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Abstract

Spontaneous recovery of fear after extinction is a well-
established behavioral phenomenon. Different theories in psy-
chology account for spontaneous recovery by proposing that
it may result from temporal weighting, reduced processing of
stimuli over time, enhanced salience of adverse events or re-
turn of the acquisition context. We propose a novel mechanism
of spontaneous recovery: selective maintenance of adverse
events, and ground this mechanism in a computational model
of latent cause inference. To investigate the proposed mecha-
nism, we collected behavioral data with an aversive condition-
ing and extinction task (N=280) and fit the data with compu-
tational models formalizing our and others’ theories. Quanti-
tative and qualitative model comparisons indicated that selec-
tive maintenance of adverse events accounts for spontaneous
recovery better than alternative theories. As spontaneous re-
covery of fear after extinction can serve as a model of relapse
after exposure therapy, we use this mechanistic understanding
of spontaneous recovery to propose and simulate the effect of
add-on interventions to prevent relapse after exposure therapy.

Keywords: Computational Psychiatry; Spontaneous recovery;
Latent cause inference; Exposure therapy

Introduction

Exposure therapy is the most effective treatment for anxiety
disorders (Parker et al., 2018). The critical ingredient of ex-
posure therapy is that the individual confront the feared situ-
ation or stimulus, but without the expected negative outcome.
This “extinction” procedure presumably reduces the expecta-
tion of a negative outcome in the future and, thus, fear (Craske
etal., 2014). However, fear often returns with time and clients
may relapse (Craske & Mystkowski, 2006). Understanding
why fear returns can help design interventions to prevent this
from happening. Here, we present a novel mechanism of re-
turn of fear after extinction training and use it to explain how
three modifications to exposure therapy may prevent relapse.
Fear conditioning and extinction paradigms in animals and
humans inspired the development of exposure therapy and are
widely used to study the mechanisms underlying its effective-
ness. In such paradigms, the subject is typically first exposed
to a neutral stimulus (conditional stimulus; CS) followed by
an aversive stimulus (unconditional stimulus; US) during an
acquisition phase. In the extinction phase, they are exposed
to the CS without the US. After some time, the return of fear
(i.e. spontaneous recovery) is assessed by presenting the CS
alone in a test phase. Empirical evidence from such experi-
ments indicate that spontaneous recovery is time-dependent,
increasing with time since extinction (Rescorla, 2004).

Most researchers agree that spontaneous recovery requires
learning of two competing associations (but see Paskewitz et
al., 2022), one associating the CS with the US, which un-
derlies acquisition of fear, and one that associates the CS
with no adverse outcome, driving extinction of fear (Bouton,
1993; Gershman et al., 2013; Craske et al., 2008). In the test
phase, the two associations compete. For spontaneous recov-
ery to occur, the CS-US association must be stronger than
the CS-noUS association. The most prominent existing the-
ories of spontaneous recovery assume a weak CS-noUS as-
sociation due to reduction of processing of the CS with more
exposures (Pavlov, 1927), return of the acquisition context
(Bouton, 1993) or temporal weighting (Devenport, 1998).

Here, we propose selective maintenance of negative mem-
ories (e.g., through conscious and subconscious replay) as a
novel mechanism of spontaneous recovery. This idea is in-
spired by widely established behavioral evidence that emo-
tionally valenced experiences are preferentially remembered
over time (Dalgleish & Hitchcock, 2023; Rouhani et al.,
2023), and neural evidence for replay as preventing forget-
ting (Wimmer et al., 2023). Selective replay of memories of
adverse events might maintain them in the light of other mem-
ory decay processes and give them a competitive advantage in
later retrieval.

To quantitatively compare ours and other theories of spon-
taneous recovery, we apply computational modeling to data
we collected on an online aversive conditioning and extinc-
tion task. To model the creation of multiple competing as-
sociations, we use the latent cause framework (Gershman et
al., 2010). This normative Bayesian framework proposes that
individuals allocate observations (i.e., combinations of stim-
uli) to different latent causes based on their similarity to past
experiences. The model quantifies the probability that events
that are dissimilar from previous experience will lead to infer-
ence of a new latent cause (analogous to a new association;
though associations in the model are between a latent cause
and the observations it generates, not between the observa-
tions themselves; see Fig. 2). For instance, observations of
CSs followed by USs may be assigned to one latent cause,
whereas observations of (even those same) CSs without USs
may be assigned to a different latent cause.

