardiovascular disease 

and heart failure stratified by sex (females on the left and males on the right for each 

outcome) at varying ages (35, 50 and 65 years) according to the number of elevated 

risk factors (from 0 to 5) adjusted for competing risks of non-CVD death. Optimal risk 

factor levels are non-HDL cholesterol (3.5 mmol/L; 135 mg/dl), high density lipoprotein 

cholesterol (1.5 mmol/L, 58 mg/dl), SBP 120 mmHg, no diabetes, no smoking, no 

hypertension medications, and no statins and eGFR 90 ml/min/1.73m2. Elevated risk factor 

levels considered are non-high density lipoprotein cholesterol (5.5 mmol/L; 213 mg/dl), SBP 

150 mmHg, diabetes, or smoking and eGFR 45 ml/min/1.73m2. For multiple elevated risk 

factors, the risk shown is the average risk of all combinations.
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Figure 4. 
Key Takeaways of the American Heart Association PREVENT Equations. The AHA 

PREVENT equations offer several key conceptual and methodological advances in the 

approach utilized to estimating cardiovascular disease risk.
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Table 1.

Individual-level participant baseline characteristics of derivation and validation samples stratified by sex for 

prediction of total cardiovascular disease and cardiovascular disease subtypes.

Derivation Sample* Validation Sample*

Female Male Female Male

N, participants 1,839,828 1,442,091 1,894,882 1,435,203

N, cohorts 25 25 21 21

Age, years, mean (SD) 53 (13) 52 (12) 52 (13) 52 (12)

Race and Ethnicity, %

 White 78% 80% 78% 80%

 Black 10% 8.0% 10% 8.2%

 Hispanic 6.0% 5.3% 4.2% 3.7%

 Asian 2.6% 2.5% 2.7% 2.2%

 Other/Missing 4.1% 4.6% 4.9% 5.5%

Cardiovascular Risk Factors/Predictors in PREVENT Base Model

SBP, mm Hg 123 (16) 127 (15) 123 (16) 128 (15)

Total cholesterol, mmol/L 5.0 (0.8) 4.9 (0.8) 5.0 (0.8) 4.9 (0.8)

Non-HDL-C, mmol/L 3.4 (0.8) 3.6 (0.8) 3.5 (0.8) 3.6 (0.8)

HDL-C, mmol/L 1.5 (0.4) 1.2 (0.3) 1.5 (0.4) 1.2 (0.3)

BMI, kg/m2 29 (5) 29 (4) 28 (5) 29 (4)

Diabetes, % 10% 12% 11% 13%

Current smoking, % 5.8% 6.2% 4.7% 4.9%

Anti-hypertensive treatment, % 23% 27% 24% 29%

Statin treatment, % 14% 17% 14% 17%

eGFR, mean (SD), mL/min/1.73 m2 91 (19) 91 (17) 91 (18) 91 (17)

Add-on Risk Factors/Predictors in Optional Models

UACR, median (IQI), mg/g** 8 (8-12) 8 (8-12) 8 (8-12) 8 (8-11)

HbA1c among those with diabetes, mean (SD), % 7.3 (1.8) 7.6 (1.9) 7.2 (1.8) 7.6 (1.9)

HbA1c among those without diabetes, mean (SD), % 5.7 (0.8) 5.8 (0.9) 5.5 (0.6) 5.6 (0.8)

SDI decile, median (IQI)*** 4 (2-7) 3 (2-6) 4 (2-7) 4 (2-6)

Outcomes

Mean (SD) follow-up time 4.8 (3.1) 4.6 (3.0) 5.0 (3.2) 4.8 (3.2)

Total CVD events 53258 53403 54365 50489

ASCVD events 31812 34691 33969 33933

HF events 30957 28393 30287 25679

Deaths 84289 80897 82555 76783

Data are reported as mean (standard deviation) except where otherwise noted. UACR: urine albumin to creatinine ratio (non-missing in 40% 
to 46%); eGFR: estimated glomerular filtration rate; IQI interquartile interval; SDI social deprivation index (non-missing in 27% to 33%); SBP 
systolic blood pressure; HDL high density lipoprotein; BMI body mass index; HbA1c hemoglobin A1c (non-missing in 90% to 94% among those 
with diabetes and 23% to 27% among those without diabetes); CVD cardiovascular disease; ASCVD atherosclerotic cardiovascular disease; HF 
heart failure; SD standard deviation. Details on missing data are shown in Appendix 1, section 1.4.

