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With the era of big data, the utilization of machine learning algorithms in radiation oncology is
rapidly growing with applications including: treatment response modeling, treatment planning, con-
touring, organ segmentation, image-guidance, motion tracking, quality assurance, and more. Despite
this interest, practical clinical implementation of machine learning as part of the day-to-day clinical
operations is still lagging. The aim of this white paper is to further promote progress in this new field
of machine learning in radiation oncology by highlighting its untapped advantages and potentials for
clinical advancement, while also presenting current challenges and open questions for future
research. The targeted audience of this paper includes newcomers as well as practitioners in the field
of medical physics/radiation oncology. The paper also provides general recommendations to avoid
common pitfalls when applying these powerful data analytic tools to medical physics and radiation
oncology problems and suggests some guidelines for transparent and informative reporting of
machine learning results. © 2018 American Association of Physicists in Medicine [https://doi.org/
10.1002/mp.12811]
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1. INTRODUCTION

Machine learning (ML) embraces an evolving branch of
computational algorithms that were originally designed to

emulate living beings’ intelligence by learning from the sur-
rounding environment. The term was coined by Arthur
Samuel in his seminal work in the 1950s where he described
machine learning as “a field of study that gives computers the
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ability to learn without being explicitly programmed.”1

Machine learning as a branch of the artificial intelligence
field draws upon ideas from diverse disciplines such as prob-
ability and statistics, information theory, psychology, control
theory, and philosophy.2–4 It has been successfully applied to
many different fields including pattern recognition,4 com-
puter vision,5 spacecraft engineering,6 finance,7 computa-
tional biology,8,9 and medical applications.10,11 Developed
ML algorithms are currently considered one of the main
workhorses in the new era of Big Data to potentially over-
come challenges related to the excessive burden of manual
curation, data veracity, and the analysis of complex patterns.
In this sense, ML algorithms can both add to and comple-
ment traditional statistical modeling methods.

Machine learning could be further subdivided per the nat-
ure of the data labeling into: supervised, unsupervised, and
semi-supervised.3,6,12 Supervised learning is used to estimate
an unknown (input, output) mapping from known (input, out-
put) samples, where the output is “labeled” (e.g., classifica-
tion or regression). This is the most commonly used approach
in radiotherapy applications such as planning evaluation or
outcomes prediction using known labels provided by experts
or clinical endpoints. In unsupervised learning, only input
samples are given to the learning system and inferences are
drawn without labeled responses (e.g., clustering and estima-
tion of probability density function [PDF]) such as visualiza-
tion of higher dimensional data, some respiratory motion
management studies, and contouring, which has typically
been based on clustering methods and is currently trending
toward supervised deep learning.13 Semi-supervised learning
is a combination of both supervised and unsupervised learn-
ing methods. The part of the data, which is labeled, could be
used to infer the unlabeled portion (e.g., text/image retrieval
systems) through transductive learning, or to induce the gen-
eral mapping from input to output by inductive learning.
Additionally, in semi-supervised learning unlabeled data
could be used to infer high-order representations of data to aid
the supervised component of the learning task14 with applica-
tion examples such as interactive prostate segmentation15 and
xerostomia (dry mouth) prediction in head and neck cancer.16

Although there are several ongoing efforts to provide
guidelines for developing and reporting ML results,17,18 with
the Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis (TRIPOD)
statement receiving wide range endorsements for predictive
modeling,17 there are yet no universal consensus recommen-
dations for ML in general or in the setting of medical physics
and radiation oncology specifically. This white paper aims to
(a) further promote progress in the new ML field in radiation
oncology by highlighting its untapped advantages and poten-
tial for clinical advancement to newcomers; (b) present cur-
rent challenges and open questions for further research by
newcomers and practitioners; and (c) provide general recom-
mendations to active researchers to avoid common pitfalls
and suggest guidelines for transparent and informative report-
ing of ML results for medical physics and radiation oncology
applications.

