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ABSTRACT OF THE THESIS 

 

Neighborhood and Individual-Level Risk Factors for Term Low Birth Weight: An Examination 

of Cross-Level Interactions in Los Angeles County, California  

 

by 

 

Elizabeth Agredano 

Master of Science in Epidemiology 

University of California, Los Angeles, 2021 

Professor Beate R. Ritz, Chair 

This paper examines the association between term low birth weight (TLBW) and 

individual-level exposure to NO2 and whether this association differs by neighborhood-level 

physical and social factors. Data consisted of birth records (n=97,200), measures of 

neighborhood-level social disadvantage, racial and ethnic segregation, and greenness. 

Unconditional logistic regressions revealed that exposure to high NO2 levels in the third 

trimester is compatible with a weak positive association with TLBW after adjusting for maternal 

age, birthplace, race/ethnicity, smoking; infant sex; parity; and prenatal care payment type 

(aOR= 1.02, 95%CI=0.95, 1.09). To examine the presence of interaction, the model was re-run 

for each neighborhood covariate to include a product term. Evidence of a negative interaction 

between NO2 and greenness was found.  The odds of TLBW when NO2 is high and greenness is 

low was lower compared to when NO2 is low and greenness is high, corresponding to a point 

estimate of 1.00 (95%CI: 0.74 1.34) when exposure to high NO2 levels is stratified at low NDVI.  
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1. INTRODUCTION 

It is widely acknowledged that social and physical contexts act as determinants of health 

outcomes, which can be as far-ranging as obesity, mental health illnesses, and cardiovascular 

ailments [1–4]. Previous studies have shown that neighborhood-level exposures impact health 

outcomes and that the effects of the neighborhood environment persist even when controlling for 

individual-level factors [5–7]. Physical aspects of a neighborhood, such as greenness and air 

pollution levels, and social factors such as neighborhood social deprivation and racial 

segregation, have been shown to impact birth outcomes [8].  

Neighborhood greenness is associated with positive growth-related birth outcomes such 

as higher birth weights, larger cranial circumference, decreased risks of small for gestational age, 

and decreased risk of preterm birth [9–11]. The mechanism behind this association has not been 

defined. However, it has been postulated to exist because of the beneficial social effects of 

greenness (e.g., social cohesion, mental health benefits), environmental feedbacks (e.g., 

reduction in heat island effect, air pollution removal), and encouragement of health-promoting 

behavioral modification (e.g., fostering physical activity) [12–16]. 

  Exposure to various forms of ambient air pollution has been shown to result in 

unfavorable birth outcomes. Exposure to NO2 throughout pregnancy is associated with a higher 

risk of pregnancy loss, while third trimester CO2 exposure is associated with term low birth 

weight (TLBW), and third trimester exposure to particulate matter results in a higher risk of 

TLBW, preterm birth, and overall reduced birth weight [17–19].  

Measures of social inequity are associated with adverse birth outcomes and serve as a risk 

factor beyond individual-level factors. Whereas individual-level racial discrimination is 

associated with increased risk of adverse birth outcomes through the mechanism of 
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pathophysiological responses to chronic stress, neighborhood-level racial segregation has been 

shown to independently increase the risk of preterm birth and TLBW in Black mothers [20–23]. 

Neighborhood SES affects birth outcomes multidimensionally and is associated with a variety of 

unfavorable reproductive health outcomes, including macrosomia, large for gestational age, 

preterm birth, and TLBW [24, 25]. It is hypothesized that physical characteristics of a 

neighborhood that lend to adverse birth outcomes such as poor access to goods and services, 

including reproductive health services, healthy foods, and recreation, are clustered among 

socially disadvantaged neighborhoods [8]. In contrast, social aspects that lend to positive birth 

outcomes such as social support, reciprocity, and stability are clustered among advantaged 

neighborhoods [8]. These contexts promote mechanisms that result in adverse birth outcomes. 

For example, perceived neighborhood instability is associated with preterm birth through the 

mechanism of psychological distress [26]. 