To convert from mmol/L to mg/dl, multiply by 38.67.
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*
All participants with extreme values were excluded from the sample prior to analyses

**
UACR was non-missing when urine protein to creatinine ratio or dipstick allows for conversion to UACR.42

***
SDI was only available in the OLDW cohorts.
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Table 2.

Meta-analyzed sex-specific hazard ratios (95% confidence intervals) of traditional cardiovascular risk 

predictors for total cardiovascular disease and cardiovascular disease subtypes in derivation samples

Total CVD ASCVD HF

Female N= 
1,839,828

Male N= 
1,442,091

Female N= 
1,839,828

Male N= 
1,442,091

Female N= 
1,839,828

Male N= 
1,442,091

Cardiovascular Disease Risk Factors in the PREVENT-CVD Primary Model

non-HDL-C per 1 
mmol/L 1.03 (0.99 ,1.07) 1.07 (1.03 ,1.11) 1.12 (1.07 ,1.17) 1.17 (1.13 ,1.21) * *

HDL-C per 0.3 mmol/L 0.85 (0.84 ,0.87) 0.91 (0.89 ,0.93) 0.86 (0.85 ,0.88) 0.89 (0.87 ,0.92) * *

SBP <110 per 20 
mmHg 0.78 (0.69 ,0.88) 0.63 (0.54 ,0.72) 0.91 (0.80 ,1.04) 0.73 (0.61 ,0.86) 0.63 (0.56 

,0.71)
0.49 (0.44 

,0.56)

SBP ≥110 per 20 mmHg 1.43 (1.37 ,1.50) 1.40 (1.35 ,1.45) 1.44 (1.38 ,1.50) 1.39 (1.34 ,1.44) 1.44 (1.37 
,1.51)

1.45 (1.39 
,1.50)

Diabetes 2.39 (2.31 ,2.48) 2.18 (2.08 ,2.29) 2.35 (2.23 ,2.47) 2.10 (1.98 ,2.23) 2.86 (2.72 
,3.01)

2.56 (2.41 
,2.71)

Current smoking 1.74 (1.55 ,1.96) 1.59 (1.43 ,1.76) 1.67 (1.46 ,1.91) 1.53 (1.38 ,1.70) 1.84 (1.60 
,2.12)

1.70 (1.48 
,1.95)

BMI <30, per 5 kg/m2 * * * * 0.98 (0.94 
,1.03)

0.93 (0.88 
,0.99)

BMI ≥30, per 5 kg/m2 * * * * 1.35 (1.28 
,1.41)

1.46 (1.38 
,1.54)

eGFR <60, per -15 
mL/min/1.73 m2 1.94 (1.86 ,2.03) 1.86 (1.78 ,1.94) 1.75 (1.66 ,1.84) 1.59 (1.53 ,1.66) 2.26 (2.16 

,2.36)
2.19 (2.03 

,2.36)

eGFR ≥60, per -15 
mL/min/1.73 m2 1.04 (1.01 ,1.07) 1.01 (0.99 ,1.03) 1.04 (1.01 ,1.07) 1.01 (0.99 ,1.03) 1.05 (1.01 

,1.09)
1.02 (0.98 

,1.06)

Cardiovascular Disease Risk Factor Treatment Status

Anti-hypertensive use 1.37 (1.20 ,1.55) 1.34 (1.20 ,1.49) 1.26 (1.11 ,1.42) 1.23 (1.11 ,1.37) 1.42 (1.21 
,1.67)

1.35 (1.16 
,1.57)

Statin use 0.86 (0.81 ,0.91) 0.86 (0.81 ,0.91) 0.93 (0.87 ,1.00) 0.90 (0.84 ,0.96) * *

Treated SBP ≥110 mm 
Hg per 20 mm Hg 0.93 (0.90 ,0.97) 0.95 (0.92 ,0.98) 0.96 (0.92 ,1.00) 0.96 (0.93 ,1.00) 0.90 (0.87 

,0.94)
0.95 (0.92 

,0.98)

Treated non-HDL-C per 
1 mmol/L 1.12 (1.08 ,1.17) 1.16 (1.10 ,1.23) 1.09 (1.03 ,1.15) 1.12 (1.06 ,1.19) * *