Using trial-by-trial model fitting, we compare different
models, each formalizing a different mechanistic hypothesis.
Fit to each participant separately, model parameters can cap-
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ture individual differences in spontaneous recovery. Under-
standing the mechanism that gives rise to spontaneous recov-
ery may therefore help tailor interventions to prevent return
of fear based on each individual’s learning parameters.

Method
Behavioral Task

We designed an online-administered aversive conditioning
and extinction task (Fig. 1). The task was inspired by fear
acquisition and extinction paradigms widely used in human
and animal research, which are thought to mimic learning in
exposure therapy. On each trial, participants saw one of two
stimuli (CS+ or CS-), and had to press the space bar for the
trial’s outcome (an aversive but tolerable auditory scream US,
or nothing). The task was completely Pavlovian; key pressing
allowed reaction-time measurements and ensured continued
attention to CSs. Every three trials, on average, participants
rated how likely they expected each CS to be followed by a
scream on a scale of 0-100% (29 ratings for each CS). In the
acquisition phase (26 trials) 50% of 16 CS+ trials were fol-
lowed by a US (total: 8 screams), and the CS- appeared on 12
trials. After a 3-5 minute break (in which participants filled
out questionnaires) the extinction phase began (30 trials; 18
CS+, 12 CS-, no US). Next, participants completed a separate
task for ~15 minutes, followed by a spontaneous recovery
test (16 trials CS+ or CS-; no US), and then a relearning phase
(10 CS+ with 4 USs; 6 CS-). Trial order was fixed for all par-
ticipants. To ensure remote participants heard the US loudly
enough, six auditory attention checks were spread throughout
the task, and at the end of the task they were asked to report
if they had changed the volume during the experiment.
Phase 1: Phase 2:
Extinction Test Relearning
cs+ cs+ cs+ us

<,))
C.? 2 g 2 g

Phase 3: Phase 4:

Acquisition I
CS+

I
x))
Scream
p=0.5

Scream
p=0.5

Short break: Longer break:
Questionnaires Different task

Figure 1: Task design. On each trial, participants observed a
moon (CS+) or candle (CS-). In the acquisition and relearn-
ing phase, the moon was followed by an aversive scream (US)
on half the trials. Otherwise, there were no USs.

Procedure and participants

This study was approved by the Institutional Review Board
of Princeton University, and all participants provided written
informed consent. Over 700 participants were recruited from
Prolific to complete several online behavioral tasks and men-
tal health questionnaires in spring 2023. Here, we analyze the
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first N=280 participants with complete and accurate datasets
of the aversive learning task. Participants were compensated
for their time (~ 50 minutes at $13/hr). They had to reside
in the United States, Canada, Australia, or New Zealand, be
fluent in English, and have headphones. Data from 38 partic-
ipants who failed more than one audio attention check and 29
who indicated they changed volume were excluded. The final
dataset contained N=213 subjects.

Data visualization. To illustrate individual differences in
behavior that might reflect differences in underlying mech-
anisms, we separately plotted four “groups” of participants.
Behavioral cut-offs for these were decided a priori based on
pilot data. First, participants who did not show differential
(>10%) expectations for the CS+ and CS- by the end of ac-
quisition were termed ‘Generalizers’ (N=9). Remaining par-
ticipants were then divided into groups based on the sponta-
neous recovery test: N=127 participants who increased their
US expectation for the CS+ by more than 10% compared to
the end of extinction, but not so for the CS-, were termed
the ‘spontaneous recovery’ (‘SR’) group. N=56 participants
who did not increase expectation for either stimulus by more
than 10% were termed the ‘No SR’ group, and N=18 who in-
creased expectations for both stimuli were termed the ‘Return
to Prior’ group. Three participants did not meet any of these
criteria and were not included in subgroup analyses.