1.A. Use case examples in radiation oncology

In recent years, ML has witnessed an increased use in
radiation oncology with focused sessions at the annual meet-
ings of the American Association of Physicists in Medicine
(AAPM). However, initial applications of ML in radiotherapy
have started in the mid 1990s by training artificial neural net-
works (ANNs) for automating treatment planning evalua-
tion,19 beam orientation customization,20 and standardization
(knowledge-based planning),21 for instance. Later applica-
tions in the mid-2000s focused on predicting normal tissue
toxicity in different sites.22–24 Currently, these methods are
applied to many aspects of radiation oncology including:
tumor response modeling,25–31 radiation physics quality
assurance (QA),32 auto-segmentation for normal tissue and
target delineation,33–36 treatment planning,37–39 image-guided
radiotherapy (RT),40,41 and respiratory motion manage-
ment.42,43 Details about these and other applications are
reviewed in the literature.44 Further and future applications of
ML may also expand into:

• Identifying potential hardware and software safety- and
quality-related risks prior to treating a patient.

• Using ML-aided decision support systems to improve
the efficiency and the consistency of current diagnosis
and treatment tools, and subsequently raising average
physician performance during residency training or
clinical practice.

• Identifying and analyzing underlying pan-omics (im-
ages, genetics, dosimetric indices, and clinical informa-
tion) data for patient-specific treatment regime
stratification (drug-RT and combined therapy) and pre-
dicting radiotherapy outcomes.

• Relating images/genetics to outcomes, and identifying
latent pheno-/geno-/image prognostic features.

• Complementing existing response models with better
learning of data-derived information, for outlier analy-
sis, hypothesis modification, and model refinement.

• Conducting clinical trials using ML algorithms as a
guidance for optimal treatment strategies.45

1.B. Recommendations for general ML application
in radiation oncology

For successful application of ML approaches in gen-
eral and in medical physics and radiation oncology in
particular, there are five main issues that need to be cau-
tiously considered.

1.B.1. First, characterize the problem properly

One needs to properly represent the problem at hand in
terms of the input/output data, the desired results, assump-
tions made, and the interpretation of their associated out-
puts in relation to specific clinical goals. Care needs to be
taken to minimize the risk of false positive findings or
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overfitting the data, via multiple testing adjustments, false
discovery analysis, or other methods to avoid data dredg-
ing or p-hacking problems.46 Similar considerations should
inform which metrics are used to evaluate performance, as
they will be used to judge suitability of the model. For
example, standard maximization of the area under a recei-
ver operating characteristic curve (AUC) is a convenient
and easy-to-comprehend metric. However, it assumes that
specificity and sensitivity are of equal importance to the
decision-maker, which may not always be the case for
physicians or physicists working in the clinic.47–50 Further-
more, ascribing unwarranted clinical significance some-
times to results based on marginal AUC values (e.g.,
<0.7), does occur often and should be cautiously
addressed in scientific publications and presentations.51,52

ML provides a model approximation of reality (correla-
tions), to make clinically relevant predictions with associ-
ated error characteristics. This should be reported and is
appropriate for the decision space and ensures that results
are more likely to be used robustly.