Age-Risk Factor Interactions per 10 years older

Age * non-HDL-C per 1 
mmol/L

0.92 (0.91 ,0.94) 0.95 (0.94 ,0.96) 0.95 (0.93 ,0.96) 0.97 (0.95 ,0.98) * *

Age * HDL-C per 0.3 
mmol/L

1.03 (1.02 ,1.05) 1.02 (1.01 ,1.04) 1.04 (1.02 ,1.05) 1.03 (1.01 ,1.04) * *

Age * SBP ≥110 mm 
Hg per 20 mmHg

0.91 (0.90 ,0.93) 0.90 (0.89 ,0.91) 0.91 (0.89 ,0.92) 0.91 (0.90 ,0.93) 0.91 (0.90 
,0.93)

0.88 (0.86 
,0.90)

Age * diabetes 0.77 (0.75 ,0.79) 0.81 (0.78 ,0.83) 0.79 (0.77 ,0.82) 0.83 (0.81 ,0.85) 0.71 (0.68 
,0.73)

0.75 (0.71 
,0.78)

Age * current smoking 0.93 (0.90 ,0.97) 0.92 (0.89 ,0.96) 0.93 (0.88 ,0.99) 0.92 (0.88 ,0.96) 0.90 (0.85 
,0.95)

0.88 (0.84 
,0.92)

Age * ≥BMI 30 per 5 
kg/m2

* * * * 0.99 (0.96 
,1.02)

1.00 (0.98 
,1.03)
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Total CVD ASCVD HF

Female N= 
1,839,828

Male N= 
1,442,091

Female N= 
1,839,828

Male N= 
1,442,091

Female N= 
1,839,828

Male N= 
1,442,091

Age * eGFR <60, per 
-15 mL/min/1.73 m2

0.87 (0.85 ,0.89) 0.89 (0.87 ,0.91) 0.87 (0.85 ,0.89) 0.92 (0.90 ,0.94) 0.85 (0.83 
,0.87)

0.87 (0.83 
,0.90)

Hazard ratios are for the units quoted for linear terms (e.g. non-HDL-C per 1 mmol/L) and piece-wise linear splines (e.g. SBP ≥110 per 20 mmHg).

Models centered at age 55 years, non-HDL-C 3.5 mmol/L, HDL-C 1.3 mmol/L, SBP 130 mmHg.

*
Not applicable to model development for specific outcome;

ASCVD: atherosclerotic cardiovascular disease; BMI: body mass index; CVD: cardiovascular disease; eGFR: estimated glomerular filtration rate; 
HDL-C: high density lipoprotein cholesterol; HF: heart failure; SBP: systolic blood pressure
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Table 3.

Meta-analyzed sex-specific adjusted hazard ratios (95% confidence intervals) of the base model adding all 

novel cardiovascular risk predictors for total cardiovascular disease and cardiovascular disease subtypes in 

derivation samples.

Total CVD ASCVD HF

Female N= 
1,734,246

Male N= 
1,356,397

Female N= 
1,734,246

Male N= 
1,356,397

Female N= 
1,734,246

Male N= 
1,356,397

Cardiovascular Disease Risk Factors in the PREVENT-CVD Primary Model

non-HDL-C per 1 
mmol/L 1.00 (0.97 ,1.04) 1.05 (1.01 ,1.09) 1.09 (1.05 ,1.14) 1.15 (1.10 ,1.20) * *

HDL-C per 0.3 
mmol/L 0.86 (0.84 ,0.88) 0.92 (0.90 ,0.94) 0.87 (0.86 ,0.88) 0.90 (0.88 ,0.92) * *

SBP <110 per 20 
mmHg 0.82 (0.72 ,0.93) 0.59 (0.52 ,0.67) 0.97 (0.84 ,1.11) 0.68 (0.59 ,0.80) 0.65 (0.58 

,0.74)
0.49 (0.43 

,0.56)

SBP ≥110 per 20 
mmHg 1.36 (1.30 ,1.42) 1.35 (1.31 ,1.39) 1.37 (1.32 ,1.42) 1.35 (1.30 ,1.41) 1.36 (1.28 

,1.43)
1.37 (1.33 

,1.42)

