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AN EVALUATIVE FRAMEWORK FOR RESEARCH AND DEVELOPMENT STRATEGIES
INTRODUCTION

In the research and development process, uncertainty is a key and perva-
sive characteristic. Unfortunately, in both the public and private sector,
these processes are generally unstructured. Formal and operational methods
for strutturing these processes are not generally implemented. Cumbersome
frameworks, whose associated cost of implementation appears to exceed by a
wide margin in their associated benefits, occupy most of the available litera-
ture. In this paper an operational framework is advanced to capture inherent
uncertainties and manage the risk of resource allocations to alternative RgD
processes. This framework is based on the notion of adaptive or dual control
[1] [4].

One of the key elements of the framework to be advanced relates to the
détermination of more accurate probabilities of "success." The manager of an
R&D department is visualized as attempting to determine how many teams should
be assigned to the development of a new technology. The individual teams are
presumed to operate independently with a given complex of manpower and equip-A
ment. There is an underlying probability of success which is fixed but un-
known. The more teams that are assigned to a particular project, the greater
the chances that at least one team will succeed. Given a prior probability of
success and a specified length of the planning horizon, along with a specified
criterion function, an adaptive control formulation may be employed to deter-
mine the optimum number of teams to support.

Our analysis begins with a distinction between an "active-learning" frame-
work and a "passive-learning" approach. The latter is typically employed as

an evaluation of Ra&D strategies. A simple decision-tree formulation is



employed to gain some insight on the essential differences of these‘two
approaches. Once this distinction is drawn, we proceed to demonstrate how
both methods can be used to evaluate the development of a new product to which
multiple-research teams in a dynamic setting can be assigned. Numerical dif-
ferences between the active- and passive-learning frameworks are derived and
general conclusions are drawn. This is followed by a problem involving
development of complementary products or a single-product with more than one
attribute. Here, again, numerical examples are offered and results for the
active-learning versus the passive-learning frameworks are distinguished.

| Finally, a general "active" learning framework is structured for the "multiple

teams,” "multiple product" attribute case.
ACTIVE VERSUS PASSIVE LEARNING

The R&D process is fraught with formidable uncertainties. It}is indeed
d{fficult‘té capture the relevant probabilities that sHou]d be assigned to
associated unknown events. Often research administrators assign judgmental
probabilities to the unknown events as a first approximation. In many situa-
tions, the research administrator may be prepared to incur some costs to cab—
ture more accurate measurements of the relevant probabilities. It is well
known that this may be accomplished by formal sequential designs of experi-
ments [2]. Such éxperimentations should be undertaken if the expected value
of information generated, hbwever determined, is higher than the cost of
experiment.

In many real-life situations, the cost of R&D experiments is formidable.
To mitigate such costs, a history of past actions can be viewed as "passive

experiments"; results generated can be employed as a basis for estimating the

relevant probability distributions. Under these circumstances, "passive



learning" takes place with the research administrator utilizing only histori-
cal information. No future measurements conditioned on current decisions are
allowed. In the case of active learning, the research administrator updates
probability measurements according to past history but, in addition, makes
future measurements for "ex ante history" conditioned on current decision. 1In
essence, actions are selected which maximize the sum of both current period
gains and the present value of experimentally expected future gains. A trade-
of f between current and experimentally expected future gains is explicitly
recognized. Specifically, some current period gain is forsaken in order to
obtain improved probability measurements to allow more nearly optimum actions
to be selected during future periods of the planning horizon. In this
setting, current gains--as well as the rate of learning during early periods
of planning horizon--are jointly optimized.]

‘The distinction between the passive- and active-learning‘frameworks can be
drawn from a simplistic example. Suppose a person is faced with a game in
which he can invest $1.00 in a slot machine Which may be either of type A or
type B, each with a probability of .5. If the machine is of type A, the
return is $1.50; and if the machine is of type}B, the return is 0. He is
allowed to play the game 10 times. Assuming the person is risk-neutra];
should he play the game?2 In the passive-learning framework, the expected
value of the game is .5 (.5) + .5 (-1) = -.25. Hence, the decision for this
framework is to not play the game. If, however, an active-learning approach
is employed, we find that the expected value of the information obtained from
the first game is greater than the cost of the experiment (25 cents).
Obviously, there is a probability of .5 that a total of $5.00 will be earned.
Since there is also a .5 probability that the machine will be of type B, the

expected value of the first trial is .5 (5) + .5 (-1) = $2.00.












The above formulation can be formally solved by the use of dynamic pro-
gramming. In year t = T, i.e., the last year of the planning horizon, N
must be selected such that the expected value of gains for the last period is
maximized taking into account the state variables reflecting the history of
past actions and 2:;3 Ny and successes Zz;é e Proceeding sequenti-
ally in year T -1, Nr_1 must be selected such that the discounted expected
fevenue of year T, conditioned on N1 plus the expected gain of year T - 1,
is maximized. This sequential analysis proceeds until we reach the first
period of the planning horizon at which the optimal n is determined. More

formally, for the active-learning formulation, the maximization problem for a

two-period horizon is:
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‘where El is the yet unknown Z2y5 {i is the unknown zy, realized in the
second period after ™ is observed.
For the passive-learning formulation, the two-period maximization problem
is:
o~ 4 ~
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Notice that in (6) the second expectation operator is El, namely, the anti-
cipated results of the first period are taken into account in the active
learning, whereas in (7) the expectation operator for the second period is the

same as that for the first period, E This means that in passive learning

0
the anticipated results of the first period are not taken into account and,

thus, future probability measurements are not conditioned on current decisions.