Generative models

We formalized learning of the latent structure of the task
using Bayesian nonparametric models of latent-cause infer-
ence (Gershman et al., 2015; Gershman & Blei, 2012). In
the latent-cause framework, we attribute observations (here,
trials) to one of an unlimited number of latent causes L; €
[1,...,j], each with its own unique set of parameters ®;
{6} that determine probabilities of observing each of i €
[1:4] features. We set i=1 to indicate the CS-, i=2 the CS+,
i=3 a ‘break stimulus’ (for the time between acquisition and
extinction and between extinction and test) and i=4 the US.
Thus, each latent cause embodies a different association —
different probabilities of observing the CSs and US.

Prior over latent causes. An infinite-capacity prior over la-
tent causes can flexibly add new causes when they are nec-
essary to explain dissimilar observations. We used a Chi-
nese Restaurant Process (CRP) prior (Aldous et al., 1985)
that generates observations on trial # + 1 by first selecting a
latent cause L4 according to:

N .

' m if jis an old latent cause
p(Lr+1:]|L1:z): = i i latent
s—w—— if jis a new laten

S Nya i J1sanew latent cause

where N;; is the number of observations generated by latent
cause j up to trial ¢ (see more below) and o > 0 is a parameter
that influences the probability of new latent causes.

Prior over observations. Next, observations O, are gen-
erated by independent Bernoulli processes with probability



0;; for each feature i, conditioned on the latent cause drawn
for the trial, p(Oi;11|Li+1 = j) = ¢ji(t+1). When a new la-
tent cause j is initialized, initial probabilities ¢;; are drawn
from Beta priors with two parameters a,ps > 0 and b,ps > 0.
Here, given no bias in the data (i.e., 50% expectation of US on
the first trial), we assume symmetric Beta priors (a,ps = Dops)-
Larger a,ps lead to ¢;; that are more stochastic (e.g., around
0.5; Fig. 2A) while smaller a, lead to ¢;; that are more
deterministic (closer to 0 or 1; Fig. 2C). Later, ¢;;(¢) are
updated according to observed events (see eq. 6 below).

Prior over observations (a,,,)
A “The world is random.“ C “The world is black or white.

Stochastic prior Deterministic prior

2 2
1 1
0 0
0 0.5 1 0 0.5 1
B Option 1: D Option 2:
.
“
LN < YN 20N
o o) w /)
tv/; scream §4 scream \J_/;}

Figure 2: Model illustration. Consider a participant who
has already assigned the moon (CS+) and the scream (US) to
latent cause “D” (for dangerous). A) If they have a stochas-
tic prior (a,ps >= 1), when observing a moon without a US
B) they will be more likely to infer this was also generated by
D, and update the probability of the US given that latent cause
(now D/S — partly dangerous and partly safe;). This is because
their prior allows for observations to be probabilistic. C) In
contrast, if they have a deterministic prior (a,ps < 1), the ab-
sence of the US will likely lead to D) inference of a new safe
(“S”) latent cause that is only associated with the CS+. The
dangerous latent cause will then remain unchanged, despite
the safe experience.

The basic model. Here, N;; is the number of trials caused
by latent cause j up to trial ¢. Since there is nonzero probabil-
ity for each of the previous latent causes to have generated the
current trial, in practice N, sums the posterior probability of
latent cause j on each trial: Nj; = X/, P(Ly = j|O1,) where
O, are the observations up to trial r. We fit two versions of
this model, a “basic ot model” with o as a free parameter and
a “basic prior model” with a, as a free parameter.

Decay model. To account for decay of memory over time,
following Blei and Frazier (2011), we modified the basic
model to decay the counts N;; with a rate determined by
0 <y<1asfollows: N, =Xy P(Ly = 101 )y "), This
model reduces to the basic model when y= 1.
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Selective maintenance model. Inspired by evidence that
humans remember negative events better (Rouhani et al.,
2023), in this model we hypothesize that latent causes associ-
ated with aversive stimuli (like the scream US) are protected
from decay!, perhaps due to memory replay (Wimmer et al.,
2023). We model this by reducing the decay rate (i.e., in-
creasing the effective y towards 1) according to a parameter
0 < m < 1, scaled by the estimated probability of the US given
the latent cause:
!

