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Distributed Continuous-Time Optimization:
Nonuniform Gradient Gains, Finite-Time

Convergence, and Convex Constraint Set
Peng Lin, Wei Ren, Fellow, IEEE, and Jay A. Farrell, Fellow, IEEE

Abstract—In this paper, a distributed optimization prob-
lem with general differentiable convex objective functions
is studied for continuous-time multi-agent systems with
single-integrator dynamics. The objective is for multiple
agents to cooperatively optimize a team objective function
formed by a sum of local objective functions with only local
interaction and information while explicitly taking into ac-
count nonuniform gradient gains, finite-time convergence,
and a common convex constraint set. First, a distributed
nonsmooth algorithm is introduced for a special class of
convex objective functions that have a quadratic-like form.
It is shown that all agents reach a consensus in finite time
while minimizing the team objective function asymptoti-
cally. Second, a distributed algorithm is presented for gen-
eral differentiable convex objective functions, in which the
interaction gains of each agent can be self-adjusted based
on local states. A corresponding condition is then given
to guarantee that all agents reach a consensus in finite
time while minimizing the team objective function asymptot-
ically. Third, a distributed optimization algorithm with state-
dependent gradient gains is given for general differentiable
convex objective functions. It is shown that the distributed
continuous-time optimization problem can be solved even
though the gradient gains are not identical. Fourth, a dis-
tributed tracking algorithm combined with a distributed es-
timation algorithm is given for general differentiable con-
vex objective functions. It is shown that all agents reach a
consensus while minimizing the team objective function in
finite time. Fifth, as an extension of the previous results, a
distributed constrained optimization algorithm with nonuni-
form gradient gains and a distributed constrained finite-time
optimization algorithm are given. It is shown that both algo-
rithms can be used to solve a distributed continuous-time
optimization problem with a common convex constraint set.
Numerical examples are included to illustrate the obtained
theoretical results.
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I. INTRODUCTION

D ISTRIBUTED optimization problems for multi-agent sys-
tems have received significant attention in the control

community [1]–[16]. The objective is to solve an optimiza-
tion problem cooperatively in a distributed manner where the
team objective function is composed of a sum of local objective
functions, each of which is known to only one agent. Earlier
work about distributed optimization problems mostly concen-
trated on discrete-time algorithms. For example, article [1] gave
a discrete-time projection algorithm where each agent is re-
quired to lie in a closed convex set and showed that all agents
reach an optimal point in the intersection of all the convex
sets even when the communication topologies are dynamically
changing as long as the edge weight matrix is doubly stochas-
tic. Moreover, articles [4]–[8] addressed distributed optimiza-
tion problems with inequality-equality constraints or using other
discrete-time algorithms and derived conditions to ensure that
all agents converge to the optimal point or its neighborhood.
Recently, some researchers turned their attention to distributed
optimization problems for multi-agent systems with continuous-
time dynamics. For example, article [9] proposed a continuous-
time zero-gradient-sum algorithm. Article [10] and its extension
[16] studied a continuous-time version of the work in [1]. Ar-
ticle [11] studied the continuous-time distributed optimization
problem for undirected graphs and derived explicit expressions
for a lower bound on the algorithm’s convergence rate. Article
[12] proposed a novel distributed continuous-time algorithm for
distributed convex optimization by introducing a dynamic inte-
grator. Founded on the work of [12], articles [13], [14] studied
the distributed continuous-time optimization problem for gen-
eral strongly connected balanced directed graphs and gave the
estimate of the convergence rate of the algorithm.

Although excellent work has been presented in [1]–[16] to
solve the distributed optimization problem, there are still is-
sues that need to be addressed, in particular when nonuniform
gradient or subgradient gains and finite-time convergence are
taken into account. For example, in [5], a distributed optimiza-
tion problem with nonuniform subgradients was studied from a
view point of stochastic theory, but by taking the mathematical
expectation, it can be seen that the given algorithm uses uniform
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subgradient gains in nature. In reality, it is a difficult task to keep
the gradient or subgradient gains uniform for different agents
all the time, in particular when the number of agents is huge. It
is important and necessary to design algorithms for distributed
optimization with nonuniform gradient gains. However, due to
coexistence of the nonuniformity of the gradient gains and the
nonlinearity of the gradients of the local objective functions, the
convergence rates of the local objective functions are no longer
uniform for the distributed optimization problem with nonuni-
form gradient gains and hence the existing approaches cannot be
applied directly. Besides this aspect, most of the existing works
on the distributed optimization problem (e.g., [1]–[16]), studied
only the asymptotical stability of the algorithm and rare results
are concerned about the finite-time convergence of the algo-
rithms. Due to the existence and the nonlinearity of the objective
functions, the existing approaches for the distributed finite-time
consensus problem (e.g., [17], [18]) cannot be extended directly
to the distributed finite-time optimization problems. Though
some results have been obtained in our previous works in [19],
[20] for the distributed finite-time optimization problem, they
are limited to a special class of convex objective functions that
have a quadratic-like form and the approaches cannot be applied
to more general convex objective functions. It is meaningful
and challenging to study the distributed finite-time optimization
problem for more general convex objective functions.

In this paper, we are interested in solving the distributed
optimization problem with general differentiable convex objec-
tive functions for continuous-time multi-agent systems with the
consideration of nonuniform gradient gains, finite-time conver-
gence, and a common convex constraint set. First, a distributed
nonsmooth algorithm is introduced for a special class of convex
objective functions that have a quadratic-like form. It is shown
that all agents reach a consensus in finite time while minimizing
the team objective function asymptotically. Second, an adaptive
distributed algorithm is presented where the interaction gains of
each agent can be self-adjusted based on local states. It is shown
that the distributed continuous-time optimization problem can
be solved when general differentiable convex local objective
functions are taken into account. Third, to relax the synchro-
nization requirement of the system on the gains of the gradients,
a distributed algorithm with state-dependent gradient gains is
given. It is shown that the optimization problem can be solved
even though the gradient gains are not identical. After that, a
distributed tracking algorithm combined with a distributed es-
timation algorithm is given. It is shown that all agents reach
a consensus while minimizing the team objective function in
finite time. Finally, as an extension of the previous results, a dis-
tributed constrained optimization algorithms with nonuniform
gradient gains and a distributed constrained finite-time opti-
mization algorithm are given. It is shown that both algorithms
can be used to solve a distributed continuous-time optimization
problem with a common convex constraint set.

II. NOTATION AND PRELIMINARIES

We adopt the following notation throughout this paper: Rm

denotes the set of allm dimensional real column vectors; Rm×n

denotes the set of all m× n real matrices; I denotes the index

set {1, . . . , n}; si denotes the ith component of the vector s;
Aij denotes the ijth entry of the matrix A; sT and AT denote,
respectively, the transpose of the vector s and the matrix A;
||s|| denotes the Euclidean norm of the vector s; d

ds and ∂
∂s

denote, respectively, the differential operator and partial differ-
ential operator with respect to s; ∇f(s) denotes the gradient of
the function f(s) at swith [∇f(s)]i = ∂f (s)

∂si
; the matrix∇2f(s)

denotes the Hessian or second-order partial derivative matrix of
the function f(s) at swith [∇2f(s)]ij = ∂ 2 f (s)

∂si ∂ sj
; sgn(s) denotes

a component-wise sign function of s; the symbol / denotes the
division sign; Y −X denotes the relative complement set of
X in Y for any two sets X and Y ; and PX (s) denotes the
projection of the vector s onto the closed convex set X , i.e.,
PX (s) = arg mins̄∈X ‖s− s̄‖.

LetG(V, E ,A) be a graph of ordern, whereV = {1, . . . , n} is
the set of nodes, E ⊆ V × V is the set of edges, and A = [aij ] ∈
Rn×n is the weighted adjacency matrix. An edge of (i, j) ∈ E
denotes that agent i can obtain information from agent j. The
weighted adjacency matrix A is defined as aii = 0 and aij = 1
if (i, j) ∈ E and aij = 0 otherwise. The graph G is undirected if
aij = aji for all i, j. The set of neighbors of node i is denoted
by Ni = {j ∈ V : (i, j) ∈ E}. A path is a sequence of edges
of the form (i1 , i2), (i2 , i3), . . ., where ij ∈ V . The graph G is
connected, if there is a path from every node to every other node.

Lemma 1: [22] Let f0(s) : Rm → R be a differentiable con-
vex function. f0(s) is minimized if and only if ∇f0(s) = 0.

Lemma 2: [23] Suppose that Y �= ∅ is a closed convex set
in Rm . The following two statements hold:

(a) For any y ∈ Rm , ‖y − PY (y)‖ is continuous with re-
spect to y and ∇ 1

2 ‖y − PY (y)‖2 = y − PY (y).
(b) For any y, z ∈ Rm and all ξ ∈ Y, [y − PY (y)]T (y −

ξ) ≥ 0, ‖PY (y) − ξ‖2 ≤ ‖y − ξ‖2 − ‖PY (y) − y‖2

and ‖PY (y) − PY (z)‖ ≤ ‖y − z‖.

III. DISTRIBUTED CONTINUOUS-TIME OPTIMIZATION

WITHOUT CONSTRAINTS

Consider a multi-agent system consisting of n agents. Each
agent is regarded as a node in an undirected graph G(t), and
each agent can interact with only its neighbors. Suppose that the
agents satisfy the continuous-time dynamics

ẋi(t) = ui(t), i ∈ I, (1)

where xi(t) ∈ Rm is the state of agent i, and ui(t) ∈ Rm is the
control input of agent i. Our objective is to design ui(t) using
only local interaction and information, such that all agents co-
operatively find the optimal state s∗ that solves the optimization
problem

minimize
∑n

i=1fi(s) subject to s ∈ Rm ,

where fi(s) : Rm → R denotes the local objective function of
agent i, which is convex, differentiable, and known only to
agent i. Clearly,

∑n
i=1fi(s) is also a differentiable function. The

problem described above is equivalent to the problem that all
agents reach a consensus while minimizing the team objective
function

∑n
i=1fi(xi), i.e.,

minimize
∑n

i=1fi(xi) subject to xi = xj ∈ Rm . (2)
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Assumption 1: Each setXi �
{
s
∣
∣∇fi(s) = 0

}
is nonempty

and bounded.
To illustrate Assumption 1, we consider the convex function

fi(s) : R2 → R:

fi(s) =
{

0, if ‖s‖ ≤ 1,
0.5(‖s‖ − 1)2 , otherwise.