1.B.2. Second, include sufficient data volume and
quality in training

It cannot be overemphasized that ML algorithms are
data-driven approaches and their performances are intrin-
sically dependent on the data provenance, volume and
quality assurance of training data, and outlier identifica-
tion.53 Assembly of large patient datasets containing both
treatment parameters and outcomes to investigate linkages
using ML can be a significant challenge. ML applications
generally perform better with more training data, particu-
larly as more input/output variables are added and the
model complexity is increased. The goal of an ML study
is to learn and understand the training data interdepen-
dencies and potentially generalize based on them. How-
ever, inference on causation is not directly attainable with
the most popular algorithm. For instance, in the classical
application of ML for modeling radiation-induced toxici-
ties, it is understood that radiation is the main causative
agent. However, the exact role of other variables (co-vari-
ates), both clinical and biological, beyond dose-effect
modification or complementarity may require further
experimentation or gathering new variables that were not
included in the original analysis. This is, in a sense,
quite similar to inference in traditional statistics. However,
ML methods are well suited in such predictive modeling
scenarios because of the following: (a) the flexibility and
inherent ability of many ML algorithms to navigate com-
plex high-dimensional data space and identify nonlinear/
nonmonotonic patterns (e.g., via kernel mapping or non-
linear activation functions); and (b) many ML algorithms
can also measure oversensitivity to data or identify possi-
ble “gaps” in the modeling process, that is, areas where
the model actually failed to fit the data. An example is
shown in modeling outcomes of radiotherapy with sup-
port vector machines (SVM), where many of the training

data points (dose-volume metrics) were located in the
“margin” region between the classifier boundaries indicat-
ing missing discriminant information from the used data
based on this particular model.54

1.B.3. Third, model parsimony and generalizability

To be useful, the model needs to generalize beyond the
training observation into out-of-sample data. To achieve this
goal, the model generally needs to be kept as simple as pos-
sible but not simpler. This property, known as parsimony,
follows from Occam’s razor that states “among competing
hypotheses, the hypothesis with the fewest assumptions
should be selected.”55 However, deep learning algorithms
with their large number of layers for learning data represen-
tation and performing model prediction in the same architec-
ture, may present a future challenge to this classical
notion,56 but the overall objective remains the same, that is,
to achieve generalizability to out-of-sample data. This could
be evaluated using resampling methods (cross-validation or
bootstrapping), bias-variance trade-offs (Cramer-Rao) or
analytically by using complexity measures such as Vapnik–
Chervonenkis (VC) dimension, for instance.57 External
validation of models in cohorts, which were acquired inde-
pendently from the discovery cohort (e.g., from another
Radiation Oncology department) is still considered the gold
standard for true estimates of performance and generalizabil-
ity of prediction models. For example, models for optimal
organ sparing in treatment planning can be evaluated using
cross-institutional data, which can ensure that the training
data represents the general practice and also provides gener-
alizability of the model.58 Finally, data guarantees that
ensure equivalence of the training and testing datasets are
essential for robust model evaluation and application. Given
new published models being considered for clinical use in
critical decisions, the medical physics community should
take a leading role to treat these models as medical devices
including formal acceptance and commissioning to ensure
that the right algorithm or model are applied to the right
application and that the model results make sense in a given
clinical situation.

1.B.4. Fourth, quality assurance of ML algorithm
selection

The set of machine learning algorithms and associated
public-domain implementations are expanding at a rapid pace
with several open-source platforms. Application of different
algorithms to the same dataset may yield variable results for
predictors found to be significantly associated with the out-
come of interest.18,20 However, this may also suggest a poten-
tial limitation of self-critical assessment of published ML
models or realistic confidence levels with implications for
their practical clinical value. Typically, the best model is the
simplest model with the fewest assumptions, following
the parsimony principle mentioned above,55 however, the
selected model should also include estimates of its
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uncertainties (confidence levels) that can be performed ana-
lytically or using statistical resampling methods (e.g., boot-
strapping).59–61 Also, there are issues related to interpreting
or combining results of different ML algorithms or for defin-
ing criteria for objectively selecting the approach best suited
to particular clinical investigation in radiation oncology.
More generally, post model selection inference is an impor-
tant topic with relevance to ML methods, which should be
considered.62 Standard data analysis often ignores the model
selection step and as a result overstates the significance of the
findings by ignoring the uncertainty associated with such
model selection, which should be reported.63