Nj, = Ez’gtP(Lt’ = j|O1) - H djk (D

k=t"+1

djx =Y+ (1 =70 p(Oa|Ly = j). 2)
Here, p(O4|Ly = j) is given by 0, 4, which is updated on each
trial (see likelihood computation below, eq. 6). This model
reduces to the decay model when ® = 0.

Temporal weighting model. To compare our hypothesis to
the temporal weighting rule suggested to account for spon-
taneous recovery (Devenport, 1998), we modeled power law
decay of counts with a rate determined by 1 > 0:

1

Njo = ZoaiP(Ly = j10u) * g

3)

This model reduces to the basic model for 1 = 0.

Salience model. Emotional events are more salient and
capture more attention (see Dolcos et al. (2020), for a review),
potentially enhancing memory of these events. We therefore
implemented a model that encodes aversive experiences as

(14 ¢) rather than 1 in the counts N ,
Nj,t = Et’gtP(Lt’ = j|01:t) * (1 + 04At’ '8) (4)

with € > 0. Note that Oy, is 1 on trials with a US, and 0
otherwise. This model reduces to the basic model for € = 0.

Processing loss model To model the idea that repeated ex-
posure to a stimulus may reduce its processing due to habit-
uation or neural fatigue (Pavlov, 1927), we set the count N;;
according to a decreasing logistic function of how often that
CS (01 or O3, one observed per trial) had been seen so far:

(&)

-y and A <0and Vv > 0. This model

reduces to the standard model as v — oo,

Nj,t = Zz'grP(Lz/ = j|01:t) * (dl.z’ol,z’ +d2,t’02,z’)

[

where d;; = —
1 t/<t%ir

1
—AMV+E
e

Likelihood of observations. For all models, we assumed
that the Bernoulli likelihoods are updated after every trial
by summing the occurrences of features of all previous tri-
als weighted by the probability of the latent cause (with a,p
as the prior “occurrence”) and normalizing:

¢_ (l‘) _ Aobs +Zt’gt Oi,t’ 'P(Lt’ = j|01:t’)
! 2a0ps + Zt’gt P(Lt’ = j|01:z')

INote that the current data cannot differentiate between selective
maintenance of aversive events and faster decay rates of inhibitory
associations as proposed by Paskewitz et al. (2022).

(6)




Model fitting

We fit the free parameters of each of the models above (Ta-
ble 1) to the behavioral data of each individual participant
separately. As these nonparametric models are analytically
intractable, we used a simulation-based approach to gener-
ate predictions of the occurrence of the US (the scream) and
estimated parameters by maximizing the likelihood of the
participant’s ratings assuming the response error was nor-
mally distributed around the model prediction with a fixed
¢ = (.15 (assuming instead that the response error followed
a beta distribution led to the same pattern of results). We
used the Bayesian Adaptive Direct Search (BADS; Acerbi &
Ma, 2017) algorithm for parameter search, with 12 restarts
for each subject and model. To constrain the search space,
parameter bounds were: 0 < < 10,0 < anps < 10,0 <y< 1,
0<w<1,0<1<50<e<10,—10<A<0,0<v<100.

Table 1: Model parameters.

Model name Free ® Fixed ©

Basic o model o Aops = 1

Basic prior model Apps a=0.03
Decay model Aobss Y a=0.03
Selective maintenance model  agpg, 7, ® o = 0.03
Temporal weighting model Aobss 1 a=0.03
Salience model Qops» € oa=0.03
Processing loss model aops, A, V. o=0.03

Inference simulations. For each model, to infer a distribu-
tion over latent causes given observations, we approximated
Bayesian latent cause inference using particle filtering (se-
quential importance resampling of 1000 particles). On each
trial, after observing the CS, the algorithm inferred the pos-
terior probability over possible partitions of trials into latent
causes based on all previous observations and used this to
generate a prediction of the probability of the US:

P(0s;=1)=2p(0sy=1|L14)*p(L1:¢|01:3 14, 04,1:4—1,0,M)

where the sum is over all possible latent cause assignments
approximated by averaging across particles.

After observing whether a scream US indeed occurred on
that trial, the posterior distribution over latent causes was re-
calculated and used to update the observation probabilities
for each latent cause ¢;;. Throughout, the model observed
the same stimuli as participants. To simulate breaks, we pre-
sented the model with a dummy stimulus O3 for 9 trials be-
tween acquisition and extinction (short break) and 34 trials
before the spontaneous recovery test phase (long break).

