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Abstract

Accurate Step Length Control Strategies for Underactuated and Realistic Series Elastic

Actuated Hoppers via High Order PFL

by

Patrick W. Terry

Among the different types of legged robots, hopping robots, aka hoppers, can be classified

as one of the simplest sufficient models that capture the important features encompassed

in dynamic locomotion: underactuation, compliance, and hybrid features. There is an

abundance of work regarding the implementation of highly simplified hopper models, the

prevalent example being the spring loaded inverted pendulum (SLIP) model, with the

hopes of extracting fundamental control ideas for running and hopping robots. However,

real world systems cannot be fully described by such simple models, as real actuators

have their own dynamics including additional inertia and non-linear frictional losses. Ad-

ditionally, implementing feedback control for hopping systems with significant amounts

of compliance is difficult as the input variable does not instantaneously change the leg

length acceleration. The current state-of-the-art of step length control in the presence

of non-steady state motions required for foothold placement is not precise enough for

operation in the real world. Therefore, an important step towards demonstrating high

controllability and robustness to real-world elements is in providing accurate higher order

models of real-world hopper dynamics, along with compatible control strategies.

Our modeling work is based on a series-elastic actuated (SEA) hopping robot pro-

totype constructed by our lab group, and we provide verifying hardware results that

high order partial feedback linearization (HOPFL) can be implemented directly on the

leg state of the robot. Using HOPFL, we investigate two paths of compatible trajec-
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tory generation that can accomplish desirable tasks such as precise foothold planning.

We investigate the practicality of using SLIP-based trajectory generation techniques on

more realistic hopping robots, and show that by implementing HOPFL directly on the

robot’s leg, we can make use of computationally fast SLIP-based approximations, ac-

count for non-trivial pitch dynamics, and improve the state-of-the-art of precision step

length control for SEA hoppers. We also consider control strategies towards hoppers for

which SLIP-based trajectories may not be compatible, by planning all ground reaction

force vector (GRF) components during the stance phase concurrently, using a lower order

and very general model to construct trajectories for the system’s center of mass (CoM),

and maintain body stability by controlling the orientation of the GRF directly. While

not purely analytical as our SLIP-based approaches, this method is general enough to

work on a variety of hopping robots that are not necessarily kinematically structured

resembling the classical SLIP model.
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Chapter 1

Introduction and Literature Review

In a time with self-driving cars looming on the horizon, it is natural to ask the question

“do we really need walking robots in our lives?” While we live in a world where trans-

portation of both ourselves and objects we use is dominated by wheeled vehicles and/or

wheel-based tools, it’s important to remember that to actually accomplish tasks in the

real world we typically have to transition between surfaces, walk on uneven ground, tra-

verse stairs, bridge gaps, etc. This is due to the fact that animals, humans, and legged

systems in general can operate where only intermittent footholds are available, allowing

them to traverse rough terrain and operate in areas where wheeled vehicles typically have

no hope of reaching. While seemingly trivial to us as humans, legged locomotion is a

highly complex task involving dynamics, mechanics, sensing, stability, and many other

features resulting in a very much unsolved and open problem [1, 2]. Building a robot ca-

pable of walking and running is a very involved task. First, we must appropriately model

the dynamics of locomotion in order to understand how such a system can be controlled.

Even a minimalistic model for a walking robot is significantly more complex than most

wheeled systems, and the path towards developing controllers for realistic robots with ac-

tuator dynamics, sensor requirements, impact dynamics, weight requirements, and other
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Introduction and Literature Review Chapter 1

real-word features is a rich and challenging problem.

For robots to be feasible to operate in the real world, it is paramount to consider

energy efficiency. Motivated by the need for responders to send help in disaster scenarios

where damaged and/or uneven terrain prevents wheeled-based transport but humans also

cannot go, such as the 2011 Fukushima disaster, the DARPA Robots Challenge (DRC)

was recently held to varying levels of success [3]. While able to accomplish a wide range

of tasks, these robots only had roughly one hour of battery life. The ATLAS robot in

particular was reported to have an unbearably high cost of transport of 20, which is over

130 times worse than a human. Since legged robots impact the ground at every step,

using springs as energy storage devices [4] is one potential way to gain the much needed

improvement of state-of-the-art robot energy efficiency. The idea that we should consider

compliance as a key feature encompassed in locomotion is also inspired by nature [5]. The

key difference between running and walking is the inclusion of an aerial, or flight, phase,

where energy stored during the ground contact stance phase is released, typically through

compression and the subsequent expansion of a spring-like element within the leg [6, 1, 7].

It is for these reasons that compliant legged locomotion has been and will be an active

area of study for many years.

1.1 Why Study “Simple” Hopping Robots?

The simplest sufficient model in legged locomotion to capture the critical features of

compliance, underactuation, and hybrid dynamics is a monopod hopping robot, or “hop-

per”. It has been shown there is a direct correlation between single-legged locomotion and

multi-legged locomotion [8, 9], where in fact multiple legs acting in unison can be reason-

ably approximated as a single “virtual” leg acting as a function of the others towards the

center of mass (CoM) of the system being considered. A typical hopping robot therefore

2



Introduction and Literature Review Chapter 1

consists of a rigid body attached to a sprung leg, resulting in a system with potentially

very high energy efficiency at the cost of exhibiting difficult to regulate stance phase

dynamics. In general, control of the resulting flight phase entails control of a touch-down

angle and, if available, a thrust actuator during stance [10, 11, 12, 13, 14]. The prevalent

and most fundamental model used to describe the motion of hopping robots is the Spring

Loaded Inverted Pendulum (SLIP) [15]. The classical SLIP consists of a massless leg and

single point-mass, and has 2 degrees of freedom (DoF), a leg length and angle. SLIP

can also be augmented with an additional thrust actuator in the form of active spring

compression [16, 17, 18]. It has been shown that biological data for the gait patterns of

various insects and animals can be approximately fit to trajectories generated from solu-

tions to the SLIP model [19, 20, 21]. Despite it’s simplicity, the stance phase dynamical

equations are not analytically solvable due to the time-varying leg length, presenting a

serious limitation in terms of computing control inputs and/or state prediction online.

This, along with the extremely short duration ground contact phase in which typically

all control authority must be accomplished in order to regulate the longer, largely un-

controlled ballistic phase, is what makes controlling these systems to land in predefined

footholds precisely a complex, difficult, and for the most part unsolved problem for more

complex hopping systems.

1.2 State of the Art for Hopping Legged Systems

One of the ultimate objectives in legged locomotion is the ability to follow a set of

predefined footholds in the environment, which can be evenly spaced, irregularly spaced,

or even time-varying depending on the terrain. It is therefore useful to correlate the state-

of-the art of hopping robotics systems directly to step length accuracy. The majority of

recent work with hopping robots, and even legged robots in general, has been geared
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Introduction and Literature Review Chapter 1

towards providing a discrete set of stable gaits that is robust to external disturbances.

While certainly a desirable feature for real-world robots to have, steady-state forward

motion alone is not sufficient for real-world terrain navigation. In terms of precise step

length regulation results, there are a wide set of results ranging from SLIP to real robots.

The general trend seen is that relatively precise control can be achieved for simulations

of simple SLIP-like models, while both real robot hardware and human subjects still

remains far less accurate in foothold accuracy.

Accurate control of the SLIP model has improved considerably due to fairly recent

advancements in approximation techniques regarding the system’s stance phase dynam-

ics. The problem of approximating the analytically unsolvable dynamics of the classi-

cal SLIP model has been well addressed in the case of symmetric, steady state motion

[22, 23, 24, 25, 26, 27]. These results alone however are not sufficient for non-steady-state

operation, therefore new work [28] has proposed to augment the SLIP model with an ac-

tive term to simplify the system’s dynamics and improve accuracy of the approximations,

particularly in the non-symmetric case. Many different forms of actuation and control

strategies for adding energy to SLIP-based systems have been investigated, including

direct modification to the leg length [29, 30], torques at the hip [31], and most commonly

active spring compression and decompression [28, 16, 32]. It is shown in [28, 16] that

maximizing the reachable space of SLIP requires the actuator moving throughout the

entire stance phase, and the reachable space can in fact be analytically approximated

using two actuator switching times. This parameterization is powerful, as it allows for

the implementation of algorithms online, and it has been shown that precision foothold

placement can be achieved with Active SLIP online using these methods [28]. Although

highly simplified in the case of Active SLIP, this thrust actuator is a series-elastic ac-

tuator (SEA), which has been shown to be an effective means of actuating a variety of

hopping robots [17, 18, 33, 34]. The UCSB Robotics Lab Group has successfully proto-
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Introduction and Literature Review Chapter 1

typed several SEA 1D Hoppers [32] in order to test leg mechanisms for the 2D hopping

robot FRANK, which is presented later in this dissertation.

It has been hypothesized that we can use fundamental behavior and perhaps control

strategies from SLIP on more realistic robots [35]. Transitioning from SLIP to real-world

robots requires the inclusion of many realistic elements such as actuator dynamics, leg

mass and inertia, and most importantly the inclusion of a robot body, where electronics

and actuator mechanisms are typically mounted. Consisting simply of a point-mass,

SLIP does not have any notion of body dynamics, and most work augmenting SLIP

with such dynamics consists of simply adding an underactuated joint exactly on the

hip [36, 37, 28, 38], where the SLIP mass is located. This approximation simplifies the

pitch dynamics considerably [38], however, expecting the robot body CoM to be exactly

collocated to the hip can be quite restrictive and not representative of how many real

robots are constructed. The problem of stabilizing non-trivial pitch dynamics for these

so-called “asymmetrical hoppers” has had considerably less attention in the literature but

has been previously studied [39, 40, 41], however, the problem remains largely unsolved

in terms of precise foothold placement.

Fairly recent work by Poulakakis and Grizzle based on the “asymmetrical” hopping

robot Thumper [42, 43, 41], has shown that Hybrid Zero Dynamics (HZD) based methods

can be applied to embed classical SLIP solutions as steady-state trajectories for these

kind of systems. While body stability is analytically provable in the case of steady

state gaits, these methods are highly complex and somewhat ill-suited for the case of

foothold selection, as this can require uneven ground levels and non-steady-state gaits

to be feasible. Thumper is only one of a number of SLIP-like robots that have been

designed and built throughout the years, starting from the famous Raibert hoppers [38,

44]. Notable are Zeglin’s Bow Leg Hopper [45, 46], the ARL-Monopod II [47], BiMASC

[48], and ATRIAS [49], a human scaled bipedal robot with dynamics modeled as a SLIP
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with the goal to achieve similar energetics. The majority of experiments performed with

these robots have advanced the state-of-the-art in terms energy efficiency and robustness

to external disturbances in steady-state motion for both 2D and 3D locomotion, but few

since Raibert have focused on step length regulation for realistic hoppers.

The most well known studies on hopping robots were those conducted by Raibert in

the ’80s for both planar 2D hoppers [38, 50, 51], and a 3D Hopper [52]. The hardware

experiments in step length regulation conducted by Hodgins and Raibert [44], despite

having a very basic and fundamental control formulation, still more or less represent the

current state-of-the-art in terms of precision step length control on real hopping robots,

shown below in Fig. 1.1.

Figure 1.1: Foothold selection (a) was implemented experimentally on Raibert’s fa-
mous hopping robots (b). Experimental results were impressive and could accomplish
tasks such as traversing uneven terrain, but the step length accuracy (c) was not
very precise. From J. K. Hodgins and M. N. Raibert, Adjusting step length for rough
terrain locomotion, IEEE Transactions on Robotics and Automation, 1991, [44].

The control implementation with Raibert hoppers was essentially decoupled into three

components: forward velocity regulation, body attitude stability, and hopping energy

level. The technique used to regulate step length was to modify the touch-down angles

6



Introduction and Literature Review Chapter 1

with a feedback law and use a feed-forward guess to inject a precomputed amount of

energy with the thrust actuator. As we see in Fig. 1.1, the results do indeed suggest that

the fundamental trends have been captured, however, the mean step length error is well

above 10%, with maximum errors up to 25-50% in some cases. In order to improve these

results, we need to more accuracy account for the dynamical coupling between the body,

leg angle, leg compression, and actuator dynamics and develop suitable control methods

capable of non steady state motion.

1.3 Towards Better Step Length Control

The work presented here strives to increase foothold placement control accuracy for

non-steady-state gaits. Footholds in the real world may be extremely irregularly spaced,

so methods that rely on forcing the robot’s gait to converge to steady state motions are

not always going to be useful. It is typically desirable to construct control frameworks

that are very general and can be easily deployed on different kinds of systems. In reality,

however, for any specific piece of hardware (or equivalently, a realistic dynamic model

of a robot) design of accurate control for various degrees of freedom of the robot will

inevitably involve specific aspects of the dynamics unique to that system. Thus, much

of the work presented here involves applying approximations and control laws such that

analytically unsolvable dynamics can be approximated and forward solved online specif-

ically for SEA Hoppers, to obtain precise results. The methods and control variables

vary depending on the hopper model considered, and Section II overviews dynamical

modeling of hopping robotic systems, beginning with SLIP and building towards more

realistic implementations such as the robot FRANK [53].

Applying feedback control for highly compliant systems, and hopping robots in par-

ticular, is a difficult problem as the second-order dynamics are largely dominated by the
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spring force. The classical method of controlling hoppers is to take discrete measurements

at each hop, perhaps at the apex height during flight, and to use these measurements

with a discrete controller to generate constant feed-forward commands for the subsequent

step. These results are highly inaccurate, however, as we saw in Fig. 1.1, as they do

not incorporate any feedback correction continuously on the system during stance. In

order to develop feedback control laws for our underactuated hoppers, we illustrate how

to adopt the method of Partial Feedback Linearization (PFL) to regulate either the leg

length directly, or auxiliary variables that are a function of the leg length. Applying

feedback linearization techniques to this system is a challenging problem not only be-

cause the system is underactuated, but also because the compliant leg makes traditional

acceleration-based PFL methods impossible due to the force being set instantaneously

by the spring length. It is however possible to extend the PFL technique by linearizing

a higher order term, and thus in Section III we develop control laws for compliant hop-

ping systems via this extension. By applying high order partial feedback linearization

(HOPFL) directly on the leg state of the robot, we gain the ability to reasonably predict

the take-off leg velocity, and Section IV illustrates how apex height regulation can be

accomplished both in 1D and 2D using such control methods, and provides hardware

results implementing HOPFL on the robot FRANK.

The practicality of using specific SLIP-based solutions as references for more realistic

robots is another topic of interest, as one would hope the recent SLIP approximation

methods by Piovan and Byl [28, 16] result in SLIP not only being a source of inspiration

when studying qualitative features of hopping/running gaits, but also a tool for generating

analytical trajectories with low computational cost that can be used as references in more

complex hopping systems. It is illustrated in Section V that for the operating ranges of

many hopping robots indeed this is the case, by building on [28] and modifying the

construction slightly, we can use these SLIP-based approximations as references for our

8



Introduction and Literature Review Chapter 1

HOPFL leg controller [53, 54], and obtain state-of-the-art precision for step length control

of underactuated SEA hoppers, even in the presence of non-trivial leg-body coupling

dynamics [55]. Since these methods are based on approximations constructed analytically

as a function of a very small number of input parameters, they make full use of the

increasing power of parallel processing and are well suited for future deployment online.

The problem of applying HOPFL to regulate non-SLIP-like hopping robots is also

considered. The majority of hopping robots in hardware are equipped with a prismatic

SEA leg that mimics the structure of the classic SLIP model. For these kinds of systems,

using HOPFL to control the leg state is a feasible approach. However, HOPFL-based

methods can also be applied to robot models exhibiting more complicated leg kinematics,

including knee-like rotational joints. The construction of a HOPFL controller can be

adopted to work directly on the center of mass [56, 57] for compliant hopping robots

during stance phase, where both control inputs (torque at the leg and torque at the hip)

are planned concurrently to orient the ground reaction force (GRF) vector and maintain

body stability. This method makes use of a lower dimensional model, more general than

SLIP, consisting of a point mass traversing a pre-defined quadratic trajectory with the

GRF oriented in the direction of the mass location. While allowing for more general

systems, we lose the ability to have any hope of using an online optimization approach

here, but we can still regulate potentially asymmetric gaits. Section VI illustrates this

approach for both SEA 2D hoppers and the Compliant 3-link Robot, a hopper with more

complicated leg geometry that makes application of SLIP-based step length regulation

algorithms quite difficult or impossible. Lastly, Section VII contains concluding remarks.
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Chapter 2

Dynamic Modeling of Hopping

Robots

This chapter overviews the structure and dynamics of hopping robots, starting with the

most fundamental SLIP model and work towards more realistic and complex robots. For

the SEA 1D and 2D robots models discussed, we also present hopping robot hardware

constructed by the UCSB Robotics Lab.

2.1 The Active SLIP model

As its name suggests, the SLIP model is a point mass attached to a massless spring

leg. Classically, this system is conservative, i.e., there is no net energy change. To allow

for energy variations, with the goal of undergoing different terrain profiles and being

able to change stride throughout motion, we consider an actuated version of the SLIP

model. In the active SLIP, the leg is equipped with a series-elastic actuator to artificially

compress/extend the spring, thus varying the system’s net energy. The SLIP model is

a hybrid system, and its dynamics can be divided in two phases, as in Fig. 2.1: a flight
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phase, purely ballistic with respect to the system’s center of mass; and a stance phase,

characterized by ground contact between the foot and the ground. The stance phase

can be described as being divided into two phases: compression and expansion, which

corresponds to the direction the system spring is accelerating. L is the leg length and θ

S

A
m

L

k θ

La

Figure 2.1: The Spring Loaded Inverted Pendulum (SLIP) is a classical model often
used to describe the motion legged systems, most particularly hopping robots. The
typical control variable of interest is the step length S, defined as the distance between
two successive footholds, which is a function of the ballistic trajectory and the take-off
and touch-down angles.

is the angle the leg forms with respect to the ground, as shown in Fig. 2.1. Additionally,

k is the spring stiffness, m is the mass of the body, L0 is the natural leg length, and

La is the actuator’s length. The leg is assumed to be massless and has no inertia. The

positions x and y are defined as the horizontal and vertical coordinates of the mass. The

flight dynamics for all hopping robots are purely ballistic and can be written as:

ÿ = −g (2.1)

ẍ = 0 (2.2)

The transition between flight and stance phase is called touch-down (TD), while the

transition between stance and flight phase is called take-off (TO). The highest point of

11
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the flight phase is called the apex state, A. We can therefore characterize the apex state

as the state during flight with ẏ = 0. Then, A = [y, ẋ]. The space in the x-dimension

traveled by the system in one step, i.e., the distance between consecutive footholds, is

called the step length S, illustrated in Fig. 2.1. It is important to note that the step

length is not simply a function of the ballistic path, but also the leg angle at the times

of take-off and touch-down. Therefore, attempting to regulate step length by simply

controlling the forward speed and height energy, as has been classically done [38], will

likely exhibit errors.

The stance phase of the system occurs when the leg is in constant contact with

the ground, beginning at touch-down and ending when the spring returns back to it’s

equilibrium position at take-off. The stance phase equations of motion can be generated

using the Lagrangian method, starting from the coordinates for the mass as:

x = Lcos(θ)

y = Lsin(θ)

Next, the kinetic co-energy T ∗ and potential energy V can be expressed as:

T ∗ =
m

2
(θ̇2L2 + L̇2)

V =
k

2
(L− L0 − La)2 +mgL sin(θ)

Resulting in the dynamics

L̈ = − k
m

(L− L0 − La)− g cos θ + Lθ̇2 (2.3)

θ̈ = 2
L̇θ̇

L
− g

L
sin θ (2.4)

As previously discussed, the above dynamics are not analytically solvable due to the time-
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varying leg length, however many recent approximations are present in the literature that

we will make use of later in this dissertation.

The SLIP model is an idealized system: its strength lies in being a simple way to

model hopping gaits in animals and humans. Several layers of complexity can be added

to this simplified system to match real-world hardware more closely. In particular, a

realistic model would include an unsprung mass at the foot/lower part of the leg, as well

as inertia in both leg and body. Without mass in the leg, the SLIP model lacks any

notion of energy loss due to impact at TD and TO. More realistic dynamics should also

include damping and friction terms. A separate issue arises when considering the motion

of the series-elastic actuator, which is typically modeled as an instantaneous impulse

from an initial position to a desired one [33]. In the SLIP model La(t) is the control

variable and can typically be chosen freely: the input/output pair is (La, L). For more

realistic implementations, however, La(t) itself is typically driven by a motor torque, τ

(or, equivalently, an input current u), thus the SEA position La(t) should be considered

as an additional degree of freedom, with its own dynamics including mass, frictional and

damping terms, and physical limits.

2.2 The Compliant 3-link Robot

Not all hopping robots can be described as an evolution of the SLIP model. There-

fore before proceeding to develop our more realistic SEA SLIP-based models, we briefly

introduce a 3-link hopping system with a compliant leg where no SEA is used. All input

terms are torques directly applied between links. This system has three state angles,

one length state, and only two actuators, and is therefore highly underactuated. The

essential model consists of three serial links. The first link is modeled as massless and

contains a passive spring-damper element, as depicted in Fig. 2.2, while the other two
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Figure 2.2: The compliant 3-link robot is an example of a hopper that is structured
significantly different from SLIP. The system is underactuated, with no torque actu-
ation between the first link and the ground. This system is also general enough to
loosely represent the side view of a bounding quadruped, if an additional leg is added
at the end of the link.

links have mass and inertia. Two actuators apply torques at the hip (θ2) and spine (θ3)

joints. The stance phase dynamics can be computed using the Lagrangian method, with

the state vector written as:

X = [θ1, θ2, θ3, L, θ̇1, θ̇2, θ̇3, L̇]T

Assuming the foot makes contact with the terrain at the origin, the locations of the

three body points during the stance phase are defined as follows using relative angle
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coordinates:

x1 = Lcos(θ1)

y1 = Lsin(θ1)

xh = x1 + l1cos(θ1 + θ2)

yh = y1 + l1sin(θ1 + θ2)

x2 = xh + l2cos(θ1 + θ2 + θ3)

y2 = yh + l2sin(θ1 + θ2 + θ3)

Where L is the time varying leg length, and l1 and l2 are constant linkage distances.