Diabetes 1.65 (1.52 ,1.79) 1.58 (1.46 ,1.70) 1.63 (1.49 ,1.79) 1.51 (1.38 ,1.65) 1.87 (1.71 
,2.05)

1.75 (1.59 
,1.93)

Current smoking 1.62 (1.44 ,1.82) 1.48 (1.33 ,1.65) 1.54 (1.36 ,1.73) 1.44 (1.30 ,1.59) 1.75 (1.52 
,2.01)

1.58 (1.38 
,1.80)

BMI <30, per 5 kg/m2 * * * * 0.97 (0.92 
,1.02)

0.89 (0.85 
,0.94)

BMI ≥30, per 5 kg/m2 * * * * 1.32 (1.26 
,1.38)

1.43 (1.36 
,1.51)

eGFR <60, -15 
mL/min/1.73 m2 1.72 (1.64 ,1.81) 1.61 (1.53 ,1.69) 1.58 (1.48 ,1.69) 1.42 (1.36 ,1.49) 1.96 (1.85 

,2.07)
1.83 (1.69 

,1.97)

eGFR ≥60, -15 
mL/min/1.73 m2 1.05 (1.02 ,1.08) 1.00 (0.98 ,1.02) 1.05 (1.02 ,1.08) 1.01 (0.99 ,1.02) 1.06 (1.03 

,1.10)
1.01 (0.97 

,1.04)

Cardiovascular Disease Risk Factor Treatment Status

Anti-hypertensive use 1.35 (1.16 ,1.57) 1.29 (1.13 ,1.46) 1.24 (1.08 ,1.43) 1.19 (1.06 ,1.34) 1.39 (1.15 
,1.68)

1.29 (1.09 
,1.54)

Statin use 0.85 (0.79 ,0.91) 0.84 (0.79 ,0.90) 0.92 (0.86 ,0.99) 0.88 (0.82 ,0.94) * *

Treated SBP ≥110 mm 
Hg per 20 mm Hg 0.93 (0.89 ,0.97) 0.95 (0.92 ,0.97) 0.95 (0.91 ,1.00) 0.96 (0.92 ,0.99) 0.90 (0.86 

,0.95)
0.94 (0.91 

,0.97)

Treated non-HDL-C 
per 1 mmol/L 1.11 (1.08 ,1.14) 1.15 (1.08 ,1.23) 1.08 (1.03 ,1.14) 1.11 (1.05 ,1.19) * *

Age-Risk Factor Interactions per 10 years older

Age * non-HDL-C per 
1 mmol/L

0.93 (0.91 ,0.95) 0.95 (0.94 ,0.97) 0.95 (0.93 ,0.97) 0.97 (0.96 ,0.99) * *

Age * HDL-C per 0.3 
mmol/L

1.03 (1.02 ,1.04) 1.02 (1.01 ,1.04) 1.03 (1.02 ,1.04) 1.03 (1.02 ,1.05) * *

Age * SBP ≥110 mm 
Hg per 20 mm Hg

0.92 (0.90 ,0.94) 0.90 (0.89 ,0.92) 0.91 (0.90 ,0.93) 0.92 (0.90 ,0.93) 0.93 (0.91 
,0.94)

0.89 (0.87 
,0.91)

Age * diabetes 0.80 (0.78 ,0.83) 0.85 (0.83 ,0.87) 0.83 (0.80 ,0.86) 0.88 (0.85 ,0.90) 0.75 (0.72 
,0.78)

0.80 (0.76 
,0.84)

Age * current smoking 0.94 (0.91 ,0.97) 0.94 (0.91 ,0.97) 0.95 (0.90 ,1.00) 0.93 (0.89 ,0.98) 0.90 (0.86 
,0.95)

0.91 (0.86 
,0.95)
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Total CVD ASCVD HF

Female N= 
1,734,246

Male N= 
1,356,397

Female N= 
1,734,246

Male N= 
1,356,397

Female N= 
1,734,246

Male N= 
1,356,397

Age * BMI ≥30 per 5 
kg/m2 * * * * 0.99 (0.97 

,1.02)
1.00 (0.98 

,1.02)

Age * eGFR <60, per 
-15 mL/min/1.73 m2 0.89 (0.87 ,0.91) 0.91 (0.89 ,0.93) 0.89 (0.87 ,0.91) 0.93 (0.91 ,0.95) 0.87 (0.85 