By simple calculations, we have

∇f(s) =
{

[0, 0]T , if ‖s‖ ≤ 1,
(‖s‖ − 1) s

‖s‖ �= [0, 0]T , otherwise.

Clearly, Xi = {s|‖s‖ ≤ 1} and hence fi(s) satisfies
Assumption 1.

In Assumption 1, we only make assumptions on each fi(s)
rather than the team objective function

∑n
i=1fi(s) because the

team objective function
∑n

i=1fi(s) is a global information for
all agents and cannot be used by each agent in a distributed way.

Define X �
{
s
∣
∣
∑n

i=1∇fi(s) = 0
}

. From Lemma 1, all Xi

and X are the minimum sets of fi(s) and
∑n

i=1fi(s) for all i.
Lemma 3: Let f(s) : Ξ �→ R be a differentiable convex

function and Y be its minimum set in Ξ, where Ξ ⊆ Rn is
a closed convex set. Suppose that Y is bounded and closed. For
any z = λPY (y) + (1 − λ)y with λ ∈ (0, 1),

0 < ∇f(z)T y−PY (y )
‖y−PY (y )‖ ≤ ∇f(y)T y−PY (y )

‖y−PY (y )‖
for any y ∈ Ξ − Y .

Proof: Let

z = λPY (y) + (1 − λ)y

with λ ∈ (0, 1) for any y ∈ Ξ − Y . Clearly, z ∈ Ξ − Y . From
the convexity of the function f(s), we have f(y) − f(z) ≥
∇f(z)T (y − z) and f(z) − f(y) ≥ ∇f(y)T (z − y). Thus,

0 = f(y) − f(z) + f(z) − f(y) ≥ [∇f(z) −∇f(y)
]T (y −

z). Note that y �= z, y �= PY (y) and z �= PY (y). Hence
y−z
‖y−z‖ = y−PY (y )

‖y−PY (y )‖ = z−PY (y )
‖z−PY (y )‖ , and ∇f(y)T y−PY (y )

‖y−PY (y )‖
= ∇f(y)T y−z

‖y−z‖ ≥ ∇f(z)T y−z
‖y−z‖ = ∇f(z)T y−PY (y )

‖y−PY (y )‖ , i.e.,

∇f(y)T y−PY (y )
‖y−PY (y )‖ ≥ ∇f(z)T y−PY (y )

‖y−PY (y )‖ . Furthermore, since
PY (y) ∈ Y and Y is the minimum set, from the convexity of
the function f(s), we have 0 > f(PY (y)) − f(z) ≥ ∇f(z)T

(PY (y) − z). That is, ∇f(z)T z−PY (y )
‖z−PY (y )‖ > 0. Recalling that

y−PY (y )
‖y−PY (y )‖ = z−PY (y )

‖z−PY (y )‖ , we have ∇f(z)T y−PY (y )
‖y−PY (y )‖ > 0. �

Lemma 4: Under Assumption 1, the following two state-
ments hold:

(1) lim‖y‖→+∞ fi(y) = +∞ for all i and accordingly
lim‖y‖→+∞

∑n
i=1fi(y) = +∞.

(2) AllXi andX are nonempty closed bounded convex sets
for all i.

Proof: From the convexity of the functions fi(s),
∑n

i=1fi(s)
is convex and hence all Xi and X are also convex. Under
Assumption 1, each Xi is nonempty and bounded. Now, we
prove that all Xi are closed sets. If this is not true, there ex-
ists an integer ie such that Xie is an open set. Then there
must exist a vector se /∈ Xie and a vector sequence {s̃k ∈
Xie } such that se = limk→+∞ s̃k . Clearly, fie (s̃k ) = ρie for
all k, where ρie denotes the minimum value of the function
fie (s). From the continuity of the function fie (s), we have

fie (se) = limk→+∞ fie (s̃k ) = ρie . This implies that se ∈ Xie ,
which yields a contradiction. Therefore, all Xi are closed sets.

Let Yi be a closed bounded convex set such that
Xi ⊂ Yi and miny /∈Yi ‖y − PXi

(y)‖ > 0. Clearly, maxy∈Yi
‖y − PXi

(y)‖ < �0 for some positive constant �0 > 0.
From the property of a continuous function on a closed
bounded set and Lemma 3, we have �1 � miny∈∂̄ Yi∑n

i=1∇fi(y)T y−PX i
(y )

‖y−PX i
(y )‖ > 0 and �2 � maxy∈∂̄ Yi

∑n
i=1

∇fi(y)T y−PX i
(y )

‖y−PX i
(y )‖ > 0, where ∂̄Yi denotes the boundary

of the set Yi . Integrating ∇fi(s) along the line from PYi (y)
to y, from Lemma 3, we have fi(y) − fi(PXi

(y)) =
∫ y
PX i

(y ) ∇fi(s)T ds =
∫ ‖y−PX i

(y )‖
0 ∇fi(PXi

(y) +
y−PX i

(y )
‖y−PX i

(y )‖s)
T y−PX i

(y )
‖y−PX i

(y )‖ds ≥ �1‖y − PYi (y)‖ −�2�0 .

It follows that lim‖y‖→+∞ fi(y) = +∞. Thus,

lim
‖y‖→+∞

n∑

i=1

fi(y) = +∞. (3)

On the other hand, since each fi(y) is lower bounded,∑n
i=1fi(y) is lower bounded and hence its infimum exists, de-

noted by ω2 . From (3), for any sufficiently large constant ω3 >
ω2 , there exists a constant hl > 0 such that

∑n
i=1fi(y) > ω3

for any ‖y‖ > hl . Let Ỹ = {‖y‖ ≤ hl}. It is clear that if X is
nonempty, X ⊂ Ỹ . Note that Ỹ is a closed bounded set. Since∑n

i=1fi(y) is continuous with respect to y, from the property
of a continuous function on a closed bounded set, we have the
minimum set of

∑n
i=1fi(y) in Ỹ is nonempty. That is, X is

nonempty. Then by using the same analysis approach as forXi ,
it can be proved that X is bounded and closed. �

Assumption 2: The length of the time interval between any
two contiguous switching times is no smaller than a given con-
stant, denoted by dw .

Arbitrary switching of the graph G(t) might lead to the Zeno
behavior. Hence Assumption 2 is imposed to prevent the system
from exhibiting the Zeno behavior. Throughout this paper, our
analysis is founded on Assumption 2. For simplicity, this will
not be repeatedly mentioned except when it is necessary.

A. Distributed Gradient Optimization

In this subsection, we design ui(t) for (1) to solve the con-
vex optimization problem (2). In particular, all agents are driven
to reach a consensus in finite time while minimizing the team
objective function as t→ +∞. We propose the following algo-
rithm

ui(t) = α
∑

j∈Ni (t)

sgn
(
xj (t) − xi(t)

)− γ∇fi(xi(t)), (4)

where α > 0 and γ > 0 are two constants. In (4), the role of the
first term, α

∑
j∈Ni (t)sgn

(
xj (t) − xi(t)

)
, is to drive all agents

to reach a consensus, while the second term, −γ∇fi(xi(t)),
is a weighted negative gradient of fi(xi(t)) playing a role in
minimizing fi(xi(t)).

Remark 1: As our algorithms discussed in this paper contain
sign functions that is piecewise differentiable, the solution of the
system (1) would be considered in the sense of Filippov [24].
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Assumption 3: Let ∇fi(s) = σs+ φi(s), where σ ≥ 0 and
‖φi(s)‖ < g for a certain positive number g and all s ∈ Rm .

In [2], the subgradients of the local objective functions were
assumed to be bounded and the most common quadratic convex
functions were not considered. Under Assumption 3, when σ =
0, the gradient of each local objective function is bounded, and
when σ > 0, the gradient of each local objective function con-
tains a linear term and a bounded term, which includes the sce-
narios of [2] and the quadratic convex functions as special cases.

Proposition 1: Suppose that the graph G(t) is undirected and
connected for all t and Assumptions 2 and 3 hold. For system (1)
with algorithm (4), if α/γ > 2ng, all agents reach a consensus
in finite time. That is, there exists a positive number T such that
xj (t) = xi(t) for all t > T and all i, j ∈ I.

Proof: Consider the Lyapunov function candidate

V (t) =
1
2

n∑

i=1

∥
∥xi(t) − 1

n

n∑

j=1

xj (t)
∥
∥2
. (5)

It is clear that when V (t) = 0, xi(t) = xj (t) for all i, j. Calcu-
lating V̇ (t) along the solutions of system (1) with (4), we have

V̇ (t)

=
∑n

i=1
[xi(t) − 1

n

∑n

k=1
xk (t)]T

×
[

α
∑

j∈Ni (t)
sgn(xj (t) − xi(t))

− γ∇fi(xi(t)) − 1
n

∑n

j=1
ẋj (t)

]

=
∑n

i=1

[

xi(t) − 1
n

∑n

k=1
xk (t)

]T

×
[

α
∑

j∈Ni (t)
sgn(xj (t) − xi(t))

− [γ∇fi(xi(t)) − γσxi(t) + γσxi(t)]

+
γσ

n

∑n

j=1
xj (t)

]
(6)

where the second equality holds because
∑n

i=1[xi(t) −
1
n

∑n
k=1xk (t)]

T 1
n

∑n
j=1 ẋj (t) = 0 × 1

n

∑n
j=1 ẋj (t) = 0 and

∑n
i=1[xi(t) − 1

n

∑n
k=1xk (t)]

T 1
n

∑n
j=1xj (t) = 0 × 1

n∑n
j=1xj (t) = 0. Since the graph G(t) is undirected, then

(i, j) ∈ E if and only if (j, i) ∈ E . Thus,

∑n

i=1

[

xi(t) − 1
n

∑n

k=1
xk (t)

]T

×α
∑

j∈Ni (t)
sgn(xj (t) − xi(t))

=
∑n

i=1

∑

j∈Ni (t)
α

[

xi(t) − 1
n

∑n

k=1
xk (t)

]T

× sgn(xj (t) − xi(t))

=
∑n

i=1

∑

j∈Ni (t)

{
α

2

×
[

xi(t) − 1
n

∑n

k=1
xk (t)

]T
sgn(xj (t) − xi(t))

+
α

2

[

xj (t) − 1
n

∑n

k=1
xk (t)

]T
sgn(xi(t) − xj (t))

}

=
∑n

i=1

∑

j∈Ni (t)

{
α

2

[

xi(t) − 1
n

∑n

k=1
xk (t)

−xj (t) +
1
n

∑n

k=1
xk (t)

]T
sgn(xj (t) − xi(t))

=
∑n

i=1

∑

j∈Ni (t)

