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PROPERTIES OF CONNECTIONIST VARIABLE REPRESENTATIONS!
Deborah Walters
Department of Computer Science, State University of New York at Buffalo, Buffalo, NY

Abstract

A theoretical classification of the types of representations possible for variable in connectionist
networks has been developed [1] This paper discusses the properties of some classes of connectionist
representations. In particular, the representation of variables in value-unit, variable-unit and
intermediate unit representations are analvzed, and a course-fine concept of representation developed.
In addition, the relation between the meast remert of a feature and it's representation is discussed.

1. Connectionist Networks

Connectionist networks consist of a large number of very simple processing elements, which are
highly interconnected, with each processor receiving input from and sending output to many other
processors. In a broad sense of connectionism there are various types of connectionist networks: in cel-
lular automata networks, the connections are generally limited to those between nearest neighbors, and
the computations are generally deterministic [2]; in cooperative and competitive networks it is the
dynamical analysis of feedhack, shunting etc. within and between layers of processing units that is
generally studied [3;, hile 'n the "connectionist school” complete interconnectivity is permitted, and
either local or distributed representations of features are used [4,5]. This paper is concerned with con-
nectionist networks in this broad sense: it concerns data-parallel processing where each processing ele-
ment within a group has the same program, and each processing element is connected to other proces-
sors which lie within its local neighborhood.

Connectionist networks have been studied for a variety of reasons. One motivation comes from
cognitive science, where the desire is to understand the brain as a computational device. As the brain
wonsists of large numbers of massively interconnected simple processing elements, the study of connec-
tionist networks may ultimately aid us in understanding neural computations. However, this goal
must be treated with caution; the analogy to neurons must be made ut the proper level.

A more recent motivation for studyving connectionism has arisen from the computer science
emphasis on parallel processing, as connectionist networks are an example of fine-grain parallelism.
The style of computing that is possible with such parallelism is very different from that possible with
uniprocessor systems, or with parallel systems containing a small number of processors, and thus
represent a distinct class of parallel computations. With the advent of the Connection Machine [6], a
fine-grain parallel machine, there is increasing motivation to understand the types of computations pos-
sible with such hardware.

1.1. The Representation of Variables in Connectionist Networks

Just as a different style of computation is possible in a connectionist network, the styles of
representation of variables that are natural for a connectionist network may be very different from
the types of representation natural for serial, or coarse grain parallel processing. For example, Feld-
man and Ballard use explicit local representations of 1mage features, which they refer to as parameter
spaces or feature spaces. Shapes or objects are represented by a set of particular values of certain
features, and the connectionist computations involved are hasically indexing operations into the feature
space, and constraint satisfaction between sets ot teatures (jrossberg, however, does not use such a
feature representation, but rather investigates the more global patterns of activity in a field of connec-
tionist units. Similarly, Hinton, McClelland and Rumelhart [4], and Kohonen [7] use distributed
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representations.

A general theoretical classification of the types of variable representations possible in connection-
ist networks, in which the different existing variable representations can be expressed, and new types
of representations can be indicated, has been created [8]. The theoretical framework enables the proper-
ties of different connectionist representations to be formally analyzed which allows the principled
choice of the optimal representation for a particular application. As the framework has been treated
in detail elsewhere [1], only a brief description occurs here.

2. Preliminary Assumptions

The theoretical framework for connectionist representation of variables is based on certain gen-
eral assumptions about connectionist networks, the processing elements which participate in connec-
tionist networks, and the nature of variables that are to be represented in such networks. These
assumptions are enumerated below.

2.1. Connectionist Units

Connectionist networks are to contain a large number of simple, identical processing units, each
of which are capable of signaling a limited number of values. For example, if a connectionist unit
consisted of an 8-bit memory word, it could represent or signal only 256 separate values. There are
two means by which connectionist units can represent information: explicitly through it's level of
activity or the value it stores; and implicitly, as each unit in a multi-unit system can represent a
different value or range of vales. For example, in representing color, three units could be used; one
each to implicitly represent red, blue and green. Each of these units could then explicitly represent the
intensity value of it’s implied color component.