,0.90)
0.89 (0.86 

,0.92)

Kidney Function

Ln UACR, mg/g, per 1 
ln unit 1.19 (1.17 ,1.22) 1.21 (1.20 ,1.23) 1.16 (1.14 ,1.19) 1.17 (1.15 ,1.19) 1.23 (1.21 

,1.26)
1.27 (1.24 

,1.29)

No UACR available** 1.02 (0.98 ,1.07) 1.12 (1.07 ,1.18) 1.01 (0.96 ,1.05) 1.07 (1.02 ,1.13) 1.04 (0.98 
,1.11)

1.19 (1.13 
,1.25)

Glycemic Status

HbA1c in DM, per 1% 1.14 (1.06 ,1.23) 1.13 (1.07 ,1.19) 1.14 (1.05 ,1.23) 1.11 (1.05 ,1.18) 1.20 (1.12 
,1.28)

1.17 (1.10 
,1.24)

HbA1c no DM, per 1% 1.15 (1.14 ,1.16) 1.11 (1.10 ,1.12) 1.15 (1.14 ,1.17) 1.12 (1.10 ,1.14) 1.18 (1.16 
,1.20)

1.13 (1.12 
,1.15)

No HbA1c available** 0.99 (0.94 ,1.05) 0.97 (0.93 ,1.02) 1.00 (0.95 ,1.06) 0.99 (0.94 ,1.03) 1.00 (0.94 
,1.06)

0.97 (0.91 
,1.04)

Social Deprivation Index (SDI) ***, decile categories

SDI 1-3 Ref. Ref. Ref. Ref. Ref. Ref.

SDI 4-6 1.15 (1.07 ,1.24) 1.09 (1.00 ,1.20) 1.16 (1.08 ,1.24) 1.08 (0.97 ,1.20) 1.14 (1.02 
,1.26)

1.13 (1.02 
,1.25)

SDI 7-10 1.26 (1.15 ,1.38) 1.33 (1.23 ,1.43) 1.26 (1.16 ,1.38) 1.32 (1.23 ,1.43) 1.27 (1.15 
,1.40)

1.42 (1.26 
,1.59)

No SDI available** 1.20 (1.13 ,1.27) 1.16 (1.10 ,1.24) 1.18 (1.12 ,1.24) 1.16 (1.09 ,1.23) 1.20 (1.12 
,1.29)

1.19 (1.10 
,1.29)

Hazard ratios are for the units quoted for linear terms (e.g., non-HDL-C per 1 mmol/L) and piece-wise linear splines (e.g., SBP ≥110 per 20 
mmHg).

ASCVD: atherosclerotic cardiovascular disease; BMI: body mass index; CVD: cardiovascular disease; DM: diabetes mellitus; eGFR: estimated 
glomerular filtration rate; HDL-C: high density lipoprotein cholesterol; HF: heart failure; Ln: natural log; SDI: social deprivation index; SBP: 
systolic blood pressure; UACR: urinary albumin-to-creatinine ratio.

Models centered at age 55 years, non-HDLC 3.5 mmol/L, HDLC 1.3 mmol/L, SBP 130 mmHg, BMI 25 kg/m2, eGFR 90 mL/min/1.73 m2, no 
DM, non-smoker, no medication used, SDI decile 1-3, ACR 1 mg/g, HbA1c 5.3%

Smaller models with one set of novel risk factors at a time added to the base model are shown in Tables S2–4.

*
Not applicable to model development for specific outcome

**
No available data when measurement of the novel risk factor is not indicated or not done for another reason.

***
SDI is only available in the OLDW cohorts
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Table 4.

Meta-analyzed discrimination, calibration, and net reclassification statistics of model performance for 

prediction of total cardiovascular disease and cardiovascular disease subtypes in validation cohorts

Total CVD ASCVD HF

Female Male Female Male Female Male

Base PREVENT Model

Number of cohorts 21 21 21 21 21 21

Number of 
participants 1,894,882 1435203 1894882 1435203 1894882 1435203

Number of events 50,324 46,804 31,277 31,328 27,931 23,707

C-statistic (IQI) 0.794 (0.763, 
0.809)

0.757 (0.727, 
0.778)

0.774 (0.743, 
0.788)

0.736 (0.710, 
0.755)

0.830 (0.816, 
0.850)