α

2
[xi(t) − xj (t)]

T

× sgn(xj (t) − xi(t)). (7)

Under Assumption 3,∇fi(xi(t)) = σxi(t) + φi(xi(t)), σ >
0 and ‖φi(xi(t))‖ < g. Since γ > 0, it follows from (6) and (7)
that

V̇ (t)

=
∑n

i=1

∑

j∈Ni (t)

α

2
[xi(t) − xj (t)]T

× sgn(xj (t) − xi(t))

−
∑n

i=1

[

xi(t) − 1
n

∑n

j=1
xj (t)

]T
γφi(xi(t))

− γσ
∑n

i=1

∥
∥xi(t) − 1

n

∑n

j=1
xj (t)

∥
∥2

≤
∑n

i=1

∑

j∈Ni (t)

α

2
[xi(t) − xj (t)]T

× sgn(xj (t) − xi(t))

+
∑n

i=1
‖xi(t) − 1

n

∑n

j=1
xj (t)‖γg. (8)

Consider the quantity xi(t) − 1
n

∑n
j=1xj (t) for all i ∈ I. Let

i0 , j0 ∈ I be the integers such that ‖xi0 (t) − xj0 (t)‖ =
maxi,j∈I ‖xi(t) − xj (t)‖ at time t. It is clear that
‖xi(t) − 1

n

∑n
j=1xj (t)‖ ≤ 1

n

∑n
j=1‖xi(t) − xj (t)‖ ≤

‖xi0 (t) − xj0 (t)‖. Since G(t) is connected, there must
exist a path (i0 , i0), (i0 , i1), . . . , (ih−1 , ih), (ih , j0) that con-
nects nodes i0 and j0 . Note that ‖xi0 (t) − xj0 (t)‖ ≤ ‖xi0 (t) −
xi0 (t)‖ +

∑h
k=1‖xik −1 (t) − xik (t)‖ + ‖xih (t) − xj0 (t)‖ ≤∑n

i=1
∑

j∈Ni (t)‖xi(t) − xj (t)‖. Therefore, ‖xi0 (t) −
xj0 (t)‖ ≤∑n

i=1
∑

j∈Ni (t)‖xi(t) − xj (t)‖. Also, note that

‖xi(t) − xj (t)‖ ≤ −[xi(t) − xj (t)]T sgn(xj (t) − xi(t)) for
all i, j ∈ I from the relations of operator norms. It follows that

∥
∥
∥
∥xi(t) −

1
n

∑n

j=1
xj (t)

∥
∥
∥
∥

≤ ‖xi0 (t) − xj0 (t)‖
≤ −

∑n

i=1

∑

j∈Ni (t)
[xi(t) − xj (t)]T

× sgn(xj (t) − xi(t)). (9)
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If α/γ > 2ng, it follows from (8) and (9) that

V̇ (t) ≤
∑n

i=1

∑

j∈Ni (t)
[xi(t) − xj (t)]T

× sgn(xj (t) − xi(t))
(α

2
− γng

)
≤ 0.

This implies thatV (t) and hence ‖xi0 (t) − xj0 (t)‖ are bounded.
When V (t) �= 0, i.e., ‖xi0 (t) − xj0 (t)‖ �= 0, noting from (9)
that
√
V (t) ≤√n

2 ‖xi0 (t) − xj0 (t)‖, it follows that

V̇ (t)
√
V (t)

≤
∑n

i=1
∑

j∈Ni (t) [xi(t) − xj (t)]T sgn(xj (t) − xi(t))
1√
2

√
n‖xi0 (t) − xj0 (t)‖

×
(α

2
− γng

)
≤ −(α/

√
2n−

√
2nγg) < 0.

Integrating both sides of this inequality, we have

2
√
V (t) − 2

√
V (0) < −(α/

√
2n−

√
2nγg)t. (10)

It is clear that V (t) converges to zero in finite time. Namely, all
agents reach a consensus in finite time. �

Theorem 1: Suppose that the graph G(t) is undirected and
connected for all t and Assumptions 1, 2 and 3 hold. For system
(1) with algorithm (4), if α/γ > 2ng, all agents reach a consen-
sus in finite time and minimize the team objective function (2)
as t→ +∞.

Proof: Define

x∗(t) � 1
n

n∑

j=1

xj (t). (11)

Under Assumption 3, Proposition 1 holds. From Proposition 1,
there exists a positive number T such that xi(t) = x∗(t) for
all t > T and all i ∈ I. Since the graph G(t) is undirected, it
follows that for all t > T,

ẋ∗(t) =
1
n

∑n

i=1
ẋi(t)

=
1
n

∑n

i=1

[

α
∑

j∈Ni (t)
sgn(xj (t) − xi(t))

− γ∇fi(xi(t))
]

= −γ
n

∑n

i=1
∇fi(x∗(t)). (12)

Consider the Lyapunov function candidate V (t) = 1
2 ‖x∗(t) −

PX (x∗(t))‖2 for t > T . Calculating V̇ (t) along the solutions of
(12), it follows from Lemma 2 and the convexity of

∑n
i=1fi(s)

that

V̇ (t) = [x∗(t) − PX (x∗(t))]T ẋ∗(t)

= −γ
n

[x∗(t) − PX (x∗(t))]T
∑n

i=1
∇fi(x∗(t))

≤ −γ
n

[∑n

i=1
fi(x∗(t)) −

∑n

i=1
fi(PX (x∗(t)))

]
(13)

for t > T . Let Y = {s ∈ Rm | ‖s− PX (s)‖ ≤ l1} for some
constant l1 > 0 and ρ = mins∈∂̄ Y

∑n
i=1[fi(s) − fi(PX (s))],

where ∂̄Y denotes the boundary of Y . Since PX (s) ∈ X ,
from the definition of X , we have ρ > 0. Moreover, from
Lemma 3,

∑n
i=1[fi(s) − fi(PX (s))] > ρ for any s /∈ Y . Thus,

V̇ (t) ≤ − γ
n ρ for any x∗(t) /∈ Y and t > T . This implies that

there exists a constant T0 > T for any l1 > 0 such that ‖x∗(t) −
PX (x∗(t))‖ ≤ l1 for all t > T0 . In view of the arbitrariness of l1 ,
letting l1 → 0, we have limt→+∞ ‖x∗(t) − PX (x∗(t))‖ = 0. It
follows from the definition ofX that the team objective function
(2) is minimized as t→ +∞. �

B. Distributed Adaptive Gradient Optimization Algorithm

In algorithm (4), it is required that the gainsα and γ should be
known to all agents and it can only be used to deal with quadratic-
like convex objective functions. In this subsection, we design a
distributed adaptive algorithm for (1) to solve the optimization
problem (2) for general convex local objective functions. The
algorithm is given by

ui(t) =
∑

j∈Ni (t)
qij (t)sgn

(
xj (t) − xi(t)

)

−∇fi(xi(t)),

q̇ij (t) =
{

sgn(maxs∈[t−c0 ,t] ‖xj (s) − xi(s)‖), if (i, j) ∈ G(t),
0, otherwise,

qij (0) = qji(0) = 0, (14)

where c0 > 0 is an arbitrary constant. In (14), the role of the first
term,

∑
j∈Ni (t)qij (t)sgn

(
xj (t) − xi(t)

)
, is to drive all agents

to reach a consensus, while the second term, −∇fi(xi(t)), is
the negative gradient of fi(xi(t)) playing a role in minimizing
fi(xi(t)).

Theorem 2: Suppose that the graph G(t) is undirected and
connected for all t and Assumptions 1 and 2 hold. For system
(1) with algorithm (14), all agents reach a consensus in finite
time and minimize the team objective function (2) as t→ +∞.

Proof: We first show that all xi(t) remain in a bounded
region. Under Assumption 1, it follows from Lemma 4 that all
Xi and X are nonempty closed bounded convex sets for all
i. Therefore, there is a closed bounded convex set Y such that
xi(0) ∈ Y,X ⊂ Y andXi ⊂ Y for all i. Consider the Lyapunov
function candidate V (t) =

∑n
i=1‖xi(t) − z‖2 for some z ∈ X .

Let Y be sufficiently large for all zj ∈ Xj such that fi(xi(t)) −
fi(z) ≥

∑n
j=1,j �=i [fj (z) − fj (zj )] for all i and all xi(t) /∈ Y .

Calculating V̇ (t), we have

V̇ (t) =
∑n

i=1

(
xi(t) − z

)T

×
∑

j∈Ni (t)
qij (t)sgn

(
xj (t) − xi(t)

)

−
∑n

i=1

(
xi(t) − z

)T∇fi(xi(t)). (15)

Since z ∈ X , from the convexity of the function fi(xi(t)),
we have ∇fi(xi(t))T (z − xi(t)) ≤ fi(z) − fi(xi(t)). More-
over, since the graph G(t) is undirected, similar to the proof
of Proposition 1, we have

∑n

i=1
xi(t)T

∑

j∈Ni (t)
qij (t)sgn

(
xj (t) − xi(t)

)

=
∑n

i=1

∑

j∈Ni (t)

qij (t)
2
(
xi(t) − xj (t)

)T

× sgn
(
xj (t) − xi(t)

) ≤ 0 (16)
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and
∑n

i=1
zT
∑

j∈Ni (t)
qij (t)sgn

(
xj (t) − xi(t)

)
= 0. (17)

From (15), (16) and (17), we have V̇ (t) ≤ −∑n
i=1[fi(xi(t)) −

fi(z)]. If xi0 (t) /∈ Y for some i0 , we have fi0 (xi0 (t)) −
fi0 (z) ≥

∑n
j=1,j �=i0 [fj (z) − fj (zj )] for all zj ∈ Xj and

hence V̇ (t) ≤ −[fi0 (xi0 (t)) − fi0 (z)] +
∑n

j=1,j �=i0 [fj (z) −
fj (zj )] ≤ 0. This implies that all xi(t) remain in Y . Note that
each function fi(s) is differentiable and Y is bounded. Thus
each ∇fi(s) is bounded. That is, ‖∇fi(s)‖ < ρf for some con-
stant ρf > 0.

Now, we show that all agents reach a consensus in finite time.
Let 0 < tk1 ≤ tk2 < tk+1,1 ≤ tk+1,2 denote the contiguous
switching times for all k ∈ {1, 2, . . .} such that xi(t) �= xj (t)
for some two integers i, j ∈ I and all t ∈ [tk1 , tk2) and xi(t) =
xj (t) for all i, j ∈ I and all t ∈ [tk2 , tk+1,1). Suppose that
consensus is not reached in finite time and

∑+∞
k=1(tk2 − tk1) <

+∞. It is clear that tk2 − tk1 > 0 when k → +∞. From the dy-
namics of qij (t), we have that limt→+∞

∑n
i=1
∑n

j=1 qij (t) =
+∞. Then by a similar approach to the following case of∑+∞

k=1(tk2 − tk1) = +∞, it can be shown that consensus can
be reached in finite time, which is a contradiction.