Next, we define the kinetic co-energy T ∗ and potential energy V as

T ∗ = 0.5(m1(ẋ
2
1 + ẏ21) +m2(ẋ

2
2 + ẏ22) + J1θ̇

2
b + J2θ̇

2
f )

V = m1gy1 +m2gy2 +
kleg
2

(L− L0)
2

Where kleg is the leg spring constant with natural length L0, θb = θ1+θ2, θf = θ1+θ2+θ3,

and J1 and J2 represent combined link inertias. The resulting equations of motion can

then be generated as:

W (X, τ1, τ2) =



θ̈1

θ̈2

θ̈3

L̈


= M−1


C +



0

τ1

τ2

−bkL̇




(2.5)

Where matrices M and C are both functions of X. Unlike SLIP-based hopping robots

with body masses either on the hip or on a linkage above the hip joint, the variable tied

to body stability is different for this system due to the large number of links. In this case,
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the robot linkage must remain upright during operation, which means all three angles

must be well behaved. However, similar to SLIP-based hoppers, we can generalize the

control problem by constructing three auxiliary variables. These control variables are

two CoM coordinates and a body angle, written as:

xcm =
1

m1 +m2

(m1x1 +m2x2)

ycm =
1

m1 +m2

(m1y1 +m2y2)

θB = tan−1(
y2 − y1
x2 − x1

)

(2.6)

Similar to SLIP, during flight the system’s CoM follows ballistic dynamics as in (2.2).

Control strategies for this system, and for regulating the CoM of hoppers in general,

are presented in Sections III and VI. While an interesting system to study in terms of

developing control strategies for more general compliant robots, since this system does

not employ a thrust actuator the energy requirements for hopping gaits can be quite

high, and ultimately unrealistic. Thus, the remaining hopping robot models presented

in this chapter employ realistic means of series-elastic actuation.

2.3 Series-Elastic Actuated 1D Hoppers

The simplest type of hopping robot hardware one can build is, unsurprisingly, a

vertical hopper. These robots must have an actuator mechanism to modify spring energy

and allow for apex height regulation during vertical hopping. Although a simple problem

in terms of how many control variables are involved (a “1D problem”), for real hardware

implementations the coupling between spring compression and input motor current can be

quite non-trivial, therefore we briefly discuss 1D hopper dynamics. It will also be shown

later that for the simplified case of steady-state forward motion, control strategies derived
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from 1D hopping systems can still be applicable. The robots considered in this work use

SEA, and examples of such robots developed by the UCSB Robotics Lab group [32] can

be seen in Fig. 2.3, along with a model schematic. Two vertical hopping prototypes were

constructed in order to both test leg mechanisms and series-elastic actuators. As is the

case with all hopping robots, the dynamics are divided into a stance and flight phase,

with the flight phase dynamics being the trivial ballistic dynamics seen in (2.2), thus

only the stance dynamics are discussed here.

Figure 2.3: Above shows hopping robots (a) Hopper B, (b) Hopper C, and (c)
schematic for 1D SEA hopper models, where L represents the length from the ground
to the bottom of the leg with natural length L0. The spring energy can be actively
controlled via SEA position La, a state with real dynamics, that compresses the spring
from the opposite end.

The first of these robots, the Hopper B, consists of a large spring coiled around the

leg, precompressed via a metal plate driven by a ball screw which is attached to a geared

motor. The Hopper B is considered a more or less traditional hopper design, where it

is very easy to model how the robot is structured. The series-elastic actuator in this

instance is a physical plate that moves to compress the spring, and therefore must be

considered as a state of the system. We again apply the Lagrangian method in order
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to derive the equations of motion for the system, with the target states L, the vertical

position referenced from the hip of the robot, and La, the position of the SEA (metal

plate). We begin by writing the kinetic co-energy and potential energy as:

T ∗ =
1

2
(Jm + Jb)θ̇

2
m +

1

2
mpL̇

2
a +

1

2
mBL̇

2

V = mBgL+
k

2
(L− La + L0 + c)2

(2.7)

Where θm, Jm, Jb, and mp represent the motor angle, motor inertia, ball-screw inertia,

and actuator plate mass respectively. We next eliminate θm as a variable by using the

relationship of the ball screw velocity to linear plate velocity: θ̇m = −NL̇a, and define

the effective mass of the SEA as:

me = N2(Jm + Jb) +mp (2.8)

Where N is the motor gear ratio. Using (2.7) and (2.8), the resulting dynamics of the

system can be written as:

L̈a =
1

me

(K(L− La − L0 − c)− b1L̇a − νuleg)− f1sign(L̇a)

L̈ =
1

mB

(K(La − L+ L0 + c)− b2L̇−mBg)− f2sign(L̇)

ν =
2πkt
lb

(2.9)

The model consists of the variables K, c,mB,me, kt, lb, g, which represent respectively

the spring constant, main spring pre-load, sprung mass, effective actuator mass, motor

torque constant, ball-screw meters per revolution, and gravity constant. The coefficient

ν converts the input current uleg into input force to the SEA. Non-linear frictional effects

are common in SEA systems, therefore we choose to include Coulomb friction terms f1

and f2 in addition to damping terms b1 and b2. Although simpler in construction, it
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was experimentally determined that the ball-screw of the Hopper B was not well suited

for the high forces experienced during decompression of the spring, and was prone to

breaking.

The second vertical hopper constructed, the Hopper C, uses a network of static and

sliding pulleys to actively change the system spring compression. This actuator and leg

mechanism, schematic shown in Fig. 2.4, was ultimately determined to be superior to

the Hopper B implementation due to being lighter, more robust to high velocities and

forces resulting from rapid spring decompression, and most importantly having direct

measurement of the robot leg state L via an encoder on the leg pulley. The SEA and leg

mechanism from Hopper C was therefore chosen to be used on the 2D robot FRANK.

Although more complex and quite mechanically different, the system dynamics can still

Figure 2.4: Schematic for the cable driven series-elastic actuation of the Hopper C.
In addition to being overall lighter, the cable driven approach was experimentally
determined to be more robust to the high spring forces, and less prone to being
damaged as the Hopper B. This SEA implementation is the same used in the 2D
robot FRANK.

be represented in nearly an identical form as those of the Hopper B. As was the case

with the Hopper B, the states we use to model the system dynamics are L and La, and
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the procedure for generating the equations of motion is exactly the same. In this case,

the effective mass and motor force constant are written as:

me = 4mc +
4Ip + 4N2Im

r2p

ν =
0.5Nkt
r

Where Ip, Im, rp, mc, kt, and N are the pulley inertia, motor inertia, pulley radius, cable

mass, motor torque constant, and gear ratio respectively. The dynamics for the Hopper C

can be expressed as:

L̈ =
1

mB

(K(La − L+ L0 + c)− b2L̇−mBg)− f2sgn(L̇)

L̈a =
1

me

(K(L− La− L0+ c)− b1L̇a+νS)−f1sgn(L̇a)

νS = kp(2La − cp)− νuleg

(2.10)

In this case the model consists of two additional parameters: kp and cp, which represent

the spring constant and pre-load of an additional, smaller spring necessary to tension the

cables of the SEA. Using a cable driven hopper has the advantage of having an overall

lighter design, not relying on a heavy ball-screw driven mechanism. However, the cost of

using a complex network of cables and pulleys is increased frictional effects in both the

leg and the actuator. However, system identification experiments have shown that the

Hopper C (and FRANK) can still be reasonably represented using Coulombic friction.

Details regarding system identification can be seen in Appendix A. Another important

note here is that when realistic SEA dynamics are considered, any approximations that

rely on the leg length being able to accelerate arbitrarily fast or even change instanta-

neously are not valid, as illustrated in Fig. 2.5. Here we see clearly that modeling the

SEA as a constant impulse is not at all representative of hardware implementations.
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Figure 2.5: Compression cycles during stance phase for steady-state operation of the
Hopper C hardware. In the data above, x1 = La and x2 = max((L0 − L), 0), which
represents spring compression. Note that actuator dynamics happen at a time scale
similar to that of hopper dynamics and cannot be well-approximated as instantaneous.

2.4 Series-Elastic Actuated 2D Hoppers

This Section introduces a SEA 2D hopping robot. This robot has all the real features

associated with the realistic hopping robot FRANK, with the exception of body angle

dynamics. The SEA 2D hopper is essentially a more realistic version of the active SLIP,

in that it can be realized in hardware by mechanically locking body rotation on the boom

side of FRANK. Unlike SLIP however, the system exhibits SEA dynamics, leg mass and

inertia, and potentially a torque control input at the hip. Note that this model does not

exhibit body dynamics and therefore is still not quite sufficient for real-word operation,

as these robots will always have a body on which electronics is typically mounted that

must be stabilized, however the SEA 2D hopper is a useful system to study in order to

understand how to extend SLIP-based methods to realistic SEA implementations. The

21



Dynamic Modeling of Hopping Robots Chapter 2

Figure 2.6: Schematic for the 2D SEA Hopper. This robot is essentially a more realistic
version of the Active SLIP Model, and can be realized in hardware by mechanically
locking the body of the robot FRANK.

state X of the system during stance is given as

X = [θ, L, La, θ̇, L̇, L̇a]
T

where θ represents the leg angle, L represents the leg length, and La represents the

position of the SEA. The kinematic structure of the robot is given as:

xleg = xfoot +
L

2
sin θ

yleg = yfoot +
L

2
cos θ

xbody = xfoot + L sin θ

ybody = yfoot + L cos θ + l1

(2.11)

where l1 represents the distance between the hip joint and the body CoM, constant in

the body-locked case, and xfoot and yfoot are constant during stance, and have ballistic

dynamics seen in (2.2) during flight. Since the robot has leg mass, the CoM of the robot
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is not exactly at the body mass CoM, and can be expressed as:

xCoM =
1

ml +ms

(mlxleg +msxbody)

yCoM =
1

ml +ms

(mlyleg +msybody)

(2.12)

where ml represents the combined (unsprung) leg and foot mass, and xleg, yleg represent

the position of the CoM of the leg. Similarly, xbody, ybody represent the position of the

CoM of the (sprung) body mass mB. In order to define the dynamics via the Lagrangian

method, we write the kinetic co-energy and potential energy as:

T ∗ =
ms

2
(ẋ2body + ẏ2body) +

ml

2
(ẋ2leg + ẏ2leg) +

Jl
2
θ̇2 +

me

2
L̇2
a

V = g(msybody +mlyleg) +
K

2
(L0 − L+ La + c)2 +

kp
2

(cp − 2La)
2

(2.13)

Where the new parameters me, Jl, and ml represent the effective SEA mass, leg inertia,

and leg mass respectively. Using (2.13), the resulting dynamics of the stance phase are


θ̈

L̈

L̈a

=M−1

C +


−NKtuhip

−b2L̇− f2sgn(L̇)

−νuleg−b1L̇a−f1sgn(L̇a)


 (2.14)

where non-linear matrices M and C are both functions of X. The SEA actuator variable

uleg outputs current to drive La with motor torque constant Kt and gear ratio N .

During the discrete events touch-down and take-off, additional energy in the system

is lost due to the unsprung leg mass. At touch-down, the foot of the robot impacts

the ground causing the unsprung portion of the leg’s velocity to be dissipated. The
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instantaneous effect on the CoM velocity can be written as

ẋ+CoM = ẋ−CoM −
ml

2(mB +ml)
ẋ−foot

ẏ+CoM = ẏ−CoM −
ml

2(mB +ml)
ẏ−foot.

(2.15)

At take-off, the moving frame of the body impacts the leg assembly causing the system

to lift off the ground. As previously described for Raibert hoppers [38], the radial change

in velocity can be found by conservation of linear momentum and results in additional

loss on the CoM velocity as

ṙ+ =
mB

ml +mB

L̇− +
ml

2(ml +mB)
L0θ̇

ẋ+foot = ṙ+ sin θ, ẏ+foot = ṙ+ cos θ

(2.16)

As we see with the impact dynamics above, we lose energy at each step proportional

to the amount of unsprung mass in the system, that any actuation policy we develop

must account for. It will be shown in Section V that SLIP-based algorithms can be

implemented on this robot, and precision step length control can be achieved.

2.5 The Hopping Robot FRANK

The hopping robot FRANK (FRANK: Robot Acronym Not Known), shown in Fig.

2.7, is a Series-Elastic Actuated 2D Hopper with an underactuated body, similar to the

classic Raibert hoppers [38]. The robot is connected to a large carbon fiber boom, and

an optional mechanical lock was developed on the boom side to limit body rotation.

When FRANK’s body is mechanically locked on the boom side, the model is exactly

the Series-Elastic Actuated 2D Hopper from the previous Section, therefore this Section

focuses solely on the body-unlocked implementation. FRANK has two actuators and
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Figure 2.7: The robot FRANK is a low weight SLIP-inspired underactuated hopper.
The robot consists of a series elastic actuator (SEA) to inject energy into the system,
a planar leg angle actuator to control the forward touch-down angle (θ), and an under-
actuated body angle (φ) which rotates during operation and must be kept upright to
maintain stable motions. The center of mass (CoM) of the body does not correspond
to the hip joint, giving way to non-trivial coupling dynamics between φ and θ.

four dynamic states, and is therefore highly underactuated. Furthermore, the body CoM

does not coincide with the robot’s hip joint, giving rise to non-linear coupling dynamics

between the leg and the body. Note that our angle and state conventions largely parallel

Raiberts original work [38].

Similar to SLIP, this system can be described as having a flight phase and a stance

phase. During the flight phase the system follows ballistic dynamics in (2.2). The states

X of the system during stance are given as

X = [θ, φ, L, La, θ̇, φ̇, L̇, L̇a]
T (2.17)

where θ represents the leg angle, φ represents the underactuated body angle, L represents

the leg length, and La represents the position of the SEA. The robot is kinematically

structured identically to the SEA 2D Hopper introduced in the previous Section, with

the only difference being the location of the body mass is now dependent on the body
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angle as:

xleg = xfoot +
L

2
sin θ

yleg = yfoot +
L

2
cos θ

xbody = xfoot + L sin θ + l1 sin(φ)

ybody = yfoot + L cos θ + l1 cos(φ)

(2.18)

The equation governing the location of system CoM can be seen in (2.12). To proceed and

define the stance dynamics via the Lagrangian method, we write the kinetic co-energy

and potential energy as:

T ∗ =
ms

2
(ẋ2body + ẏ2body) +

ml

2
(ẋ2leg + ẏ2leg) +

Jl
2
θ̇2 +

me

2
L̇2
a +

J

2
φ̇2

V = g(msybody +mlyleg) +
K

2
(L0 − L+ La + c)2 +

kp
2

(cp − 2La)
2

(2.19)

Where the new term J represents the system body inertia. The dynamics of the stance

phase are finally generated as:



θ̈

φ̈

L̈

L̈a


= M−1


C +



−NKtuhip

NKtuhip

−b2L̇− f2sgn(L̇)

−νuleg − b1L̇a − f1sgn(L̇a)




(2.20)

where matrices M and C are both functions of X. Note that while in terms of the

Lagrangian derivation, the only notable differences in the construction compared to the

body locked case is the addition of the inertial term in the kinetic co-energy and the

resulting counter-torque applied to the body by the hip actuator. While this may seem a

simple addition, the resulting matrices M(X) and C(X) are considerably more complex
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in this case, resulting in quite a difficult system to stabilize during nominal 2D hopping.

The specifics of the body-leg coupling dynamics are discussed further in Chapter V.

The system impact dynamics are now also a function of the body angle φ, but when

written in terms of the system CoM are exactly the same as those seen in Equations (2.16)

and (2.15). All simulation results presented in this paper use realistic model parameters

obtained via system identification of the robot FRANK, the details of which are discussed

in Appendix A, and can be seen in Table 2.1. The robot is tethered to a large boom on

which all hardware is mounted. The leg mechanism used by FRANK is exactly the leg

used in the Hopper C, seen in Fig. 2.2. FRANK has motor encoders for θ and the motor

that drives the SEA position La, along with boom encoders to measure φ, the vertical

angle ψ, and the horizontal angle αB, allowing real-time estimation of both forward and

vertical position and velocity. As with the Hopper C, FRANK has an additional encoder

on the leg pulley, allowing direct measurement of the leg state L in stance. Additionally,

the SEA coupling between the motor and leg mechanism is the same as shown in Fig.

2.4. The specifics of how the leg itself is coupled to the system’s two main springs, along

with the electronics implemented for control are shown in Fig. 2.8.

All computation is done on board the hardware using a VersaLogic Tiger (VL-EPM-

24) board, with communication between the host and target accomplished via Simulink

Real Time. A Maxon motor controller is used in current control mode in order to apply

the correct voltage to the motors given a desired current command by our controllers.

Although the robot FRANK has an additional actuated angle state (θ⊥), we omit it from

the 2D dynamics as it is only used to prevent the leg from slipping in the perpendicular

direction during operation, the details of which are provided in our experimental results

presented in Section IV. During the flight phase the robot FRANK in actual hardware still

follows approximate ballistic dynamics, with some slight modifications due to the boom

geometry. Specifics regarding these ballistic-like dynamics and corresponding system

27



Dynamic Modeling of Hopping Robots Chapter 2

identification data can be found in Appendix A.

Figure 2.8: The robot FRANK uses a cable driven design for both the SEA and leg
mechanism, seen above in (a). The leg mechanism used is exactly the same used in
the 1D prototype Hopper C. All electronics (b) are mounted on the boom side, and
communication is sent via an Ethernet connection from target to a host computer
running Simulink.

It will be shown in Section V that the same SLIP-based algorithms implemented for

the body-locked SEA 2D Hopper can also be implemented with the body unlocked, with

some slight modifications and use of the torque input at the hip.
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mB 7.59 kg Sprung (body) mass
ml 0.548 kg Unsprung (leg) mass
me 7.11 kg Effective actuator mass
Jl 0.015 kg m2 Leg inertia
JB 0.227 kg m2 Body inertia
l0 54.3 cm Natural leg length
l1 16.2 cm Body CoM dist. from hip
K 2,389 N/m Main spring constant
c 0.002 m Main spring pre-load
kp 245.18 N/m Tension spring constant
c 0.114 m Tension spring pre-load
Kt 0.0369 Nm/A Motor torque constant
N 66 Motor gear ratio
ν 59.1 N/A SEA actuator constant
b1 1.74 Ns/m SEA linear friction
f1 0.91 N SEA coulomb friction
b2 1.08 Ns/m Leg linear friction
f2 0.53 N Leg coulomb friction
umax 20 A Maximum current input

Table 2.1: Model parameters for the robot FRANK
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Chapter 3

High Order Partial Feedback

Linearization on Hoppers

This chapter introduces PFL-based control laws applicable to hopping robots during

the stance phase. There are two core reasons to develop such methods. The first is

simply to have an accurate method of implementing feedback control continuously on

the system while in contact with the ground. Fig. 3.1 shows simulation results for

implementing PID-based apex height control on a model of FRANK. Even for this often

considered “simple” case of regulating apex heights during vertical hopping, simplistic

controllers that do not incorporate accurate dynamical models often have very sub-par

performance, as they typically rely on discrete energy-based estimations and/or feedback

of apex state measurements only. The control strategy used in Fig. 3.1 follows classical

techniques [8] where the SEA input is set as a constant thrust at every hop calculated

using feedback from the previous apex height and a reference command. The same

strategy is then attempted in forward motion with the touch-down angle command also

set using a discrete PID controller as in [8]. Such control methods may provide acceptable

results for steady-state solutions, but lack the ability to track fast changing commands
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Figure 3.1: This figure shows that even for the simple case of regulating apex heights
(the “1D problem”) on a realistic hopper model, using simplistic control methods will
not result in good performance. The top plot shows that even in vertical hopping the
performance leaves much to be desired, and the bottom plot illustrates how perfor-
mance will degrade further if such a strategy is attempted during forward motion.

required for foothold selection. Even in the case of analytically solving the 1D system for

feed-forward commands, a controller solely based on feed-forward information will often

result in significant errors from model inaccuracies. More details and comparative results

on these control methods are provided in Section IV.

The second core motivation follows from the fact that analytical solutions for more

general 2D hopping systems are difficult to calculate in the presence of complex actuator

dynamics. Therefore, generating an accurate feed-forward command is quite difficult (or

impossible) in the presence of analytically unsolvable governing stance phase equations.

We would like to use uleg to directly control L (not La) or other positional auxiliary

variables, and since our system has potentially both nonlinear frictional effects and leg

angle dynamics we would like to negate, we propose to use feedback linearization to
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accomplish both goals. This chapter will review the fundamentals of PFL for mechanical

and compliant systems, and provide the relevant PFL control laws to be used on our

hopping robot models. We acknowledge that practical application of PFL on real systems

typically requires an excellent model to accuracy cancel the non-linearities of the system.

However, the stance phase dynamics of hoppers have the advantage of mostly being

dominated by spring forces, therefore while it is critical to accurately determine the spring

parameters, later results will suggest that a perfect model for some of the more difficult

to identify model properties such as frictional coefficients is not necessarily required for

reasonable results.

