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ABSTRACT

This paper begins with a distinction between an "active-learning" frame­

work and a "passive-learning" approach when employed as an evaluation of R 0

strategies. A simple decision-tree formulation is employed to gain insights

on the essential differences of these two approaches. Numerical differences

between the active- and passive-learning frameworks are derived. It is shown

that in a sequence of decisions under uncertainty, where the probabilities of

the occurrence of the unknown events are also unknown, much can be gained by

taking into consideration the effect of learning along the horizon plan on

decisions to be made in the future.

Subject areas: active learning, research and development, decision theory.



AN EVALUATIVE FRAMEWORK FOR RESEARCH AND DEVELOPMENT STRATEGIES

INTRODUCTION

In the research and development process, uncertainty is a key and perva­

sive characteristic. Unfortunately, in both the public and private sector,

these processes are generally unstructured. Formal and operational methods

for structuring these processes are not generally implemented. Cumbersome

frameworks, whose associated cost of implementation appears to exceed by a

wide margin in their associated benefits, occupy most of the available litera­

ture. In this paper an operational framework is advanced to capture inherent

uncertainties and manage the risk of resource allocations to alternative R~D

processes. This framework is based on the notion of adaptive or dual control

[lJ [4J.

One of the key elements of the framework to be advanced relates to the

d~terminati6n of more accurate probabilities of "success." The manager of an

R&D department is visualized as attempting to determine how many teams should

be assigned to the development of a new technology. The individual teams are

presumed to operate independently with a given complex of manpower and equip­

ment. There is an underlying probability of success which is fixed but un­

known. The more teams that are assigned to a particular project, the greater

the chances that at least one team will succeed. Given a prior probability of

success and a specified length of the planning horizon, along with a specified

criterion function, an adaptive control formulation may be employed to deter­

mine the optimum number of teams to support.

Our analysis begins with a distinction between an "active-learning" frame­

work and a "passive-learning" approach. The latter is typically employed as

an evaluation of R&D strategies. A simple decision-tree formulation is
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employed to gain some insight on the essential differences of these two

approaches. Once this distinction is drawn, we proceed to demonstrate how

both methods can be used to evaluate the development of a new product to which

multiple-research teams in a dynamic setting can be assigned. Numerical dif­

ferences between the active- and passive-learning frameworks are derived and

general conclusions are drawn. This is followed by a problem involving

development of complementary products or a single-product with more than one

attribute. Here, again, numerical examples are offered and results for the

active-learning versus the passive-learning frameworks are distinguished.

Finally, a general "active" learning framework is structured for the "multiple

teams," "multiple product" attribute case.

ACTIVE VERSUS PASSIVE LEARNING

The R&D process is fraught with formidable uncertainties. It is indeed

difficult to capture the relevant probabilities that should be assigned to

associated unknown events. Often research administrators assign judgmental

probabilities to the unknown events as a first approximation. In many situa-

tions, the research administrator may be prepared to incur some costs to cap-

ture more accurate measurements of the relevant probabilities. It is well

known that this may be accomplished by formal sequential designs of experi-
I

ments [2J. Such experimentations should be undertaken if the expected value

of information generated, however determined, is higher than the cost of

experiment.

In many real-life situations, the cost of R&D experiments is formidable.

To mitigate such costs, a history of past actions can be viewed as "passive

experiments"; results generated can be employed as a basis for estimating the

relevant probability distributions. Under these circumstances, "passive
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learning" takes place with the research administrator utilizing only histori-