Suppose that
∑+∞

k=1(tk2 − tk1) = +∞. Then from the
dynamics of qij (t), there must exist a pair of agents, denoted by
i0 �= j0 , such that limt→+∞ qi0 j0 (t) = +∞. In the following,
we prove that there exist a pair of agents, denoted by i1 �= j1 ,
such that (i1 , j1) /∈ {(i0 , j0), (j0 , i0)}, i1 ∈ {i0 , j0} and
limt→+∞ qi1 j1 = +∞. If this is not true, we have qii0 (t) < γq
and qij0 (t) < γq for some constant γq > ρf , all t and all
i ∈ ∪s∈[0,+∞) [Ni0 (s) ∪Nj0 (s)] with i �= i0 and i �= j0 . Since
limt→+∞ qi0 j0 (t) = +∞, there exists a sufficiently large
constant T0 > 0 for any γ0 > 6nmγq such that qi0 j0 (t) > γ0
for all t > T0 . By simple calculations based on (14), when
(i0 , j0) ∈ G(t) and ‖xi0 (t) − xj0 (t)‖ �= 0 for t > T0 , we have
d
dt ‖xi0 (t) − xj0 (t)‖ ≤ xi 0 (t)−xj 0 (t)

‖xi 0 (t)−xj 0 (t)‖2qi0 j0 (t)sgn
(
xj0 (t) −

xi0 (t)
)

+ 2nmγq ≤ −2nmγq . When there exist at least an
agent i such that i ∈ Nĩ(t) and ‖xĩ(t) − xi(t)‖ �= 0 for
ĩ ∈ {i0 , j0} and either (i0 , j0) /∈ G(t) or ‖xi0 (t) − xj0 (t)‖ = 0
holds, we have d

dt ‖xi0 (t) − xj0 (t)‖ ≤ 2nmγq for t > T0 . Since
allxi(t) remain in a bounded region, ‖xi0 (t) − xj0 (t)‖ < ρv for
some positive constant ρv . Let τa(T1) and τb(T1), respectively,
denote the total time in the interval (T0 , T1) for any T1 > T0
for the case when (i0 , j0) ∈ G(t) and ‖xi0 (t) − xj0 (t)‖ �= 0
and the case when there exist at least an agent i such that
i ∈ Nĩ(t) and ‖xĩ(t) − xi(t)‖ �= 0 for ĩ ∈ {i0 , j0} and either
(i0 , j0) /∈ G(t) or ‖xi0 (t) − xj0 (t)‖ = 0 holds. Thus,

0 ≤ ‖xi0 (T1) − xj0 (T1)‖
≤ ‖xi0 (T0) − xj0 (T0)‖ + 2nmγqτb(T1)

− 2nmγqτa(T1)

≤ ρv + 2nmγqτb(T1) − 2nmγqτa(T1). (18)

Since limt→+∞ qi0 j0 (t) = +∞, from the dynamics of qij (t),
we have limT1 →+∞ τa(T1) = +∞ and hence from (18) we
have limT1 →+∞ τb(T1) = +∞. That is, there exist a pair of

agents i1 �= j1 such that (i1 , j1) /∈ {(i0 , j0), (j0 , i0)}, i1 ∈
{i0 , j0} and limt→+∞ qi1 j1 (t) = +∞. Similarly, it can be
proved that there exist a pair of agents i2 �= j2 such that
(i2 , j2) /∈ {(i0 , j0), (j0 , i0), (i1 , j1), (j1 , i1)}, i2 ∈ {i0 , j0 , i1}
and limt→+∞ qi2 j2 (t) = +∞. By analogy, it can be proved that
limt→+∞ qij (t) = +∞ for all i, j. Since each ‖∇fi(xi(t))‖
is bounded for all t, there is a constant T2 > 0 such that
qij (t) > 2nmaxk ‖∇fk (xk (t))‖ for all i, j and all t > T2 . Sim-
ilar to the proof of Proposition 1, we have all agents reach a
consensus in finite time. This contradicts with the precondition
that
∑+∞

k=1(tk2 − tk1) = +∞.
Summarizing the above analysis, all agents reach a consen-

sus in finite time. Then there exists a number T > 0 such that
xi(t) = x∗(t), where x∗(t) is defined in (11), for all t > T
and all i ∈ I. Similar to the proof of Theorem 1, it can be
proved that the team objective function (2) is minimized as
t→ +∞. �

C. Distributed Optimization Algorithm With Nonuniform
Gradient Gains

In the existing works, the gradient gains are usually assumed
to be uniform and need to be known in advance, e.g., [1]. In this
subsection, we extend to consider the nonuniform gradient gains
based on the agents’ states for general convex local objective
functions. The algorithm is given by

q̇i(t) = arctan(e‖xi (t)‖), qi(0) > 0,

ui(t) =
∑

j∈Ni (t)
sgn
(
xj (t) − xi(t)

)− ∇fi(xi(t))√
qi(t)

(19)

for all i. Here, the gain 1/
√
qi(t) is used to ensure the weighted

gradient dfi (xi (t))√
qi (t)dxi (t)

to tend to zero as time evolves. In practical

applications, it is hard for all agents to have a uniform system
clock and know its value accurately at any time. So, we do not
use the information of the system clock directly in the design of
the gradient gains.

Remark 2: Here, we use the inverse tangent functions and the
exponential functions to guarantee q̇i(t) to be upper and lower
bounded by two positive constants (here the two constants are
π
2 and π

4 ). As a matter of fact, there are some other functions,
e.g., saturation function, that can be used to play the same role.
For easy readability, we do not give the general form of such
functions.

Theorem 3: Suppose that the graph G(t) is undirected and
connected for all t and Assumptions 1 and 2 hold. For system
(1) with algorithm (19), all agents reach a consensus in finite
time and minimize the team objective function (2) as t→ +∞.

Proof: Note that π/4 ≤ arctan(e‖xi (s)‖) ≤ π/2 for all s and
all i. There exists a constant T > 0 such that 2

√
t >
√
qi(t) >√

t
2 for all i and all t > T . Consider the Lyapunov function can-

didate V (t) =
∑n

i=1‖xi(t) − z‖2 for z ∈ X and t > T . Under
Assumption 1, it follows from Lemma 4 that all Xi and X are
nonempty closed bounded convex sets for all i. LetY be a closed
bounded convex set such that xi(T ) ∈ Y, X ⊂ Y, Xi ⊂ Y
and fi(xi(t)) − fi(z) ≥ 4

∑n
j=1,j �=i [fj (z) − fj (zj )] for all i,
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all zj ∈ Xj and all xi(t) /∈ Y . It follows that 1√
qi (t)

[fi(xi(t)) −
fi(z)] ≥

∑n
j=1,j �=i

1√
qj (t)

[fj (z) − fj (zj )] for all t > T , all i,

all zj ∈ Xj and all xi(t) /∈ Y . Then similar to the proof
of Theorem 2, it can be proved that all ‖xi(t)‖ and all
∇fi(xi(t)) are bounded for all t > T . That is, |fi(xi(t))| < μc
and
∥
∥∇fi(xi(t))

∥
∥ < μc for some constant μc > 0, all i and all

t > T . Moreover, note that X is bounded and each fi(s) is dif-
ferentiable for all i and all s. Let μc be sufficiently large such
that μc > 2n

∥
∥∇fi(xi(t))

∥
∥ and μc >

∣
∣fi(s)

∣
∣ for all i, all t > T

and all s ∈ X . Let T0 > T be a constant such that
√
T0
2 > μc .

Similar to the proof of Proposition 1, it can be proved that all
agents reach a consensus in finite time. That is, there exists a
constantT1 > T0 such that xi(t) = x∗(t) for all i and all t > T1 ,
where x∗(t) is defined in (11).

Now, we prove that the team objective function (2) is min-
imized as t→ +∞. Let E = {s ∈ Rm | ‖s− PX (s)‖ ≤ l1}
for some constant l1 > 0 and ρ = mins∈∂̄E

∑n
i=1[fi(s) −

fi(PX (s))], where ∂̄E denotes the boundary of E.
Since PX (s) ∈ X , from the definition of X , we have
ρ > 0. From Lemma 3,

∑n
i=1[fi(s) − fi(PX (s))] > ρ for

any s /∈ E. Note that qi(t) − qi(T1) = qj (t) − qj (T1) =
∫ t
T1

arctan(e‖x
∗(s)‖)ds � q∗(t) and qi(t) = q∗(t)/Δi(t) for all

i, j and t > T1 , where Δi(t) = 1/(1 + qi (T1 )
q ∗(t) ). Since the graph

G(t) is undirected and connected, it follows that for all t > T1 ,

ẋ∗(t)

=
1
n

∑n

i=1
ẋi(t)

=
1
n

∑n

i=1

[
∑

j∈Ni (t)
sgn(xj (t) − xi(t)) − ∇fi(xi(t))√

qi(t)

]

= − 1
n

∑n

i=1

√
Δi(t)∇fi(x∗(t))
√
q∗(t)

. (20)

On the other hand, recall that π/4 ≤ arctan(e‖xi (s)‖) ≤ π/2 for
all s and all i. From the definition of q∗(t), there exists a constant
T2 > T1 for any 0 < ε < ρ

4n such that 2
√
t >
√
q∗(t) >

√
t

2
and 1 −√Δi(t) < ε

2μc
for all i and all t > T2 . Let φi(t) =

fi(x∗(t)) − fi(PX (x∗(t))) for all i. Since |fi(x∗(t))| < μc and
|fi(PX (x∗(t)))| < μc , it follows that |φi(t)[1 −√Δi(t)]| < ε
for all i.