For a stationary state, the probability of success, 5, will stabilize at
its mean, and the two formulations will converge. Howevef, the larger the
distance from the stationary state (the longer the planning horizon), the
larger the margfna] benefit of learning and thus, presumably, the greater the
difference between the active- and passive-learning formulations. Moreover,
for very short planning horizons, the difference between the two formulations
will be small due to the inability to exploit any active learning that might
occur during the first or second period of the planning horizon.

Product Development and the Allocation
of Multiple Teams

The potential value of the active-learning approach can be demonstrated
for a problem involving a four-period horizon and the possibility of alloca-
ting multiple teams to the development of a new product. For this illustra-
tive numgrjca] example, we shall presume that ng = 3, ro = 1, zy =
31;000, ét = %350, 3 = .9, and p = 1. Given these numerical values, the
passive-learner and active-learner strategies are determined for the first
period along with contingency plans.4 That is, after the optimal decision
for the first period was found (nI), a simulation model based on the
"optimal" decision and on the prior information (no, ro) determines the
number of successful teams (r%) out of the nI teams. Based on this
result, the "optimal" decision for the second period was determined by the
same procedure as for the first period. This process was followed as well for

5

all remaining periods.~ It was found that the "optimal®" decision for the

first period was to assign two teams to the project, and the total expected

profits for the four years was $1.945 mi]]ion.6



In the case of active learning, the probability of success differed from
one period to another in accordance with the history (nl, F1s Ny Ty,
etc.) for each period.7 The optimal decision for the first period in the'
active-learning case was to assign three teams to the broject, and the total
expected profitsbfor the foﬁr years was $2.086 million. Hence, an increase of
7.3 percent in the expected profit is due to the additional learning which
resulted from assigning one more team to the project in the first year. It
should be noted that the zero percent rate of return inflated the difference
between the two apprdaches but, nevertheless, the above example demonstrates

the additional gains resulting from the active-learning approach.

Joint Product Attribute Development

The differences between the actfve- and passive-learning formulations can
also be illustrated by another R&D problem which is frequently encountered.
Suppose the ‘research administrator desires to improve the attributes of an
“existing product, and alternative research projects can be undertaken in the
hopes of achieving such 1mprovements; In the numerical example to be pre-
sented below, we shall presume that two of the product attributes are in need
of improvement, and there are two alternative projects--each associated with
one attribute--that might be pursued. The first project, labeled A, has a
cost of Cys its estimated probability of success is Pa; and its contribu-
tion, if successful, is z,. Similar notation is employed for the second
project, labeled B. It is possible to undertake each project separately,
sequentially, or simultaneously. If both projects are successful, the gain is

z, not necessarily the sum of z, and z,_. The probability of success in

be
both projects, if pursued simultaneously, is Pav. Pb’ The success over
both projects, however, is not statistically independent.

-



10.
If project B is pursued after project A, its probability of success is not

Pb but, rather, Pb or Pbla— or the conditional probability of success

a+t
in B given A was aIsuccess (a+) or a failure (a-), respectively. Moreover,
the probability of success for each of the projects in period t + 1 depends
upon the outcome in period t.

The problem is to determine which projects should be undertaken and in
what order. The prior probabilities of Pa and Pb will be defined by x/w
and u/v, respectively. For this problem, Baye§ rule allows the relevant
updated probabilities from the assumed beta prior distributions on Pa and
Pb and binomial sampling. Specifically, the updated probabilities of
success, given any outcome, would require that the denominators increase by 1,
2, or 3 if, during the prior period, project A was pursued, project B was
pursued, or both projects A and B were pursued, respectively. The numerator
is simply increased by 0, 1, 2, or 3 if both A and B were failures; if A was a
success bﬁt'B was not; if B was a success but A was not; and if both A and B
were successful during the previous period, respectively. Fo; example,

p . %+l P _ X p _x* 2
a|a+ w+ 1 ala- w+l° a|a-,b+ w+3°
(8)

u+1l

| X . u
Pb|a+,b_ =y¥3> and Pab|a-,b-‘w+3 v+

For this numerical example, the parameters will be specified as: Ca =

100, Cy = 200, Ra = 1,000, Ry = 2,000, R = 2,500, x =1, w=2, u=1,

v=256and a =0, i.e., no dynamic product demand effect exists.



11.

The relevent decision tree for the active-learning formulation over a two-
period planning horizon is represented in Figure 3. With no learning, the
probabilities of success in any project do not change in the second period.
The pseudo-optimal policy for this framework is to undertake projects A and B
simultaneously, with expected returns of 695. ff, however, learning takes
place through future-updated-probability measurements, the optimal policy is :

to undertake project A only with expected returns of 719.

Concluding Remarks

The two examples can be combined such that there are M research teams to
be assigned to project A or B. It is possible to assign all to one project or
divide them between the two projects. Obviously, the greater the number of
teams in one project, the higher the probability of success, the more informa-
tion to be gathered on the probability of succesé in that project, but the
-10Qér the‘p;obability of success and learning from the other project.

The approach taken in this paper can be extended to the case where the
projects are complementary, and success in each project is necessary for the
entire program to be successful. 1In this case, the program probability of
success depends on the inherent probability of success of the project as a
whole, on the human capital of the teams assigned to each project and on the
success in the past of other teams and other complementary projects. In this

setting, equation (6) can, thus, be generalized to:

ﬂax Et{(‘“m Ye 2z - izkbikt)+ 'ga" P (Et+1 [at+2 (at+1 Ye * 7y - izkbikt)
ikt . ikt+l | ,
(9)

- T b].km] )} for allt =1, 2, ...,T




















