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A fundamental goal of developmental biology is to under-
stand the lineage relationships of cells and cell types to one 
another, as well as the molecular programs that underlie each 

cell type’s emergence. In principle, developmental programs can be 
comprehensively described, as in Sulston and colleagues’ heroic 
reconstruction of the complete embryonic lineage of the round-
worm Caenorhabditis elegans1. However, C. elegans—small, trans-
lucent, and developmentally invariant—remains the only model 
organism for which such a complete description has been realized.

Since 2016, we and others have developed and applied new tech-
nologies for single-cell molecular profiling at the ‘whole-animal’ 
scale, including worm, fly, zebrafish, frog and mouse2–7. Such studies 
lay the foundations for global views of animal development, such as 
by populating the Sulston lineage of C. elegans with the gene expres-
sion programs of each cell type7,8.

For mouse, the whole embryo has been profiled by scRNA-seq dur-
ing implantation9,10, gastrulation2 and organogenesis4. Collectively, 
these studies span development from dozens of cells of a few types 
(E3.5) to millions of cells of hundreds of types (E13.5). However, the 
associated data have yet to be systematically integrated in a manner 
that permits their robust exploration. Such integration is challeng-
ing, both for technical reasons (e.g., different technologies and batch 
effects) and because of the sheer complexity of mouse development.

Here, we set out to systematically reconstruct the major cellu-
lar trajectories of mammalian embryogenesis from E3.5 to E13.5. 
Our primary strategy, inspired by Briggs and colleagues5, makes 
several assumptions: (1) although mouse development is variable, 

key patterns will be consistent across animals; (2) omnis cellula e 
cellula also applies to cell types (i.e., cell types observed at a given 
time point must have arisen from cell types present at the preceding 
time point); (3) we are sampling frequently and deeply enough that 
newly detected cell types will not arise from antecedent cell types 
undetected at the preceding time point; and (4) assuming sampling 
time points are closely spaced, transcriptional similarity is an effec-
tive means of linking related cell types across time.

A caution is that in contrast to the Sulston et al.’s seminal map of 
C. elegans, we focus here on reconstructing trajectories11, a concept 
related, but by no means equivalent, to lineage. Although it is a rea-
sonable expectation that closely related cells (e.g., siblings) will be 
transcriptionally similar8, the converse is not necessarily true. For 
example, lineally distant cells might be insufficiently divergent, or 
even convergent, obscuring lineage relationships12. Furthermore, 
even the expectation that closely related cells will be transcription-
ally similar is not always met, as rapid changes can lead to ‘gaps’ 
in trajectories8. In sum, our goal here is a continuous, navigable 
roadmap of the transcriptional states of cell types during mouse 
development. Such a roadmap may constrain the potential lineage 
relationships among constituent cell types, but it does not explicitly 
specify them.

Results
Intensive scRNA-seq of individual, somite-resolved embryos. 
The datasets that we sought to integrate were generated by different 
groups at different times with different technologies (Supplementary 
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zygote gives rise to millions of cells expressing a panoply of molecular programs. Although intensively studied, a comprehen-
sive delineation of the major cellular trajectories that comprise mammalian development in vivo remains elusive. Here, we 
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Table 1). To address this, we performed anchor-based batch correc-
tion13 prior to integration, which proved quite effective, including 
across technologies (Extended Data Fig. 1). However, the integration 
of E8.5 (cells, 10x Genomics) and E9.5 (nuclei, three-level single-cell 
combinatorial-indexing RNA-sequencing (sci-RNA-seq3)) data 
was particularly challenging. Numerous cell types appeared or dis-
appeared between these time points2,4, and it was unclear which 
changes were due to technical differences versus bona fide develop-
mental progression (Extended Data Fig. 2a). To address this, we set 
out to generate new data at E8.5 that might serve as a ‘Rosetta Stone’ 
of sorts (Fig. 1a,b).

Because of how quickly changes are occurring around this 
time point, we focused on individual, somite-resolved embryos. 
We selected 12 embryos from 2 litters harvested at E8.5, includ-
ing a single primitive-streak-stage embryo (prior to somitogen-
esis) and 11 embryos staged in 1-somite increments from 2 to 12  
(Fig. 1c). A simplified, optimized version14 of sci-RNA-seq3 
markedly improved data quality relative to the original protocol4 
(Methods, Supplementary Note 1 and Supplementary Fig. 1a). After 
quality filtering, we obtained profiles for 154,313 somite-staged 
E8.5 nuclei (median unique molecular identifier (UMI) count, 
7,672; median genes detected, 3,463) (Supplementary Fig. 1b,c).

Batch correction and integration of published E8.5 data 
(cells, 10x Genomics; termed E8.5a) with these new data (nuclei, 
sci-RNA-seq3, termed E8.5b) worked very well except for primi-
tive erythroid cells, possibly due to more extensive differences 
between cells versus nuclei in this cell type (Extended Data Fig. 2b). 
As expected, because they were generated on nuclei with the same 
technology, integration of E8.5b and E9.5 profiles also worked well 
(Extended Data Fig. 2c).