cal information. No future measurements conditioned on current decisions are

allowed. In the case of active learning, the research administrator updates

probability measurements according to past history but, in addition, makes

future measurements for "ex ante history" conditioned on current decision. In

essence, actions are selected which maximize the sum of both current period

gains and the present value of experimentally expected future gains. A trade­

off between current and experimentally expected future gains is eXplicitly

recognized. Specifically, some current period gain is forsaken in order to

obtain improved probability measurements to allow more nearly optimum actions

to be selected during future periods of the planning horizon. In this

setting, current gains--as well as the rate of learning during early periods

of planning horizon--are jointly optimized. 1

The distinction between the passive- and active-learning frameworks can be

drawn from: a simplistic example. Suppose a person is faced with a game in

which he can invest $1.00 in a slot machine which may be either of type A or

type B, each with a probability of .5. If the machine is of type A, the

return is ~1.50; and if the machine is of type B, the return is O. He is

allowed to play the game 10 times. Assuming the person is risk-neutral,

should he play the game?2 In the passive-learning framework, the expected

value of the game is .5 (.5) + .5 (-1) = -.25. Hence, the decision for this

framework is to not play the game. If, however, an active-learning approach

is employed, we find that the expected value of the information obtained from

the first game is greater than the cost of the experiment (25 cents).

Obviously, there is a probability of .5 that a total of ~5.00 will be earned.

Since there is also a .5 probability that the machine will be of type B, the

expected value of the first trial is .5 (5) + .5 (-1) = $2.00.
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The expected value of the information obtained from this trial is .5 (4.5) +

.5 (0) = $2.25; and, thus, the total value of the first game is the expected

immediate gain plus the expected value of the information obtained or $2.00.

In terms of decision analysis, the active-learning framework can be

described as:

Don't try

/~-o

2.00
Try

(A) .5 continue
+5.00

(B) .5 f----"'-k~---1.00

Figure 1

where the posterior probability of the machine--as of type A--is assigned 1 if

the first trial is successful and 0 if it is a "failure. 1I For the myopic

approach of passive learning, the decision tree is instead

-.25

,.--~D~~o~n~'-=t--..K..P1=.:a=.,jY~ ~_--_-----0

.5 (A) +.50

__ ~ ---1.00

Figure 2
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. The above simple example can be generalized in the case of evaluating R&D

strategies. Suppose that the head of an R&D department has been assigned the

responsibility of attempting to develop a new product. The research head may

want one or more research units allocated to this task. Suppose, in addition,

that the probability that anyone team would succeed to develop the product is

not known with certainty.

To proceed with formal analysis, the following assumptions will be

imposed:

1. The process which generates a success or failure for a particular

team is specified as a Bernoulli with an unknown probability, P.
-2. The unknown P has a beta distribution with prior parameters nO

3and rOo

3. The total gains generated each year, Yt' consist of three

components:

a. a dynamic product demand effect, represented by last year's

actual gains (Yt-l);

b. sale revenues generated from the introduction of the new

product to the market; and

C. the variable cost associated with the research teams being

assigned to the product development in question where the

cost is proportional to the number of such teams.

Given the above assumptions and defining nt as the number of teams

assigned to the project in year t (nt = 1, 2, .); r t denoting the num-

ber of successful teams in year t, r t = 0, 1, ••• , nt' c t variable

cost associated with one team; and Zt revenue resulting from a success or

failure in year t, i.e.,



Zt if r t > 0

o if r t = O.

6.

(1)

With these definitions, the total gain in year t may be represented by

-
Yt = at Yt-l + Zt - ct nt

where at is the rate of inertia in revenues from one year to another.

The formal decision problem is:

(2)

(3)

where T is the number of years in the planning horizon, p is the rate of dis-

count, and Et_l(Yt) is expected value of total gains in year t which is

given by

I t-l I t-l
where Nt = Lt=O nt, Rt = Lt=O r t and f hb is the hyperbinomial distribution

which follows from the assumed prior beta distribution and binomial sampling.

The probability of r t successful teams, given an allocation of nt teams

and the history on past team allocations and successes, is given by

I I

p(rt = r t Int' Nt' Rt )
I I

= f hb (rt Int O, Nt, Rt )

(5)

(rt + Ri - 1)= (nt + Nt - r t - Ri - 1)~ nt~ (Nt - l)~

= rt~ (Rt - l)~ (n t - r t )= (Ni - R~ - I)! (n t + Nt - 1)=
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The above formulation can be formally solved by the use of dynamic pro­

gramming. In year t = T, i.e., the last year of the planning horizon, nT
must be selected such that the expected value of gains for the last period is

maximized taking into account the state variables reflecting the history of

past actions and L~:6 nt and successes L~:6 r t • Proceeding sequenti-

ally in year T - 1, nT_1 must be selected such that the discounted expected

revenue of year T, conditioned on nT_1 plus the expected gain of year T - 1,

is maximized. This sequential analysis proceeds until we reach the first

period of the planning horizon at which the optimal n1 is determined. More

formally, for the active-learning formulation, the maximization problem for a

two-period horizon is:

where zl is the yet unknown zl; t1 is the unknown z1' realized in the

second period after r 1 is observed.