0.809 (0.777, 
0.827)

Calibration slope 
(IQI) 1.03 (0.81, 1.16) 0.94 (0.81, 1.13) 1.09 (0.93, 1.33) 1.04 (0.95, 1.19) 1.00 (0.55, 1.15) 0.89 (0.49, 1.07)

Pooled Cohort Equations*

C-statistic (IQI) 0.789 (0.746, 
0.802)

0.747 (0.721, 
0.767)

0.772 (0.729, 
0.782)

0.733 (0.701, 
0.751)

0.810 (0.785, 
0.838)

0.791 (0.742, 
0.801)

Delta C-statistic 

(95% CI)**** of 
PREVENT minus 
PCEs

0.009 (0.008, 
0.011)

0.008 (0.007, 
0.009)

0.007 (0.006, 
0.009)

0.005 (0.004, 
0.006)

0.015 (0.013, 
0.017)

0.022 (0.020, 
0.024)

Calibration slope 
(IQI) 0.84 (0.65, 1.00) 0.67 (0.60, 0.81) 0.54 (0.47, 0.61) 0.50 (0.39, 0.52) 0.51 (0.28, 0.61) 0.37 (0.20, 0.47)

PREVENT Model Additionally Enhanced for Kidney-Specific Risk with UACR

Number of cohorts 21 21 21 21 21 21

Number of 
participants 1,894,882 1435203 1894882 1435203 1894882 1435203

Number of events 50,324 46,804 31,277 31,328 27,931 23,707

Base model C-
statistic (IQI)

0.794 (0.763, 
0.809)

0.757 (0.727, 
0.778)

0.774 (0.743, 
0.788)

0.736 (0.710, 
0.755)

0.830 (0.816, 
0.850)

0.809 (0.777, 
0.827)

Base model enhanced 
for kidney risk C-
statistic (IQI)

0.796 (0.766, 
0.812)

0.759 (0.735, 
0.780)

0.776 (0.746, 
0.790)

0.739 (0.715, 
0.758)

0.833 (0.820, 
0.851)

0.815 (0.786, 
0.830)

Delta C-statistic (95% 

CI)****
0.002 (0.002, 

0.003)
0.004 (0.003, 

0.004)
0.002 (0.001, 

0.002)
0.002 (0.002, 

0.003)
0.003 (0.002, 

0.003)
0.005 (0.004, 

0.006)

NRI (IQI) 0.011 (−0.009, 
0.023)

0.031 (0.013, 
0.049)

0.022 (0.013, 
0.033)

0.042 (0.023, 
0.065)

0.038 (0.027, 
0.069)

0.130 (0.079, 
0.189)

Calibration slope 
(IQI) 1.03 (0.83, 1.17) 0.95 (0.85, 1.13) 1.10 (0.94, 1.34) 1.03 (0.93, 1.20) 0.99 (0.53, 1.14) 0.89 (0.48, 1.07)

PREVENT Model Enhanced for Metabolic Risk with HbA1c

Number of cohorts 19 19 19 19 19 19

Number of 
participants 1893,349 1,433,735 1,893,349 1,433,735 1,893,349 1,433,735

Number of events 50,120 46,541 31,149 31,170 27,820 23,555
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Total CVD ASCVD HF

Female Male Female Male Female Male

Base model C-
statistic (IQI)

0.795 (0.768, 
0.814)

0.757 (0.734, 
0.778)

0.779 (0.747, 
0.790)

0.739 (0.714, 
0.757)

0.837 (0.817, 
0.850)

0.816 (0.786, 
0.832)

Base model enhanced 
for metabolic risk C-
statistic (IQI)

0.799 (0.771, 
0.815)

0.759 (0.738, 
0.780)

0.787 (0.750, 
0.792)

0.740 (0.719, 
0.760)

0.837 (0.818, 
0.853)

0.818 (0.790, 
0.835)

Delta C-statistic (95% 

CI)****
0.002 (0.001, 

0.003)
0.003 (0.002, 

0.004)
0.003 (0.002, 

0.004)
0.003 (0.002, 

0.004)
0.001 (0.001, 

0.002)
0.002 (0.002, 

0.003)

NRI (IQI) 0.002 (−0.002, 
0.005)

0.004 (0.001, 
0.010)

0.005 (0.002, 
0.010)