Notice that it is not the connections between units which encode the information here, as we are
primarily concerned with short-term rather than long-term encoding of visual information. Other
researchers have used the connections between units to encode longer term information.

2.2. Representation of Variables

The basic property of a variable is that it can take on a range of possible values. For each vari-
able there 1~ an n, and an injection g, such that g maps the set of values of that variable into
euclidean n space. and only k distinct values lie along each dimension of a variable.

3. Definitions of Types of Variable Representations

The general theory of variable representations for connectionist networks assumes that represen-
tations can be classified in terms of the following three properties.

3.1. Conjunctive versus Disjunctive Representations

For an n dimensional variable, it is possible to have a completely conjunctive, a completely dis-
junctive or a partially conjunctive / partially disjunctive representation. A completely disjunctive
representation could be thought of as containing n separate one-dimensional representations, one for
each dimension of the variable. This contrasts with the completely conjunctive representation which
would contain only a single n dimensional representation. A partially conjunctive / partially disjunc-
tiove representation would consist of at least one one-dimensional representation, and at least one m-
dimensional representation, with m < n.

One way to classify representations in terms of this property is to express the number of disjunc-
tive dimensions present in a given representation. With no disjunctive dimensions, the representation
would be completely conjunctive, and with n disjunctive dimensions a representation would be com-
pletely disjunctive, and intermediate values would be partial.
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3.2. Variable-unit versus Value-unit Representations

Connectionist representations of variables can also vary in terms of the number of distinct
values that each constituent unit can signal. One way to express this is in terms of the “memory size"
of the connectionist units. It will be assumed here, without loss of generality, that connectionist units
use a binary representation, and the memory size will be expressed in bits.

There are two extremes to the possible variable representations in terms of the memory size of
connectionist units required to represent one value of a variable. In the variable-unit representation
each unit has log,k' memory size, where k' is the number of distinct values of the variable to be
represented. In the value-unit representation each unit has a memory size of 1. A single variable-unit
can be used to signal the presence of any of the k' distinct values, while a single value-unit can only
represent one of the k' values, and k' value-units would be required to represent any arbitrary value
along a dimension.

The two types of coding referred to are the logical extremes of codings well known in the vari-
ous disciplines which are concerned with connectionist computations. Neurophysiologists refer to the
first type as a frequency code, and to the second type a a labeled-line code [9). Ballard has discussed
the implications of each type of coding, which he refers to as variable and value coding respectively

(5.

The value umit and variable-unit encodings are the two possible extremes of variable representa-
tion in terms of the memory-size of units, and the number of units required to represent a variable. It
is also useful to vonsider a representation which is intermediate between these extremes. In an inter-
mediate representation the memory size of the units is b, (1<b<log,k). In both biological and
machine systems, the intermediate-unit representation is often used.

3.3. Response Overlap

Representations can also vary in terms of response overlap. In a no response overlap representa-
tion a particular value of a variable along one dimension is represented by the activity of a single
unit. In response overlap representations the activity of each processing unit represents a range of d
discrete values of a variable along each dimension, and each particular value is encoded by the activity
of a2 number of overlapping units. Connectionist units participating in a response-overlap representa-
tion are said to have a diameter of 4.

4. Theoretical Classification of Variable Representations

Variable representations can be classified along the three dimensions described above, which form
the connectionist variable representation space (VRS) illustrated in Figure 1 [1]. VRS provides a
theoretical framework for describing the connectionist encodings used in previous research. For exam-
ple, Hinton’s coarse coding scheme is a conjunctive, overlapping, value-unit representation [10], while
Ballard uses a conjunctive, non-overlapping value representation in his connectionist shape perception
algorithm [S]. The neurons in the mammalian striate cortex that are selectively sensitive to a small
range of spatial frequencies (or edge widths) and a small range of edge orientations are using a con-
junctive, overlapping, intermediate-unit representation. In the MT region of visual processing, there is
one set of neurons which are selectively sensitive to velocity. and another set which are selectively
sensitive to the direction of motion. These neurons appear to be using a disjunctive, overlapping inter-
mediate representation. In computer vision programs where edge information is represented as an
intensity map, and an orientation map, the disjunctive, nonoverlapping variable representation is being
used.