Model comparison. To identify the winning model, we
compared median BICs between non-nested models and used
likelihood ratio tests for nested models. We used nonparamet-
ric significance tests when data were not normally distributed.
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Results
Behavioral results

We replicated our previous results (Pisupati et al., 2023)
showing that on average, in acquisition, participants learned
to differentiate between the CS+ and the CS- and correctly
predicted that a scream was likely to follow the CS+ (Fig.
3A, orange), but not the CS- (Fig. 3A, light blue). In extinc-
tion, they decreased their expectations of the scream, how-
ever, many participants showed increased scream expectancy
for the CS+ in the spontaneous recovery test. Finally, par-
ticipants quickly relearned that the CS+ was followed by the
scream in the relearning phase.

When plotting groups of participants based on their behav-
ioral responses in the acquisition and test phases (see Data
Visualization in Method; Fig. 3C), the SR group (participants
who showed increased expectation of the scream for the CS+
but not CS- in the test phase) also showed faster relearning
compared to the No SR group (participants who did not in-
crease expectations of the scream at test). The Return to Prior
group, who expected a scream for both CS+ and CS- in the
test phase, increased their expectancy ratings to 50% (hence,
to the prior at the start of the experiment). Finally, the Gener-
alizers group did differentiate the CS+ and CS- in the relearn-
ing phase suggesting they were not inattentive. Note also that
these participants also evidenced learning as they reduced US
expectations during extinction.

Model fitting results

Model comparison. Wilcoxon sign-rank tests showed both
the decay and selective maintenance models had significantly
lower median BICs than the next best model, i.e., the tem-
poral weighting model (Z = —7.817, p < 0.001 and Z =
—4.8846, p < 0.001, respectively, Fig. 4A). Likelihood ra-
tio tests for the nested decay, selective maintenance, and
basic prior models favored the decay model over the basic
prior model (x?(213) = 3083, p < 0.001) and the selective
maintenance model over the decay model (x>(213) = 2102,
p < 0.001). Likelihood ratio tests at the level of individual
subjects indicated that the basic prior model fit 98 of 213 sub-
jects better than the decay model and 51 of 213 subjects bet-
ter than the selective maintenance model. Furthermore, the
decay model fit 151 of 213 subjects better than the selective
maintenance model, indicating robust individual differences
(p < 0.05 for all comparisons). Of the 62 subjects better fit
by the selective maintenance model, 45 were in the SR group
and only 9 in the no SR group, which was significantly dif-
ferent from chance ()?(183) = 7.004, p < 0.008). As evident
from Fig. 4B, the selective maintenance model was the only
model that captured all features of the behavior, specifically
including the amount of spontaneous recovery observed in the
data. It also captured all behavioral features of the different
subgroups, as shown in Fig. 3C (red and dark blue curves).

Parameter comparison. To uncover the mechanisms that
give rise to spontaneous recovery and other behavioral fea-
tures of each of the subgroups, we compared the estimated
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Figure 3: Behavioral and modeling results. A) Mean ex-
pectancy ratings for the scream after the CS+ (orange) and
the CS- (light blue) over time for the four phases of the task
(separated by dashed vertical lines; Acq.: acquisition, Ext.:
extinction, Test: spontaneous recovery test and Rel.: relearn-
ing) across all subjects. Red and dark blue curves are model
predictions from the selective maintenance model averaged
across participants. Shading: 95% bootstrapped confidence
intervals. B) Same as A but visualized separately for par-
ticipants who showed spontaneous recovery for CS+ only
(SR group), those who did not (No SR group), those who
showed high expectations for both stimuli at test (Return to
Prior group) the Generalizers group, who did not differen-
tiate the CS+ from CS- in acquisition. C) Median parameter
estimates for the selective maintenance model for participants
in each of the four groups. *: p < 0.05, ***: p < 0.001. D)
[lustration of the inferred latent causes that give rise to the
prediction indicated with a black arrow in each group in B.
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The decay (yellow) and selective maintenance (light blue)
models fit the data best. As they are nested, we further com-
pared these models using likelihood ratio tests (main text).
See model-color mappings in the legend of B. B) Expectation
of the scream for the moon (CS+, solid lines) and the candles
(CS-, dashed lines). Black: empirical data averaged over all
subjects. Colors: simulations using best parameter estimates
for each model. Vertical dashed lines indicate the end of a
phase in the task. The selective maintenance model (light
blue), was the only model that quantitatively captured both
the spontaneous recovery at the beginning of the test phase
and rapid reacquisition in the relearning phase.
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parameters of the selective maintenance model across sub-
groups. Before analyzing this dataset, we had formulated
three independent hypotheses based on a previous pilot be-
havioral datasets: 1) The SR group will show selective main-
tenance of latent causes associated with the scream US, lead-
ing to increased probability of these latent causes in the spon-
taneous recovery test. 2) The Return to Prior group will show
rapid decay of latent causes, which will lead to the creation
of a new latent cause after the break, in the test phase. 3)
The Generalizers will have a stochastic prior over observa-
tions, thereby encouraging inference of a single latent cause
that accounts for both CS+ and CS- trials.