Consider the Lyapunov function candidate V̄ (t) =
1
2 ‖x∗(t) − PX (x∗(t))‖2 for t > T2 . Calculating ˙̄V (t) along the
solutions of (20), it follows from Lemma 2 and the convexity of∑n

i=1fi(s) that

˙̄V (t) = [x∗(t) − PX (x∗(t))]T ẋ∗(t)

= − 1
n
√
q∗(t)

[x∗(t) − PX (x∗(t))]T

×
∑n

i=1
∇fi(x∗(t))

(
1 − 1 +

√
Δi(t)

)

≤ − 1
n
√
q∗(t)

∑n

i=1
φi(t) −

∑n

i=1
φi(t)

1 −√Δi(t)
n
√
q∗(t)

≤ − 1
n
√
q∗(t)

∑n

i=1
φi(t) +

ε
√
q∗(t)

(21)

for t > T2 . Since 2
√
t >
√
q∗(t) >

√
t

2 for all t > T2 and

ε < ρ
4n , then ˙̄V (t) ≤ − 1√

q ∗(t)
[ ρn − ε] ≤ − 1√

t
[ ρ2n − 2ε] < 0 for

any x∗(t) /∈ E and all t > T2 . Integrating both sides of this in-

equality from T2 to t, we have ˙̄V (t) ≤ −(
√
t−√

T2)[ ρn − 4ε].
This implies that there exists a constant T3 > T2 for any
l1 > 0 such that ‖x∗(t) − PX (x∗(t))‖ ≤ l1 for all t > T3 .
In view of the arbitrariness of l1 , letting l1 → 0, we have
limt→+∞ ‖x∗(t) − PX (x∗(t))‖ = 0. That is, the team objective
function (2) is minimized as t→ +∞. �

Remark 3: In the existing works, the gradient or subgradient
gains are usually assumed to be uniform for all agents at any time
instant, and moreover their values for all time instants need be
known in advance. For example, in [2], for discrete-time multi-
agent systems, the gains should satisfy that

∑n
i=1αk = +∞

and
∑n

i=1α
2
k = +∞, where αk denotes the uniform subgradi-

ent gain for all agents at time instant k. One example of the
selection is αk = 1

1+k , k = 0, 1, . . .. To determine the gains,
the exact time clock (i.e., k in the discrete-time case) should be
known by all agents and the values of the gains for all agents
need be kept identical at any time instant. In contrast, in this
paper, the gradient gains in algorithm (19) are state-dependent
and can be self-adjusted based on the agents’ current states. At
each time instant, the agents only need to know their current
states xi(t) to determine their own gains and there is no need
to know the current time clock (i.e., t in the continuous-time
case). Note that while xi(t) is a function of time, the agents do
not use the current time to calculate xi(t) but instead the states
are obtained by measurements without the need for explicitly
knowing the exact clock. The gradient gains can be different for
different agents, which might distinctly relax the synchroniza-
tion requirement on the system. In [5], a distributed algorithm
with nonuniform subgradient gains was also given to solve the
distributed optimization problem, but the algorithm can only be
used in the stochastic sense. By taking the mathematical expec-
tation, it uses uniform subgradient gains for all agents in nature.

D. Distributed Finite-Time Optimization Algorithm

Most of the existing works on the distributed optimization
problem (e.g., [1]–[16]) as well as the algorithms introduced
in Section III.A–III.C, studied only the asymptotic stability of
the algorithm, and are rarely concerned with the finite-time
convergence of the algorithms. To this end, in this subsection, we
design one algorithm for (1) such that distributed optimization
can not only be achieved, but achieved in finite time.

The finite-time algorithm for system (1) is given by

ψ̇i(t) =
∑

j∈Ni (t)
pij (t)sgn(θj (t) − θi(t)),

θi(t) = ψi(t) + ∇fi(xi(t)), ψi(0) = 0,
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ṗij (t) =
{

sgn(maxs∈[t−c0 ,t] ‖θj (s)−θi(s)‖), if (i, j) ∈ G(t),
0, otherwise,

pij (0) = pji(0) = 0,

ui(t) =
∑

j∈Ni (t)
qij (t)sgn(xj (t) − xi(t))

− θi(t)
‖θi(t)‖ − gci(t),

q̇ij (t) =
{

sgn(maxs∈[t−c0 ,t] ‖xj (s)−xi(s)‖), if (i, j) ∈ G(t),
0, otherwise,

qij (0) = qji(0) = 0,

gci(t) =

⎧
⎨

⎩

0, if θj (t) = θi(t)
and xi(t) = xj (t) for all j ∈ Ni(t),
xi(t) − PXi

(xi(t)), otherwise,
(22)

where c0 > 0 is an arbitrary constant, and θi(t) and ψi(t) are
the internal states of the dynamic averaging estimator for all
i. Here the dynamic averaging estimator is motivated by [21].
Here, to eliminate the singular point of the function x

‖x‖ , we
define x

‖x‖ = 0 when x = 0.
In algorithm (22), the role of θi(t) is to estimate the average

derivative of all local objective functions fi(xi(t)) with respect
to xi(t), the role of the time-varying gains pij (t) is to ensure
the influence of ∇2fi(x∗(t))ẋ∗(t) on the tracking of the average
derivative of all fi(xi(t)) to vanish to zero as time evolves, and
the role of the time-varying gains qij (t) is to force all agents to
reach a consensus and move along the negative direction of the
average derivative of all local objective functions fi(xi(t)).

Remark 4: There are three difficulties in the analysis of sys-
tem (1) with algorithm (22): (a) this system is a time-varying
system with a strong nonlinearity since the interaction gains
pij (t) and qij (t) are time-varying and this system contains a
strongly nonlinear term∇2fi(x∗(t))ẋ∗(t) as shown later in (31);
(b) there exist four strong couplings: the first one is between the
variables θi(t) and xi(t) in each agent; the second one is among
the variables θi(t) for neighbor agents; the third one is among
the variables xi(t) for neighbor agents; and the last one is be-
tween the variables θi(t) and xj (t) for neighbor agents; (c) each
∇fi(xi(t)) and each ∇2fi(x∗(t)) are not bounded and hence
θi(t) might tend to infinity as time evolves, which might destroy
the system stability.

Assumption 4: Suppose that each [∇2fi(s)]jk = ∂ 2 f (s)
∂sj ∂ sk

is
continuous with respect to s, and either one of the following
conditions holds:

(a) There exists a scalar δ > 0 and a vector s̄ ∈ X such that
{ξ|‖ξ − s̄‖ ≤ δ} ⊂ X [1].

(b) There is a neighborhood of X , denoted by S, and a
uniform constant 0 < cs ≤ 1 such that (s− PX (s))T
1
n

∑n
i=1∇fi(s) ≥ cs

∥
∥ 1
n

∑n
i=1∇fi(s)

∥
∥‖s− PX (s)‖ for

all s ∈ S.
Below are some lemmas that will be used in the proof of the

main theorem.
Lemma 5: Let Z be a closed bounded convex set con-

taining X , and s̄ be defined in Assumption 4(a). Under
Assumption 4(a), there exists a uniform constant 0 < cx ≤ 1

such that (s− s̄)T 1
n

∑n
i=1∇fi(s) ≥ cx

∥
∥ 1
n

∑n
i=1∇fi(s)

∥
∥‖s−

s̄‖ for any s ∈ Z −X .
Proof: As all fi(s) are twice differentiable convex functions,

1
n

∑n
i=1fi(s) is a twice differentiable convex function as well.

It follows that

1
n

∑n

i=1
fi(s0)

≥ 1
n

∑n

i=1
fi(s) +

1
n

∑n

i=1
∇fi(s)T (s0 − s),

i.e.,

(
1
n

∑n

i=1
∇fi(s)

)T
(s− s0)

≥ 1
n

∑n

i=1
fi(s) − 1

n

∑n

i=1
fi(s0) > 0,

(23)

for all s0 ∈ X and all s ∈ Z −X . If this lemma
does not hold, there exists a sequence of vectors
{yk ∈ Z −X} such that limk→+∞ 1

n

∑n
i=1∇fi(yk )T (yk −

s̄)/
∥
∥ 1
n

∑n
i=1∇fi(yk )

∥
∥/‖yk − s̄‖ = 0. Since each

[∇2fi(s)]jk = ∂ 2 f (s)
∂sj ∂ sk

is continuous, 1
n

∑n
i=1∇fi(yk ) is contin-

uous. Since Z is bounded,
∥
∥ 1
n

∑n
i=1∇fi(yk )

∥
∥ and ‖yk − s̄‖ are

both upper bounded. Thus, limk→+∞ 1
n

∑n
i=1∇fi(yk )T (yk −

s̄) = 0. Let dk ∈ Rm be an arbitrary unit vector for any k.
Under Assumption 4(a), s̄+ 1

2 δdk ∈ X for all k, where δ
is defined in Assumption 4(a). In view of the arbitrariness
of the direction dk , we can adopt a proper dk such that
1
n

∑n
i=1∇fi(yk )T dk =

∥
∥ 1
n

∑n
i=1∇fi(yk )

∥
∥. As k → +∞,

1
n

∑n
i=1∇fi(yk )T (yk − s̄− 1

2 δdk )/
∥
∥ 1
n

∑n
i=1∇fi(yk )

∥
∥/‖yk −

s̄− 1
2 δdk‖ = − 1

2 δ/‖yk − s̄− 1
2 δdk‖. Since yk ∈ Z −X and

s̄+ 1
2 δdk ∈ X , we have that ‖yk − s̄− 1

2 δdk‖ is upper bounded
from the boundedness of X and Z and ‖yk − s̄− 1

2 δdk‖ ≥ 1
2 δ

from the definition of s̄. Therefore, 1
n

∑n
i=1∇fi(yk )T (yk −

s̄− 1
2 δdk )/

∥
∥ 1
n

∑n
i=1∇fi(yk )

∥
∥/‖yk − s̄− 1

2 δdk‖ is upper
bounded by a negative constant as k → +∞, which contradicts
with (23). �

Lemma 6: Consider the system given by ẏ(t) =
−∑n

i=1∇fi(y(t))/
∥
∥
∑n

i=1∇fi(y(t))
∥
∥. Let Z be a closed

bounded convex set containing X . If y(t) ∈ Z for all t and
Assumption 4 holds, there exists a constant T > 0 such that
y(t) ∈ X for all t > T .