For the passive-learning formulation, the two-period maximization problem

is:

Notice that in (6) the second expectation operator is E1, namely, the anti­

cipated results of the first period are taken into account in the active

learning, whereas in (7) the expectation operator for the second period is the

same as that for the first period, EO' This means that in passive learning

the anticipated results of the first period are not taken into account and,

thus, future probability measurements are not conditioned on current decisions.
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-For a stationary state, the probability of success, P, will stabilize at

its mean, and the two formulations will converge. However, the larger the

distance from the stationary state (the longer the planning horizon), the

larger the marginal benefit of learning and thus, presumably, the greater the

difference between the active- and passive-learning formulations. Moreover,

for very short planning horizons, the difference between the two formulations

will be small due to the inability to exploit any active learning that might

occur during the first or second period of the planning horizon.

Product Development and the Allocation
of MUltiple Teams

The potential value of' the active-learning approach can be demonstrated

for a problem involving a four-period horizon and the possibility of alloca­

ting multiple teams to the development of a new product. For this illustra-

tive numerical example, we shall presume that nO = 3, rO = 1, Zt =

$1,000, ct = Z350, at = .9, and p = 1. Given these numerical values, the

passive-learner and active-learner strategies are determined for the first

period along with contingency plans. 4 That is, after the optimal decision

* .for the first period was found (n1), a simulation model based on the

"optimal" decision and on the prior information (nO' rO) determines the

number of successful teams (rt) out of the n~ teams. Based on this

result, the "optimal" decision for the second period was determined by the

same procedure as for the first period. This process was followed as well for

all remaining periods. 5 It was found that the "optimal" decision for the

first period was to assign two teams to the project, and the total expected

profits for the four years was Zl.945 million. 6
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In the case of active learning, the probability of success differed from

one period to another in accordance with the history (n1, r1, n2, r2,

etc.) for each period. 7 The optimal decision for the first period in the

active-learning case was to assign three teams to the project, and the total

expected profits for the four years was ~2.086 million. Hence, an increase of

7.3 percent in the expected profit is due to the additional learning which

resulted from assigning one more team to the project in the first year. It

should be noted that the zero percent rate of return inflated the difference

between the two approaches but, nevertheless, the above example demonstrates

the additional gains resulting from the active-learning approach.

Joint Product Attribute Development

The differences between the active- and passive-learning formulations can

also be illustrated by another R&D problem which is frequently encountered.

Suppose the "research administrator desires to improve the attributes of an

existing product, and alternative research projects can be undertaken in the

hopes of achieving such improvements. In the numerical example to be pre­

sented below, we shall presume that two of the product attributes are in need

of improvement, and there are two alternative projects--each associated with

one attribute--that might be pursued. The first project, labeled A, has a

cost of ca; its estimated probability of success is Pa; and its contribu­

tion, if successful, is za. Similar notation is employed for the second

project, labeled B. It is possible to undertake each project separately,

sequentially, or simultaneously. If both projects are successful, the gain is

Z, not necessarily the sum of za and zb. The probability of success in

both projects, if pursued simultaneously, is Pa • Pb• The success over

both projects, however, is not statistically independent.
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If project B is pursued after project A, its probability of success is not

Pb but, rather, Pb la+ or Pb!a- or the conditional probability of success

in B given A was a success (a+) or a failure (a-), respectively. Moreover,

the probability of success for each of the projects in period t + 1 depends

upon the outcome in period t.