Often studies find that the effects of neighborhood-level social deprivation vary by 

individual maternal factors, or vice versa (e.g., higher odds of preterm birth or minorities) or that 

individual-level factors known to either cause or prevent unfavorable birth outcomes vary 

differently by area-level deprivation (e.g., medical insurance only preventative in low SES areas, 

African American race still associated with unfavorable outcomes despite high SES 

neighborhood) [27]. Following these findings, it is important to understand how individual-level 

factors interact with neighborhood-level factors in their association with unfavorable birth 

outcomes.   

Despite the already established association between NO2 on TLBW and the breadth of 

studies on the effect of neighborhood-level factors on health outcomes, this paper adds to the 

literature by examining whether joint effects exist between NO2 and a variety of social and 
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physical neighborhood-level factors. Further, this paper aims to establish the magnitude of joint 

effects. The hypothesis is that the effect of NO2 on unfavorable birth outcomes will be 

heterogeneous across strata of social deprivation, racial and ethnic segregation, and greenness 

and that there will be an interaction between NO2 and those factors. The odds of TLBW will be 

higher for those exposed to higher levels of NO2 when adjusting for individual-level factors and 

when exposed to higher levels of neighborhood social deprivation, higher levels of neighborhood 

racial and ethnic segregation, and lower levels of greenness.   

2. MATERIALS AND METHODS  

2.1. Study Population 

The sample was drawn from all live births recorded within Los Angeles County on 

California Birth Records between January 1st, 2019 and December 31st, 2019 (n=107,028). 

Preterm births (<37 gestational weeks completed) and records with missing gestational week 

data were excluded from the analysis resulting in a sample of 97,200. ArcGIS was used to 

geocode each birth record by the residential street address of the parent giving birth. Records 

with a P.O. Box, Unknown, or Missing response to the residence field were excluded from 

geocoding (n=28,510). ArcGIS ArcMap 10.7 was used to assign block group and city values to 

records with a spatial location. 

2. 2. Birth Outcome 

TLBW is a binary outcome derived from the California Birth Record obstetric estimate of 

gestation at delivery (weeks) and birth weight (grams) data. Records with gestational weeks>=37 

and birth weight of <2,500g were classified as TLBW compared to those of >=37 weeks 

gestational age with weights at or above 2,500g, classified as term normal birth weight (TNBW). 

2.3. Exposure Assessment 
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2.3.1 Individual Level Exposures  

Individual-level traffic-related air pollution (NO2) exposures were estimated using the 

land-use regression (LUR) model created by Su et al., 2009 [28]. The LUR estimates the spatial 

variation of NO2 concentrations across Los Angeles County based on various inputs, including 

traffic volume, land use, vegetation greenness, soil brightness, and truck slope gradient data 

collected at two-hundred-and-one sampling sites whose locations were selected by a location-

allocation algorithm. [29]. Residential addresses were assigned to the nearest California Air 

Resources Board (CARB), and the ratio of CARB value to LUR estimate was calculated for each 

month to create pregnancy-month-specific NO2 values [29]. These values account for spatial 

patterning of NO2 as well as temporal changes [30]. NO2 estimates were created for each 

trimester (i.e., first trimester= first day of last menses to day 92; second trimester= day 93 to day 

182, third trimester = day 183 to delivery date) and for the pregnancy period.   

2.3.2. Neighborhood Level Exposures 

Neighborhood social disadvantage was estimated through the Area Deprivation Index 

(ADI), a validated composite index of 17 social determinants of health indicators drawn from the 

U.S. Census Bureau American Community Survey (ACS) [31]. The indicators include factors 

such as education, poverty, employment, and housing quality [32]. ADI estimates were acquired 

at the block group level using the R “Sociome” package with Los Angeles County as the region 

of interest and 2019 ACS 5-year estimates as the data source [33]. Estimates were linked to birth 

records on block group. 

Exposure to green space was estimated using data from the National Aeronautics and 

Space Administration (NASA) Terra Moderate Resolution Imaging Spectroradiometer (MODIS) 

Vegetation Indices (MOD13Q1), which consist of 16-day values for the normalized difference 
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vegetation index (NDVI), a measure often utilized as an indicator of greenness in urban health 

studies and shown to be appropriate for open space, which is applicable in the mixed land use 

county of Los Angeles [34, 35]. Data with low cloud cover for the period of December 18th, 

2018 to December 18th, 2019 was downloaded from the Earth Explorer website and analyzed in 

ArcGIS to determine the greenest period of the year (March 22nd, 2019; county mean NDVI 

range = -0.2 – 0.99). As buffer sizes between 250m and 500m have been shown to offer the best 

estimation of directly accessible greenspace, a 250m buffer was generated around the birth 

record location and used as the input shapefile for Zonal Statistics as Table in ArcGIS Pro 2.8.0 

to assign mean NDVI values to each birth record [36].   