1.B.5. Fifth and finally, make models and/or results
intuitive

A major limitation in the acceptance of ML by the larger
medical community has been hailed as the “black box”
stigma, where the ML algorithm maps a given input data to
output predictions without providing any additional insight
into the system mapping. That is, providing an intuitive inter-
pretation of the learned process could be missing, which
impedes clinical practitioners from better understanding their
data and entrusting the ML model predictions.44 Inter-
pretability is also important in generating new knowledge,
hypotheses, and in identifying biomarkers that could guide
treatment prescription or technology design by a ML
response model, for example. Another example is in the case
of organs-at-risk (OAR) dose-volume histogram (DVH) pre-
diction models for treatment planning, where further interpre-
tation of the ML results indicated that the main factors
affecting the mean value and slope of the DVH curve were
related to the mean distance and the slope of the distance to
the target. Such analysis corroborated prior intuitions and
studies that attempted to link patient geometry to planning
results, and helped with the understanding of the ML
results.64 Although there are inherently interpretable ML
algorithms, for instance decision trees, Bayesian networks, or
generalized linear models (e.g., logistic regression), they are
usually outperformed in terms of accuracy by ensemble meth-
ods or deep neural nets (for large datasets).12 The aversion to
black box models in medicine goes beyond the instinctive
fear of being the first adopter of new technologies. For
instance, a “black box” neural net that was developed to infer
whether patients with pneumonia could be discharged from a
hospital was found to inadvertently label asthmatic patients
as low risk.65–67 Due to the nature of the training data used,
this mistake could have not been fixed without using an inter-
pretable model or deeper understanding of the modeling
results.65–67 The development of accurate and interpretable
models is an active area of research and recent progress has
been made using different ML archetictures.67–71 This area of
research requires special attention from the ML community
working in biomedicine generally and radiation oncology
specifically for the sake of machine learning algorithms to
gain the broader acceptance they deserve.72 In addition, while
ML results (predictors) for disease and toxicity outcomes

have the potential to improve physician decision-making,
information overload is an emerging issue as practitioners
have increasing amounts of information available.73,74 Incor-
porating results into a decision support tool, which intelli-
gently can synthesize many types and many sources of
information is likely to facilitate increased adoption of new
ML results.75,76

1.C. Open issues and suggestions for ongoing ML
research in radiation oncology

There are many ongoing issues related to applying ML as
part of the clinical workflow or prospective clinical trial
designs that need further consideration by the research com-
munity. These include but are not limited to:

• Access to and standardization of the radiation oncology
pan-omics data (clinical, dosimetric, imaging, etc.) and
allowing interactive learning/labeling strategies to fur-
ther enrich such datasets. This is currently being aided
by task group efforts such as TG-263.77

• Maintaining high data quality requirements and the
ability to train the ML under realistic clinical scenarios
with noisy conditions, especially when dealing with
Big data, for instance. This is aided by efforts in the
community to publish reusable datasets such as the
Medical Physics Dataset Article (MPDA) efforts.

• Development of robust methods to quantitate the impact
of incomplete, adverse, and uncertain labeling on model
predictions and associated performance guarantees.

• Address inconsistency issues related to hierarchal fit-
ting of heterogeneous vs homogenous datasets.

• Development of accurate and interpretable algorithms.
However, as noted by Breiman, “Framing the question
as the choice between accuracy and interpretability is
an incorrect interpretation of what the goal of a statisti-
cal analysis is. The goal is not interpretability, but accu-
rate information.”78 A balance between these two issues
may be, nevertheless, needed for broader clinical accep-
tance or to correct spurious correlations when impor-
tant cofounders are missing from the training data.

• Standardizing the validation process (Internally only,
Internally and externally) by adopting recommendations
from the TRIPOD guidelines,17 ML practitioners,18 or
developing own medical physics/radiation oncology-
specific guidelines.

• Evaluating and applying ML not only as related to
research topics but also within clinical practice such as
daily quality assurance checks.

• Extending the application of rapid sharing and dis-
tributed learning paradigms79 as more data become
available from everyday clinical practice.