The problem is to determine which projects should be undertaken and in

what order. The prior probabilities of Pa and Pb will be defined by x/w

and u/v, respectively. For this problem, Bayes rule allows the relevant

updated probabilities from the assumed beta prior distributions on Pa and

Pb and binomial sampling. Specifically, the updated probabilities of

success, given any outcome, would require that the denominators increase by 1,

2, or 3 if, during the prior period, project A was pursued, project B was

pursued, or both projects A and B were pursued, respectively. The numerator

is simply increased by 0, 1, 2, or 3 if both A and B were failures; if A was a
-

success but B was not; if B was a success but A was not; and if both A and B

were successful during the previous period, respectively. For example,

Pal a+
x + 1

P I - x
Pala-,b+

x + 2
= w + 1' a a- - w + 1' = w + 3 ,

u + 1
and P bib =

x u
. Pbla+,b- •= + 3 , + 3 v + 3 .v a a-, - w

For this numerical example, the parameters will be specified as: c =a

(8)

100, Cb = 200, Ra = 1,000, Rb = 2,000, R = 2,500. x = 1, w = 2, u = 1,

v = 5, and a = 0, i.e., no dynamic product demand effect exists.
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The relevent decision tree for the active-learning formulation over a two-

period planning horizon is represented in Figure 3. With no learning, the

probabilities of success in any project do not change in the second period.

The pseudo-optimal policy for this framework is to undertake projects A and B

simultaneously, with expected returns of 695. If, however, learning takes

place through future-updated-probability measurements, the optimal policy is

to undertake project A only with expected returns of 719.

Concluding Remarks

The two examples can be combined such that there are Mresearch teams to

be assigned to project A or B. It is possible to assign all to one project or

divide them between the two projects. Obviously, the greater the number of

teams in one project, the higher the probability of success, the more informa-
. .

tion to be gathered on the probability of success in that project, but the

:lower the probability of success and learning from the other project.

The approach taken in this paper can be extended to the case where the

projects are complementary, and success in each project is necessary for the

entire program to be successful. In this case, the program probability of

success depends on the inherent probability of success of the project as a

whole, on the human capital of the teams assigned to each project and on the

success in the past of other teams and other complementary projects. In this

setting, equation (6) can, thus, be generalized to:

(9)

+ Zt+1 - I: bikt+1 J)} for all t := 1, 2, •.. ,T
i,k
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where bikt is the budget assigned to the team i on project k in year t, and

Zt is the total gain as a result of successes in all complementary projects.

There are, of course, other possible ways to formulate the multiproject,

multi team case.· For example, the project administrator might be interested in

minimizing the time of the completion of the project as whole, or alterna­

tively to maximize to probability of overall success.

The principal result of our analysis is simply that, when making decisions

under uncertainty, it is indeed worthwhile to obtain information about the

unknown event as long as the expected value of the information is higher than

the cost of the information. In a sequence of decisions under uncertainty,

where the probabilities of the occurrence of the unknown events are also un­

known, much can be gained by taking into consideration the effect of learning

along the horizon plan on decisions to be made in the future. When making a

furrent .decision, the decision-maker should find the alternative which

maximizes not only the immediate outcomes of that decision but also the value

by which improved measurements can lead to optimal future outcomes.
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Footnotes

1This framework has been referred to in the mathematics and electrical

engineering literature as dual control (Fe1dbaum, Tse). The special case of a

two-period planning horizon has been referred to in the literature as pre­

posterior analysis (Pratt, Raiffa, and Sch1aifer).

2This type of problem has been referred to as the "one-armed bandit"

problem. See e.g., DeGroot.

3It is well known that the beta distribution has two particularly

advantageous features. First, almost any desirable shape of the probability

distribution is admitted; and, second, the updating of the unknown parameter

estimates is indeed simple. If the prior parameters are nO and rO' then

an experiment of sample size n1 is taken. With r 1 successes observed;

then the updated parameters are simply nO + n1 and rO + r 1•
4 . -
Computer programs for both of these algorithms are available upon

request from the authors.

SIn the fourth period, the simultation model was not used; but, rather,

the highest expected value determined the profit and the optimal decision.

6This result is based on 1,000 simulations.

7The hyperbinomia1 distribution was used to calculate the probabilities

for both the passive- and active-learning algorithms.
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