This chapter is focused solely on constructing the feedback laws. Subsequent chapters

will provide implementation examples, trajectory generation, and algorithms we use to

achieve various goals such as apex regulation and step length control.

3.1 Review of PFL for Mechanical Systems

In this Section the fundamentals of partial feedback linearization are reviewed. Con-

trolling a system with PFL is essentially applying feedback linearization on some of the

states, or auxiliary variables of the states, of an underactuated system. It was shown

by Spong [58, 59, 60] that for an n degree of freedom system with m actuated states,

for most mechanical systems in fact m of the equations of motions can be linearized

whether or not they are directly attached to the actuators. As was shown by Spong, for

a mechanical system with state vector x ∈ Rn, we partition the state-space in terms of

m actuated states x2 and k underactuated states x1 as:

M11ẍ1 +M12ẍ2 + ε1 = 0 (3.1)

M21ẍ1 +M22ẍ2 + ε2 = τ (3.2)
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where components Mij make up some larger system matrix M , and along with ε1 and ε2

are nonlinear functions of the state x. The key idea here is that since m of our states are

actuated, we should be able to control m out of n variables. If these control variables are

the actuated states of the system, this is called collocated linearization, and the control

law is written as:

τ = M̄22v + ε̄2

ε̄2 = ε2 −M21M
−1
11 ε1

M̄22 = T TMT

(3.3)

with

T =

 −M−1
11 M12

Imxm


The described controller cancels the natural dynamics of the system, and supplants them

with those given by v, which are supplied by the control designer and are typically

feedback controllers to drive the error of the controlled portion of the linearized system

to zero.

Similarly, the case when the control variables are not the actuated states is deemed

non-collocated linearization. This type of linearization is only possible for a set of output

variables z when the mapping from z to the actuated states x2 is strongly inertially

coupled, which is a controllability condition. Essentially, if one substitutes the system

dynamics in (3.2) into the dynamics of the desired auxiliary variables, the input term

τ must explicitly appear in each component of the resulting auxiliary dynamics. The

reader is refereed to [59] for more details and references regarding this condition. For the

case of applying non-collocated linearization on the underactuated states x2, the control
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law is written as:

τ = M̃21v + ε̃2

ε̃2 = ε2 −M22M̂
−1
12 ε1

M̃21 = M21 −M22M̂
−1
12 M11

M̂12 = MT
12(M12M

T
12)
−1

(3.4)

where again the natural dynamics are supplanted with a function v. Typically, we gen-

erate the dynamics for the desired error function as:

v = Kp(rz − z) +Kd(ṙz − ż)

where rz and ṙz are reference trajectories and z represents the PFL control variables,

which were x2 and x1 in the provided examples of (3.3) and (3.4) respectively. Note that

Kp and Kd determine the pole locations for the linearized portion of the system dynamics,

and must be chosen properly to ensure the error dynamics decay exponentially to zero.

The unlinearized portion of the system’s dynamics, deemed the zero dynamics when this

exponential convergence for the error of the linearized portion has occurred, must also

remain well behaved. Designing trajectories for the PFL control variables (i.e., rz, ṙz)

such that these dynamics remain well behaved is the most challenging aspect of using

PFL to control a system.

In regards to hopping robots, we typically have two actuators and three to four states,

depending on the hopper model used. Thus, when applying PFL to the system we expect

to be able to control at least two out of the three/four states (or auxiliary variables) of

the system. In this dissertation we investigate two methods: applying PFL on the leg

state on the robot, and applying PFL directly on the CoM x and y locations as auxiliary
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variables.

3.2 PFL for Compliant Systems

Implementing feedback linearization for hoppers, and compliant systems in general,

has the additional challenge of requiring all feedback loops to be generated at a higher

order than the typical mechanical system. In general, for a system of the form:

ẋ = f(x) + g(x)u

y = h(x)

In order to use u to cancel nonlinearities in y and supplant the dynamics with some

desired error function, we must consider the mapping from u to y. For a system with

relative degree n, taking n time derivatives of the output yields:

y = h(x)

ẏ =
dh(x)

dx
f(x)

...

dn−1y

dtn−1
=
dn−1h(x)

dxn−1
fn−1(x)

dny

dtn
=
dnh(x)

dxn
fn(x) +

d(d
n−1h(x)
dxn−1 fn−1(x))

dx
g(x)u

In other words, the relative degree for any input-output pair is the number of times the

output function must be differentiated for the input term to appear and have instanta-

neous effect. For many mechanical systems, the relative degree is simply two, as is the
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case for the classical PFL examples on the Acrobot and Pendubot presented by Spong

[60]. For hopping robots, if we attempt to use our two actuators, a SEA and hip torque,

Figure 3.2: Using PFL to control a hopper typically means we seek to regulate both
components of the ground contact force (FL and FN ) independently, to in turn control
the center of mass or some other axillary variable. However, because FL is instanta-
neously set by the spring force, we must build the PFL loop about relative degree 2
or higher to implement this approach.

or in the case of the 3-link hopper two link torques, it is important to note that for a

standard acceleration-based PFL (i.e. relative degree 2), the construction will fail if the

system has a compliant leg, as all hoppers do, as shown in Fig. 3.2. This is because along

the direction of the leg, the radial force is always set instantaneously by the spring or

spring damper element as FL = −kleg∆L − bkL̇, such that we can only instantaneously

effect one component of the system acceleration, not both. Thus, for hopping robots,

we always expect the relative degree of any successful feedback linearization we use to

necessarily be higher than 2, and will therefore be what we define as high order partial

feedback linearization (HOPFL).

3.3 HOPFL on SEA Hopper Leg State

This Section introduces a feedback method for enforcing trajectories directly on the

leg length L of SEA Hoppers. This is a powerful tool as it will later be shown that by
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ensuring the trajectory of the leg length follows some nominal reference, approximations

can be made to predict the underactuated leg angle dynamics, as the instantaneous

acceleration of the leg angle depends only on the leg state L and not La. The leg length

L is a state of the robot FRANK, however, as we can clearly see in the dynamics for the

leg and SEA coupling in (2.10), the actuator input uleg does not instantaneously effect

the acceleration of the leg state. In this case, we must take two additional derivatives for

our control variable to directly affect L, and therefore the relative degree of our system

with L as the chosen output is 4.

We begin by considering the dynamics of the robot FRANK in (2.20). We will develop

the HOPFL control law specifically for this model, but note that the same construction

can be used for the SEA 2D Hopper (i.e. FRANK with locked body) in (2.14) with

φ = 0, and also for the 1D SEA Hopper C in (2.10) with both φ = 0 and θ = 0. We

approximate the non-differentiable Coulombic terms with a scaled arctan function, which

is quite accurate for scaling constant µ sufficiently small, and generate the approximate

dynamics as

W =M−1


C +



−NKtuhip

NKtuhip

−b2L̇− 2f2
pi
atan( L̇

µ
)

−νuleg−b1L̇a− 2f1
pi
atan( L̇a

µ
)




(3.5)

We proceed by taking two derivatives of the state acceleration equations in (3.5) to obtain

the dynamics for the jounce of the system as

Λ(X, uleg, uhip, u̇hip, ühip) =
d2

dt2
W (3.6)

where we must also allow for the control input at the hip uhip to have time-varying charac-

teristics. We lastly substitute (3.6) in (3.5) and extract the component of Λ corresponding
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to the leg-length state to form our control variable as

....
L = γLuleg + βLuhip + ηLu̇hip + αLühip + εL (3.7)

where all coefficients are functions of the state X. In order to fully define the control

law for L, we must calculate uhip, u̇hip, and ühip, which are functions of the hip controller

used, and will be defined for each control implementation we present later in chapter V.

When we take two derivatives of uhip, however, state feedback terms present will typically

cause the term L̈act to appear and therefore the component of ühip due to uleg must be

separated and used to generate new effective coefficients as

ühip = δ1 + δ2uleg

γ̃L = γL + αLδ2

(3.8)

Finally, using equations (3.7) and (3.8) we define our control law as

uleg =
1

γ̃L
(−εL − βLuhip − ηLu̇hip − αLδ1 + vL) (3.9)

In other words, uleg cancels the natural dynamics and forces any errors in L to decay via

linear, fourth-order dynamics that we set through vL. Specifically, we choose

vL = v1 + v2

v1 = Kp(Lref − L) +Kd(L̇ref − L̇)

v2 = Kdd(L̈ref − L̈) +Kddd(
...
Lref −

...
L)

(3.10)

which requires four total poles in the closed-loop dynamics of L(t). One option for setting

the controller gains is to first select a dominant pole-pair with natural frequency ωn and

damping ratio ζ, and then set a significantly faster decay rate for the two remaining,
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real-valued poles, p3 and p4. For a chosen set of wn, ζ, p3, p4, the gains are:

Kp = p3p4w
2
n

Kd = (p3 + p4)w
2
n + 2p3p4ζwn

Kdd = w2
n + 2ζ(p3 + p4)wn + p3p4

Kddd = p3 + p4 + 2ζwn

(3.11)

Additionally, we require both references and estimates of the acceleration and jerk of

the system, which can be calculated using analytical computations once uhip has been

defined. Since the leg state is a position on the actual robot, this control construction can

be loosely considered a type of collocated linearization, and is relatively easy to realize

in hardware assuming a direct measurement for the leg length exists, as is the case for

the robot FRANK. It will be shown in chapter V that the resulting trajectories of the

underactuated variables φ and θ can be determined using SLIP-based techniques along

with this HOPFL construction.

Note that in general, it is also possible to construct an equivalent PFL controller to

regulate La directly. However, in this case we would not have feedback directly on L, and

therefore cannot make approximations that depend on L(t) converging to some nominal

reference trajectory, which is critical for implementation of SLIP-based approximations

and will be shown in chapter V.

3.4 HOPFL on Hopper CoM

For some hopping systems, it is advantageous to control the system CoM directly, as

opposed to regulating the leg state and developing suitable reachability maps. Building

the control law directly on the CoM has the advantage of directly regulating the take-off
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velocities, however, comes at the additional challenge of being non-collocated and more

difficult to implement. This HOPFL construction is also general enough to work on a

variety of hopper models, and is therefore shown for both FRANK and the Compliant

3-link model. It will be shown later, however, that there is little reason to implement

such a method on FRANK, where using HOPFL on the leg state is much better suited

towards applying SLIP-based techniques. Applying this control framework towards step

length control is discussed in chapter VI.

3.4.1 PFL Construction for FRANK

The control variables in this case are the CoM x and y locations of FRANK, seen in

(2.12). Due to the system’s series elastic element, constructing the acceleration of our

control variables only yields one available input term. This can be verified by observing

Equation (2.20) and noting the acceleration of L, θ, and φ are not instantaneously affected

by uleg. Therefore, when we take derivatives to define ẍcm, ÿcm and substitute Equation

(2.20) for the state acceleration variables we obtain

ẍcm = βx(X)uhip + εx(X)

ÿcm = βy(X)uhip + εy(X),

(3.12)

where β, and ε are functions of the state X. The fourth state variable La, the active

spring compression, appears in the dynamics for the acceleration of the remaining three

state variables. Therefore, two derivatives must be taken for uleg to instantaneously affect

the CoM, thus as before we must build the linearization with relative degree 4. To cope

mathematically with the Coulombic friction terms in the model, we again approximate
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these terms via a scaled arctangent function as

W = M−1


C +



−NKtuhip

NKtuhip

−b2L̇− 2f2
pi
atan( L̇

µ
)

−νuleg − b1L̇a − 2f1
pi
atan( L̇a

µ
)




(3.13)

which is a reasonable approximation for µ sufficiently small. We proceed by taking two

derivatives of the state acceleration equations in (3.13) to obtain dynamics for the jounce

of the system as

J(X, uleg, uhip, u̇hip, ühip) ≈
d

dt

d

dt
W (3.14)

Next, we take additional time derivatives of Equation (2.12) to define
....
y cm, and by

substituting in Equations (2.20) and (3.14) we form our control variables as

ẍcm = βxuhip + εx

....
y cm = γyuleg + βyuhip + ηyu̇hip + αyühip + εy

(3.15)

where the equation for xcm is unchanged and γ, η, and α are higher order terms that are

also a function of only the state X. We define the control law for xcm, which is trivial as

only one actuator has effect on the acceleration, as

uhip =
1

βx
(−εx + vx) (3.16)

where vx is calculated via PD feedback, to drive the system to desired references as

vx = Kp(xref − xcm) +Kd(ẋref − ẋcm) (3.17)
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In order to define the control law for ycm we must determine the two input derivative

terms, which can be calculated as follows. We construct the first derivative of uhip as

u̇hip =
1

βx
(−ε̇x + v̇x)−

β̇x
β2
x

(−εx + vx) (3.18)

Next, we make use of the fact that

v̇x = Kp(ẋref − ẋcm) +Kd(ẍref − vx) (3.19)

Since the coefficients ε̇x and β̇x are functions of X and state accelerations excluding La,

using Equation (2.20) with our control law in Equation (3.16) allows these terms to be

calculated. Next, we construct the second derivative of uhip in exactly the same manner,

and similarly make use of the fact that

v̈x = Kp(ẍref − vx) +Kd(
...
x ref − v̇x) (3.20)

New coefficients ε̈x and β̈x appear and are functions of X, state jerk excluding La, and

state accelerations, which we can calculate using Equations (2.20) and (3.15) for the state

dynamics with Equations (3.16) and (3.18) for the input terms. Similar to the HOPFL

construction for the leg state, the term L̈act appears in ε̈x, therefore the component of

ühip due to uleg must be separated and used to generate new effective coefficients as

ühip = δ1 +
δ2
βx
uleg

γ̃y = γy + αy
δ2
βx

(3.21)
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Finally, using equations (3.16), (3.18), and (3.8) we define our control law for ycm as

uleg =
1

γ̃y
(−εy − βyuhip − ηyu̇hip − αyδ1 + vy) (3.22)

where vy is calculated via feedback, to drive the system to desired references as

vy = v1 + v2

v1 = K1(yref − ycm) +K2(ẏref − ẏcm)

v2 = K3(ÿref − ÿcm) +K4(
...
y ref −

...
y cm)

(3.23)

Since the relative degree of the feedback linearization is four, we require four total poles

in the closed-loop dynamics of ycm. One option for setting the controller gains is to first

select a dominant pole-pair with natural frequency ωn and damping ratio ζ, and then set

a significantly faster decay rate for the two remaining, real-valued poles, z3 and z4. For

a chosen set of wn, ζ, z3, z4, the controller gains are:

K1 = z3z4w
2
n

K2 = (z3 + z4)w
2
n + 2z3z4ζwn

K3 = w2
n + 2ζ(z3 + z4)wn + z3z4

K4 = z3 + z4 + 2ζwn

(3.24)

Additionally, we require both references and estimates of the acceleration and jerk for

ycm, however, since uhip and its derivative are known the acceleration and jerk can be

analytically calculated. The unactuated body angle φ must remain bounded in this case

for stable operation, and Section VI will illustrate how to construct CoM trajectories so

this can be accomplished.
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3.4.2 PFL Construction for Compliant 3-link Model

In this Section we provide a similar HOPFL construction about the CoM for the

Compliant 3-link model. The control variables are the x and y locations of the CoM for

the 3-link robot in (2.6). In this case the body stability of the system is a function of

multiple robot links, and is therefore described by the auxiliary variable θB, also shown

in (2.6). Using PFL, we can control at most two of these three, because we have only two

actuators. In the FRANK implementation, it was only necessary to extend one of the

control variables to a higher order, allowing us to control xcm using a construction with

relative degree 2. Although we could implement a similar approach here, we intentionally

construct both components of the CoM at a higher order, to illustrate the feasibility of

implementing such an approach where perhaps both control variables require relative

degree greater than 2.

We start by taking derivatives to define ẍcm, ÿcm and θ̈B, and by substituting Eq. 2.5

for the state acceleration variables, we rewrite the acceleration of our control variables

as follows:

ẍcm = γx(X)τ1 + εx(X)

ÿcm = γy(X)τ1 + εy(X)

θ̈B = γθ(X)τ1 + εθ(X),

(3.25)

where γ, and ε are functions of the state X. As with all previous HOPFL constructions

on our hopping robots, it is important to note that for a standard acceleration-based

PFL, i.e., with relative degree 2, the construction will fail due to the compliant leg. As

we see in (2.13) this manifested in all β coefficients corresponding to τ2 evaluating to

zero for all X. In this case we need only take one additional time derivative, and thus

the relative degree is only 3. We proceed by defining the jerk EoM by taking the time
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derivative of Eq. 2.5, noting that the additional time dependent variables τ1 and τ2 must

be included as:

J(X, τ1, τ2, τ̇1, τ̇2) =
d

dt
W (X, τ1, τ2) (3.26)

Next, we take additional time derivatives of Eq. 2.12 to define
...
x cm,

...
y cm and

...
θ B, and

by substituting in Eq. 2.5 and Eq. 3.26 we rewrite the jerk control variable equations in

a form similar to that of the acceleration equations seen in Eq. 3.25:

...
x cm = β′x(X)τ2 + γ′x(X)τ1 + ηx(X)τ̇1 + ε′x(X)

...
y cm = β′y(X)τ2 + γ′y(X)τ1 + ηy(X)τ̇1 + ε′y(X)

...
θ B = β′θ(X)τ2 + γ′θ(X)τ1 + ηθ(X)τ̇1 + ε′θ(X),

(3.27)

In the FRANK implementation, we used analytical calculations to generate the deriva-

tives of uhip, however, this may not always be possible for some control implementations

(even though here it actually is). Therefore, in this case we approximate the derivative

of the torque input coefficients by using a first order difference approximation, denoting

a new variable τ1[t−T ] as the stored previous controller output value, at some controller

sampling time T . We assume the sampling time T is fast enough to give a reasonable es-

timation. We can then group the coefficients together to create new effective coefficients

as:

τ̇1 ≈
τ1 − τ1[t− T ]

T

ε̃ = ε′ − ητ1[t− T ]

T

γ̃ = γ′ +
η

T

(3.28)
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If we wish to control xcm and ycm, the control law is, after some algebra:

τ2 =
1

β′y − β′x γ̃yγ̃x
(ε̃x

γ̃y
γ̃x
− ε̃y − v̂1

γ̃y
γ̃x

+ v̂2) (3.29)

τ1 =
1

γ̃x
(−ε̃x − β′xτ2 + v̂1), (3.30)

where v̂1 and v̂2 are calculated via PD feedback to drive the system to desired references:

v̂1 = Kp(xref − xcm) +Kd(ẋref − ẋcm) +Kdd(ẍref − ẍcm)

v̂2 = Kp(yref − ycm) +Kd(ẏref − ẏcm) +Kdd(ÿref − ÿcm).

(3.31)

Since the relative degree is 3, we must estimate the acceleration of our control variables.

This can be accomplished by simply using the most-recently stored torque commands,

τ1[t−T ] and τ2[t−T ], in the place of τ1 and τ2 in Eq. 3.27 to give a reasonable numerical

estimate. We can again set the pole locations for the supplanted error dynamics by

selecting a dominant pole-pair with natural frequency ωn and damping ratio ζ, and then

set a significantly faster decay rate for the remaining, real-valued pole, p3. For a chosen

set of ωn, ζ, p3, the gains are:

Kp = p3ω
2
n

Kd = ω2
n + 2p3ζωn

Kdd = p3 + 2ζωn

(3.32)

Lastly, by utilizing a PFL-based technique we have the flexibility to choose any two of

our three variables of interest to control, and therefore if desired, we could for example,

instead control ycm and θB. The significant challenge for implementing this approach is
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again the design of feasible trajectories for our two regulated variables that ensures the

unregulated zero dynamics are well behaved. This is discussed in chapter VI.

It is also of note to mention that in general, coefficients for HOPFL controllers can

be quite complex and potentially difficult to generate. Practical considerations when

calculating these coefficients are therefore disused in Appendix B.
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Chapter 4

Apex Control of SEA Hoppers

We consider the problem of apex height regulation, considered by many to be a “trivial

1D problem”, to illustrate a few key points. First, in the presence of SEA dynamics,

even the simple case of apex height regulation may not be necessarily straightforward, as

using simple methods do not typically result in good performance as we saw in Fig. 3.1.

Second, this is the simplest type of control to facilitate testing our HOPFL control-based

method. We draw a parallel between more simple methods and point out the obvious

improvements our method has to offer. Third, this problem is feasible for deployment on

the robot FRANK, and will verify that HOPFL is something we can actually implement

on a real robot that inevitably has model mismatches, sensor noise, etc.

4.1 PID-based 1D Height Regulation

This Section presents the simplest type of apex height regulation one can consider us-

ing to control the apex height for 1D hoppers, and will show that these simple techniques

do not perform well for real hopping robots. These controllers are applicable to both

the Hopper B and Hopper C models in (2.9) and (2.10) respectively. The first method
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one may be temped to try using is feedback of apex state information to generate feed-

forward commands, and command a constant current step during the stance phase.

This requires taking discrete measurements h[n] of the robot’s height at each apex state

A, and attempting to command reference heights r[n], where n represents the current

hop number out of a sequence of Nhops hops. Thus, at each apex A we calculate

uPID = KP (rn − hn) +KD(rn − hn − rn−1 + hn−1) +KI

Nhops∑
n=1

(rn − hn)

and in the subsequent stance phase we set uleg = uPID for the entire duration of stance.

Simulation results for this method applied to the Hopper C were already shown in the

top image from Fig. 3.1, and it is quite clear this method does not yield acceptable

performance. This control method lacks both a dynamics-based feed-forward term and

feedback correction, and is ill-suited for implementation.