Each point in VRS represents a class of variable representations. In order to completely define a
specific representation, more than it’s location in VRS must be Known; in addition the response map-
ping function must be specified. The response mapping function, f, defines the response of a given
connectionist unit to the k values along each dimension of a variable.
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5. Measurement Issues: Response Function Analysis

By analvzing the properties of each region of VRS, the optimal class of representations for a
given problem can be determined. The chosen representation can then be completely specified by
defininy the response mapping function, /. However, in an actual implementation such as computer
vision, the real problem is to find a method for measuring the feature values present in an image.
Thus it ~ 10t . question of choosing a variable representation and defining a mapping, because the
measurerero nrowess defines the response mapping, and therefore constrains the choice of representa-
tion. In »rder . choose the correct representation, the response mapping funcrion for a particular
measurement process must be determined. This is an important pmnt that has bheen previously
neglected hecause much connectionist research has primarily emphasized intermediate and high-level
visual processing and thus assumed that the input to the network had alreadv been processed into the
appropriate form.

5.1. Determining Response Mapping Functions

In many cases the methods for measuring a feature value directly from an image do not yield a
simple, single dimensional mapping. The response of a detector can be a function not only of the
value of the desired feature, but also of many related features. Thus the first step in representing
variables measured from images is to determine just what is being measured by plotting the multidi-
mensional response function for the measurement process, as a function of a priori image properties.
For example, convolving an image with a template is one means of measuring the orientation and
amplitude of an edge in an image. The question arises as to how well the output of the convolution
correlates with the presence of an edge. To study this, the response function for an edge detector
might be plotted against the following properties of edges: location, length, width, amplitude, orienta-
tion, curvature, image sampling, signal-to-noise ratio, orientation and/or curvature discontinuities, and
edge profile. An example of orientation response functions for one set of oriented edge operators is
shown in Figure 2a. Each curve is the response, as a function of the edge orientation, of one operator
when convolved with a step edge. From these response functions it is clear that the edge operators
create an overlapping, intermediate unit representation. But the response of an edge operator is not a
single dimensional function: the response can vary as a function of edge amplitude, width, profile,
orientation, and distance from an edge. For example, Fig. 2b shows the responses of one operator to
step edges of different amplitudes. The response is obviously a function of both edge orientation and
amplitude, which suggests a conjunctive representation of orientation and amplitude. Similar results
would be obtained if the other dimensions were explored.
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If a particular type of representation is required, then the measurement process must be designed
to give the appropriate response mapping function. Thus response function analysis may provide use-
ful constraints in the design of image based operators.

6. Properties of Feature Space Representations

At present only the partial analyzes of particular representations exist: Hinton [10] and Sullins
[11] have both analyzed the distributed coarse coding representation; Ballard [5] has investigated some
of the implications of value-unit versus variable-unit representations; and, Saund discusses a represen-
tation useful for dimensionality reduction [12].

In analyzing representations, several properties should be considered, including the following:

1) Representation of multiple values
The representations differ in terms of the number of distinct values of a feature that can be
represented by one copy of the representation. For example, the variable code requires i copies to
represent i values, while the value code requires only one copy, as long as there is a one-to-one map-
ping between values and units. Such differences effect overall coding efficiency.

2) Match between representation and implementation architecture
Connectionist units may have limited memory, which would influence the choice of a representation.
For example. ialue-unit or intermediate-unit encoding is useful for units with small memory size,
while variihie unit representations are possible when units have enough memory.