Racial and ethnic segregation was estimated through dissimilarity indices (i.e., Black 

versus White, Hispanic versus Non-Hispanic, respectively) calculated at the city-level after Bell, 

1954 [37]. Dissimilarity indices measure the distributional uniformity of two groups across 

component geographies within a more extensive geography [38]. The dissimilarity index was 

calculated for cities based on component census tract data from the 2019 ACS 5-year estimates 

and linked to the birth record on the city. 

2.4 Statistical Analysis 

Statistical analyses were performed in SAS 9.4. Unconditional logistic regression 

analyses were conducted to establish crude odds ratios (cORs), adjusted odds ratios (ORs), and 

confidence intervals (CIs) of associations between NO2 exposure at various time points within 

pregnancy (i.e., first trimester, second trimester, third trimester, whole pregnancy) and TLBW. 

The association of NO2 on the outcome was analyzed per interquartile range (IQR) in NO2 (IQR 

trimester 1= 0. 00798 ppm, IQR trimester 2=0.00802 ppm, IQR trimester 3= 0.00841 ppm, IQR 

pregnancy=  0.00546 ppm). Two crude models were performed, the first including no covariates, 
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and the second including only infant sex and previous trimester NO2 where applicable. Fully 

adjusted models additionally controlled for variables established through previous studies to 

affect both the exposure and the outcome, including maternal age (<19, 20-25, 25-29, 30-34, 

>=35 years old), maternal race/ethnicity (White, non-Hispanic, Hispanic, any Race, Black, 

Asian/Pacific Islander, Two or More Races, Other), Parity (first birth, second birth, third birth or 

higher), maternal birthplace (the U.S. Born, non-U.S. born), maternal smoking (ever smoker, 

non-smoker) and payment type of prenatal care as a proxy for individual-level socioeconomic 

status (private, Medi-Cal/ Government/ self-pay, Other/ No-Prenatal) [39].  

Crude and adjusted unconditional logistic regressions were used to examine the 

association between the outcome and each individual neighborhood-level factor (e.g., ADI, 

NDVI, Black dissimilarity, Hispanic dissimilarity), which included the neighborhood covariate 

and control for maternal age, birthplace, race/ethnicity, and smoking; infant sex; parity; and 

prenatal care payment type. ADI and NDVI were classified by quartile, whereas the racial and 

ethnic dissimilarity indices were classified by segregation level (>=0.30 as “low segregation”; 

0.31–0.59 as “average segregation,” 0.6 –1.0 as “high segregation) after Massey and Dentey 

[40].  

To examine the presence of interaction among NO2 and the neighborhood-level factors, 

the adjusted unconditional logistic regressions analyses controlling for individual covariates were 

run separately to include NO2 classified into quartiles, each neighborhood-level factor, and an 

interaction term between NO2 and the neighborhood-level factor of interest. The joint tests were 

examined, and stratified analyses of the association between high NO2 and LTBW were 

examined at each neighborhood strata. 

3. RESULTS 
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Term births characterized by low birth weight were more likely to be female infants born 

to either younger (4.1% in TLBW compared to 3.4% in TNBW) or older (28.8% compared to 

26.8%) mothers with a high school degree (24.7% compared to 23.4%), who did not smoke, and 

who either did not make use of prenatal care or paid for it with a source other than government, 

self-pay, or private insurance (See Table 1a.). Term births of low birth weight also tended to be 

born to mothers with lower NO2 exposure, lower area social deprivation, higher NDVI, and 

average to high racial segregation (See Table 1a.) 