One can attempt to implement a smarter but still “simple” approach by making use of

reachability maps and drawing inspiration from Raibert’s thrust controller [8]. Raibert’s

method involved applying thrust action at mid-stance, i.e., when the system spring is

expanding. Applying thrust actions during expansion for the purpose of increasing ver-

tical energy of Active SLIP has also been implemented in the literature [16]. Therefore,

we implement the following control law during the stance phase:

uleg =


MAP (h, r) during compression

Kp(Lref − L) +Kd(L̇ref − L̇) during expansion

where Lref and L̇ref are smooth trajectories of length N with initial values aligned to
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Figure 4.1: Reachability maps for the 1D Hopper B (a) and Hopper C (b), defined
as the set of possible vertical hops from each apex height. In the experimental data
shown in (b), the red x’s and blue lines represent measured hardware data, and the
cyan dotted line represents expected simulation results. Experimentally mapping the
reachable space can be quite time consuming, and is ill-suited for the more complex
2D hoppers.

the mid-stance initial conditions, and terminating values set as:

Lref (N) = L0

L̇ref (N) = (2g(r − L0))
1/2

Thus, the feedback component during expansion attempts to drive the leg to the desired

take-off velocity. During compression the feed-forward term MAP (h, r) is constructed

using a reachability map. For the 1D case, the reachability map is simply the set of next

possible apex heights as a function of the current apex height, and thus it is tractable

to construct a table of feed-forward commands as a function of current and desired apex

states. Example reachability maps for the Hopper B and Hopper C are shown in Fig.

4.1. Note that this method does not extend well to the 2D case as the additional apex

states (i.e. θ and φ) make both measuring and storing the data somewhat intractable.
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Figure 4.2: Results implementing the “improved” simple control method for regulating
apex heights. As we see in the experimental performance in (a), results still leave
much to be desired. Additionally, this method has little chance of functioning on
rough terrain, as the simulation results in (b) show. These results suggest that even
the “simple” problem of 1D height regulation is not quite as easy to implement on a
real hopper as many might believe.

This control method was implemented on the Hopper B hardware, and as we can see

in Fig. 4.2 (a), although an improvement over previous results, performance is still not

good, due to two core reasons. First, the reachability map will inevitably be somewhat

inaccurate to the real system, and certainly will not perform well on terrain not exactly as

the data was measured. This is illustrated in Fig. 4.2 (b), where the controller clearly has

no hope of rejecting disturbances. Second, and more importantly, simply “tacking on”

a feedback controller to a highly compliant system is very pedestrian, as it is impossible

to instantaneously set the acceleration of the system as we saw in Chapter III. Thus, we

should consider applying our HOPFL controllers to better control the system.

4.2 HOPFL-based 1D Height Regulation

In this Section we provide a more precise apex height regulation algorithm for ver-

tical 1D hopping, by constructing an analytical solution and using it as a reference for
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a HOPFL controller on the leg state of the robot from (3.22). For the 1D case an ana-

lytical solution is possible to determine exactly if we assume the actuation of the SEA

is a constant current step with magnitude u. Due to the Coulombic friction terms, this

calculation is performed piecewise linearly, and the
f

operator represents the concatena-

tion of each piecewise analytical solution. The detailed analytical calculations for each

piece using Inverse Laplace Transform Techniques can be seen in Appendix C. Given

touch-down initial conditions L0,0, L̇0,0,La0,0, L̇a0,0, and u, we can solve the dynamics in

(2.9) (and/or (2.10)) to generate:

La(t) =

Npiecesn

i=1

x1(i, L0,i−1, L̇0,i−1, La0,i−1, L̇a0,i−1, u)

L(t) =

Npiecesn

i=1

x2(i, L0,i−1, L̇0,i−1, La0,i−1, L̇a0,i−1, u)

(4.1)

The term Npieces represents the number of piecewise components the solution must be

broken up into, which is typically only 2, with the two pieces being compression and

expansion, separated with the leg velocity changing sign at mid-stance. To construct

trajectories for regulating apex heights, we consider the total energy of the spring-mass

system during stance as

UL =

∫
(k(−L(t) + L0 + c)−mBg)L̇(t) dt+ Uδ (4.2)

where

Uδ = −f2(L0 − L(t))−
∫
b2L̇(t)2 dt+

∫
kLa(t)L̇(t) dt− δTD (4.3)

Using the analytical solutions in (4.1), Uδ, deemed the Analytical Energy Delta (AED),

can be computed exactly over all stance time; it represents the sum of all energy loss terms

during stance, along with the energy added by the actuator. The term δTD represents any
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instantaneous energy loss at touch-down, which can be calculated using initial conditions

and the corresponding impact dynamics, for example, those of FRANK in Equations

(2.16) and (2.15). With these equations, we can calculate exactly what apex heights the

system will reach over all time, given initial conditions entering the first stance phase.

Both the friction terms and the unsprung mass at the foot account for significant energy

loss at each successive hop, and thus actuation is needed to introduce additional energy

into the system as shown in Fig. 4.3, for either stochastic, height-varying terrain or for

steady-state hopping or flat ground. To achieve consistent steady-state hopping, we can,

of course, use our equations for Uδ to find the magnitude of current needed to achieve

this.
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Figure 4.3: The system energy in (4.2) for 1D hoppers can be easily visualized during
an actuated simulation. Energy is added to the system via the U-shaped dips between
the flat plateaus of the ballistic phase. The AED is show in magenta and can be
analytically calculated using (4.3) as a function of each set of initial conditions and
input magnitude.

The algorithm to compute a set of HOPFL leg trajectories given initial conditions

proceeds as follows. During flight, we forward solve the ballistic dynamics in (2.2), and

any impact dynamics at touch-down. At the instant after touch-down, the energy level

53



Apex Control of SEA Hoppers Chapter 4

of the system is computed by

ETD =
1

2
mBL̇

2 (4.4)

If a ground height disturbance, yh, is present, the disturbance energy can be computed

as

Edist =
1

2
mBg|yh − L| (4.5)

Uδ is then computed for the end of the stance phase as Eδ(uFF ), where uFF is a constant

feed-forward current term. The controller selects current step magnitude uFF to achieve

the correct next-apex energy level as

uFF = arg min |Eδ(uFF )− (mBghdes − ETD − Edist)|, (4.6)

where hdes is the desired next apex height. The above minimization function may not

be analytically solvable, but finding the correct value of uFF can be accomplished by

simply calculating Eδ(uFF ) over a window of values and determining the minimum value

for some resolution. Although this returns a feed-forward current step magnitude uFF ,

our purpose in performing this calculation is to use the resulting analytical solutions

for the leg length L as references for the HOPFL Leg controller in (3.22). In this case,

since we are operating a vertical hopper, we evaluate Eq. (3.22) with uleg, θ, and φ

all equal to zero. Simulation results during a stance phase, implementing a set of leg

state solutions as trajectories for the HOPFL leg controller, are shiwn in Fig 4.4, with

current consumption by the SEA shown in Fig. 4.5. Apex tracking simulation results

implementing this approach are shown in Fig. 4.6 (a). As we can clearly see, these

methods yield significant improvement over those of 3.1 and 4.2, and can function on

uneven terrain.

It is of interest to note that since this method does indeed produce feedforward
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Figure 4.4: Simulation results for the described HOPFL leg controller, showing the
controller’s ability to track references directly on the leg state L. Trajectories were
generated using our analytical SEA 1D solutions with an input current step of 5.8 A.
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Figure 4.5: Actuation requirement in Amps for the described HOPFL leg controller
during a simulated stance phase. Compared to the actuator effort of the FF strategy
for identical trajectories, which for this particular example is a constant 5.8 A, the
average current applying the HOPFL controller is only slightly higher at 5.94 A.
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Figure 4.6: Simulation results implementing 1D height regulation on the Hopper C
are shown for (a) using the HOPFL leg state controller and (b) simply using the
constant feed-forward command uleg = uFF . It is not surprising that the feed-forward
strategy performs better given a perfect model with no noise, however, it is shown
later however that using only feed-forward commands will perform significantly worse
for both model mismatch and during 2D forward motion.

commands uFF , we can simply construct an apex height regulating controller that sets

uleg = uFF during the entire stance phase. Figure 4.6 (b) illustrates that this does indeed

provide improved performance over the pedestrian techniques from the previous Section,

and at first appears to even outperform our HOPFL controller. We will later provide

comparative results in both simulation and hardware showing that this method is quite

inferior compared to instead using HOPFL to regulate a corresponding stance phase

analytical solution as a trajectory, as it has no feedback correction.

4.3 PFL Coefficient Parameter mis-match

This Section considers applying our apex control methods in the presence of imper-

fect model information, which is often considered a limitation of PFL in general. It is,

of course, necessary to obtain some level of accurate model information to have good

performance. For SEA hopping robots, the spring constant, system mass, and actuator
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coupling terms must be precisely known to have hope of achieving good performance.

Luckily, these parameters can be determined quite accurately using system identification

techniques, as can be seen in Appendix A.

Often when performing system identification of real systems, the frictional terms can

be the most challenging to determine precisely, since they can vary both over time and

the exact system state. This has proven to be a significant practical challenge for the

SEA in our laboratory hardware. Therefore, it is of particular interest to study control

results when the SEA frictional parameters used by the controller, e.g. f1 and b1 in Eq.

C.1, do not match those of the real system. In this study, we assume the true dynamics

of the system are those of FRANK from Table 2.1, and vary the frictional parameters

used by the controller in order to study how these errors affect performance of our apex

tracking controllers presented in the previous Section.

We use a base trajectory of apex heights we would like the system to follow for these

studies. The apex heights were selected to span a reasonable amount of the reachable

states seen in Fig. 4.1, and the ground level is also randomly varied on a step-to-step basis

in order to simulate minor terrain variations. Simulation results for both control methods

with perfect model information are shown in Figures 4.6. With correct parameters, the

purely feed-forward method has negligible error, while the HOPFL method has some

small tracking error. To conduct the simulation study, we define a range of controller

frictional values of the series elastic actuator to iterate over as [f1,min, f1,max] = [0, 2]

and [b1,min, b1,max] = [0, 30], which are the values the controller will use on the real

system. The controllers are commanded to track the base apex height trajectory for each

parameter combination in this range, and the sum of squared error (SSE), normalized by

the square of the reference to be unit-less, is recorded by summing the ratio of squared

apex height clearance off ground errors to every desired apex in each trial. For reference,

the SSE of the purely feed-forward implementation using correct parameters is 0.12, and
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Figure 4.7: Results for variation of the SEA model’s frictional terms used by the
purely feed-forward controller. Each blue point represents a simulation with one set
of incorrectly used frictional parameters. The feed-forward method is quite sensitive
to variance of these model parameters, and is likely not robust enough to achieve good
performance on hardware implementations.

the average apex error (AE) was 0.7%. In contrast, the HOPFL controller has SSE 0.33

and AE 1.5% with correct parameters.

Results for this simulation study are shown in Figures 4.7 and 4.8. As expected, the

feed-forward controller performs poorly when the controller parameters do not match the

system dynamics. While the feed-forward controller has very good error using the true

parameters, other points with reasonably small error exist and represent cases when the

friction and damping terms are identified incorrectly, but the total sum of their effect on

energy loss is approximately the same. One example of this is highlighted as a red dot on

Fig. 4.7, in which case the controller uses f1 = 0 and b1 = 7.346, meaning the model is

assumed by the controller to have only linear damping terms. This error is still roughly

five times larger than the ideal parameters.

The HOPFL implementation performs significantly better with model inaccuracies, as

shown in Fig. 4.8. The maximum error, i.e. when the controller uses horribly inaccurate
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Figure 4.8: Results for variation of the SEA model’s frictional terms for the
HOPFL-based method. Noting the differences in the y-axis scale compared to the
results in Fig. 4.7, this method provides significantly improved performance for the
case of imperfect modeling.

frictional parameters, is significantly less compared to simply using the feed-forward

current commands. This is perhaps not a surprising result, and reinforces the fact that

feedback correction is necessary to achieve good performance for hopping systems.

4.4 Apex Height Regulation in Steady-State Forward

Motion

Thus far we have considered vertical regulation of 1D hoppers only. However, it is

possible in some cases to use these methods on 2D hopping robots. Note that in general,

precise apex height regulation alone is not sufficient to achieve good step length results

for irregularly spaced footholds, as this is a significantly more complex problem and is

investigated in the next chapter. In this Section we consider the problem of regulating

apex heights while the SEA 2D Hopper, i.e. FRANK with the body mechanically locked
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with dynamics in (2.14), is hopping in steady-state forward motion.

Although the system has a hip actuator uhip in addition to the SEA, we only allow

this actuator to position the leg in a desired touch-down angle during the flight phase.

Only the SEA outputs power during stance. Thus, during stance uhip is zero, and during

the flight phase, uhip uses a simple controller to position the leg to set the touch-down

angle θTD to achieve forward hopping. For simplicity we use a very simple controller,

used by Raibert [38] in historic work with hoppers, to set the touch-down angle, given

as

θTD = θ0 +K(ẋr − ẋhip) (4.7)

where θ0 is a constant touch-down angle, and ẋhip is the forward velocity of the hip joint,

with forward velocity reference ẋr and gain K.

Given this forward gait, we first naively attempt to directly apply out 1D HOPFL

control method to track a set of apex trajectories during forward movement. Simulation

results with θ0 and ẋr of -4.5 degrees and 0.66m
s

respectively are show in Fig. 4.9, where

it is clear significant apex error is present for all time. However, due to the HOPFL

controller component accuracy providing feedback on leg compression trajectories, we

see that the controller error is very consistent and appears to simply be an energy offset.

This energy difference Eθ can in fact be calculated, and is represented as

Eθ =
1

2
mB(ẏTO)2 −mBg(hdes − L0)

ẏTO = (1− ρ)L̇TO cos(θTO)− θ̇TOL0 sin(θTO)

Where ẏTO is the take-off hip vertical velocity, hdes is the desired next apex height, and

L̇TO, θTO, θ̇TO are the future velocity states of the system at the end of the stance

phase, right before take-off. We must of course account for the impact dynamics from

Eq. 2.16 with ρ = ml

mB+ml
. Therefore at touch-down, the next take-off state must be
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Figure 4.9: Attempting to use the HOPFL-based 1D apex regulation control strategy
for our 2D hopper during steady-state forward motion results in significant apex er-
ror. However, the touch-down and take-off angles, while not exactly symmetric, are
reasonably close to one another such that a simple energy adjustment to the control
algorithm is possible.

partly estimated in order to correct for the energy offset. We note however that since our

HOPFL controller component is regulating L and L̇, the take-off value L̇TO will simply

be the terminating value of the trajectory as

(1− ρ)L̇TO =
√

2g(hdes − L0) (4.8)

We also note from Fig. 4.9 that during stance the angle of the leg swings to within a

degree of the touch-down angle. Since this method is used only in steady-state forward

motion, we use the following simple but adequate approximation for the take-off angular
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values:

θTO ≈ −θTD

θ̇TO ≈ θ̇TD

(4.9)

We can then use Eqs. 4.8 and 4.9 in Eq. 4.4 to approximate the energy difference as Ẽθ,

and the only change to our apex regulation algorithm is in the energy cost function as

J2D = |Eδ(uFF )− (mBghdes − Etd − Edist + Ẽθ)| (4.10)

These assumptions allow us to estimate the energy offset, as compared to 1D hop-

ping, that occurs during steady-state 2D motion and command a slightly higher take-off

velocity. After applying this minor energy adjustment we implement the controller ex-

actly as in the 1D case. Simulation results for this algorithm are show in Fig. 4.10, and

indeed the energy offset has been corrected and apex tracking performance is virtually

identical to the 1D simulations. The average current consumption for this simulation is

2.63 Amps, which is well within continuous current limits of hardware. All apex height

regulation techniques presented thus far have been successfully implemented in hardware

on the robot FRANK, as it will be shown next.

4.5 Implementation on FRANK Hardware

In this Section we present motivating hardware results implementing our HOPFL

strategy on the robot FRANK with the body mechanically locked, regulating apex heights

during steady-state forward motion and rejecting ground disturbances during vertical

hopping. We acknowledge these are simpler problems than foothold placement, which

we address in simulation in the next two chapters. However, these results demonstrate
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Figure 4.10: Estimating and correcting the energy offset results in good performance
even in the presence of rough terrain, similar to the 1D results. The actuator output,
while exhibiting some initial saturation at touch-down, is reasonably well behaved.

that using high-order PFL on the leg state is feasible and performs well on real hardware,

which is inevitably affected by model inaccuracies, touch-down angle control difficulties

(see Appendix D), and imperfect sensing, currently preventing us from performing more

elaborate control experiments.

In order to adopt an apex height control strategy to the robot FRANK, some hardware

details must be accounted for. Although a mechanical lock prevents the boom side of

the robot from rotating, torsional forces on the carbon fiber boom result in the body

of the robot flexing by a few degrees during operation. The effect on the stance phase

dynamics is largely negligible. However, when controlling a specific touch-down angle

θTD the relative encoder reading at the hip for θ must be added to the body angle φ
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Figure 4.11: To regulate an apex state on the hardware, all control must be accom-
plished in the preceding stance phase. Furthermore, the feed-forward construction
must complete all required calculations before the touch-down event, with a typical
flight phase lasting 300ms-400ms, so the reference trajectories are ready at the start
of the stance phase.

to correctly position the global leg angle. A pair of HC-SR04 acoustic sensors were

mounted to each side of the robot in order to estimate the body angle φ so this could

be accomplished. Since the robot hardware is tethered to a boom, during the flight

phase the boom angle ψ, i.e., the angle that the boom forms vertically with respect to

the horizon, follows non-linear dynamics that must be accounted for when determining

proper take-off velocities. During hopping |ψ| ≤ −15 [deg], therefore we use a small

angle approximation to analytically solve and convert information from the leg states L

and L̇ to boom flight phase states ψ and ψ̇. Detailed information regarding derivation

and system identification of the flight phase ballistic-like boom dynamics can be seen in

Appendix A. Lastly, all computation is running locally on the robot hardware, which

has a maximum sampling rate of 1 KHz. Determining the correct feed-forward solution

requires some calculation time, and since a typical stance phase can be as short as 150 ms,

all calculations must be accomplished in the preceding flight phase in an algorithmic way,
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as explained by Fig. 4.11, with algorithm steps {1},{2}, and {3} listed in red.

Given take-off initial conditions for the ith flight phase, either at TOi or the corre-

sponding apex, the algorithm forward solves impact and flight dynamics {1} to generate

stance phase initial conditions TDi, and then calculates the feed-forward solution in real-

time during the current flight phase for the next stance phase. The robot determines

the parametrizing current uleg by solving 4.10 using a binary search algorithm, which

takes roughly 0.1 sec to compute and is well within flight time requirements. At each

iteration, the algorithm loops through steps {2 − 3}, using the analytical stance phase

equations in (4.1) to solve for the stance phase trajectory, the impact dynamics in (2.16)

with boom geometry, and flight phase analytical equations to calculate a resulting apex

state. Upon finding the correct apex state for a given reference, the algorithm saves

the stance trajectory L(t) and the first three derivatives for use in the HOPFL leg state

controller in (3.9) during the subsequent stance phase. Experimental reference tracking

performance by the HOPFL controller for a set of trajectories is shown in Fig. 4.12, with

actuator usage uleg for a single experimental stance phase shown in Fig. 4.13. The SEA

position La is also shown to illustrate that it remains quite well behaved. These results

verify the feasibility of using our 4th-order PFL control on real hopper hardware.

4.5.1 Apex Height Regulation during Vertical Hopping

Experimental apex tracking performance during vertical hopping was implemented

on the robot FRANK. To provide horizontal stabilization, we simply use our touch-down

angle control law in (4.7) with θ0 and ẋr both set to zero. Hardware results using HOPFL

can be seen in Fig. 4.14, and hardware results using only feed-forward commands (i.e.,

uleg = uFF ) can be seen in Fig. 4.15. Clearly, the HOPFL-based method performs

significantly better, as it has feedback correction to help with model inaccuracies, sensor
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Figure 4.12: The robot FRANK was successfully able to track all references during
the stance phase with reasonable results. The state measurement for L̇ is estimated
using a filter, and the state measurements for L̈ and

...
L are calculated in real-time

using analytic derivatives of the dynamics in (2.14).

noise, etc. It has been well shown thus far that simply using a feed-forward command for

the SEA actuator does not result in good performance, therefore all subsequent chapters

and Sections will focus solely on using the HOPFL-based methods.

4.5.2 Apex Height Regulation in Forward Motion

Hardware results for apex tracking during approximate steady-state motion, with a

commanded forward speed of ẋr = 0.42 ms−1, are shown in Fig. 4.16. As the results show,

the robot is able to track apex references that quickly change on a step-to-step basis even

in the presence of noisy forward velocity signals. This is a considerable improvement over

results generated via simplistic PID methods shown in Fig. 3.1. By using feed-forward

based trajectory generation, we are able to track step-to-step apex changes and also gain
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Figure 4.13: Above shows the current applied by the SEA hardware during a stance
phase. This stance trajectory corresponds to a solution generated with |uFF | = 4.23A,
and the average absolute current usage here is 4.83A, therefore we estimate usage of
the HOPFL controller on our hardware costs approximately 14% more power when
compared to a purely feed-forward method.

increased tracking performance of feedback control by using our high order PFL controller

directly on the leg state. Accuracy can likely be improved in future work by using the

leg angle actuator, which is currently unused in stance, to better regulate forward speed,

but comparing to Fig. 3.1 we clearly show hardware results that are an improvement

over simulation results using conventional methods. We also note that both accuracy

of forward speed and apex height can likely be improved by more elaborate touch-down

angle controllers, usage of the hip actuator in stance, and in particular incorporating

model information of SLIP-like angular dynamics, which is explored in the next chapter

in simulation.