Proof: (a) Under Assumption 4(a), Lemma 5 holds and con-
sider the Lyapunov function candidate Va(t) = ‖y(t) − s̄‖ for
all t. Calculating V̇a(t), we have

V̇a(t) = − (y (t)−s̄)T ∑ n
i= 1 ∇fi (y (t))∥

∥y (t)−s̄
∥
∥
∥
∥∑ n

i= 1 ∇fi (y (t))
∥
∥ ≤ −cx

for a constant cx > 0 and all y(t) ∈ Z −X . Integrating both
sides of this inequality, we have Va(t) − Va(0) ≤ −cxt for all
y(t) ∈ Z −X . It is clear that there exists a constant T > 0 such
that y(t) ∈ X for all t > T .
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(b) Under Assumption 4(b), there is a neighborhood of X ,
denoted by S, and a uniform constant 0 < cs ≤ 1 such that

(y(t) − PX (y(t)))T
1
n

∑n

i=1
∇fi(y(t))

≥ cs

∥
∥
∥
∥

1
n

∑n

i=1
∇fi(y(t))

∥
∥
∥
∥ ‖y(t) − PX (y(t))‖

for all y(t) ∈ S. Similar to the proof of Lemma 4,
miny∈∂̄ S

∑n
i=1∇fi(y)T y−PX (y )

‖y−PX (y )‖ > 0, where ∂̄S denotes
the boundary of the set S. From Lemma 3, it follows
that � ≤ 1

n

∑n
i=1∇fi(y(t))T y (t)−PX (y (t))

‖y (t)−PX (y (t))‖ for some con-
stant � > 0 and any y(t) ∈ Z − S. Since Z is bounded,∥
∥ 1
n

∑n
i=1∇fi(y(t))

∥
∥ < cg for some constant cg > 0 and all

y(t) ∈ Z. Hence

(y(t) − PX (y(t)))T
1
n

∑n

i=1
∇fi(y(t))

≥ �

cg

∥
∥ 1
n

∑n

i=1
∇fi(y(t))

∥
∥‖y(t) − PX (y(t))‖

for some constant � > 0 and any y(t) ∈ Z − S. Consider the
Lyapunov function candidate Vb(t) = ‖y(t) − PX (y(t))‖ for
all t. In the same way as the proof of (a), it can be proved
that there exists a constant T > 0 such that y(t) ∈ X for all
t > T . �

Remark 5: Under Assumption 4(a), X is a nonempty closed
convex set and contains at least one interior point while
Assumption 4(b) considers the case thatX has no interior points
and excludes the singular situation where

lim
‖s−PX (s)‖→0

(s− PX (s))T

‖s− PX (s)‖
× 1
n

∑n

i=1
∇fi(s)

/∥
∥ 1
n

∑n

i=1
∇fi(s)

∥
∥ = 0,

i.e., 1
n

∑n
i=1∇fi(s) tends to be orthogonal to s− PX (s) as s

converges to X . In [25], some finite-time results are given for
nonconvex functions, but when convex functions are considered,
the results can only be used to a special case of Assumption 4(b)
because the convexity of the functions was not fully exploited.

Lemma 7: Suppose that the graph G(t) is undirected and
connected for all t and Assumptions 1, 2 and 4 hold. For system
(1) with algorithm (22), the following statements hold:

(a) xi(t) ∈ Z for all t and a closed bounded region Z and
there exists a constant T0 > 0 such that xi(t) = xj (t)
for all t > T0 ;

(b) Each ‖θi(t)‖ is bounded for all i and all t.
Proof: Under Assumption 1, it follows from Lemma 4

that all Xi and X are nonempty closed bounded convex sets
for all i. Consider the Lyapunov function candidate V (t) =∑n

i=1‖xi(t) − z0‖2 for some z0 ∈ X . Let dD = max
{‖y1 −

y2‖ | y1 , y2 ∈ (X⋃n
i=1 Xi

)}
and Y = {y | ‖y − PX (y)‖ ≤

L0} ⊂ Rm for some constant L0 > 0 be a closed bounded con-
vex set such that

mini{‖y − PX (y)‖, ‖y − PXi
(y)‖} ≥ dD (24)

for any y /∈ Y and

maxi{‖y − PX (y)‖, ‖y − PXi
(y)‖} ≤ 3dD (25)

for all y ∈ Y . Then, from the triangle relationship, for any y /∈
Y , the angle between y − PXi

(y) and y − z0 is no larger than
π
3 for all i. That is,

(y − PXi
(y))T (y − z0) ≥ 1

2 ‖y − PXi
(y)‖‖y − z0‖ (26)

for any y /∈ Y . Let Z = {y | ‖y − PX (y)‖ ≤ L1} ⊂ Rm for
some constant L1 > L0 be a closed bounded convex set such
that Y ⊂ Z, xi(0) ∈ Z and

min
i
{‖y − PXi

(y)‖, ‖y − z0‖}

> max{8n+ 6ndD , 0.5max
z1 ∈Z

‖z1 − z0‖} (27)

for all i and any y /∈ Z.
We first consider the case where θi(t) �= θj (t) or xi(t) �=

xj (t) for some i �= j. Suppose that there exists an agent
i0 such that xi0 (t) /∈ Z. Then there must exist an agent i1
such that xi0 (t) = xi1 (t) /∈ Z and gci1 (t) �= 0. If this is not
true, from (22), xj (t) = xi0 (t) /∈ Z and θj (t) = θi0 (t) for all
j ∈ Ni0 (t). Since the graph G(t) is undirected and connected,
it follows that xi(t) = xj (t) /∈ Z and θi(t) = θj (t) for all i, j.
This yields a contradiction. Without loss of generality, suppose
that ‖xi1 (t) − z0‖ = max{‖xi(t) − z0‖ | xi(t) /∈ Z, gci(t) �=
0}. Clearly, ‖xi1 (t) − z0‖ = maxi{‖xi(t) − z0‖ | xi(t) /∈ Z}.

Calculating V̇ (t), from (16) and (27), we have

V̇ (t) = −
∑n

i=1
(xi(t) − z0)T

[
θi(t)

‖θi(t)‖ + gci(t)

−
∑

j∈Ni (t)
qij (t)sgn(xj (t) − xi(t))

]

≤
∑n

i=1

∑

j∈Ni (t)

qij (t)
2
(
xi(t) − xj (t)

)T

× sgn
(
xj (t) − xi(t)

)
+
∑n

i=1
‖xi(t) − z0‖

−
∑n

i=1
(xi(t) − z0)T gci(t)

≤ 2n‖xi1 (t) − z0‖ −
∑n

i=1
(xi(t) − z0)T gci(t).

From (22), (25) and (26), we have (xi(t) − z0)T gci(t) ≤
3‖xi1 (t) − z0‖dD for anyxi(t) ∈ Y and (xi(t) − z0)T (xi(t) −
PXi

(xi(t))) ≥ 1
2 ‖xi(t) − z0‖‖xi(t) − PXi

(xi(t))‖ for any
xi(t) /∈ Y . It follows from (27) that −∑n

i=1(xi(t) −
z0)T gci(t) ≤ −‖xi1 (t) − z0‖(4n+ 3ndD − 3ndD ). Thus,
V̇ (t) ≤ −2n‖xi1 (t) − z0‖.

Now, we consider the case where θi(t) = θj (t) and xi(t) =
xj (t) for all i, j. Calculating V̇ (t), we have

V̇ (t) = −
∑n

i=1
(xi(t) − z0)T

[
θi(t)
‖θi(t)‖

−
∑

j∈Ni (t)
qij (t)sgn(xj (t) − xi(t))

]

≤ −
∑n

i=1
(xi(t) − z0)T

θi(t)
‖θi(t)‖ . (28)
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Since G(t) is connected and ψi(0) = 0 for all i, we have∑n
i=1 ψ̇i(t) = 0 and thus

∑n
i=1 ψi(t) = 0, which implies that

1
n

n∑

i=1

θi(t) =
1
n

n∑

i=1

[∇fi(xi(t))
]

for all t. Since θi(t) = θj (t) and xi(t) = xj (t) for all i, j, we
have

θi(t) =
1
n

n∑

i=1

θi(t) =
1
n

n∑

i=1

[∇fi(xi(t))
]

=
1
n

n∑

i=1

[

∇fi
(

1
n

∑n

i=1
xi(t)

)]

(29)

for all i. Moreover, since z0 ∈ X , from the convexity of the
functions fi(s), we have

0 ≤ 1
n

∑n

i=1
fi

(
1
n

∑n

i=1
xi(t)

)

− 1
n

∑n

i=1
fi(z0)

≤ 1
n

∑n

i=1
∇fi
(

1
n

∑n

i=1
xi(t)

)(
1
n

∑n

i=1
xi(t) − z0

)

(30)

It follows from (28), (29) and (30) that V̇ (t) ≤ 0.
Summarizing both cases, we have V̇ (t) ≤ 0 if there exists an

agent i such that xi(t) /∈ Z. Since xi(0) ∈ Z, then xi(t) ∈ Z
for all i and all t. Then similar to the proof of Theorem 2,
it can be proved that there exists a constant T0 > 0 such that
xi(t) = xj (t) = x∗(t), where x∗(t) is defined in (11), for all i
and all t > T0 . It is clear that

ẋ∗(t) = − 1
n

n∑

i=1

(
θi(t)
‖θi(t)‖ + gci(t)

)

for all t > T0 . Define A1k (t) � {i | θik (t) = maxi{θik (t)}},
A2k (t) � {i | θik (t) = mini{θik (t)}}, θ̄k (t) � 1

|A 1 k (t)|∑
i∈A 1 k (t)θik (t) and θk (t) � 1

|A 2 k (t)|
∑

i∈A 2 k (t)θik (t), where
|A1k (t)| ≥ 1 and |A2k (t)| ≥ 1 denote, respectively, the cardi-
nality of A1k (t) and A2k (t). It is clear that the kth component
of each θ̇i(t) can be written as

θ̇ik (t) =
∑

j∈Ni (t)
pij (t)sgn(θjk (t) − θik (t))

+ [∇2fi(x∗(t))ẋ∗(t)]k (31)

for t > T0 .
Suppose that θ̄k (T1) ≥ maxi,x∗(t)∈Z

{∥
∥∇fi(x∗(t))

∥
∥
}

for some T1 > T0 and θ̄k (t) �= θk (t) for t > T1 . Let
C1k (t) � {(i, j) ∈ E(G(t)) | i ∈ A1k (t), j /∈ A1k (t)}. Since
the graph G(t) is connected and θ̄k (t) �= θk (t), then C1k (t)
is nonempty. Moreover, since x∗(t) ∈ Z and each entry
of ∇2fi(x∗(t)) is continuous from Assumption 4, then
dμ = maxi,x∗(t)∈Z

{∥
∥∇2fi(x∗(t))ẋ∗(t)

∥
∥
}

is bounded. Let
α(t) = min(i,j )∈C1 k (t) pij (t). Note that sgn(θhk (t) − θlk (t)) ≤
0 for any l ∈ A1k (t) and any h ∈ Nl(t). It is clear from (31)

that ˙̄θk (t) = 1
|A 1 k (t)|

∑
i∈A 1 k (t) θ̇ik (t) ≤ dμ − α(t)

n . From the
dynamics of pij (t), we have ṗij (t) = 1 for any (i, j) ∈ C1k (t).