At the block group level, social disadvantage in Los Angeles ranged from 50.8 to 168.1, 

with a median of 98.9 (see Table 1b). Hispanics are generally equally distributed within cities in 

Los Angeles County when compared to non-Hispanics, with a majority (88.4%) of cities 

characterized by low ethnic segregation, and the remaining cities characterized by medium 

ethnic segregation; no cities were characterized by high segregation (See Table 1b). About half 

of cities (53.5%) in Los Angeles County are characterized by low racial segregation, and over a 

third (37.3%) are characterized by medium racial segregation, with the remaining (6.3%) 

characterized by high segregation (See Table 1b). The range of NDVI in Los Angeles County is -

-0.2 to .99, and at the city-level, mean NDVI ranged from 0.7 to 0.65 with a median, mean NDVI 

of 0.32 (See Table 1b). 

Unconditional logistic regressions between trimester and whole pregnancy NO2 and 

TLBW revealed a weak protective factor in unadjusted models (trimester 1 OR=0.91, 95% 

CI=0.86, 0.96; trimester 2 OR=0.92, 95% CI=0.87, 0.98; trimester 3 OR=0.99, 95% CI=0.94, 

1.05; and whole pregnancy OR= 0.88, 95% CI=0.88, 0.98). Models adjusted for only infant sex 

and previous trimester NO2 resulted in similar point estimates and CIs as the fully adjusted 
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model. Only third trimester NO2 showed a potential positive association with TLBW in those 

exposed to high levels of NO2 versus low (aOR=1.02, 95%CI=0.95, 1.09) (See Table 2a.). 

Fully adjusted neighborhood-level models suggest that the data is compatible with a weak 

to a strong positive association between racial segregation and the outcome (aOR=1.37, 

95%CI=1.02, 1.87) when racial segregation is high versus when it is low (see Table 2b.). The 

point estimate for ADI (aOR=1.03, 95%CI=0.89, 1.19) is centered around the null, and the CI 

includes the null. This suggests that although the data may be compatible with a weak to a 

moderately positive association between high ADI and LTBW, a protective association cannot 

be ruled out (See Table 2a.). Similarly, the point estimate for NDVI is below the null (aOR=0.94, 

95%CI =0.87, 1.11), which is compatible with a negative association with LTBW when NDVI is 

low versus when it is high. Although, the CI range suggests that the data may be compatible with 

a positive association between low NDVI and LTBW. Ethnic segregation exhibits the smallest 

CI of all neighborhood-level factors and is compatible with a weak to a moderate positive 

association between high ethnic segregation and LTBW (aOR=1.07, 95%CI=0.98, 1.27) (See 

Table 2a.)  

The ADI and racial and ethnic segregation tests for joint effects yielded large p-values for 

the interaction term, which if the models are correct and there are no other sources of bias, would 

suggest that the data is incompatible with heterogeneity across strata of these neighborhood-level 

factors and that there is insufficient evidence to claim interaction exists between high NO2 

exposure and high ADI (p=0.61), high racial segregation (p=.07) or high ethnic segregation 

(p=.61) on the outcome of LTBW (See Table 3a.). The test for joint effects between NO2 and 

NDVI yielded a p-value of 0.02 for the interaction term, which suggests that the data is 

incompatible with homogeneity across strata of greenness and that there is sufficient evidence to 
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claim an interaction between NO2 and greenness. After adjusting for birth and maternal 

variables, the odds of LTBW among those exposed to high NO2 and low NDVI was 0.77 times 

that of those exposed to low NO2 and high NDVI. The measure of interaction on the additive 

scale is 0.8, whereas the measure on the multiplicative scale is 0.78 suggesting subadditivity and 

submultiplicativity (see Table 3b). Under stratified analysis, this corresponds to a point estimate 

of 1.00 (95%CI: 0.74, 1.34) for high NO2 versus low NO2 within strata of low NDVI. Although 

the stratified point estimate is inconclusive with a large CI and a null point estimate, it does not 

account for the interaction between NO2 and NDVI and may still be compatible with a negative 

association between high NO2 and TLBW when NDVI is low.     

4. DISCUSSION 

The association between individual-level NO2 and TLBW was examined as a precursor to 

investigating the cross-level interactions between individual-level exposures and an inclusive set 

of neighborhood-level factors that act as risk and protective factors for the outcome. NO2 in the 

third trimester was found to be compatible with a weak increase in odds of TLBW. 