4.5.3 Ground Disturbance Rejection

Another desirable attribute of control systems for legged robots is the ability to reject

ground disturbances well enough to allow for operation on rough terrain. Although

the acoustic sensor based body angle measurements currently prevent FRANK from

traversing terrain boards, the control algorithm can be easily augmented to handle non-
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Figure 4.14: Using the HOPFL controller to track apex heights on the hardware
FRANK results in quite good performance, and are quite similar to the simulation
results we saw in Fig. 4.6.
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Figure 4.15: Simply using feed-forward commands does not result in particularly good
performance on the hardware. This is an expected result, as when we simulated model
mis-matches in only the frictional parameters we saw tracking errors in general did not
remain small. Therefore, we conclude, as expected, stance phase feedback correction is
necessary to obtain good results for hardware deployment of hopping robotic systems.
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Figure 4.16: The controller is able to track apex heights on the hardware, even during
forward motion. The average apex error recorded for this data is 1.6%± 1.3% of the
commanded apex height clearance off the ground.

zero ground levels. This is accomplished by simply computing in parallel multiple solution

sets over a range of ground levels in algorithm steps 2-3 from Fig. 4.11, and at touch-

down selecting the solution corresponding to the proper ground height. This makes use

of parallel computing and requires the ability to estimate the level of the ground at

touch-down, which is a capability of the robot FRANK. During experimental vertical

hopping large boards of approximate thickness 1.6cm and 3.8cm were injected under the

robot during flight. Figure 4.17 displays the robot’s ability to easily reject these ground

disturbances, allowing potential operation on rough terrain while retaining reasonable

apex accuracy.

These hardware results motivate further investigation of using high order PFL in more

complicated hopping gaits. Specifically, in the next Sections we investigate in simulation

generating trajectories for the 2D problem of step length control in such a way that we
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Figure 4.17: The control algorithm can easily be modified to reject ground distur-
bances on the hardware. By calculating a set of solutions and determining the ground
level at impact, the robot is able to reject these kind of disturbances in real-time.

can predict the underactuated angular dynamics, and enforce them with PFL to regulate

footholds.
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Chapter 5

SLIP-based Step Length Control of

SEA Hoppers

This chapter provides control strategies and algorithms for implementing step length

control on our SEA 2D Hopper model. We illustrate how to apply our HOPFL leg

controller so that algorithms designed for the SLIP model already present in the literature

can be accurately implemented as reference trajectories. The body of the robot remains

locked until chapter 5.5, thus we are considering step length control for the SEA 2D

Hopper with dynamics in (2.14). In chapter 5.5, we build upon these results and augment

the system with control laws for the hip torque in order to both stabilize body motions

and force the resulting leg angle trajectories to be analytically tractable from SLIP.

This implementation is a key result of this dissertation, and provides precise foothold

regulation even in the presence of non-steady leg and body motions.
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5.1 Review of SLIP Analytical Approximations

Our method builds upon recent work conduced by Piovan and Byl [28, 16], where

assumptions on the trajectory of the leg state of the robot allow the normally unsolv-

able angular dynamics to be approximated analytically to high accuracy. Work in [28]

considers dynamics of the Active SLIP, seen in (2.4). It is shown in [28] that if we

can control exactly the leg-length trajectory to be a composite of sinewaves of the form

L(t) = r+a cos(ωt+β)+vt, we can compute an accurate approximation of the leg-angle

dynamics throughout stance as

θSLIP (t) ≈ 1

L(t)
(u0(t) + εu1(t) + ε2u2(t) + ...), (5.1)

where the various ui(t)’s for i = 0, 1, . . . are solutions of

d2

dt2
u0 − λ2u0 = 0,

d2

dt2
ui − λ2ui = −δui−1 cos (ωt+ β), i = 1, 2, . . .

and the initial conditions for the above differential equations and constants r, v, λ, β, δ,

ω, and ε are determined from the robot state at touch-down.

To force the SLIP’s leg-length trajectory to be a composite of sinewaves, [28] loosely

approximates the actuator’s motion to be the sum of a piecewise linear function Llin(t)

paired with a nonlinear component, Lnl(t), as

La(t) = Llin(t) + Lnl(t)

Lnl(t) =
m

k
(gsin(θ(t))− L(t)θ̇2(t))

(5.2)

where we see Lnl(t) is a state feedback term with the purpose of cancelling the nonlinear
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terms of the L-dynamics in SLIP in (2.4), and forming the closed loop dynamics as a

spring-damper system in addition to the second term. This control component is clearly

fully determined by the states of the system throughout stance, and the second term

Llin(t) is a design variable.

Generating a trajectory to drive the system to a desired state becomes then a problem

of finding the right piecewise linear function Llin(t). It is important to note that the SEA

actuator dynamics of La are not captured by the linear parametrization that we use to

generate a reference trajectory for L. However, as will be shown in the next subsection,

when we use our HOPFL leg controller to regulate one of these analytical solutions as a

trajectory this is not a problem as long as the SEA remains within physical limits. Thus,

given initial conditions L0, L̇
−
TD, θTD θ̇TD along with some Llin(t) we can analytically

produce a set of stance phase trajectories LSLIP (t) and θSLIP (t). This calculation is

extremely fast; on a modern computer each solution only takes roughly 10µs to compute.

5.2 Parameterization of SEA Motion and Reachable

Space

When the body of FRANK is mechanically locked and the dynamics of the system are

those we saw of the 2D SEA Hopper in (2.14), the angular dynamics (θ̈) during stance

are nearly identical to those of SLIP. This is not the case of the leg state dynamics (L̈), as

the rate of compression of the leg is highly coupled to the SEA dynamics, and a given Llin

command may not be a feasible solution for the real SEA. However, using HOPFL on the

leg state has the advantage of redirecting the problem to the dynamics of L, essentially

ignoring the accuracy of the parametrization used to generate the trajectory for the

leg. Thus, when using our HOPFL leg controller in (3.9) to regulate one of these SLIP
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approximations as a reference trajectory, we expect L(t) = LSLIP (t) and θ(t) ≈ θSLIP (t),

with θSLIP (t) calculated using (5.1).

If we parametrize Llin as a function of a small numbers of parameters, the problem of

searching for an actuation policy to yield some nominal L(t) is equivalent to performing a

search over all feasible values of such parameters. Starting from a fixed initial condition,

i.e., apex state A = [y, ẋ] and θTD pair, one can compute the reachable space R of the

system as the set of all apex states reachable in one step for any feasible motion of the

SEA throughout stance. This is accomplished using our stance phase analytical approx-

imations and forward solving the subsequent ballistic phase. As the reachable space is a

function of the SEA motions, the particular parametrization of La, and consequently Llin,

used to solve the system’s dynamics affects the shape and size of the computed space.

Therefore, the parametrization used can most effectively be employed in control strate-

gies when it does not excessively contract the reachable space. As shown in [28] and [16],

to maximize the reachable space of the SLIP model, the actuator needs to be controlled

throughout the entire stance phase. In [28], the actuator motion was parameterized using

two switching time variables: times at which the actuator would instantaneously change

velocity and actuate in a different direction (or stop completely). In order to populate

the reachable space in an easier to visualize manner, we take a slightly different approach

here.

We assume that the actuator moves at its maximum constant velocity L̇a,MAX to reach

a desired constant value, La0, and at some time ts the actuator moves with maximum

velocity L̇a,MAX towards its upper or lower limit until the end of the stance phase.

In general L̇a,MAX should be set to approximate the mean saturation velocity of the

actuator given a step change. In terms of the reachable space, increasing and decreasing

L̇a,MAX causes the total area to expand and contract, and must be set such that absolute

bounds are not violated. For this work we used L̇a,MAX = 0.5m/s to paramaterize
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the SEA motion. Therefore, searching for an actuation policy to yield some nominal

L(t) is equivalent to performing a search over all feasible values of La0 and ts. As

previously mentioned, the linear parametrization of La does not fully capture its nonlinear

dynamics, as shown in Fig. 5.1. The parameters used for the approximated function are

La0 = 0.03 m, and ts = 0.12 s. The 4th-order PFL has the added benefit of ignoring

discrepancies in the actuator’s dynamics versus its parametrization while driving the leg

length dynamics, L, to the reference trajectory. The resulting trajectory of the SEA must,

however, remain within physical limits of the robot. Note that FRANK (and any robot
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Figure 5.1: This figure shows an example of the approximated La(t) computed as
in (5.2) (dotted green line), used to generate the leg-length reference trajectory, versus
the actual La computed from the system’s equations of motion (2.14) (solid blue
line). Note that in general we do not ever control the SEA directly, rather we use the
approximate SEA trajectory to generate a coordinating leg length trajectory for use
by the HOPFL controller.

in general) is subject to energy loss at impact due to the unsprung mass. The SLIP, being

a simplified model with a massless leg, does not capture this aspect. It is then important

to remember to artificially incorporate energy loss at the transition between phases, as

described in Eq. 2.15 and 2.16. It is, however, quite trivial to incorporate these impact

dynamics into our reachability calculations, as we simply must remove the appropriate

amount of energy each time we construct a solution from our analytical calculations.
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Fig. 5.2 shows the total reachable space from a set initial conditions, computed nu-

merically by solving the system’s dynamics (2.14) and with the parametrization of La

discussed above. As we can see, the analytically calculated reachable space estimate

captures a large amount of the real system’s reachable space. It is worth mentioning

that numerically solving the system’s dynamics, especially when frictional and damping

terms are present, is computationally taxing and cannot be carried out in real-time. In

particular to Fig. 5.2, the real reachable space shown consists of approximately 5,000

points that are calculated from a brute force search of all possible La commands using an

ODE solver, which takes several hours to simulate. In contrast, the analytical grid shown

consists of a much smaller set of only about 600 points and takes less than one second to

calculate. Hence, it is not possible to compute the actual reachable space of the system

during real-time hopping, but it is possible to perform such computations when using the

stance-phase approximation and the SEA parametrization. Although the approximation

does not capture parts of the boundary of the true reachable space, our method retains

approximately 61% of the reachable area and is several orders of magnitude faster to

calculate. Since each apex state is simply a function of two decoupled parameters, grid

calculations can make great use of parallel processing. Several parameters can be tuned

to allow for a faster computation of the reachable space. In particular, the grid of La0 and

ts can be computed at different resolutions to increase or decrease the accuracy versus

the computation time.

The reachable space expressed as a function of forward velocity and apex height does

not in itself fully characterize one dimension: the forward position, or, more interesting in

terms of motion planning, the step length S. As defined in Fig. 2.1, S = STO+Sflight+STD

cannot be computed without a priori knowledge of the future touch-down angle θTD,i+1.

For any fixed pair θTD,i and θTD,i+1, the step-length achievable in one step is not unique,

but is a function of the actuator’s parametrization {La0, ts}i. Once a desired S is chosen
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Figure 5.2: Above shows how the reachable space R can be parametrized by our
SLIP-based technique, compared to the real reachable space of the system for an initial
apex state of (ẋcm, ycm) = (0.4m/s, 0.75m). The colors denote the discrete values
of La0 used to compute the grid, and the black line denotes apex states resulting in
commanding a constant La0 without any switches, where the magenta arrows illustrate
how the apex states change as ts decreases to zero and actuates the SEA in both
positive and negative directions.
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within the set of achievable step-lengths S ∈ [Smin, Smax], we can look at the curve of

possible apex states within the reachable space that results in that step-length, as shown

in Fig. 5.3. In general, we can choose the desired state based on particular considerations.

For example, we may want to maintain the robot’s gait as close as possible to a certain

reference in terms of forward speed and/or apex height. The convex hull is also shown in

black and can be used to very quickly calculate the approximate centroid of the reachable

space C, shown as the black X. Calculation of the approximate centroid location can be

accomplished with an extremely small amount of grid points.
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Figure 5.3: Above shows the parametrization of the reachable space R for an initial
condition of (ẋcm, ycm) = (0.4m/s, 0.75m) and next touch-down angle θTD = −3 deg
with the step length S shown in color. Here we see that for each step length within
the reachable space several specific apex state solutions exist and evolve on curves,
with a few examples shown specifically above.
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5.3 Touch-down Angle Control Methods

During each flight phase, given initial conditions Ai−1 and θTD,i and a desired step-

length S, one needs to compute the actuation’s parametrization {La0, ts}i and the future

touch-down angle θTD,i+1 that results in the desired step-length Si (and therefore also

apex state Ai) to be within some neighborhood of a reference state. This means all touch-

down angle reference updates must happen at the same time as the trajectory generation

for the HOPFL leg state occurs, before TDi. The simplest method we consider for setting

touch-down angles is to implement a slightly more accurate version of the Raibert-inspired

method from (4.7) as

θTD = θ0 +KP (ẋr − ẋn) +KD(−ẋn + ẋn−1) +KI

Nhops∑
n=1

(ẋr − ẋn) (5.3)

where θ0 is a constant touch-down angle with forward velocity reference ẋr. The term

ẋn represents the discrete measurement of the forward velocity taken at apex An. This

control method is essentially the same as (4.7), but with the added derivative and inte-

gral terms. This method has been used historically due to it’s simplicity to implement.

The usage of simplistic touch-down angle control such as (5.3) limits the reachable space

at each step by forcing all possible solutions of a given step-length to be within some

neighborhood of a forward speed reference ẋr. Additionally, such simple methods re-

quire knowledge of compatible (θTD,i+1, ẋr) pairs that typically must be experimentally

measured and tuned along with feedback gains. It will be shown later that we can still

obtain reasonable results using this method, but the system can be destabilized if too

aggressively changing step references are chosen.

We next present a reachability-based method for choosing touch-down angles and

actuation’s parametrization that allow for any specific step-length solution within the
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Figure 5.4: The touch-down angle is calculated by performing a binary search over
Ri+1 (translucent polygons) in order to align the future centroid C̃i+1 with centroid
reference Cref (yellow star). The actual apex state visited Ai (green circle) will always
be along the corresponding step length curve to S (dashed line) and is chosen to be
the point horizontally closest to Cref .

current reachable space to be chosen (even randomly) at each step, and provide an

algorithm to regulate the desired step lengths. The key property this method makes use

of is the fact that varying θTD,i+1 biases the velocity range of the next reachable space,

thus causing Ri+1 to translate along the velocity axis based on the chosen touch-down

angle. More details on how varying the touch-down angles affects the reachable space

can be seen in Appendix D. At the i-th flight phase, starting from Ai−1 and θTD,i, the

choice of the future θTD,i+1 to achieve the desired step-length Si is performed as follows

(refer to Fig. 5.4).

In order to regulate step length Si, the next touch-down angle θTD,i+1 must be com-

puted from apex state Ai−1, as θTD,i is defined from the previous step and Ri is com-

pletely deterministic fromAi−1. Thus, the position ofAi depends on the future actuator’s

parametrization that is computed as a function of θTD,i+1, and therefore cannot be com-

puted directly from Ai−1. However, the future apex state is an element of the reachable
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space of the current apex state and touch-down angle: Ai ∈ Ri. As previously discussed,

Ri can be estimated using the closed-form approximation of the stance phase dynamics

and a coarse grid {La0, ts}. In particular, we can compute the centroid Ci of Ri, as seen

in Fig. 5.3, using a further reduced grid to only define the convex hull. We can conser-

vatively assume the expected future apex to be Ãi = Ci. From Ãi we can calculate the

future centroid C̃i+1 once we set a touch-down angle, thus we perform a binary search

over a broad range of feasible touch-down angles. The binary search chooses θTD,i+1

computing the reachable space from Ãi, Ri+1, whose centroid minimizes the distance

with respect to a target centroid Cref :

θTD,i+1 = arg min
θTD

‖ C̃i+1 − Cref ‖2 . (5.4)

In other words, the touch-down angle is chosen to align the future centroid of the reach-

able space to a target reference centroid. The target centroid Cref is typically chosen to

be constant, but can be set to transition the system to different energy states. Note that

generally Ai 6= Ãi. The guess apex Ãi is used to compute θTD,i+1, while the actual apex

Ai will be a function of La0 and ts that will be computed next. However, because both

apex states belong to Ri, their distance (i.e., the error on the guess of the future state)

is bounded by the size of Ri.

5.4 Step Length Algorithm with Body Locked

We now provide our complete algorithm used to precisely regulate footholds that can

be chosen randomly from within the reachable space of the system at each step. Starting

at each take-off, we perform a minimization algorithm during the flight phase to find

the values of the SLIP-based trajectory parameters, La0 and ts, that minimize the cost
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function

J = |Si − Sref |, (5.5)

where Si and Sref are the achieved and desired step-lengths respectively, which are a

function of both the ballistic path and angle values at take-off and touch-down. To test

our algorithm, the foothold reference Sref is chosen randomly from within the reachable

space at each step.

The algorithm proceeds as follows (refer to Fig. 5.4).

i. From Ai−1 or during flight, θTD,i+1 is computed using the binary search on the

centroid of the estimated future reachable space, C̃i+1 minimizing (5.4).

ii. The reachable space Ri is computed using the closed-form approximation of the

stance-phase dynamics for a coarse grid of the parameters {La0, ts}.

iii. From TOi we can backsolve the ballistic flight phase and system impact dynamics

and find the set of states, forming a 1D curve, that give the reference step-length

Sref :

LS = {A ∈ Ri | Si = Sref},

where LS represents the S = Sref curve in Fig. 5.4. Defining yLS and yref as the

y-component of LS and Cref respectively, we choose the policy

{LSa0, tSs } = arg min
La0, ts

|yLS − yref |,

which represents the actuation pair in the {La0, ts}-grid which results in the point

in the LS curve closest to our target state. Note that many solutions are possible

here, but we specifically choose to be closest to the y-component of the target state

since the ẋ-component is already aligned using the touch-down angle controller.
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iv. The optimal policy that minimizes the cost function J in (5.5) is found using a

Nelder-Mead constraint optimization algorithm as

{Lopta0 , t
opt
s } = arg min

La0, ts

J,

initialized at {LSa0, tSs }, which is the actuation pair from the coarse-grid approxima-

tion computed in the previous step.

v. Lopta0 and topts are used to compute the leg-length reference trajectory Lref , and the

4th-order PFL (3.10) is implemented at touch-down.

Thanks to the existence of an accurate closed-form approximation for the stance phase

dynamics, both the reachable space computation and the optimization search can be

performed with low cost in terms of computation time. While generally the cost function

J is not convex over the entire {La0, ts}-space, the global minimum will reasonably be

expected to be in a neighborhood of {LSa0, tSs }. Thus, initializing the optimization func-

tion at {LSa0, tSs } guarantees, within accuracy of the coarse grid used, that the solution

found will be the global minimum. Additionally, {LSa0, tSs } converges to {Lopta0 , t
opt
s } as the

number of points in the grid used to compute the reachable space at step (ii) tends to

infinity. Therefore, if the {La0, ts}-grid is fine enough with respect to a set tolerance for

the error of the solution found, step (iv) can be omitted. We next discuss accuracy of

foothold placement, feasibility of computation time, and stability of the reachable space.

5.4.1 Simulated Step Length Regulation Results

The control strategies discussed were implemented in simulation using an ODE solver

to numerically compute the dynamics for the SEA 2D Hopper (i.e., FRANK with a locked

body) in (2.14), along with system parameters from Table 2.1. The simulations were per-
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Figure 5.5: Above are simulation results for the control algorithm using the simple
feedback based touch-down angle controller (red diamond) from (4.7) and the cen-
troid-based TD angle controller (green X). Here in particular at step numbers 5 and
11 we see fast changing reference commands outside of the simple controller’s reach-
able space, eventually resulting in failure. In contrast, controlling the touch-down
angle using our centroid-based method results in both a higher reachable space at
each step and the ability to track fast step-to-step varying footholds accurately.

formed using an Intel i7-2600 CPU, running all 8 logical cores to make use of parallel pro-

cessing available in our algorithms. We can use our step-length control algorithm to track

footholds that change quickly on a step-to-step basis. This is contrasted with simpler,

classical techniques where the touch-down angle is traditionally set by using feedback of

the forward speed measurement, as in (4.7). Data in Fig. 5.5, compare several simulated

steps for both control methods, where the foothold reference is chosen randomly at each

step from within the reachable space. It is clear the centroid-based touchdown controller

performs drastically better, as the simpler touch-down angle controller is typically suited

for regulating steady-state motions and does not have the advantage of having a large

reachable space at each step.
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5.4.2 Centroid Shifting

For the majority of the simulation results presented in this work, we consider simply

commanding the target centroid location Cref to remain constant throughout all step

commands. Specifically, we command Cref = (0.75m, 0.4m/s) as this was an apex state

we were able to achieve during hardware experiments with FRANK, without bottoming

out the spring or exceeding the actuator’s limits. Commanding a reference centroid

means we expect the actual apex states A visited by the robot at each step to be within

some neighborhood of Cref , as the particular solution picked is randomly chosen from

within the reachable step-lengths. It is,however, possible to shift the location of the

centroid, which we illustrate in Fig. 5.6. Here we see the actual apex states A chosen for

particular step length commands can be biased by choosing different reference centroids

Cref . While generally this does not change the total number of possible step commands

for a given apex state, it does allow for changes in the mean step-lengths by transitioning

the system to lower or higher energy states. Thus, a higher planner could consider this as

an additional control variable for regulating set step sequences. In fact even if a simpler

method is used to generate the touch-down angles, we can still bias the overall energy

level via choice of yref in algorithm step iii.