Note that the number of all parameters pij is finite, denoted
by ne , and it takes at most ndμ time for each pij to increase

from 0 to ndμ at the rate of 1. Since ˙̄θk (t) ≤ dμ and especially
˙̄θk (t) < 0 when α(t) > ndμ , we have that it takes at most
nnedμ time for α(t) to increase to ndμ when θ̄k (t) �= θk (t).
Note that when θ̄k (t) = θk (t), we have ‖θ̄k (t)‖ = ‖θk (t)‖ =∥
∥ 1
n

∑n
i=1

[∇fi(x∗(t))
]
k

∥
∥ ≤ maxi,x∗(t)∈Z

{∥
∥∇fi(x∗(t))

∥
∥
}

.
Hence, θ̄k (t) < θ̄k (T1) + nned

2
μ for all t > T1 . Thus, θ̄k (t) is

upper bounded for all t and all k. In the same way, it can be
proved that θk (t) is lower bounded for all t and all k. Thus,
‖θi(t)‖ is bounded for all i and all t. �

Theorem 4: Suppose that the graph G(t) is undirected and
connected for all t and Assumptions 1, 2 and 4 hold. For sys-
tem (1) with algorithm (22), all agents reach a consensus and
minimize the team objective function (2) in finite time.

Proof: Under Assumptions 1, 2 and 4, Lemma 7 holds.
Hence, xi(t) ∈ Z for all t and a closed bounded region Z and
there exists a constant T0 > 0 such that xi(t) = xj (t) = x∗(t),
where x∗(t) is defined in (11), for all i and all t > T0 . Moreover,
from Lemma 7, each ‖θi(t)‖ is bounded for all i and all t. Then,
similar to the proof of Theorem 2, it can be proved that all θi(t)
reach a consensus in finite time. That is, there exists a number
T1 > T0 such that θi(t) = θj (t) � θ∗(t) for all t > T1 .

As a result, we have

ẋ∗(t) = −θ∗(t)/‖θ∗(t)‖

for all t > T1 . Recalling (29), from Lemma 6, the team objective
function (2) will be minimized in finite time. �

Remark 6: Due to the existence and the nonlinearity of the
objective functions, the existing approaches for the distributed
finite-time consensus problem (e.g., [17], [18]) cannot be ex-
tended directly to the distributed finite-time optimization prob-
lems, which need to consider the finite-time convergence of the
consensus of the agents and the finite-time convergence of the
objective functions simultaneously. Although some results have
been obtained in our previous works in [19], [20] for the dis-
tributed finite-time optimization problem, they are limited to a
special class of convex objective functions that have a quadratic-
like form and the approaches cannot be applied to more general
convex objective functions.

IV. DISTRIBUTED CONTINUOUS-TIME OPTIMIZATION WITH A

COMMON CONVEX CONSTRAINT SET

In this section, we will extend the results in Sections III.C and
III.D and design algorithms for system (1) to solve a distributed
optimization problem with a common convex constraint set as
follows

minimize
∑n

i=1
fi(xi)

subject to xi = xj ∈ H ⊂ Rm , (32)

where H is a closed convex set.
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A. Distributed Optimization Algorithm With Nonuniform
Gradient Gains

In this subsection, we extend Theorem 3 to the problem (32)
for general convex local objective functions. Let X ⊂ Rm de-
note the optimal set of the problem (32).

When H is a closed bounded convex set, the algorithm is
given by

q̇i(t) = arctan(e‖xi (t)‖), qi(0) > 0,

ui(t) =
∑

j∈Ni (t)
sgn
(
xj (t) − xi(t)

)− gri(t) − gci(t)

gri(t) =
∇fi(xi(t))√

qi(t)

gci(t) =
γi(t)[xi(t) − PH(xi(t))]
‖xi(t) − PH(xi(t))‖ (33)

for all i, where γi(t) > |Ni(t)| + 1 and |Ni(t)| denotes the
cardinality of Ni(t).

Lemma 8: Under Assumption 1, X is a nonempty closed
bounded convex set.

Proof: When H is a bounded closed convex set, from the
property of continuous functions on closed bounded sets and
the convexity of the functions fi(s) and the set H, it is easy to
see that X is a nonempty closed bounded convex set.

Under Assumption 1, Lemma 4 holds. Thus,
lim‖y‖→+∞ fi(y) = +∞ and lim‖y‖→+∞

∑n
i=1fi(y) = +∞.

Since
∑n

i=1fi(y) is lower bounded in H, its infimum exists.
Similar to the proof of Lemma 4, it can be proved that X is a
nonempty closed bounded convex set, when H is an unbounded
closed convex set. �

Theorem 5: Suppose that the graph G(t) is undirected and
connected for all t and Assumptions 1 and 2 hold. For system (1)
with algorithm (33), all agents reach a consensus in finite time
and minimize the team objective function (32) as t→ +∞.

Proof: Note that π/4 ≤ arctan(e‖xi (s)‖) ≤ π/2 for all s and
all i. There exist a constant T > 0 such that 2

√
t >
√
qi(t) >√

t
2 for all i and all t > T . Consider the Lyapunov function

candidate V (t) = 1
2 ‖xi(t) − z‖2 for z ∈ H and all t. Under

Assumption 1, it follows from Lemma 4 that all Xi and X are
nonempty closed bounded convex sets for all i. LetY be a closed
bounded convex set such that xi(T ) ∈ Y, X ⊂ Y, Xi ⊂ Y
and fi(xi(t)) − fi(z) ≥ 4

∑n
j=1,j �=i [fj (z) − fj (zj )] for all i,

all zj ∈ Xj and all xi(t) /∈ Y . It follows that 1√
qi (t)

[fi(xi(t)) −
fi(z)] ≥

∑n
j=1,j �=i

1√
qj (t)

[fj (z) − fj (zj )] for all t > T , all i,

all zj ∈ Xj and all xi(t) /∈ Y . Moreover, since z ∈ H, from

Lemma 2, we have (xi(t) − z)T γi (t)[xi (t)−PH(xi (t))]
‖xi (t)−PH(xi (t))‖ ≥ 0. Then

similar to the proof of Theorem 2, it can be proved that all
agents remain in a bounded region and each

∥
∥∇fi(xi(t))

∥
∥

is bounded for all i and all t. Then there exist two con-
stants T0 > T and μc > 0 such that 2

√
t >
√
qi(t) >

√
t

2 >
μc > 8n

∥
∥∇fi(xi(t))

∥
∥ for all i and all t > T0 .

Consider the Lyapunov function candidate

Vi(t) =
1
2
‖xi(t) − PH(xi(t))‖2

for all i. Calculating V̇i(t), we have for all t > T0 ,

V̇i(t) = −(xi(t) − PH(xi(t)))T
[
gri(t) + gci(t)

−
∑

j∈Ni (t)
sgn (xj (t) − xi(t))

]

≤ −‖xi(t) − PH(xi(t))‖
[

γi(t) − |Ni(t)| − 1
8n

]

≤ − 7
8
‖xi(t) − PH(xi(t))‖

≤ − 7
8

√
2Vi(t)

where the second inequality holds since γi(t) > |Ni(t)| + 1
and n ≥ 1. It follows that V̇ i (t)√

2Vi (t)
≤ − 7

8 . Integrating both

sides of this inequality from T0 to t, we have 2
√
Vi(t)/

√
2 −

2
√
Vi(T0)/

√
2 ≤ − 7

8 (t− T0). Thus, Vi(t) vanishes to zero in
finite time. That is, there exist a constant T1 > T0 such that
xi(t) ∈ H and ẋi(t) =

∑
j∈Ni (t)sgn

(
xj (t) − xi(t)

)− gri(t)
for all i and all t > T1 . Since

√
qi(t) > 8n

∥
∥∇fi(xi(t))

∥
∥ for

all i and all t > T0 , similar to the proof of Proposition 1, it can
be proved that all agents reach a consensus in finite time. That is,
there exists a constant T2 > T1 such that xi(t) = x∗(t), where
x∗(t) is defined in (11), for all i and all t > T2 . For t > T2 , we
have

ẋ∗(t) = − 1
n

∑n
i=1gri(t).

Now, we prove that the team objective function (32) can be
minimized as t→ +∞. Under Assumption 1, Lemma 8 holds
and henceX is a nonempty closed bounded convex set. Consider
the Lyapunov function candidate

V̄ (t) =
1
2
‖x∗(t) − PX (x∗(t))‖2

for all t > T2 . After some calculations, we have

˙̄V (t)

= −[x∗(t) − PX (x∗(t))]T
1
n

∑n

i=1

∇fi(x∗(t))√
qi(t)

= −[x∗(t) − PX (x∗(t))]T
1
n

∑n

i=1

∇fi(x∗(t))√
q∗(t)

√
q∗(t)
√
qi(t)

where q∗(t) is defined in the proof of Theorem 3. Similar to the
proof of Theorem 3, we can let T2 be sufficiently large such that

2
√
t >
√
q∗(t) >

√
t

2 and
∣
∣
∣1/
√

1 + qi (T0 )
q ∗(t) − 1

∣
∣
∣ < ε/μc for any

small ε > 0, all i and all t > T2 . Since q ∗(t)
qi (t)

= 1/(1 + qi (T0 )
q ∗(t) ),
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we have

˙̄V (t)

≤ −[x∗(t) − PX (x∗(t))]T
1
n

∑n

i=1

∇fi(x∗(t))√
q∗(t)

+ ‖x∗(t) − PX (x∗(t))‖ ε

n
√
q∗(t)

≤ − 1
n
√
q∗(t)

∑n

i=1
[fi(x∗(t)) − fi(PX (x∗(t))

− ε‖x∗(t) − PX (x∗(t))‖],
for all t > T2 , where the second inequality has used the convex-
ity of the functions fi(x∗(t)), i.e.,

1
n

∑n

i=1
[fi(PX (x∗(t)) − fi(x∗(t))]

≥ 1
n

∑n

i=1
∇fi(x∗(t))T [PX (x∗(t)) − x∗(t)].