3) Total Representation and Generalization

How many copies of a representation are required to represent all possible feature values? In general,
the larger the diameter of a unit, the more copies required to simultaneously represent all possible
feature values, but this also depends upon the internal code of the units. Thus a system with narrow
diameter units has the advantage of being able to simultaneously represent multiple values. But in
terms of generalization, the opposite is true. For example, if the mapping is not ordered, then a metric
other than the simple distance metric must be used to determine the similarity between feature values.
When the unit diameter is broad, a suitable ssmple metric exists: feature values which both activate
the same unit are similar. Intermediate representations provide a useful compromise between total
representation and generalizations.

4) ltem density
The distribution of the feature values that will be encountered in a given situation is important, as
representations differ in the density and distributions which can be handled.

S) Required degree of accuracy
Another property that is influenced by the characteristics of the variable to be represented is the
required degree of accuracy, and related sampling issues, as are discussed in Section 6.1.

6) Diameter of response ranges and degree of overlap
These properties influence the generalization capabilities, the efficiency and the suitability for imple-
mentation in a particular architecture.
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7) Probabalistic Representation
An efficient probabalistic representation is suitable for many applications.

These properties can be used to determine the type of representation best suited to represent par-
ticular types of information. For example, there are a variety of questions that could be asked about
the represented information: "Is value x of feature y present?’; "How many instances of value x of
feature y are present?"’; "What is the value of feature y at a given spatial position?"; etc. Which types
of information should be available thus depends on the nature of the features being represented, and
on the types of computations in which the features will be involved.

6.1. Resolution of A Representation

Another propertyv of representations is the resolution to which values of a variable can be
encoded. This accuracy will obviously depend upon the sampling resolution of the representation. For
example, in the variable-unit representation each unit can distinctly signal the k values of a variable,
thus the resolution is k& values/dimension, which is the best possible resolution. But even representa-
tions with coarse sampling, such as conjunctive, overlapping value units, can have a resolution equal
to the variable representation.

Another way of stating the resolution issue is to discuss the degree of accuracy to which the
value of a variable can be determined when it is encoded in a particular representation. In the
remainder of this section the resolution of the various representations are discussed.

6.1.1. Estimation of the Value of a Variable from a Variable-unit Representation

In all types of variable-unit representations, the value of a variable is represented by the activity
of a single processing unit. Thus if [ is the response mapping function of a processing unit, then
f(x) is the representation of the value x of the variable. If f is a single-valued function, and if
f(x,) = f(x,), then x, = x5, then x can be uniquely determined from f(x)if f is known, and the
resolution is k& values/dimension.

6.1.2. Estimation of the Value of a Variable from a Value -unit Representation

In the non-overlapping value unit representation there is a separate processing unit, P, tw
represent each value x of a variable, thus the activity 1n a unit uniquely represents the value of a
variable, and the maximal resolution is achieved.

In the overlapping value-unit representation, the value of a variable is represented by the
activity of a collection of processing units, and the resolution of each unit is coarse. Hinton has shown
that the value of a variable represented in a coarse coding scheme (an overlapping, value-unit represen-
tation) can be uniquely determined if the number of values being represented is < ((k /d )-1)* [10]

6.1.3. Estimation of a Value of a Variable from an Intermediate-unit Representation

In an intermediate-unit representation with no overlap, each dimension can be broken down into
k /(2%) sections, with a variable unit representation in each section. In this case, the resolution is max-
imal, and the value of a variable is represented both by the activity-level of a given processing unit,
and which unit is active.

In terms of the estimation of a value, the most interesting representation is the overlapping,
intermediate-unit encoding. The following analysis applies to the disjunctive class of this type of
representation for sparse data.

Assume each dimension of a variable is periodic, with period P, thus x+P = x. Further assume
response functions are strictly monotonically decreasing for x = r, and are strictly monotonically
increasing for x < r, where r is the peak value of f. Figure 3a shows an example response function,
f,l, which satisfies this assumption. Assume a given representation consists of m identical response

functions, thus for all ry, ry x; f, (xX)=f, (x+(r,-r,)). Figure 3b shows a protion of a
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representation, with four response functions, one for each of the four units 7y, 7,7, and ry4

The total response pattern, R(x), 1s the set of responses of the m different response functions,
thus R(x) = f, (x), f, (%), -+, f, (x). The small shapes i Figure 3¢ are the response pattern
which represents x, the value of the variable indicated by the arrow n Figure 3b. Note the response
pattern is simply the response of each unit to the value x, replotted at the maximum of the response
function (r;) for each unit.