Using Wilcoxon ranksum tests, we found evidence for all
three a priori hypotheses. Estimates of the selective mainte-
nance parameter @ were higher in the SR group than in the
No SR group (Z = —2.0669, p = 0.039; Fig. 3B, left). The
Return to Prior group had significantly lower decay parame-
ter estimates (indicating faster decay) than the SR and No SR
groups (Z = —3.798, p =0.001, and Z = —3.584, p = 0.001,
respectively; Fig. 3B, middle). Finally, as seen in Fig. 3B,
right, the o5, parameter estimates confirmed that the Gen-
eralizers group had more stochastic priors than the SR group
(Z =4.0881, p < 0.001), the No SR group (Z =3.979, p <
0.001) and the Return to Prior group (Z = 3.214, p = 0.001).
Note, however, that comparisons with the Generalizers group
must be interpreted with great caution due to the small size
of that group (N =9). This pattern of results was also seen
in other models, to the extent that each model included the
relevant free parameters.

To ensure parameters were reliably recoverable from the
data, we simulated data from the selective maintenance model
using the parameters estimated for participants, and then fit
the model to the simulated data. The correlations for the
ground truth and recovered parameters were: ® : r = 0.69,
v:7r=0.98, apps : r = 1. As ® was not independent of 7y, we
re-parameterized the model as @' = (1 — ) - ®. Ground truth
and recovered parameter estimates of @' were highly corre-
lated (r = 0.96). Thus, with all #'s > 0.95, we consider the
parameters of the model highly reliable.

Examining the latent cause structure inferred by the selec-
tive maintenance model for each group of participants, we
found further support for our hypotheses. In the SR group,
latent causes strongly associated with the scream US gained
relative strength throughout the task compared to other latent
causes (e.g., those predicting the CS+ but not the US; Fig.
3D, left). This accounted for spontaneous recovery of US
expectations in the test phase. Conversely, latent causes in
the Return to Prior group decayed sufficiently over the long
break such as to lead to inference of new latent causes in the
test phase (Fig. 3D, pink). Finally, the Generalizers group
inferred one latent cause that generated all observed features
(Fig. 3D, right). Note that model parameters were fit to all
trials without special weighting of the spontaneous recovery
test; indeed, other patterns in the data were also explained by
the parameters (not detailed here).



Discussion

We introduced selective maintenance of adverse events as a
novel mechanism of spontaneous recovery and developed a
normative Bayesian model that incorporates this mechanism.
This model qualitatively captured all behavioral signatures
in a large empirical dataset from an aversive conditioning
and extinction task. It also explained the data better than
models incorporating alternative mechanisms such as tem-
poral weighting, increased salience of adverse events, and
decreased processing of familiar stimuli over time. In line
with our a priori hypotheses, we provided computational ev-
idence that selective maintenance of adverse events can ex-
plain spontaneous recovery of CS+-specific US expectations
at test; that recovery of US expectations for both CS+ and CS-
can be explained by decay of all latent causes; and that gen-
eralization across CSs can be captured by partitioning experi-
ence into fewer latent causes. We previously showed that par-
ticipants showing such generalization across CSs also show
wider generalization to new stimuli (Aitsahalia, 2022), simi-
lar to people with anxiety disorders (Cooper et al., 2022).