0.003 (−0.002, 
0.007)

0.001 (−0.005, 
0.004)

0.004 (0.003, 
0.008)

Calibration slope 
(IQI) 1.02 (0.68, 1.16) 0.95 (0.73, 1.14) 1.10 (0.91, 1.35) 1.05 (0.92, 1.28) 0.99 (0.53, 1.18) 0.88 (0.48, 1.08)

PREVENT Model Enhanced for Social Risk with SDI **

Number of cohorts 18 18 18 18 18 18

Number of 
participants 606,662 468,195 606,662 468,195 606,662 468,195

Number of events 15,059 14,084 9423 9456 8169 6970

Base model C-
statistic (IQI)

0.807 (0.787, 
0.816)

0.774 (0.751, 
0.788)

0.793 (0.761, 
0.800)

0.752 (0.737, 
0.772)

0.835 (0.817, 
0.852)

0.824 (0.790, 
0.836)

Base model enhanced 
for social risk C-
statistic (IQI)

0.810 (0.788, 
0.817)

0.774 (0.757, 
0.789)

0.796 (0.761, 
0.800)

0.753 (0.737, 
0.774)

0.836 (0.818, 
0.853)

0.824 (0.793, 
0.837)

Delta C-statistic (95% 

CI)****
0.001 (0.001, 

0.002)
0.002 (0.001, 

0.003)
0.001 (0.000, 

0.002)
0.001 (0.000, 

0.002)
0.001 (0.001, 

0.002)
0.002 (0.001, 

0.002)

NRI (IQI) 0.003 (0.000, 
0.009)

0.005 (−0.002, 
0.018)

0.004 (−0.000, 
0.012)

0.004 (−0.009, 
0.013)

0.004 (−0.004, 
0.007)

0.005 (0.001, 
0.016)

Calibration slope 
(IQI) 1.04 (0.73, 1.20) 0.94 (0.72, 1.08) 1.09 (0.96, 1.41) 1.00 (0.80, 1.20) 0.97 (0.63, 1.14) 0.84 (0.61, 1.02)

PREVENT Model Enhanced for all novel predictors***

Number of cohorts 18 18 18 18 18 18

Number of 
participants 606,662 468,195 606,662 468,195 606,662 468,195

Number of events 15,059 14,084 9423 9456 8169 6970

Base model C-
statistic (IQI)

0.807 (0.787, 
0.816)

0.774 (0.751, 
0.788)

0.793 (0.761, 
0.800)

0.752 (0.737, 
0.772)

0.835 (0.817, 
0.852)

0.824 (0.790, 
0.836)

Base model enhanced 
for all novel 
predictors C-statistic 
(IQI)

0.813 (0.794, 
0.820)

0.776 (0.762, 
0.793)

0.799 (0.767, 
0.804)

0.755 (0.742, 
0.776)

0.841 (0.828, 
0.858)

0.830 (0.799, 
0.843)

Delta C-statistic (95% 

CI)****
0.004 (0.004, 

0.005)
0.005 (0.004, 

0.007)
0.004 (0.003, 

0.005)
0.004 (0.002, 

0.006)
0.005 (0.004, 

0.006)
0.007 (0.006, 

0.009)

NRI (IQI) 0.005 (−0.000, 
0.018)

0.006 (0.000, 
0.021)

0.009 (0.001, 
0.023)

0.008 (−0.009, 
0.015)

0.007 (0.004, 
0.015)

0.014 (0.012, 
0.030)

Calibration slope 
(IQI) 1.05 (0.73, 1.20) 0.95 (0.72, 1.10) 1.11 (0.96, 1.41) 1.01 (0.83, 1.18) 0.96 (0.62, 1.14) 0.81 (0.65, 1.06)

ASCVD: atherosclerotic cardiovascular disease; CVD: cardiovascular disease; GFR: glomerular filtration rate; HF: heart failure; IQI: interquartile 
interval; NRI: net reclassification improvement
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*
Same sample as evaluated for the base PREVENT model

**
SDI is only available in the OLDW cohorts

***
Same sample as PREVENT model + SDI

****
Delta C-statistic is meta-analyzed using the delta within each cohort weighted inversely to its standard error. Therefore, the meta-analyzed 

mean delta C-statistic may not equal the difference of between the two median C-statistics of the models being compared.
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