• Development of robust methods to incorporate results
into existing clinical decision-making practices.75

• Developing methods for sample size estimation for
using ML (e.g., learning curves),80 which is currently
underutilized for most applications and would be useful
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when incorporating ML into clinical trial designs,45

where scarce resource of patients willing to enroll and
ethical issues limit the studied population size.

• Determine what evidence is available to substantiate
inferential claims when p-values are not available for
testing significance of the variables inside the model
(e.g., for random forests or penalized regression meth-
ods such as Elastic Net). This is an active area of
research and progress has been made in some instances
but more work remains (e.g., Elastic Net Cox mod-
els).62,81

1.D. Recommendations for publications related to
ML

This is an important time period in the early emerging his-
tory of application of ML and AI into health care data.
Authors of papers have the opportunity in each instance, not
only to present the results of their particular model but also
to shape expectations in the community for how results
should be evaluated, communicated, and applied. A few rec-
ommendations are:

• Identify why and what criteria were used to choose the
ML algorithm. Over time, certain methodologies may
be preferred for specific applications.

• Define and apply proper criteria for evaluating ML
results as presented, for instance, by Kang et al.72 or
discussed by Japkowicz et al.82 Generally, ML perfor-
mance is evaluated empirically using learning curves,
information theoretic techniques, and statistical resam-
pling methods.12

• Authors of ML studies should discuss conformance to
criteria such as those above and adopt the TRIPOD
checklist for more informative and transparent report-
ing.17 The limitations of the authors’ methodology and
implications of those limitations should be openly and
collegially discussed.

• Construct publically available benchmark datasets with
known interactions and include checks of algorithms’
sensitivity and specificity in identifying these interac-
tions. Such datasets can currently undergo a peer-review
authentication and formally published receiving a
unique Digital Object Identifier (DOI) as offered by
MPDA and others that would provide a necessary
description of the dataset and its potential usage. With
the availability of these open access benchmark data-
sets, publications on applications of ML approaches to
clinical data could also include application of the algo-
rithms to the benchmark dataset to define a context for
assessment of uncertainties. This may enable demon-
stration that the algorithm can find the “known” answer,
before asserting its ability to find the unknown answers.

• Publications on ML models should generally meet
known statistical standards in the literature for the num-
ber of patients, fraction of events used, presentation of
scientific evidence, and balancing statistical and clinical

significance.45,83 Any substantial deviations should be
rigorously addressed as an issue to avoid p-hacking or
false discovery pitfalls in the proposed approach.

• When using a resampling technique (cross-validation or
bootstrapping) to estimate the predictive performance
of a model, it is critical that all aspects of the analysis
(including selection of tuning parameters, variable
selection, and model specification) have undergone
proper bias-variance correction processes to mitigate
bias from training data (overfitting) while still achieving
similar performance on unseen data (low variance)
between train and test distributions).84,85 However, it is
noted that this process may vary from one ML algo-
rithm to another. For example, a radiomics analysis with
large number of variables and small sample size applied
information gain for feature selection and estimated per-
formance based on the .632 + estimator, which has
lower bias-variance compromise between training and
testing errors compared to generic cross-validation or
bootstrapping.86

• When reporting on new biomarkers (e.g., gene expres-
sion or radiomics feature), it is desirable to contrast
the predictive performance of a model based only on
standard clinical factors as a benchmark to allow the
reader to understand how much the new biomarkers
would improve prediction performance over current
models.

2. CONCLUSIONS

Application of ML algorithms in radiotherapy is witness-
ing tremendous resurgence with the rapid increase in patient-
specific information and the data generated from all aspects
of the radiotherapy processes. This paper highlighted the
many potential opportunities for ML in the medical physics
and radiation oncology future and some of the current chal-
lenges. It also provided general recommendations to get the
most out of these powerful tools and avoid common pitfalls
as well as some guidelines were suggested for useful publica-
tion of ML results.
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