Our results suggest that two conditions need to be jointly
fulfilled for spontaneous recovery to occur: Participants must
1) partition their experiences of neutral and adverse events
into different latent causes (in our model, this is driven by
deterministic prior beliefs), and 2) selectively maintain the
causes that led to adverse events. This proposed mechanism
is neurobiologically plausible and evolutionarily adaptive as
it can ensure that aversive learning is long-lived. In line with
evidence that replay protects memories from being forgotten
(Wimmer et al., 2023), we suggest that (some) people may
preferentially replay memories (i.e., latent causes) of aversive
events, thus maintaining them in the face of decay processes.

Based on the idea that extinction and spontaneous recovery
are models of exposure therapy and relapse in anxiety disor-
ders, we propose this understanding can be used to potentially
improve exposure therapy interventions. If the two conditions
above are needed, preventing one of them should be sufficient
to prevent relapse. For instance, cognitive restructuring treat-
ment that targets “black-and-white thinking” may change de-
terministic beliefs (i.e., increase O, to allow more stochas-
tic observations) and help prevent inference of a new latent
cause during exposure therapy (Smith et al., 2021). Longer
inter-session intervals (Laborda et al., 2011) or the introduc-
tion of a retrieval cue (e.g., a wristband) that can serve as a re-
minder of the exposure experience (Craske et al., 2014) may
help strengthen the memory of neutral latent causes and thus
reduce the effect of selective maintenance of latent causes as-
sociated with adverse events. Fig. 5 shows simulations of
these interventions, and their capacity to prevent spontaneous
recovery, at least in our model.

We compared our hypothesis to a set of theories that have
been put forward to explain spontaneous recovery?, imple-

20ne set of theories that we did not model proposes that extinc-
tion of responding is due to neural (Pavlov, 1927) or behavioral
fatigue (Rescorla, 2004). Responding then recovers with time, as
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Figure 5: Simulated effects of different interventions.

A) Simulated data with parameter estimates from a partici-
pant who showed spontaneous recovery. For this participant,
we simulated the effect of B) cognitive restructuring by in-
creasing a,ps by 3.5 to decrease “black-and-white thinking”
before exposure (extinction); C) a retrieval cue after expo-
sure (extinction), simulated by setting the decay rates for all
latent causes to the same value from then forward, and D)
spaced exposure simulated by moving some extinction trials
from the second half of extinction into the break phase. Black
symbols indicate when the intervention was applied. In all
cases, the manipulation decreased spontaneous recovery.

menting all alternatives within the latent cause framework.

The most prominent theory of spontaneous recovery pro-
poses that we infer separate temporal contexts in acquisition
and extinction (Bouton, 1993) with the return of the acquisi-
tion context leading to spontaneous recovery. Previously, we
formalized a version of Bouton’s temporal context hypothesis
as a hierarchical Bayesian inference model to explain spon-
taneous recovery as resulting from temporal persistence of
contexts and return of the acquisition context after context
switches (Pisupati et al., 2023). This model, however, pre-
dicted less spontaneous recovery than observed in our empir-
ical data and fit the data worse than the selective maintenance
model (results not shown). Still, spontaneous recovery might
be multi-determined (Rescorla, 2004), and apparent context
changes or increased salience of adverse events combined
with temporal weighting could also account for some of its
behavioral signatures. That these mechanisms, when formal-
ized so that they make quantitative predictions, do not ac-
count for the amount of spontaneous recovery observed in
our and other datasets (Bouton, 1993; Quirk, 2002), suggests
selective maintenance may nevertheless be at play.

Finally, we note that our model, with parameters fit to all
trials without preferential weighting of the test phase, pre-
dicted spontaneous recovery for only approximately half the
SR group. This suggests that a combination of mechanisms
might explain different participants, and/or additional mech-
anisms we have not yet modeled. We look forward to uncov-
ering these mechanisms in future work.

fatigue wears off. Such theories cannot account for extinction of
expectations in our task, as responses indicating high or low expec-
tation of a scream required the same amount of effort.
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