Tests for interaction were mostly not compatible with heterogeneity across 

neighborhood-level strata and suggested a lack of interaction between NO2 and most 

neighborhood-level physical and social factors. A negative interaction between high NO2 and 

low NDVI on TLBW was found. This result adds to the conversation concerning the effects of 

greenness in concert with air pollution. While some studies indicate a positive synergism 

between air pollution and greenness on birth outcomes such as preterm birth, others are 

inconclusive [40, 41]. The negative association between high NO2 when NDVI is low calls into 

question the purported protective nature of high greenness. Anabitarte et al. (2019) found a 

negative direct effect of greenness on birth weight when NO2 was treated as a mediator [42]. One 
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potential explanation for the negative interaction of low NDVI and high NO2 on TLBW is the 

relationship between urban vegetation, ozone (O3), and NO2, whereby urban vegetation emits 

biogenetic volatile organic compounds (BVOC) which readily react with NOx to form ozone, 

which in turn reacts with NO to form temporary excess NO2 concentration [43–45]. The lack of 

vegetation may be protective due to a limited input of BVOC. A second possible explanation is 

that the patterning of low NDVI corresponds with access to services that promote normal birth 

weight. The spatial distribution of Los Angeles hospitals and medical centers coincides with low 

NDVI areas (see Figure. 1). However, more investigation is warranted to understand the 

mechanism behind the negative interaction between lack of greenness and high air pollution on 

TLBW. 

4.2 Limitations and Recommendations 

The results of this examination may be strengthened through an increase in sample size 

and more robust neighborhood-level measures. Although a power calculation (power=0.8, 

sample TLBW prevalence=2.25%, national TLBW prevalence=8.1%) suggests a sample of just 

over 250 is sufficient to estimate effect size, it may be beneficial to increase the sample size to 

run interaction analyses [46]. In addition, when examining descriptive statistics, infants in the 

sample born at TLBW have a higher probability of factors generally associated with TNBW, 

such as being born to a non-smoking mother or being first born. This may be due to more 

missing values in the outcome category for these fields than in the comparison group, which may 

be remedied through supplementation with additional birth records.  

Another limitation of this analysis is the lack of complete raster data for coastal areas in 

Los Angeles County. Although there were equal percentages (3.1%) of missing NDVI data for 

the outcome group and the comparison group, it would be beneficial to analyze the interaction 
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between NDVI and NO2 using a complete raster dataset. Future analysis could review other 

sources for vegetation index assignment, such as surface reflectance data sourced from 

Landsat. Lastly, this analysis would benefit from a multi-level model approach to establish 

whether clustering exists within neighborhoods and to account for clustering if it is present to 

arrive at a more robust estimate of association.  

4.3 Conclusion  

This examination found that third-trimester exposure to air pollution and racial 

segregation have a positive association with TLBW when controlling for covariates and that 

there exists a negative interaction between low amounts of greenness and high air pollution on 

TLBW. Analysis of interactions between exposures allows public health professionals to focus 

intervention efforts. When funding is limited, it is crucial to focus intervention efforts on 

exposures or combinations of exposures that provide the most benefit. When interaction effects 

surprise us, such as the negative interaction between high air pollution and low vegetation, it 

calls upon public health professionals to think creatively. Whereas a neighborhood-level 

intervention of tree planting may not result in positive birth outcomes, targeting air pollution at 

the source may. At the same time, the results from this analysis reiterate the importance of 

addressing racism and how historical racist practices lend to health inequity in the present in 

order to advance reproductive health for all.  

 

 

 

 

 



 12 

TABLES 

Table 1a. Demographic and pregnancy characteristics of the study population in Los 
Angeles County. California Birth Records, 2019.  

Characteristic Term Low Birth 
weight     Term Normal Birth 

weight 
 

  N=2,414 %   N=94,786 %  

Infant Sex              
Female 1375 57.0   45,943 48.5  
Male 1039 43.0   48,842 51.5  

Missing 0 0.0   1 0.0  
Maternal Age              

<19 100 4.1   3,239 3.4  
20-24 338 14.0   13,490 14.2  
25-29 569 23.6   23,283 24.6  
30-34 712 29.5   29,351 31.0  
>=35 695 28.8   25,412 26.8  

Missing 0 0.0   11 0.0  
Maternal Education              

         Less than High School 311 12.9   12,566 13.3  
         High school graduate 597 24.7   22,215 23.4  