5.4.3 Effect of Reachability Grid Size

Both the accuracy of the achieved footholds and the controller computation time are

functions of the total number of points analytically calculated, Ngrid, i.e., the sum of the

points used in the {La0, ts}-grid and the maximum number of points used in the binary

search-based touch-down angle update calculation. The grid size (resolution) must be

set low enough to achieve a feasible computation time, with the ballistic time varying

depending on the step length chosen at each hop. Typical ballistic durations for our
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Figure 5.6: Shifting the target centroid allows us to bias the overall energy level of
the reachable space. Three different centroid references Cref are commanded during
a simulation of 30k steps (X’s), and as expected the ycm component of the particular
step length apex state A, the actual apex state visited by the robot (S-curve soln), is
within some neighbourhood of the corresponding yref component of the commanded
centroids Cref . It is important to note that the variance in the apex states here do
not affect step length accuracy as long as the step command is within the reachable
space at each step.

system vary between 300ms-500ms. We define the normalized computation time to be

ρfl = 100
computation time

flight time

To be computationally feasible all computations must be accomplished during flight,

thus we require ρfl < 100%. Several simulation sets shown in Fig. 5.7 were performed

consisting of 5,000 randomly chosen step commands, where the reachability grid size Ngrid

was varied, and the distributions of the normalized computation time and of the step-

length error were measured. Here we see that we must select Ngrid appropriately small

and expect some small step-length error at each step. Particular to our computational

hardware, we must choose Ngrid < 120, and expect mean step-length errors of around

0.6%.
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Figure 5.7: Each set of data above corresponds to a simulation of 5k steps, and here
we see the distribution of step length error (top) and normalized computation time
(bottom) as a function of varying grid size. We see that while the computation time
decreases dramatically as we reduce the grid size, the variance of the step error only
increases by a fairly small amount. We must always choose a grid size such that the
normalized computation time is less than the flight phase duration (black dotted line).

5.4.4 Stability

The proposed control action drives the system to a non-steady-state motion, where the

step-length is changed at each hop. In particular, our control policy varies the step-length

by choosing a random value; if said value were not to be achievable in one step, the closest

achievable is chosen. It is not generally possible to globally assert stability of systems

whose trajectory does not converge to a constant state nor to a limit cycle, although

successful simulation results for 30,000 steps from Fig. 5.6 with randomized choice of the

desired step-lengths at each hop statistically suggest a level of stability for our system.

Therefore, the following stability test is performed. From a set of 300 initial conditions
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and 100 consecutive hops, we command a step length as a fixed percentage of the step-

length range achievable at each step. For example, at each hop we determine the range of

step-lengths achievable [Smin, Smax] and we command S as S = α(Smax − Smin) + Smin,

where α is a fixed percentage in [0, 1]. Simulation results show that for higher values

of α, the systems converges to a limit cycle. For lower values of α, however, the system

oscillates between several low energy apex states. This is due to the fact that for low

step-lengths, the solution is for the system to reach a low energy state, whose reachable

space has no intersection with the desired apex height given by Cref (forward velocity

is controlled via choice of θTD). As a result, the solution tends to periodically oscillate

between low energy apex states. Despite the oscillation, the solution remains bounded.

A consideration stemming from this stability experiment is that for any initial condition

chosen in the initial ball in Fig. 5.8, every future hop will stay within the ball for several

values of α. At each hop, the original state-space shrinks to a convergence set.

5.5 Approximation of Body Angle Dynamics

We now consider extending our SLIP-based step length regulation algorithm to the

robot FRANK with the body unlocked, with dynamics in (2.20). We have thus far

intentionally left the hip angle actuator uhip completely unused (i.e., passive) during

the stance phase. We now consider the problem of designing SLIP-based trajectories

for the leg state and augmenting them to be implemented concurrently with non-zero

hip actuator control laws, which are required to provide body stability. As was shown

originally by Raibert in [38], the body dynamics can be condensely expressed as

Jφ̈ = Ft(t)l1sin(φ− θ)− Fn(t)l1cos(φ− θ) + τhip (5.6)
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Figure 5.8: This figure shows the progression of the reached apex state after 3, 8, and
over 15 hops (end states), starting from a pool of initial apex states randomly picked
inside and on the edge of a closed set. After a relatively small number of hops the
solution converges to a steady-state limit cycle or to a periodical oscillatory state. As
we show here, starting from a closed set we converge to a smaller, closed set.

where l1 is the body CoM displacement from the hip and Ft(t) and Fn(t) are forces acting

at the hip between the leg and body, and are generally non-linear functions of the states

of the robot. Here we see clearly when the body CoM is located at the hip (i.e., l1 = 0),

the dynamics become trivial, as was the case in [28]. In order to develop a suitable

control method, we must first employ some approximations.

Our body stabilization methods largely rely on these approximations being accurate.

The model parameters published for the 2D Raibert hopper, seen in [38], are quite clearly

not the actual parameters of their robot, as the values are typically only represented to

one significant figure. Such accuracy only captures the approximate order of magnitude

of the model parameters, which was sufficient for their methods (which were therefore
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Figure 5.9: Simulation results from a non-zero initial condition of the linearized body
dynamics of FRANK vs the Raibert hoppers. As shown, FRANK’s linearized system
has a significantly more unstable pole. This simulation is only used to note that
FRANK is more difficult to stabilize, and the difference between accurate and heuristic
model parameters result in different levels of stability; we do not linearize the dynamics
for our control strategies.

not very accurate). In contrast, our model parameters for the body and leg dynamics

are obtained from system identification, seen in Table 2.1, the details of which can be

seen in Appendix A. It is of note to mention that FRANK is a significantly more difficult

system to stabilize than the Raibert hopper using the published parameters. This can

be easily visualized by locking the leg in simulation and linearizing the dynamics of the

body about the vertical. As we see in Fig. 5.9, the body of FRANK destabilizes much

faster than the Raibert hopper.

5.5.1 Approximation of Body Angle Dynamics: Flight

During the flight phase, all spring forces are zero, simplifying the dynamics consider-

ably. However, due to the non-zero leg mass and inertia, when we move the leg during
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flight to position it in some nominal touch-down angle it will inevitably impart torques

on the body. This means the dynamics of φ during flight are a function of φ, φ̇, θ, θ̇ and

uhip. During the flight phase we use a simple PFL controller to re-position the leg to the

next touch-down angle associated with our stance phase initial conditions. Thus, we can

determine the future actuator input as

uhip,flight =
1

βθ
(−εθ + θ̈fl) (5.7)

where the PFL coefficients βθ, εθ are constructed from the flight phase dynamics of

FRANK. The flight phase trajectory of the leg angle, θfl(t), is a design choice with the

only requirement being that the terminating value is the next desired touch-down angle.

Thus, if we assume the leg angle is controlled to follow some nominal trajectory θfl(t),

we can write the flight phase body dynamics as

φ̈fl = ffl(φ, φ̇, θfl, θ̇fl, θ̈fl) (5.8)

We next employ small angle approximations on all trigonometric terms which involve θ,

φ,φ−θ, and 2φ−2θ. To force the dynamics to be analytic given θfl, we remove the three

high order terms containing φ and φ̇, resulting in

φ̈fl ≈
c1θ̈fl − 2l1mBmll0θ̇

2
flθfl

c2

c1 = −4JlmB + 4Jlml +mBmll
2
0 + 2l1mBmll0

c2 = 4mBmll
2
1 + 2mBmll0l1 + 4JmB + 4Jml

(5.9)

where the terms omitted are 2l1mBmll0θflφ̇
2, 2l0l1mBmlθ̇

2
flφ, and 2l0l1mBmlφ̇

2φ which

we expect to be quite small. Thus, we need only define a smooth trajectory for θfl and
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its derivatives, and then given body initial conditions we can use (5.9) to compute the

resulting body trajectory during flight with low computational cost. All flight phase

trajectories θfl(t) used in this work are simply constructed to be smooth curves that

terminate with a desired touch-down angle and zero angular velocity by the end of the

flight phase.

5.5.2 Approximation of Body Angle Dynamics: Stance

The stance phase body dynamics are considerably more complex due to the time

varying leg length. However, since we have developed a control law that acts directly on

the leg state, we have the advantage of knowing the leg length trajectory a priori. Thus,

we assume our HOPFL in (3.9) is regulating the leg state to a nominal SLIP-based tra-

jectory, therefore L(t) = LSLIP (t) and is analytically available to us. The approximation

procedure parallels the previous Section, where we use small angle approximations and

remove higher order terms. The dynamics for the leg and body angle during the stance

phase can be approximated as

θ̈ ≈ 2
L̇θ̇

L
− g

L
sin θ + Ωθ(L)uhip + ξ(L)(φ− θ)

= θ̈SLIP + Ωθ(L)uhip + ξ(L)(φ− θ)
(5.10)

φ̈ ≈ Ωφ(L)uhip −
L

l1
ξ(L)(φ− θ) (5.11)

where Ωφ, Ωθ, ξ are non-linear differentiable functions of L and we immediately see

part of the approximated leg angle dynamics are in fact those of SLIP from (2.4). The

approximations for both stance and flight are reasonable as we do not expect our SLIP-

inspired leg angle trajectories to be large during operation, and our control strategies

will aim to keep φ small, though we do expect some small error. Fig. 5.10 shows our
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Figure 5.10: Above shows our analytical approximations (green dashed line) for the
leg-body coupling dynamics plotted against full dynamical simulations (solid blue
line), with stance phase approximations are shown on the top, and the flight phase
approximations at the bottom. The reference trajectory for the leg angle in flight is
simply a smooth curve terminating at a desired touch-down angle with zero angular
velocity by the end of flight.

approximations for both stance and flight, where it is clear they perform quite well for the

angles our systems operates at. In this particular example, the robot is moving forward

at approximately 0.5m/s.

5.6 Augmentation of Hip Torque Input

In the simplified but similar case in [28], a constant torque input was implemented

to provide body stabilization, allowing all SLIP-based trajectories to be modified with
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respect to only one variable that need be searched over and found. Although we cannot

simply command a constant torque in this case, we can force the mapping from θSLIP (t)

to θ(t) to also be a function of only one variable. We proceed by defining our control law

for the hip input as

uhip =
1

Ωθ

(−ξ(φ− θ) + ũ) (5.12)

Where ũ is a constant input term. The purpose of this control law is to force the

approximate dynamics of the leg angle in (5.10) to converge to θ̈ = θ̈SLIP + ũ, and since

we also have L(t) = LSLIP (t) this results in

θ(t) = θSLIP (t) +
1

2
ũt2 (5.13)

Where θSLIP (t) is calculated using our approximation in (5.1). Since all terms in (5.12)

are functions of only state variables and constants, we can easily define the first two

derivatives and implement it with our HOPFL leg controller in (3.9). Next we consider

the resulting body dynamics by combining (5.12), (5.13), and (5.11) resulting in

φ̈ =
Ωφ

Ωθ

ũ− ξ(L
l1

+
Ωφ

Ωθ

)(φ− θSLIP (t)− 1

2
ũt2) (5.14)

Since we can generate solutions for LSLIP (t) and θSLIP (t), the only term preventing

us from integrating (5.14) to generate our solution is the term φ itself. Therefore, we

perform the following. We first evaluate (5.14) with the assumption φ(t) = φ0, perform

two integrations using stance phase initial conditions and generate a first order guess

φ̃(t). Then, we recursively repeat the process by evaluating (5.14) with φ(t) = φ̃(t). Fig

5.11 illustrates that this method is quite accurate after only one additional iteration, thus

given LSLIP (t), θSLIP (t), and ũ we can approximate φ(t) with two total evaluations of

(5.14) along with four total integrations.
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Figure 5.11: Using the control law in (5.12) allows us to approximate the stance body
angle dynamics using only initial conditions, a corresponding SLIP trajectory, and
ũ. The actual trajectories for the body (solid blue curve) are generated by using an
ODE solver to simulate the full stance dynamics. In this example, the approximations
shown are generated by using (5.13) to analytically compute θ(t) and integrate (5.14),
which requires only two total iterations to achieve good accuracy.

The purpose of the term ũ is to provide a constant input variable that can be al-

gorithmically searched over to find solutions that provide body stabilization, similar to

[28]. We need only search over La0, ts and now also ũ to find solutions that both result in

desired step lengths and keep the body angle well behaved. To fully define the reachable

space, both the body and body angular velocity must now be characterized. However, we

are only concerned with ensuring the body angle remains small during operation. Fig.

5.12 shows an example of the reachable space as a function of the new input variable ũ

in the colorbar. Here we see for certain values of ũ, a slice of the reachable space results

in small body angles at touch-down and a 2D planar set quite similar to the body locked

dynamics. If we keep the body angle small enough, the body angular velocity will also

remain small, as illustrated by Fig. 5.13.
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Figure 5.12: The reachable space is significantly more difficult to visualize when the
body of the robot is unlocked. In this figure we show the next touch-down angle on
the z-axis instead of the apex state as it is better coupled to step length. The colorbar
represents iterated values of ũ, and we see a large cross-section of the reachable space
exists where the body angle remains small at the next touch-down.
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Figure 5.13: In order to fully define the reachable space, both the body angle and an-
gular velocity must be defined. However, since our control strategies aim to keep the
body angle small during stance, and the system is ballistic during flight, the relation-
ship between the body and body velocity (and ũ) at touch-down can be approximately
represented as linear. Note that while this means we do reduce our set of possible
states, we can still satisfy the requirement of keeping the body angle and velocity
small during operation.
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5.7 Step Length Algorithm with Body Unlocked

For each set of initial conditions and input parameters La0, ts, and ũ, we can analyt-

ically compute estimates of the stance and flight phases of the system using the control

and approximation methods presented in this paper. We now provide an example ap-

plication of our control strategy to generate and enforce trajectories on the leg state for

2D hopping. In particular, we control our system to hop following a reference trajectory

of step-lengths, i.e., the distance between two consecutive footholds. At each take-off we

use a minimization algorithm to find the values La0, ts, and ũ that minimize the same

cost function as before:

J = |Si − Sref |, (5.15)

where Si and Sref are the achieved and desired step-lengths respectively, which are a

function of both the ballistic path and angle values at take-off and touch-down. The

algorithm procedure mostly parallels the body locked case seen in chapter 5.4 and is as

follows.

i. From initial conditions, the (i + 1)−th touch-down angle is computed as in (4.7),

or using the centroid-based method.

ii. The reachable space for the system at step (i), Ri, is computed using the closed-

form SLIP-based approximations along with body angle approximations for a coarse

grid of the parameters La0, ts, and ũ.

iii. From TOi we can backsolve the flight phase using ballistic dynamics and (5.9). We

remove all points from Ri that result in the next touch-down body angle being

larger than a threshold to generate R̂i:

R̂i = {Ri | |φTD,i| < φthresh},
97



SLIP-based Step Length Control of SEA Hoppers Chapter 5

iv. We next find the set of states that give the reference step-length Sr:

[yS, ẋS] = {[y, ẋ] ∈ R̂i | Si = Sr},

For each step length, there exists a curve of possible solutions. We choose the policy

{LSa0, tSs , ũS} = arg min
La0, ts, ũ

|yS − yr|,

which represents the point in the {La0, ts, ũ}-grid closest to some target state yr,

which gives us some control of the overall energy level at apex.

v. Because {LSa0, tSs , ũS} is computed from a coarse grid, the optimal policy that min-

imizes the cost function J in (5.5) is found using a Nelder-Mead constraint opti-

mization algorithm as

{Lopta0 , t
opt
s , ũopt} = arg min

La0, ts, ũ
J,

initialized at {LSa0, tSs , ũS} with constraint |φTD,i| < φthresh.

vi. Lopta0 , topts , and ũopt are used to compute the leg-length reference trajectory Lref ,

and the HOPFL in (3.9) along with the hip controller in (5.12) is implemented at

touch-down.

Fig. 5.14 shows simulation results of our control strategy for a set of desired step

lengths. The touch-down angles are set using the simple control law in (4.7), with

θ0 = −3 deg and ẋr = 0.4m/s. The step length algorithm parameters φthresh and yr

used in this example are −1.5 deg and 0.85m respectively. The reference step length is

changed every 3 hops, and it is chosen from a set of feasible step lengths. These results

do exhibit some error due to our approximations, slightly more than the body-unlocked

case in Fig. 5.5, but the foothold errors are still quite reasonable. As we see in Fig. 5.14,
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the body angle exhibits non steady-state behavior but is well behaved as any errors do to

our approximations are essentially reset at each step when a new set of initial conditions

are measured. Unfortunately, since we now must search over an additional variable ũ,

the increased number of grid points increases the difficulty of obtaining computation

time feasible for complete online deployment. Using more powerful current and next

generation parallelized processors will alleviate this problem. In order to implement the

centroid-based touch-down angle control method online for our hardware, a table based

approach is likely needed for one out of the three search variables.
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Figure 5.14: Above shows simulation results during step length regulation. The opti-
mizer solution refers to the step length computed with the stance phase approxima-
tion, while the achieved state is computed solving numerically the system’s equations
of motion, implementing the control strategies outlined in this Section.The mean error
of the step length results (top figure) is 1.4%, with the maximum error being 3.5%,
which is quite reasonable. The resulting trajectory of the body during the simulation
is also shown (bottom figure) to illustrate that while it does not exhibit steady-state
behaviour it remains both well behaved and small in magnitude, by design.
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Chapter 6

Step Length Regulation for More

General Hopping Robots

In this chapter we investigate an alternate method for regulating the step length of hop-

ping 2D robots. The method presented here involves a more complex design process,

but can be implemented on a wide variety of hopper models. We generate a lower order

model and analytically solve for the effective ground reaction force vector to indirectly

enforce stable trajectories on the body angular acceleration, while maintaining precise

ballistic take-off conditions on the CoM. To illustrate this approach, we provide imple-

mentations for both FRANK and the 3-link compliant robot. In this chapter we use

the HOPFL construction about the CoM discussed in Chapter 3.4. For the SLIP-based

approach, we were able to use online trajectory generation by making use of analytical

approximations. In contrast, this Section uses offline trajectory generation and builds

trajectories for direct use by the HOPFL CoM controller from Chapter 3.
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6.1 Equivalent CoM Point-mass Model

We construct CoM trajectories for the system by building a lower dimensional model

with states that are exactly our control variables xcm, ycm and the uncontrolled body

angle φ. We generate trajectories for the CoM with the ground reaction force (GRF)

pointing towards the CoM, allowing direct control of the position of the robot while

keeping the body angle φ well behaved. We construct the reduced point mass model by

abstracting the system to a single point mass model with GRF magnitude Ft and CoM

locations xcm and ycm. The point-mass moves along a 4th order quadratic trajectory

that can be either symmetric or asymmetric depending on design parameters. We must

augment this point-mass model with an additional parameter, δ(t), shown in Figure 6.1,

which represents an angular offset of the force vector that provides deliberate torques

to the bodies when implemented on the robots. All trajectories constructed with this

method are a function of stance phase CoM initial conditions x0, y0, ẋ0, and ẏ0.

The dynamics for the reduced system during the stance phase can be written as

ẍcm =
1

m
Ft sin(atan(

xcm
ycm

+ δ(t))) =
1

m
Fts1

ÿcm =
1

m
Ft cos(atan(

xcm
ycm

) + δ(t))− g =
1

m
Ftc1 − g

(6.1)

Next we define ycm as a function of xcm. We desire trajectories that are symmetric in

ycm, and asymmetric in ẋcm and ẏcm, which allows for correction of impact energy losses

at take-off and touch-down, and also allows for trajectory switching into different gaits

with different desired stride lengths. We also desire the ability to set not only the initial

positions and velocities of xcm and ycm, but also the initial acceleration of ycm to align

with the expected initial spring force. The curve we choose to enforce is

ycm(xcm) = a+ b(xcm − p1)2 + c(xcm − p2)4 (6.2)
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y = a + b (x − p 1)
2 + c (x − p 2)

4

δ

F t

(xcm, ycm)

Figure 6.1: Reduced point-mass model overlayed with CoM of FRANK during a stance
phase. In our planned trajectories, the ground reaction force can be constrained to
point exactly toward a point offset from the center of mass of the system by angle
δ(t). This offset angle can be used to enforce trajectories precisely on the body angle
acceleration during the stance phase, while maintaining desired terminating CoM
trajectory values.

We next write the acceleration of ycm as:

ÿcm = y′′ẋ2cm + y′ẍcm (6.3)

where the derivatives y′′ = d2ycm
dx2cm

and y′ = dycm
dxcm

can be computed analytically since we

have defined ycm(xcm) in Eq. (6.2). Next, we combine Eq. (6.1) with Eq. (6.3) to solve

for Ft as:

Ft =
1

c1 − y′s1
(my′′ − g), (6.4)

and by substituting Eq. (6.4) into Eq. (6.1) we generate stance phase trajectories by

selecting trajectory coefficients and solving the differential equation in an ODE solver.