Since all agents remain in a bounded region and X
is bounded, ‖x∗(t) − PX (x∗(t))‖ is bounded. That is,
‖x∗(t) − PX (x∗(t))‖ < μp for some constant μp > 0. Let
E = {s ∈ Rm | ‖s− PX (s)‖ ≤ l1} for some constant 0 <
l1 ≤ maxs∈H ‖s− PX (s)‖ and ρ = mins∈H∩∂̄E

∑n
i=1[fi(s) −

fi(PX (s))], where ∂̄E denotes the boundary of E. Since
PX (s) ∈ X , from the definition of X , we have ρ > 0. From
Lemma 3,

∑n
i=1[fi(s) − fi(PX (s))] > ρ for any s /∈ E and

s ∈ H. Let T2 be further large for any given l1 > 0 such that
ε < ρ

4μp
. Recall that 2

√
t >
√
q∗(t) >

√
t

2 for all t > T2 . It

follows that for any t > T2 ,
˙̄V (t) ≤ − 1

2n
√
t
ρ+ 2

n
√
t
μpε < 0.

Integrating both sides of this inequality from T2 to t, we
have ˙̄V (t) ≤ (−ρ+ 4μpε)(

√
t−√

T2)/n. This implies that
there exists a constant T3 > T2 for any l1 > 0 such that
‖x∗(t) − PX (x∗(t))‖ < l1 and x∗(t) ∈ E ∩H for all t > T3 .
In view of the arbitrariness of l1 , letting l1 → 0, we have
limt→+∞ ‖x∗(t) − PX (x∗(t))‖ = 0. That is, the team objective
function (32) is minimized as t→ +∞. �

Remark 7: On the boundary of H, there might rise a switch-
ing surface due to the term γi (t)[xi (t)−PH(xi (t))]

‖xi (t)−PH(xi (t))‖ . But the term
γi (t)[xi (t)−PH(xi (t))]

‖xi (t)−PH(xi (t))‖ does not decrease but increases the conver-

gence rate of the Lyapunov function V̄ (t) = 1
2 ‖PX (x∗(t)) −

x∗(t)‖2 for all t > T2 . This is because at the switching
surface, the angle between the vectors PX (x∗(t)) − x∗(t)
and − 1

n

∑n
i=1

γi (t)[x∗(t)−PH(x∗(t))]
‖x∗(t)−PH(x∗(t))‖ is no larger than π

2 , i.e.,

−[PX (x∗(t)) − x∗(t)]T 1
n

∑n
i=1

γi (t)[x∗(t)−PH(x∗(t))]
‖x∗(t)−PH(x∗(t))‖ ≥ 0, from

Lemma 2.
Remark 8: The approach in [10] is to analyze the conver-

gence of the largest distance from the agents to the constraint set
so as to yield a contradiction to prove the optimal convergence.
Due to the unboundedness of the local objective functions and
the nonuniformity of the gradient gains, the approach in [10]
cannot be applied in this paper. The approach in this paper is to
analyze the convergence rates of the consensus, the distance to
the constraint set, and the optimization by fully exploiting the
convexity of the objective functions and the constraint set, and

it can be used to deal with the case of the unbounded closed
convex set.

Remark 9: In Theorems 1, 2, 3 and 5, we assume that each
local objective function fi(x) is differentiable for discussion
convenience. The results obtained in these theorems can be ex-
tended to more general nondifferentiable convex functions by
using a minimum norm subgradient, denoted by lsi(s). That
is, lsi(s) = arg minz∈∂fi (s) ‖z‖, where ∂fi(s) denotes the sub-
gradient set of fi(s) at s. However, it should be noted that from
the convexity of the convex function fi(s), it can be proved
that fi(s) is minimized if and only if lsi(s) = 0. It should
also be noted that when the minimum norm subgradients are
used, after all agents reach a consensus, the Lyapunov function
‖x∗(t) − xe‖2 for xe ∈ X or xe ∈ X should be used instead to
prove that all agents minimize the team objective function as
t→ +∞.

Remark 10: Since the solution sets for linear inequalities
or equalities in the form of h(x) ≥ 0 or h(x) = 0 are usually
closed convex sets, Theorem 5 might be used to deal with the dis-
tributed optimization problem with linear inequality or equality
constraints if its optimal set is bounded.

B. Distributed Finite-Time Optimization Algorithm

In this subsection, we extend Theorem 4 to the problem (32)
for general convex local objective functions. The algorithm is
given by

ψ̇i(t) =
∑

j∈Ni (t)
pij (t)sgn(θj (t) − θi(t)),

θi(t) = ψi(t) + ∇fi(xi(t)), ψi(0) = 0,

ṗij (t) =

{
sgn( max

s∈[t−c0 ,t]
‖θj (s) − θi(s)‖), if (i, j) ∈ G(t),

0, otherwise,

pij (0) = pji(0) = 0,

ui(t) =
∑

j∈Ni (t)
qij (t)sgn(xj (t)−xi(t))− θi(t)

‖θi(t)‖

−γi(xi(t) − PH(xi(t)))
‖xi(t) − PH(xi(t))‖ ,

q̇ij (t) =

{
sgn( max

s∈[t−c0 ,t]
‖xj (s)−xi(s)‖), if (i, j) ∈ G(t),

0, otherwise,

qij (0) = qji(0) = 0, (34)

where c0 > 0 is an arbitrary constant, γi > 1, and θi(t) and
ψi(t) are the internal states of the dynamic averaging estimator
for all i.

Assumption 5: Suppose that each [∇2fi(s)]jk = ∂ 2 f (s)
∂sj ∂ sk

is
continuous with respect to s, and either one of the following
conditions holds:

(a) There exists a scalar δ > 0 and a vector s̄ ∈ X such that
{ξ|‖ξ − s̄‖ ≤ δ} ⊂ X .

(b) There is a neighborhood of X , denoted by S,
and a uniform constant 0 < cs ≤ 1 such that
(s− PX (s))T 1

n

∑n
i=1∇fi(s) ≥ cs‖ 1

n

∑n
i=1∇fi(s)‖

‖s− PX (s)‖ for all s ∈ S.
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Fig. 1. One undirected graph.

Fig. 2. State trajectories of all agents using (14).

Fig. 3. State trajectories of all agents using (19).

Theorem 6: Suppose that the graph G(t) is undirected and
connected for all t and Assumptions 1, 2 and 5 hold. For sys-
tem (1) with algorithm (34), all agents reach a consensus and
minimize the team objective function (32) in finite time.

Proof: This theorem can also be proved based on the ideas
of the proofs of Theorems 4 and 5 and hence its proof is
omitted. �

V. SIMULATIONS

Consider a multi-agent system with 8 continuous-time agents
in R2 . For the algorithms (14), (19), (22), (33) and (34), the
communication graph is randomly switched among connected
graphs, the union of which is shown in Fig. 1. The local objective
functions are adopted as

f1(x1) =
1
2
x2

11 +
1
2
x2

12 ,

f2(x2) =
1
2
(x21 + 1)2 +

1
2
x2

22 ,

Fig. 4. State trajectories of all agents using (22).

Fig. 5. State trajectories of all agents using (33).

Fig. 6. State trajectories of all agents using (34).

f3(x3) =
1
2
x2

31 +
1
2
(x32 + 1)2 ,

f4(x4) =
1
2
(x41 + 1)2 +

1
2
(x42 + 1)2 ,

f5(x5) =
1
4
x4

51 +
1
4
x4

52 ,

f6(x6) =
1
4
(x61 + 1)4 +

1
4
x4

62 ,

f7(x7) =
1
4
x4

71 +
1
4
(x72 + 1)4
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and

f8(x8) =
1
4
(x81 + 1)4 +

1
4
(x82 + 1)4 ,

where xi1 and xi2 denote the 1st and 2nd components of
xi . The constrained convex set is adopted as H = {s ∈ R2 |
‖s− [1, 1]T ‖ ≤ 1}. According to Lemma 1, by calculating the
solution of

∑n
i=1∇fi(s) = 0, we have that the team objective

function (2) is minimized if and only if s = [−0.5,−0.5]T .
From the convexity of the function

∑n
i=1fi(s), its local op-

timal point is also its global optimal point when there are
no constraints. Since [−0.5,−0.5]T /∈ H, the team objective
function (32) must have at least one optimal point at the
boundary of H. By calculating the values of

∑n
i=1fi(s) along

the boundary of H, we have that s∗ .= [0.2929, 0.2929]T is
one of the optimal points of the team objective function
(32). Note that

∑n
i=1∇fi(s) at s∗ is approximately equal to

[7.5443, 7.5443]T and orthogonal to the tangent line of H at s∗.
Thus, the angle between the vectors

∑n
i=1∇fi(s∗) and y − s∗

is smaller than π/2, i.e.,
∑n

i=1∇fi(s∗)T (y − s∗) > 0, for any
y ∈ H − {s∗}. Hence from the convexity of the functions fi,∑8

i=1fi(y) −
∑8

i=1fi(s
∗) ≥∑n

i=1∇fi(s∗)T (y − s∗) > 0 for
any y ∈ H − {s∗}. That is, the team objective function (32)
is minimized if and only if s = s∗. The simulation results are
shown in Figs. 2–6. We use dash-dot lines to denote the two
components of the optimal state. Specifically, for the algo-
rithms (14) and (19), consensus is reached, respectively, at about
2.1 s and 2.2 s and the team objective function (2) is minimized
as t→ +∞. For algorithm (22), consensus is reached at about
2.2 s and the team objective function (2) is minimized at about
2.5 s. For the algorithm (33), consensus is reached at about 1 s
and the team objective function (32) is minimized as t→ +∞.
For algorithm (34), consensus is reached at about 1.7 s and the
team objective function (32) is minimized at about 2.6 s. Clearly,
all these simulation results are consistent with the obtained
theorems.

VI. CONCLUSION

In this paper, a distributed continuous-time optimization prob-
lem was studied with the consideration of nonuniform gradient
gains, finite-time convergence, and a common convex constraint
set. Six distributed algorithms were given. The first three and
the fifth dealt with a distributed gradient optimization problem
for general differentiable convex local objective functions. The
fourth and the sixth dealt with a distributed finite-time opti-
mization problem using a combination of a distributed tracking
algorithm and a distributed dynamic averaging estimator. For
the first three and the fifth algorithms, it has been shown that
the agents reach a consensus in finite time while minimizing
the team objective function as time evolves. In particular, it
has been shown that the third and the fifth algorithms can be
used to deal with general differentiable convex local objective
functions with nonuniform gradient gains, and their gradient
gains are state-dependent and need not to be known in advance.
For the fourth and the sixth algorithms, it has been shown that
all agents reach a consensus while minimizing the team objec-
tive function in finite time. In addition, it has been shown that

the last two algorithms can be used to deal with a distributed
continuous-time optimization problem with a common convex
constraint set. Our future work will be directed towards the case
of directed graphs with nonuniform convex constraint sets.
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