         Some College or Associate's 
Degree 563 23.3   24,182 25.5  

         College Graduate or Higher 856 35.5   33,477 35.3  
Missing 87 3.6   2,346 2.5  

Maternal Race/Ethnicity              
White, non-Hispanic 401 16.6   19,610 20.7  
Hispanic, any Race 1147 47.5   50,820 53.6  

Black 268 11.1   6,340 6.7  
Asian/Pacific Islander 485 20.1   14,745 15.6  
Two or More Races 50 2.1   1,541 1.6  

Other 8 0.3   247 0.3  
Missing 55 2.3   1,483 1.6  
Parity              

1st Birth 1177 48.8   39,097 41.3  
2nd Birth 671 27.8   30,800 32.5  
3 or more 561 23.2   24,839 26.2  
Missing 5 0.2   50 0.1  

Prenatal Care              
Yes 2377 98.5   93,920 99.1  
No 28 1.2   660 0.7  

Missing 9 0.4   206 0.2  
Payment type of prenatal care              

Private 1109 45.9   44,830 47.3  
MediCal/Govt/ self-pay 1201 49.8   47,152 49.8  

Other/ No-Prenatal 95 3.9   2,598 2.7  
Missing 9 0.4   206 0.2  
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Table 1a. (Continued) Demographic and pregnancy characteristics of the study 
population in Los Angeles County. California Birth Records, 2019.  

Maternal Birthplace              
US 1529 63.3   58,028 671.2  

Non-US countries 876 36.3   36,415 38.4  

Missing 9 0.4   343 0.4  

Maternal Smoking              

Yes 2365 98.0   93,607 98.8  

No 28 1.2   598 0.6  

Missing 21 0.9   581 0.6  

Third Trimester NO2  Quartile              
1 (Lowest) 589 24.4   22,927 24.2  

2 583 24.2   23,058 23.7  
3 588 24.4   23,140 24.4  

4 (Highest) 576 23.9   22,862 24.1  
Missing 78 3.2   2,799 3.0  

Area Deprivation Index Quartile              
1 (Lowest) 586 24.3   23,178 24.5  

2 588 24.4   23,170 24.4  
3 593 24.6   23,160 24.4  

4 (Highest) 588 24.4   23,161 24.4  
Missing 59 2.4   2,117 2.2  

NDVI Quartile              

1 (Lowest) 596 24.7   23,095 24.4  

2 594 24.6   23,093 24.4  

3 576 23.9   23,102 24.4  

4 (Highest) 584 24.2   23,111 24.4  

Missing 64 2.7   2,385 2.5  

Dissimilarity Index, Black              

Low Segregation (<=0.3) 698 28.9   28336.0 29.9  

Average Segregation 1598 66.2   62,502 65.9  

High Segregation (>=0.6) 57 2.4   1,777 1.9  

Missing 61 2.5   2,171 2.3  

Dissimilarity Index, Hispanic              

Low Segregation (<=0.3) 1092 45.2   43946 46.36  

Average Segregation 1261 52.2   48,669 51.4  

High Segregation (>=0.6) 0 0.0   0 0.0  

Missing 61 2.5   2,171 2.3  
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Table 1b. Descriptive statistics of Los Angeles County 
neighborhood-level factors, 2019.  

Measure N=142 % 

Dissimilarity Index, Black*     
Low Segregation (<=0.3) 76 53.5 

Average Segregation 53 37.3 
High Segregation (>=0.6) 9 6.3 

Missing 4 2.8 
Dissimilarity Index, Hispanic*     

Low Segregation (<=0.3) 122 85.9 
Average Segregation 16 11.3 

High Segregation (>=0.6) 0 0.0 
Missing 4 2.8 

Measure N=638,600 

ADI†     
Min 50.8 

Median 98.9 
Max 168.1 
IQR 30.2 

Measure N=142 

NDVI‡     
Min 0.07 

Median 0.32 
Max 0.65 
IQR 0.19 

   
*Measured at the city-level. Source: ACS 5-Year Estimates 
†Measured at the block-group level. Source: Sociome 
‡Presented at the city-level. Source: NASA 
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Table 2a. NO2 trimester and whole pregnancy associations with term low birth weight  