The coefficients a, b, and c are determined by initial conditions. Two equations are

trivially generated by considering Equation (6.2) evaluated at initial conditions y0 and

x0, and taking one derivative and evaluating with initial conditions ẏ0 and ẋ0. In order
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to align the initial acceleration of ycm to a desired value we must construct an additional

equation by taking two derivatives of Equation (6.2) as

ÿ = (2b+ 12c(p2 − x)2)ẋ2 − ẍ(b(2p1 − 2x) + 4c(p2 − x)3). (6.5)

For the above trajectory to be valid it must be equal to the point-mass model’s accel-

eration in Equation (6.1). Equating Equations (6.5) and (6.1) allows us to generate the

last needed equation. Solving for the coefficients and substituting in their solution for

ÿcm results in the condition

ẍcm =
sin(δ(t) + atan(xcm

ycm
))(ÿcm + g)

cos(δ(t) + atan(xcm
ycm

))
(6.6)

and since ẍcm can typically be set instantaneously via our control as we saw in Chapter

III, ÿ0 becomes a design parameter. Since our controller needs only CoM stance phase

trajectories to operate, we can control the gait step length by choosing trajectories with

different terminating velocities. Given two trajectories with different ẋcm terminating

values, we construct asymmetric trajectories that switch to or from the desired trajec-

tory set. To simply illustrate the ability to switch between different gaits, we designed

three CoM trajectory sets for “Small”, “Medium”, and “Large” strides, such that the dif-

ference in step length between each set is roughly ten percent. Figure 6.2 shows example

trajectories for ycm and ẋcm used to achieve gait switching.

The required orientation of the GRF depends on the kinematics of the system being

controlled. Thus, different robots will have slightly different stabilization strategies (and

possibly auxiliary variables). The power of this control framework, however, is the fact

that the trajectory construction procedure in (6.4) once δ(t) has been defined to stabilize

a particular auxiliary variable is exactly the same for different robots.
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Figure 6.2: We use symmetric CoM trajectories to regulate a specified stride length
based on the value of ẋcm at take-off, and use asymmetric trajectories to switch be-
tween them. Above shows example trajectories used to switch from a “medium” stride
length to a “large” stride length, in which the value of ẋcm at take-off is increased.
Also note that the flight phases in this figure are truncated to show the stance phase
in greater detail.

6.2 Implementation on SEA 2D Hopper

In this Section we provide implementation details on FRANK. We ensure the initial

values of our trajectories for ÿcm and
...
y cm align with the real system by setting La and

L̇act to the appropriate touch-down values, which is easily accomplished by controlling

them during the previous flight phase. For SEA 2D Hoppers, simply pointing the force

vector Ft exactly at the CoM, i.e. δ(t) = 0, will result in a small amount of injected

angular momentum at the end of the stance phase. Additionally, during the next flight

phase re-positioning the leg will inevitably incur additional angular rotation of the body.

We therefore consider using δ(t) to enforce desired conditions on the acceleration of the
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body.

We start by considering the dynamics of the body during the stance phase in a general

form as:

φ̈st = fst(φ, φ̇, L, L̇, θ, θ̇, Lact, uhip) (6.7)

We proceed by re-writing fs in terms of our control variables in the reduced model in

(6.1): xcm and ycm. First we make note that we can eliminate u(t) as a variable as

uhip,stance =
1

βx
(−εx + ẍcm) (6.8)

where we have used Equations (3.16) and (3.17) and the assumption that the PFL con-

troller is functioning. We use Equation (2.12) and its first derivatives to generate three

equations for the state variables L, L̇, θ, and θ̇, and generate the last required equation

by using the second derivatives of (2.12) together with the system dynamics in (2.20).

This is possible as La only appears in second derivative terms of the position states.

Thus, we re-write the body angle acceleration using a change of variables as

φ̈st = fs̃t(φ, φ̇, xcm, ycm, ẋcm, ẏcm, δ(t)) (6.9)

Here we note that at every time ti, we can find the required δ(ti) to achieve a desired

angular acceleration φ̈(ti). For the example presented in this dissertation, the solution was

found by using a simple binary search algorithm while solving the differential equation

in (6.1). Thus, if the initial body angle φ0 and velocity φ̇0 are known, such a method can

be used to enforce trajectories on φ̈ that result in desired take-off values φTO and φ̇TO.

Similar to our approach in Chapter 5.5, during the flight phase we use a simple PFL

controller to re-position the leg to the next touch-down angle associated with our stance
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phase initial conditions. Thus, we can determine the future actuator input as

uhip,flight =
1

βθ
(−εθ + θ̈fl) (6.10)

where the PFL coefficients βθ, εθ are constructed from the flight phase dynamics and

we have used the assumption that the PFL controller is functioning. The flight phase

trajectory of the leg angle, θfl(t), is a design choice with the only requirement being that

terminating value is the next touch-down angle, given by

θTD = − cos−1(
y0(m+ml)− l2m cos(φ)

L0(m+ ml

2
)

) (6.11)

Using this trajectory, we can then write the flight phase dynamics for φ similarly as we

did in Chapter 5.5 as

φ̈fl = ffl(φ, φ̇, θfl, θ̇fl, θ̈fl). (6.12)

For a given designed φTO, φ̇TO, and θfl(t), we use Equation (6.12) to calculate the flight

phase trajectory of the body and determine the subsequent touch-down values φTD and

φ̇TD. The next design decision is the selection of a desired stride length Sstep and CoM

initial conditions x0, y0, ẋ0, and ẏ0. The stride length is given as

Sstep = xTO − x0 +
2ẋ+TOẏ

+
TO

g
. (6.13)

The initial conditions θ0, θ̇0, and φ0 are uniquely determined, and the initial body angular

rate φ̇0 is a design parameter. For a stance time tst and sampling rate Ts, the trajectory

length N is given by tst/Ts. For a system with no impact dynamics, the terminating

trajectory velocity values ẋ(N) and ẏ(N) could simply be ẋ0 and −ẏ0, resulting in a

symmetric trajectory. However, this is not the case for real systems. The stride length
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Figure 6.3: The trajectory which the uncontrolled body angle follows is carefully
designed such that the touch-down values are equal to the initial conditions from the
previous step. The stance phase occurs between the red and cyan markers. The flight
phase ends at the magenta marker and returns to the initial value, by design.

is not determined by the terminating velocities of the trajectory ẋ(N) and ẏ(N), but

rather the velocities after the take-off dynamics occur. By using the impact dynamics in

Equations (2.16) and (2.15) with Equation (2.12) and its derivatives we can analytically

compute the required terminating trajectory values to enforce the condition ẋ+TD = ẋ0

and ẏ+TD = ẏ0 as

ẋ−TO = f1(x0, y0, ẋ0, ẏ0, φ0, φ̇0, φTO, φ̇TO)

ẏ−TO = f2(x0, y0, ẋ0, ẏ0, φ0, φ̇0, φTO, φ̇TO).

(6.14)

We use the asymmetry coefficients p1 and p2 to add asymmetry such that the terminating

trajectory values are ẋ−TO and ẏ−TO. Note that we can also easily construct trajectories to

switch from one set of CoM trajectories to the other by simply finding the proper p1 and

p2. Therefore, the design task simply becomes selecting ẋ0, and ẏ0 to achieve a desired
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stride length and finding the appropriate p1, p2, φ̇0, φTO, and φ̇TO such that

ẋ(N) = ẋ−TO

ẏ(N) = ẏ−TO

φ̇TD = φ0

φ̇TD = φ̇0

(6.15)

The trajectories are generated offline by solving the differential equation presented in

Equations (6.1) and (6.4) for a set of parameters, and enforced in real time using the

HOPFL CoM controller in (3.22). An example of such a trajectory for the body angle is

shown in Fig. 6.3, where we design the body angle to remain relatively small, quite similar

to the SLIP-based method. The trajectory presented here is designed for a stride length

of 35 cm. Table 6.1 lists the model and design values used in this particular example.

Simulation results over two steps are shown for the CoM control variables in Fig. 6.5, and

the uncontrolled body angle in Fig. 6.6. The controller is able to successfully enforce the

designed stance phase trajectories, and the body angle’s trajectory follows the designed

curve, by design. The actuator output for a single step is shown in Figure 6.4, which

illustrates that the controller’s output is both reasonable and within our hardware limits.

It is worth noting that for the case of FRANK, this method is quite inferior when

compared to the SLIP-based technique we saw in Chapter V. The complete trajectory

construction procedure is provided here to illustrate how general the method is, and also

to note the difficulty of the design process compared to the SLIP-based methods from

Chapter V. For robots that are SLIP-like in nature (like FRANK), there is little reason

to not use tools readily available in the literature for SLIP. However, the general method

presented here is necessary for multi-link hoppers, as we will see next, where the robot

is kinematically structured sufficiently different from SLIP.
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x0 -0.051 m xcm traj initial point
ẋ0 2.21 m/s ẋcm traj initial point
y0 0.5805 m ycm traj initial point
ẏ0 -1.7 m/s ẏcm traj initial point
ÿ0 18 m/s2 ÿcm traj initial point
φ0 -0.4753deg Initial body angle

φ̇0 1.47deg/s Initial body velocity

φTO, φ̇TO -0.3deg, -33deg/s Body design params
tst 0.177 s Stance trajectory time
ẏ(N),ẋ(N) 0.6891 m/s, 1.8516 m/s TO velocity design
p1, p2 1.4E-3, 2.5E-3 Asymmetry constants
ωn, ζ, z3, z4 18, 0.8, 80, 90 ycm PFL params
Kp, Kd 400, 30 xcm PFL params

Table 6.1: Design Parameters for FRANK

6.3 Implementation on Compliant 3-link Robot

The compliant 3-link robot, seen in Fig. 2.2, is a system for which SLIP-based tra-

jectories are not directly applicable. When we considered the body stabilization control

problem in the context of controlling FRANK, a direct extension from SLIP model tra-

jectories was tractable as we only needed to stabilize one joint angle: φ. We saw that

even for this case the coupling dynamics between one leg angle and one body angle were

highly complex. The compliant 3-link robot has too many angles to make this type of

control feasible. Therefore, as we saw (2.6), we construct an auxiliary variable resulting

from a geometric combination of all the angles in order to analyze body stability in terms

of only one term. Contrary to the body angle of FRANK, θB cannot be stabilized around

zero (vertically straight up), but must be biased at some nominal value. Since the other

two control variables are the CoM locations of the robot, we consider implementing our

point-mass model based method to control the system. In fact, for this system the stabi-

lization problem is much easier compared to implementation of this method on FRANK.
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Figure 6.4: Both the hip actuator and the series elastic actuator of FRANK are active
to achieve CoM tracking. The controller output stays within our system’s maximum
output capability of 20A, which equates to torque values of 0.738 Nm on the motor
side and 48.7 Nm on the gear side. The position of the series elastic actuator is also
shown to illustrate that it stays within 0.1m, the physical limits of our robot.

Trajectories of the CoM and body attitude over time depend upon the orientation of

the GRF. In our approach, we correspondingly generate trajectories by planning allowable

motion for a point-foot contact and for no rotation of the body; i.e., with the GRF planned

to point directly toward the CoM. The trajectories we construct for the compliant 3-link

robot are generated such that the total net torque w.r.t. the CoM is zero, thus under ideal

conditions with no perturbations there would be no change in the angular momentum

of the system, and the body angle would remain constant during both stance and the

subsequent flight phase. Such trajectories can be constructed by using our reduced point-

mass model construction and simply setting δ(t) in (6.1) to zero for all time, as shown in

Fig. 6.7. This simplifies the design process considerably, as we no longer have to perform

a binary search and calculate the body angle dynamics at each step. Given stance phase

initial conditions, we generate trajectories by solving (6.1) as discussed in 6.1.
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Figure 6.5: Simulation results on FRANK for over 2 steps enforcing CoM trajectories,
with references shown during the stance phase in green. The initial conditions at the
second stance phase are aligned with the trajectory, by design.

6.3.1 Operation on Rough Terrain

Thus far we have assumed that our system is able to stay on our designed CoM

trajectories perfectly for all time. A real implementation of this control framework,

however, must remain robust to non-zero perturbations of the states, which in turn will

inject angular velocity into the system that must be removed. Additional disturbances

to the system due to ground height offsets (i.e., rough terrain) may be also treated as

misalignments of the trajectory initial conditions at impact. Since this system does not

employ SEA, for a given stance-phase trajectory it is possible the spring will not be

finished decompressing when the trajectory terminates. One solution to this problem

is to extend the stance phase trajectory by forward solving the ballistic equation for

the CoM. In other words, ẋcm remains constant (at the planned take-off velocity) and
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Figure 6.6: Simulation results on FRANK for over 2 steps for the body angle, with
the predicted trajectory shown in green. As expected, the body angle is well behaved
during the stance and flight phases, and is correctly aligned with the subsequent stance
phase initial condition at the end of the flight phase.

ycm(xcm) keeps the total vertical energy (mgy + 1
2
mẏ2) also constant. This will result in

injection of some amount of undesired angular velocity.

To address these problems, we divide the stance phase into two parts, Correction and

Main, as shown in Fig. 6.8. The Main phase implements the HOPFL CoM controller in

(3.22), while the Correction phase instead controls ycm and θB using the same HOPFL

construction, simply selecting two different auxiliary variables. This is done to remove

any angular velocity introduced into the system, and return the body angle to a nominal

value.

At the instant of ground impact, the body angle of the system may be above or

below the desired system value. The Correction Phase trajectories for the body angle are

planned on the fly to match the initial body angle, velocity, and acceleration conditions

and then to converge to zero angular momentum by the end of the correction phase.

We construct smooth trajectories from a combination of polynomial and exponential
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Figure 6.7: Reduced point-mass model overlayed on the 3-link compliant robot’s CoM
during a stance phase. In our planned trajectories, the ground reaction force is inten-
tionally constrained to point exactly toward the center of mass of the system. If the
system begins with zero initial angular velocity, as desired, then this GRF constraint
automatically maintains zero angular velocity throughout stance, by design.
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Figure 6.8: To control xcm, ycm and θB, the stance phase is divided into two phases.
The Correction phase removes any present angular velocity and brings the system to
the desired CoM (x, y) trajectory in space.
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Figure 6.9: Example smooth trajectory generated for the body angle in the Correction
Phase. The trajectory is generated by combining two polynomials and a decaying
exponential function, and solving for the required coefficients such that the touchdown
initial conditions are aligned with the trajectory initial values. The trajectories return
the body angle to its nominal value and remove all angular velocity.

functions. Figure 6.9 illustrates a trajectory generated for negative body angle drift

with positive angular velocity and negative body angular acceleration at touch-down.

After the body angle trajectory is chosen, we construct a valid trajectory for ycm. The

trajectories for ycm are generated by casting the ycm trajectory as a function of our

uncontrolled variable, xcm, as we previously defined in (6.2). We therefore set the ycm

reference trajectories in the Correction phase as a function of the current xcm, i.e.,

yref = ytraj(xcm)

ẏref = ẏtraj(xcm)

ÿref = ÿtraj(xcm)

(6.16)
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Figure 6.10: Example smooth trajectory generated for spine angle, θ3, during the
flight phase. The trajectory is generated in an identical way as the body angle trajec-
tories previously seen in Fig. 6.9, by using a combination of polynomials and decaying
exponential functions to ensure initial condition alignment and to provide convergence
with zero velocity to initial spine angle.

During the flight phase, the mass stance link can be repositioned arbitrarily without

affecting the rest of the dynamics, so we only have one available actuator τ2, which we

use to implement simple collocated PFL on the spine angle θ3, in order to return the

angle to the initial stance value. The trajectory is generated in a similar manner as the

body angle trajectories, and an example is shown in Fig. 6.10.

The parameters used in this simulation study are shown in Table 6.2. Any unlisted

coefficients are zero. Simulation results on minor rough terrain are shown in Fig. 6.11.

We see that results are reasonably good, where the robot has the ability to switch into

different gaits dynamically and regulate different stride lengths. Step length accuracy is

well below 10% on average, and is not as precise as the SLIP-based methods we saw earlier

on FRANK in Chapter 5. This is more or less due to limitations of the compliant 3-link

robot as a hopper, as it does not employ SEA and thus aligning the initial acceleration of

the system at touch-down to reference values is more difficult to implement. The design
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m1,m2 2.0 kg Hip masses
J1, J2 0.0052 kg m2 Joint inertias
L0 0.2540 m Link natural lengths
kleg 2,625 N/m Spring constant
bk 25.36 Ns/m Spring damping
θ(0)B 1.37 rad Initial body angle
xsmall(0), ẋsmall(0) -0.103 m, 1.82 m/s Small stride IC
xmed(0), ẋmed(0) -0.141 m, 2.0 m/s Med stride IC
xlarge(0), ẋlarge(0) -0.175 m, 2.2 m/s Large stride IC
asmall, bsmall 0.341, 1.49 Small stride coeffs
amed, bmed 0.327, 1.35 Med stride coeffs
alarge, blarge 0.295, 1 Large stride coeffs
ωn, ζ, p3 25, 0.9, 700 PFL gain parameters

Table 6.2: Simulation Parameters for Compliant 3-link Hopper

process is also significantly more complex when analytical calculations are not available.

However, this method can be used to generate stable trajectories that can be stored in a

database capable of regulating step lengths with reasonable accuracy for a wide variety

of compliant hopping robots.
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Figure 6.11: Step length results implementing HOPFL CoM control on the compliant
3-link robot. The ground level was also randomly varied between -0.5cm and 0.5cm
at each step to simulate minor terrain variations. We see comparable results to the
SLIP-based method in 5.14, however each trajectory needing to be designed manually
makes implementation more difficult overall. This method does however have the
advantage of being general enough to be applied to a variety of hopper models.
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Chapter 7

Conclusions and Future Work

Hopping robots are highly dynamic systems that are useful to study if we wish to ad-

vance the state-of-the-art of precision foothold placement for compliant legged systems.

We have investigated in detail control strategies towards implementation of precise con-

trollers to regulate both apex states and step lengths during dynamic hopping gaits.

We have presented motivating hardware results and algorithms for modeling and con-

trol techniques for a realistic series-elastic actuated hopping robot to achieve accurate

state tracking. For practical hopping robots, actuators have real dynamics that must be

modeled for state tracking to work well with feed-forward control methods. For closed-

form approximations of step-to-step dynamics, we argue such models are essential for

both higher-level planning and low-level feed-forward and feedback control. We have

developed high order partial feedback linearization based control strategies specifically

for the leg state of SEA hopping robots, and verified that such strategy is not only prac-

tical to implement on hardware but also yields quite accurate results on a real hardware

implementation.

By using our high order partial feedback linearizing controller directly on the leg state

of the robot, we are able to generate methods that use fast SLIP-based approximations,
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allowing us to parametrize and calculate the reachable space in real time. By constructing

a PFL controller for the hip torque input, we are able to provide stabilizing body motions

and also retain the ability to analytically compute our trajectories from SLIP. The ability

to perform analytical reachability computations at each step is powerful. This allows us

to construct control frameworks online on a step-to-step basis that not only result in

excellent performance but also allow for a large set of possible footholds at each step.

We argue this is critical in improving both reliability (e.g., ability to recover from terrain

perturbations) and agility (e.g., ability to accurately go to any of a family of reachable

future states) of realistic spring-legged robots.

For robots that cannot be directly represented as an evolution of the SLIP model, we

can construct trajectories for the systems CoM by using a very general point-mass model

with an acting GRF vector. By constructing an equivalent point-mass model we provide

a method that allows for direct control of the CoM such that accurate stride regulation

and switching is possible, while also maintaining body stability. We provide a method

that allows for the construction of trajectories with arbitrary initial conditions while

maintaining desired take-off velocities. Future work includes constructing a database

of trajectories with varying initial conditions to account for problems such as uneven

terrain and long term angular drift. Operation on rough terrain results in unknown

disturbances to the initial position and velocities of the robot, thus having a method for

generating alternate trajectories for varying initial conditions is an extension planned for

this work. Future work could consider sensing improvements or moving the hardware

to a 3D platform, and providing hardware implementations of the 2D foothold selection

strategies presented in this dissertation.

Future work also may consider further implementations on the robot FRANK hard-

ware. As discussed in Appendix D, FRANK is currently incapable of precision touch-

down angle control and/or traversing terrain boards due to state estimation hardware
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challenges regarding the body angle and forward velocity. In order to achieve higher

touch-down angle precision control on FRANK, several paths for future work are possi-

ble. First, a mechanically stiffer boom may alleviate some of the torsional forces, and the

boom also likely must be more securely attached to the ceiling assembly. Completely de-

coupling the robot from the boom is also an option, however this requires development of

algorithms for 3D hopping. Second, state estimation can likely be improved with higher

quality IMU systems. Implementing IMU-based measurements on hoppers is quite a chal-

lenging problem, as any accelerometer measurement must withstand impactive forces and

remain well behaved. Incorporating non-linear state estimation techniques is also a pos-

sibility for future work. Lastly, augmenting the hardware to allow for higher energy gaits

is a viable option. While this certainly will not solve any of these problems completely,

it will result in longer ballistic phases, and can likely be accomplished by making stiffer

system springs and higher actuation power available to FRANK.
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Appendix A

System Identification of FRANK

This Section briefly overviews system identification techniques used to determine the

model parameters of the robot FRANK. These parameters were identified by decoupling

the dynamics of state variables via temporary modification of the robot in each case.

Even though we use frequency identification in some cases, it is important to note that

our desired end result is not a transfer function, but rather individual parameter values

to be used in the complete non-linear model. Only experimental methods and simulation

results are presented here, the numerical parameters extracted from the data can be seen

in Table 2.1.

A.1 Leg Spring

The simplest parameters to identify are those of the system spring. For these experi-

ments, the SEA is set to zero for all time, decoupling it from the dynamics. Additionally,

the body is mechanically locked and the robot’s leg is actively locked, resulting in the
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passive 1D dynamics

L̈ =
1

mB

(K(−L+ L0 + c)− b2L̇−mBg)− f2sgn(L̇) (A.1)

Both mB and L0 can be measured directly from the robot. The unknown parameters

are therefore: K, c, b2, and f2. The experiments performed are passive drop tests, where

the robot is initialized at some vertical height and released. The resulting stance phase

trajectory, consisting of simply the spring dynamics compressing and expanding, are

then measured. The resulting curve is approximately a classical 2nd order response of a

spring-mass system, with the pre-load c and Coulombic term f2 causing slight magnitude

and phase differences.