The mirror-image response of response function f, to the peak values of the set of response
functions is f,'(F) = £, 0 ) f2 ) £ (r), where f.'(r) = f,(2x-r).

From these assumptions, it is possible to show that: R(x)= f,'(7), because by assumption 3,
with x =r;, it is seen that each element of R(x) is equal to an element of f,(7). This means that
R(x) contains all the information needed to obtain x, and that x is found by taking a mirror-copy of
the response function, and sliding it along R(x) until the best match is found. Then the maximum
value of the mirror-copy will occur at x. Figure 3c show the best fit of R(x), and it’s subsequent
indication of the value of x.

This analysis shows that only two distinct response units are required, and that they need not be
orthogonally spaced over the variable space. However, the minimum permissible distance between r
and r, is a function of the measurement error, ¢, and thus of y (as defined below), with fry—r,| = 27.

The second assumption can also be relaxed, with the same general results still holding. It is only
necessary that the f;’s be strictly monotonically decreasing for r; <x <y, for y such that fi(y)=0.
The only additional requirement is that there is still a minimum of two nonzero responses for each
value of x.
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6.1.4. Accuracy of Estimate of x

The accuracy to which x can be found is a function of the accuracy to which the f;’s are
defined, and the accuracy with which the f;(x)’s are measured. So if it is assumed that all f;(x)’s are
continuously defined, there is no error in the definition of f;. So assume the error in the measurement
of f,'(I) is €.

Given the above, it is possible to determine x to within 7, where y = min (max(y 1)y a2

T
for y(iy) such that f;(y,) = fi(x) + ¢, and y(,) such that f;(y,) = f;(x) — e. Figure 3d shows the
disjoint range of possible estimates of x that results from one particular measured response of f, .

Note that where the slope of f, is steep, y is small, but the shallow slope yeilds a large 7. This sug-

gests that in order to give the most accurate estimates in the region of it's maxima, the response func-
tion should be steep in the region of it's maxima. Thus gaussian shaped response functions [12] are not
desirable.

Alternatively, if f; is sampled at intervals of 4, and £ = (), then it is possible to determine x to
within +6. In other words, under these assumptions, y = 4.

6.1.5. Coarse versus Fine Estimation of x

The previous discussion assumes that the goal of the computation is the accurate estimation of x,
given the transfer function f; and the total response pattern R(x). However, another goal might be
the rapid estimation of a, given only the total response pattern R(x). One possible method for
estimating x from R(x) alone is: x =r;, such that f,(x)= f,j(x ), for all j =1, m. This method
vields only a coarse estimate of x, there being only m possible values of the estimate. The original
method for estimating x vields a much more accurate or fine estimate, but at the cost of requiring
more information, and a more complex computation.

When variables are represented by overlapping encodings, there are two modes in which the
information can be used: the explicit, coarse representation of a variable can be used to yield a rapid
estimate of the value of a variable at a resolution of k/d; while more accurate estimates must be based
on the implicit fine representation, which requires more intensive processing, and yields estimates at a
resolution of k. Coarse estimates of the values of a variable can be made in parallel across an image,
allowing the next stages of processing to proceed in parallel. Fine estimates may require serial process-
ing, and thus not occur automatically over all regions of an image.

As biological systems appear to use overlapping representations of feature variables, they may
use the coarse mode to make rapid judgements, such as those in the preattentive, parallel stage of
visual perception, while using the more complex, and perhaps serial mode to make fine judgements
such as those involved in hyperacuity. For example, humans appear to be able to perform certain
visual tasks in parallel, such as the discrimination of two texture regions which differ in terms of the
orientation of line elements [13]. Humans can also make very fine discrimination judgements of the
orientation of line segments [14]. It may be that such fine judgements require more complex processing
and cannot necessarily be made in parallel.
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