Characteristic Crude Odds Ratio 
(cOR)*     Crude Odds Ratio 

(cOR)† 
 

    Adjusted Odds Ratio 
(aOR)‡ 

 cOR 95% CL   aOR 95% CL    aOR 95% CL 
            

NO2            
1st Trimester 0.91 0.86, 0.96   0.91 0.86, 0.96    0.9 0.85, 0.95 
2nd Trimester 0.92 0.87, 0.98   0.96 0.90, 1.03    0.94 0.88, 1.01 
3rd Trimester 0.99 0.94, 1.05   1.03 0.96, 1.10    1.02 0.95, 1.09 
Whole Pregnancy 0.93 0.88, 0.98   0.93 0.89, 0.98    0.91 0.86, 0.96 

            
*Modeling the odds of TLBW for every IQR increase in NO2 
†Modeling the odds of TLBW for every IQR increase in NO2, controlling for infant sex and previous trimester NO2 
‡Adjusted for infant sex, maternal age, maternal race/ethnicity, maternal birthplace, maternal smoking, payment type, and parity 
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Table 2b. Neighborhood-level associations with term low birth weight 

Characteristic Crude Odds Ratio (cOR)     Crude Odds Ratio (cOR)¶ 

 cOR 95% CL   aOR 95% CL 
       

ADI* 1.00 0.89, 1.13   1.03 0.89, 1.19 
NDVI† 0.98 0.87, 1.10   0.94 0.87, 1.11 
Dissimilarity, Black§ 1.30 0.99, 1.71   1.37 1.02, 1.87 
Dissimilarity, 
Hispanic‡ 1.04 0.96, 1.13 

  
1.07 0.98, 1.17 

 
  

  
  

*Modeling the odds of TLBW for Quartile 4 (highest) versus Quartile 1 (lowest)  
†Modeling the odds of TLBW for Quartile 4 (highest) versus Quartile 1 (lowest)  
‡Modeling the odds of TLBW for high segregation versus low segregation 
§Modeling the odds of TLBW for average segregation versus low segregation 
¶Adjusted for infant, maternal age, maternal race/ethnicity, maternal birthplace, maternal smoking, payment 
type, and parity 
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Table 3a. Joint test results for neighborhood-level model product 
terms 

Interaction Term DF Wald Chi-
Square Pr>Chisq 

NO2 *ADI 9 7.26 0.61 

NO2 *NDVI 9 19.71 0.02 

NO2 *Dissimilarity, Black 6 7.58 0.27 

NO2 *Dissimilarity, Hispanic 3 1.79 0.62 

 
 
 
 
 
Table 3b. Fully adjusted joint effect model between term low birth weight and high NO2, low 
NDVI, or both 
          

 NDVI 

 
High NDVI 

 
Low NDVI 

NO2 TLBW/ TNBW* 
N  aOR    

TLBW/ TNBW* 
N  aOR  

          

Low NO2 65 / 3,021 

  

1.00 

 

231 / 8,291 

  

0.74 

High NO2 188/8,157 

  

1.06 

 

94 /3,395 

  

0.77 

          
*Frequency of term low birth weight and term normal birth weight  
†Measure of interaction on additive scale: RERI = 0.77= 1.06+0.74 -1 | 0.77<0.8 (subadditive) 
‡Measure of interaction on multiplicative scale: ratio of ORs = 0.77 = .74*1.06 | 0.77<0.78 (submultiplicative) 
§ORs are adjusted for infant sex, maternal age, maternal race/ethnicity, maternal birthplace, maternal smoking, 
payment type, and parity 
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Table 3c. Third trimester NO2 associations with term low birth weight, 
stratified by NDVI Quartile* 

Characteristic Adjusted Odds Ratio (aOR)‡ 

 aOR 95% CL 
   

NDVI   
Q1 1.00 0.74, 1.34 
Q2 1.25 0.98, 1.6 
Q3 1.04 0.96, 1.12 
Q4 0.93 0.72, 1.19 

   
*Modeling the odds of term low birth weight for when NO2 is high versus when it is low 
†Adjusted for infant sex, maternal age, maternal race/ethnicity, maternal birthplace, 
maternal smoking, payment type, and parity 
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FIGURES 
Figure 1. Map showing LA County hospital/ medical center locations and NDVI 
 

 
NDVI Data Source: NASA 
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