Approximately 100 trials of drop test data were recorded, and stored in a database

along with corresponding initial conditions. A numerical simulator implementing the

dynamics in (A.1) then iterates through each set of initial conditions inside the non-

linear minimization function nlfit, implemented in MATLAB. This method does take

some time to iterate, however fairly accurate results can be obtained, as we see in Fig.

A.1.

A.2 Series-elastic Actuator

In order to identify the model parameters of the SEA, the robot is rested on a pedestal,

and the SEA is actuated. This decouples the leg state dynamics from the system, resulting

in the dynamics

L̈a =
1

me

(K(−La+ c)− b1L̇a+kp(2La − cp)− νuleg)−f1sgn(L̇a) (A.2)
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Figure A.1: Simulated accuracy of the identified model parameters for the leg state
during a passive drop test. Although some noise is present on the velocity of the leg
state, due to the filter, the model accuracy is reasonable.

The spring constant K is known from the previous experiment, and we also know ν =

0.5Nkt
r

, where the motor torque constant kt, gear ratio N , and pulley radius r are all

known. Similarly, the tension spring compression cp can be measured with callipers.

Therefore, the unknown parameters in this case are: me, b1, and f1. Similar to the

decoupled leg dynamics, this system’s dynamics are quite similar to an active 2nd order

spring-damper system, therefore we look to the method of swept sine identification.

In order to avoid impacting boundary conditions, it is necessary to vary the amplitudes

when taking experimental data, therefore we expect some discontinuities in the frequency

response due to the Coulombic term.

Approximately 500 frequency response points were experimentally measured, and

stored in a database along with input magnitudes and initial conditions. A numerical

simulator implementing the dynamics in (A.2) again iterates through each set of initial

conditions inside a non-linear minimization function to determine the model parameters.

The resulting simulated frequency response, along with collected experimental data, is
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Figure A.2: The frequency response of the SEA for both measured data and simulated
non-linear model is shown above. Since this data is constructed from several sets of
experiments, some discontinuities are present due to varying input amplitudes, since
Coulombic friction is present.

shown in Fig. A.2.

A.3 Leg Angle Actuator

Similar to the SEA identification experiment, the model parameters for the leg angle

actuator are also determined via swept sine. Therefore, we again rest the robot on

a pedestal and zero out all other active terms. It is important to note that for this

experiment the robot is weighted down to prevent the body of the robot from flexing due

to torsional forces during the data collection. Additional system identification results

attempting to identify these torsional dynamics can be seen in Appendix D. In this case,

the dynamics are simply a pendulum with mass and inertia as

θ̈ =
−(Nktuhip + gL0

2
mlsin(θ))

(ml(
L0

2
)2 + Jl)

− b̃θθ̇ (A.3)
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Figure A.3: The frequency response of the leg angle fits fairly well to a simple 2nd order
linear transfer function, as shown. The low frequency data has some mis-alignments,
likely due to some minor frictional effects in the motor assembly.

The unknown model parameters here are only ml and Jl, and if we choose to include

damping b̃θ. For this system we can simply apply a small angle approximation and

implement swept sine identification directly, with the model parameters determined from

the natural frequency and a few points from the frequency response. Figure A.3 illustrates

that this model matches reasonably well.

A.4 Body Inertia

The experiments performed to provide data for the purpose of determining body

inertial parameters are as follows. First, the leg of the robot is mechanically locked,

and the spring is disabled. The robot’s leg is fixed on the ground such that it cannot

translate or rotate. Next, the body is mechanically unlocked and allowed to fall from it’s
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Figure A.4: The leg assembly of the robot was mechanically locked and fastened
in place, allowing free-fall experiments on the body to be performed. Above shows
simulation results for both forward and reverse fall experiments of the body of the
robot. The non-zero initial conditions are due to the asymmetry of the body, which
was later removed by adding weights to the edge of the robot’s frame.

equilibrium position. The dynamics of this modified system are

φ̈ =
(mB −ml)gl1

(mB −ml)l21 + J
sin(φ+ λ) (A.4)

where λ represents asymmetry in the body assembly of the robot. The unknown param-

eters are therefore λ, J , and l1. Several free-fall experiments were performed, and the

parameters were determined by again using non-linear curve fitting minimization func-

tions. The resulting simulated fall responses for both forward and reverse directions can

be seen in Fig. A.4. In order to remove the asymmetry in the body, weights were later

paced on the edge of the robot’s frame. This approximately results in λ = 0 and the

robot’s body being symmetric in the horizontal direction. The body CoM is still not

collocated with the hip joint, as l1 is non-zero.
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A.5 Boom Angle Dynamics in Flight

This Section provides the model for the dynamics of the boom angle ψ, along with

analytical SAA approximations that can be used. Note that in simulation, we still typ-

ically assume purely ballistic dynamics. During hardware operation however, the boom

angle ψ follows non-linear dynamics that must be accounted for when determining proper

take-off velocities. The hip position of the robot, effectively the body position for small

φ, can be calculated referenced from the foot or the boom as

yh = yB + LB sin(ψ)

yh = yfoot + L cos(θ − φ) cos(θ⊥)

(A.5)

where LB and yB represent the boom length and boom joint height respectively. This

allows us to convert information from the leg states L and L̇ to boom states ψ and ψ̇.

Similarly, we can convert the leg take-off velocity L̇−TO by evaluating the impact dynamics

in Eq. (2.16), and convert the resulting post-impact take-off velocity ṙ+ to initial boom

angle take-off velocity, ψ̇, using

ψ̇ =
1

LB cos(ψ)
(−L0 cos(θ − φ) sin(θ⊥)θ̇⊥ +Q)

Q = cos(θ⊥)(ṙ+ cos(θ − φ)− L0 sin(θ − φ)(θ̇ − φ̇))

(A.6)

where the planar leg angle θ, perpendicular angle θ⊥, body angle φ, velocities, and boom

angle ψ are measured at take-off. It can be shown using a Lagrangian approach that

the dynamics of the flight phase can be written in the form ψ̈ = Fcbl + A1(B1cos(ψ) +

C1sin(ψ)), where Fcbl represents frictional effects due to boom cables, and A1,B1,C1 are

functions of the boom parameters. Since during operation the boom angle remains rela-

tively small (certainly < 15 degrees), we can use a small angle approximation, resulting
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Figure A.5: The flight phase during operation on the boom hardware can be approxi-
mated using analytical SAA calculations. However, unmodeled torsional dynamics in
the system result in lower accuracy for the translational boom angle α. While a higher
order model can be adopted to account for these dynamics, the hardware currently
lacks sensing and state estimation to measure them in real-time.

in the dynamics in the form ψ̈ ≈ Fcbl + A1B1 + A1C1ψ.

Similarly, the translational component of the boom, α, can be measured to approxi-

mate horizontal displacement of the robot as xh = LBα. The dynamics of the horizontal

component are assumed to be purely ballistic. Simulation results for the obtained model

parameters can be seen in Fig. A.5. Note that during the stance phase the dynamics of

the boom are largely negligible due to the high spring forces, however, the subsequent

ballistic phases must precisely account for boom losses if precision apex control is to be

achieved as in Chapter 4.
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Calculating and Evaluating HOPFL

Coefficients

This Section discusses implementation details of the control law coefficients necessary

to calculate our HOPFL controllers. If one were to symbolically attempt to represent

the jounce of the robot in terms of only the state X, which is possible using the control

methods presented here, it is likely the coefficients will consist of millions of characters,

making implementation quite difficult. The HOPFL coefficients (both the CoM and leg

construction) for the robot FRANK are an example of this. For example, at each time

step, in order to implement the control law we saw in (3.9), the controller must evaluate

a function call returning the HOPFL coefficients as:

[γ̃L, εL, βL, ηL, αL] = fHOPFL(t,X, uhip) (B.1)

where fHOPFL represents the function call the controller makes on board the computer

system. Rather than attempting to calculate everything at once, the implementation

carried out to produce the results in this dissertation is as follows:
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Figure B.1: Attempting to evaluate a HOPFL coefficient directly and only as a func-
tion as X results in very large equation, Here we see one coefficient consisting of
approximately 3 million characters! It is typically much better to calculate each coef-
ficient in stages.

i. Measure the current state X and calculate any control law for uhip.

ii. Calculate common trigonometric terms. These are typically of the form cos(iθ−jφ)

and sin(iθ − jφ) for i and j ranging from 1 to 8. These terms are locally stored as

new variables, and all other equations can be written as a function of them.

iii. Calculate state accelerations L̈, θ̈, φ̈, L̈a, using (2.20).

iv. Calculate the first derivative of any uhip controller as a function of the state X and

acceleration variables.

v. Calculate state jerk terms
...
L,

...
θ ,

...
φ ,

...
La as a function of the state acceleration terms

and hip control law derivative terms previously calculated.

vi. Calculate the second derivative of any uhip controller as a function of the state X

and it’s first two derivatives.
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vii. Calculate HOPFL leg coefficients in (3.9) as a function of the already defined state

X, it’s fist two derivatives, and the hip control law input and it’s first two derivatives.

Using this method and defining the coefficients numerically in stages results in a

significantly less complicated equation for each coefficient. In particular to the coefficient

we saw in B.1, the resulting coefficient consists of roughly 250 thousand characters as

opposed to over 3 million when attempting to evaluate everything at once. The results

presented in this dissertation use this method, and the function call fHOPFL was measured

to take approximately 1ms to evaluate on a computer with an i7 2600k processor. This is

reasonable and well suited for real-time deployment on a modern computational hardware

setup.
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Appendix C

1D SEA Hopper Analytical

Solutions

The stance phase trajectories for 1D hoppers can be computed analytically in some

cases. Note that this is almost never the case for 2D hopping systems, as the dynamics

are often analytically unsolvable. We consider generating an analytical solution for a

SEA 1D hopper with dynamics:

ẍ1 =
1

meff

(k(x2 − x1 − L0)− b1ẋ1 − γ2u)− f1sign(ẋ1) (C.1)

ẍ2 =
1

mB

(k(x1 − x2 + L0 + c)− b2ẋ2 −mBg)− f2sign(ẋ2) (C.2)

where the model parameters parallel those of the Hopper B and Hopper C from Chapter

II. In this case, x1 represents the position of the SEA, and x2 represents the vertical

distance from the robot hip to the ground, essentially the leg length during the stance

phase. At touchdown a trajectory can be generated based on initial conditions that

characterizes the states of the system for all future time. The solution generated follows
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from two assumptions. First, the input current is a step change. A new solution can

be generated from any point given new initial conditions and current step magnitude.

Second, ẋ2 remains negative during compression and positive during expansion. This

allows the solution to be broken up into two pieces in order to overcome the non-linearity

of the static friction term. If ẋ1 does not remain positive sign during the stance phase,

the equations must be broken up into N additional pieces, where N is the number of

times ẋ1 crosses the zero-axis.

The solution is generated using a Laplace Transform technique. Taking the Laplace

Transform of (C.1) and (C.2) yields

X1(s) =
s2x1(0) + s(ẋ1(0) + x1(0)b1

meff
) + λ2 + sX2(s)

k
meff

s(s2 + s b1
meff

+ k
meff

)
(C.3)

X2(s) =
s2x2(0) + sβ − γ + s k

m2
X1(s)

s(s2 + s b2
mB

+ k
mB

)
(C.4)

where

γ = − f2
mB

+ g − k(L0 + c)

mB

(C.5)

β = ẋ2(0) + x2(0)
b2
mB

(C.6)

λ2 = − γ2u

meff

− kL0

meff

− f1 (C.7)

Substituting (C.3) into (C.4), it can be shown after some algebra that

X2(s) =
x2(0)s4 +H4s

3 +H3s
2 +H2s+H1

s2(s+ a)(s+ b)(s+ c)
(C.8)
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where a, b, and c are roots to the polynomial

s3 + s2(
b2
mB

+
b1
meff

) + s(
k

mB

+
k

meff

+
b1b2

meffmB

) +
k(b1 + b2)

meffms

and

H4 = x2(0)
b1
meff

+ β (C.9)

H3 = x2(0)
k

meff

+
b1β

meff

− γ +
kx1(0)

mB

(C.10)

H2 = (ẋ1(0) +
x1(0)b1
beff

)
k

mB

+
kβ

meff

+
b1γ

m1

(C.11)

H1 =
−γk
meff

− ukγ2
mBmeff

− (
L0k

meff

+ f1)
k

mB

(C.12)

Using (C.8), the Laplace transform for X1(s) can be re-written as

X1(s) =
s2x1(0) + s(ẋ1(0) + x1(0)b1

meff
) + λ2

s(s+ d)(s+ e)
+ Z(s) (C.13)

where d and e are roots to the denominator of (C.3), and

Z(s) =

k
meff

(x2(0)s4 +H4s
3 +H3s

2 +H2s+H1)

s2(s+ a)(s+ b)(s+ c)(s+ d)(s+ e)
(C.14)

Finally, taking the Inverse Laplace Transform of (C.8) and (C.13) with (C.14), solutions

for all states can be easily found as

x2(t) = A+Bt+ Ce−at +De−bt + Ee−ct (C.15)
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ẋ2(t) = B − aCe−at − bDe−bt − cEe−ct (C.16)

x1(t) = Â+ B̂t+ Ĉe−at + D̂e−bt + Êe−ct + F̂ e−dt + Ĝe−et (C.17)

ẋ1(t) = B̂ − aĈe−at − bD̂e−bt − cÊe−ct − dF̂ e−dt − eĜe−et (C.18)

where A- E and Â- Ĝ are coefficients determined from partial fraction decomposition.

The analytical solutions for x1(t) and x2(t) are thus constructed.
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Appendix D

Importance of Accurate Touch-down

Angle Control

In this Section we provide some insight into the importance of accurate touch-down

angle control for hopping robots. All step length algorithms in this dissertation essentially

require this as a necessary condition. Lack of this required precision is responsible for the

absence of experimental results regarding 2D foothold placement on the robot FRANK.

As we can observe in Fig. 2.1, the step length for a given step is given as:

S = STO + Sflight + STD (D.1)

Where

STD = L0 cos(θTD) (D.2)

Clearly, S cannot be completely determined without defining the touch-down angle θTD.

The duration of the ballistic term Sflight is also a function of this touch-down angle.

Lastly, any feed-forward calculations that consider one or more steps as a lookahead

horizon (such as the centroid-based method from chapter 5) also rely on the leg angle

136



Importance of Accurate Touch-down Angle Control Chapter D

being accuractly controlled. Therefore, regulating a step length is coupled to setting

a touch-down angle. Controlling the robot to a higher energy state can alleviate this

problem, as the ballistic term will dominate. However, this is typically constrained to

some maximum ceiling by robot parameters. The analysis presented here concerns both

SLIP and the SEA 2D Hopper (FRANK with a locked body). When the robot’s body

is able to rotate freely, visualization of the reachable space becomes more difficult as

the body angle and angular rotation rate must also be considered. However, the same

requirements on precise touch-down angles and basic trends of the reachable space still

apply.

D.1 Effect of TO/TD Angle Noise on Reachable Space

The reachable space R of the system is typically calculated at the apex state A, as

this requires only two variables and thus can be visualized on a 2D plane. Methods for

analytical approximating this 2D set were provided in Chapter 5. It is also possible,

however, to visualize the reachable space of the system by considering the take-off states

L̇TO, θ̇TO, and θTO at the instant after take-off has occurred, as these variables completely

determine the ballistic trajectory of the CoM of the system. An example of such a

visualization is shown in Fig. D.1. The color represents the total sum of the square

of the SEA displacement during the stance phase, which approximately represents total

energy injected into the system by the SEA. Here we see that the reachable space in

fact lives on a 2D surface, even when plotted with the 3 take-off variables. When we use

our centroid-based method to determine the commanded touch-down angles, the binary

search makes a future guess one step ahead of the next reachable space. Thus, any errors

on the next commanded touch-down angle will appear as errors in the initial condition

of the reachable space of the next step. To visualize the effect of varying the initial
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Figure D.1: A simulated reachable space for the robot FRANK is shown, plotted in
take-off coordinates. The sharp edges are due to boundary conditions with the SEA
involving cases when the SEA impacts a hard limit.

touch-down angle, simulations were performed with lower resolution for a large set of

touch-down angle initial condition. The results of these simulations are shown in Fig.

D.2, where it is clear the effect of changing the initial touch-down angle is a translation

of the reachable space, similar to what we saw in Chapter 5.

Therefore, we expect random noise on the initial touch-down angle to result in a large

3D cube, made up of several stacks of the nominal reachable space. Simulation results

applying random noise to the same reachable space we saw in Fig. D.1 illustrates that

this is indeed the case. As we see, it is very difficult to predict the reachable space of the

system if we cannot properly control the leg angle.

D.2 Leg Angle Control on FRANK

Appendix A provided system identification results for both the leg angle and body

inertial values for FRANK via separate, decoupled hardware experiments. However,
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Figure D.2: As the touch-down initial condition is varied, the reachable space is seen
to translate along a line, effectively creating vertical slanted stacks of the original
reachable space for a set of initial touch-down angles. In this example the touch-down
angle is only varied by +- 2 degrees from the optimal angle of 3 degrees.

these experiments intentionally eliminated any coupling between the body and the leg

by manually locking the other variable down in each case. In an attempt to quantify the

frequency characteristics of the torsional dynamics in the boom, system identification

was performed an additional time via mounting one side of the robot’s body on a large

low-friction wheel, and applying swept sine without manually fastening the body down,

but with the body still mechanically locked on the boom side. The resulting frequency

response along with high-order transfer function approximations are shown in Figures

D.4 and D.5.

Torsional forces cause the boom angle to flex during operation, as was briefly dis-

cussed in Chapter 4, which results in several resonant peaks appearing in the frequency

response. Although the torsional forces are much alleviated when the body is unlocked,

this resonance still appears, as shown in Fig. D.6. Unfortunately, this is not the only

source of torsional vibration in the system, as the top component of the vertical boom

assembly also flexes during operation. In order to estimate this small body rotation, an
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Figure D.3: When random noise is added to the initial touch-down angle, the reach-
able space expands considerably, making feed-forward based control potentially pro-
hibitively difficult.

IMU and HC-SR4 distance sensor based measurement of the FRANK’s body was im-

plemented, however, the quality of the body angle estimation was far from perfect. In

general, our system is currently only capable of estimating the body angle to 1-2 degrees

of accuracy. This means we often expect touch-down angle errors of our system to be

significant.

It is generally possible to design controllers with the purpose of rejecting these tor-

sional disturbances. Using our linear transfer function model in Fig. D.5, which are

above order 8 and each have at least one non-minimum phase zero, a touch-down angle

controller was implemented using LQR/LQG Loop Gain Recovery. While a controller

can reject these disturbances, in general, it cannot act fast enough to completely damp

them out before the termination of the ballistic phase. The controller must also of course

re-position the leg before touch-down. Reference tracking during hopping can be seen

in Fig. D.7, where it is clear the controller has some difficulty regulating the correct

touch-down angle.
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Figure D.4: Frequency response of the leg angle with the body locked on the boom
side, but still allowed to torsion while swept-sine was applied. The order of the fit
transfer function here is 8, and has one non-minimum phase zero.

D.3 Reachability Experiments on FRANK

The reachable space of the robot FRANK, with the body mechanically locked, was

experimentally mapped for the initial condition apex state A′ = (ẋ, y) = (0.45m
s
, 0.75m),

with touch-down angle θ0 = 3deg. The experiment performed involved repeatably driving

the system approximately to the state A′. When the algorithm detected the forward

velocity and apex height were acceptably close to the target command, the touch-down

angle θ0 was commanded for the subsequent step, and the SEA parameters ts and La0 were

chosen from a set of vectors spanning all possible combinations. Approximately 1000 data

points were measured. The measured reachable space, plotted in take-off coordinates,

is shown in Fig. D.8. The theoretical reachable space generated via simulation of the

SEA 2D Hopper is also shown, and at first glance it appears to significantly mis-match

the measured data. However, as we saw in Fig. D.3, we know the effect of noise on the

reachable space distorts the shape significantly. Therefore, the mis-match is explained

due to variation of the body and touch-down angle at each step. This can be confirmed
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Figure D.5: Frequency response of the corresponding body angle for the modified
swept sine experiment. The order of the fit transfer function here is 9, and has 2
non-minimum phase zeros.

by storing the initial conditions of the leg and body angle from each experiment. The

sum of the body and the leg angle is defined as the global leg angle. The measured data

can be approximately reproduced in simulation by careful post-processing of the data,

and storing the global leg angle for each experiment. Simulating the SEA 2D Hopper

using the stored global leg angle as corresponding initial conditions at each step produces

very similar results, seen in Fig. D.9. As we can see, the hardware FRANK is currently

unable to reliably drive the system to a desired apex state due to inaccurate touch-down

angle control.
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Figure D.6: This data represents modified swept-sine results with the body’s me-
chanical lock loosened to allow the body to rotate up to roughly 15 degrees, and
approximately represents operation when the body is unlocked. While it is difficult
to accurately measure φ for this case, we can still see resonance peaks due to the
torsional dynamics in the response for the leg angle, albeit somewhat attenuated.
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Figure D.7: Leg angle reference tracking during forward 2D hopping on the hardware
FRANK. We see there are oscillations in the leg angle tracking, mostly due to the
torsional effects of the boom. The reference command cannot be constant, as the
body angle estimation must be included to set the global touch-down angle.
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