The E8.5b data enabled identification of the same 30 cell 
types as found in E8.5a data2 (Fig. 1b, Extended Data Fig. 2 and 
Supplementary Table 2). However, the depth of the new data, 
together with additional temporal resolution afforded by somite 
staging of individual embryos, facilitated the identification of sub-
stantial substructure. Examples include:
 1. Floor plate: We observe two, clearly distinct subpopulations 

that express the floor plate markers Foxa2 and Shh (Fig. 1b and 
Supplementary Fig. 2) (ref. 15). Although these appear to be 
converging toward a common transcriptional state, an anterior 
subpopulation (Bmp7+) arises from the forebrain/midbrain, 
whereas a posterior subpopulation arises from the spinal cord16.

 2. Heart fields: We observe subpopulations arising from the 
splanchnic mesoderm that correspond to the first (Tbx5+ and 
Hcn4+) and second (Isl1+ and Tbx1+) heart fields (Fig. 1b and 
Supplementary Fig. 3) (refs. 17–20). Similar to the floor plate, al-
though these appear to converge toward a common transcrip-
tional state, the heart fields remain distinguished by these and 
other markers throughout early somitogenesis.

 3. Rhombomeres: We observe four subpopulations of hindbrain, 
and two subpopulations within midbrain and spinal cord, 

that appear to correspond to rhombomeres 1–6 (Fig. 1b and  
Extended Data Fig. 3). These annotations are based on distinct 
combinations of Hox markers and other genes. For example, 
rhombomeres 3 and 5 specifically express Egr2, whereas rhom-
bomere 5 further expresses Hoxa3, Hoxb3 and Mafb21,22. Each 
rhombomere includes cells from embryos spanning somitogen-
esis, consistent with roughly concurrent, rather than sequential, 
differentiation. However, a subset of cells from rhombomere 4 
are from the earliest embryos of the series and express Hoxa1 
and Hoxb1, consistent with the possibility that rhombomere 4 
begins to develop first (Fig. 1d,e) (refs. 23,24). Although we must 
be cautious about interpreting uniform manifold approxima-
tion and projection (UMAP) topologies, the rhombomeres are 
ordered along a rostral–caudal axis in relation to other ma-
jor aspects of neuroectoderm regionalization, with Wnt1 and 
Nkx6-1 expression further marking dorsal and ventral regions, 
respectively (Extended Data Fig. 3) (refs. 25,26).

 4. Neural crest: In the global embedding, we observe three dis-
tinct subpopulations of neural crest cells (NCCs) that appear to 
derive from different subsets of neuroectoderm (Fig. 1b). Rea-
nalysis with RNA velocity and examination of Hox gene expres-
sion suggests that these three populations may correspond to 
mesencephalic and pharyngeal arch 1 (PA1) NCCs, PA2 NCCs 
and PA3 NCCs (Fig. 1d and Supplementary Fig. 4). Differential 
patterns of early neural crest marker expression (e.g., Foxd3), 
as well as their distribution in relation to somitogenesis, are 
consistent with these subpopulations emerging asynchronously 
(Fig. 1e and Supplementary Fig. 4) (ref. 27).

We next sought to systematically explore the extent to which the 
transcriptional dynamics of individual cell types are coordinated 
with the timing of somite formation. For each cell type, we calcu-
lated the correlation between cell somite counts and those of their 
five nearest neighbors in a global three-dimensional (3D) UMAP 
embedding. In this framing, high correlations are consistent with 
rapid, ‘within-cell-type’ changes in transcriptional state that are 
synchronized with somite counts. Consistent with our earlier analy-
ses (Fig. 1e and Supplementary Fig. 2c), the highest such correla-
tions were for neuroectodermal cell types, rather than the somites 
themselves (Fig. 1f). Focusing on neuromesodermal progenitors 
(NMPs), whose heterogeneous states bridge paraxial mesoderm and 
spinal cord neuroectoderm, the top principal components (PCs) of 
transcriptional variation are strongly correlated with mesodermal 
(T (Brachyury)+ and Tbx6+) versus neuroectodermal (Sox2+) state 
(PC1; 23.7% of variation), cell cycle index (PC2; 15.1% of variation) 
and somite count (PC3; 8.4% of variation) (Extended Data Fig. 4 
and Supplementary Table 3) (refs. 28,29). The genes most highly cor-
related with these PCs are shown in Fig. 1g. For example, key regula-
tors of mesoderm (T) (ref. 30), the somite segmentation clock (Hes7) 
(ref. 31) and Wnt signaling (Wnt3a, Rspo3 and Ptk7) (ref. 32,33) are 
positively correlated with PC1, whereas regulators or effectors of 

Fig. 1 | Intensive scRNA-seq of somite-resolved e8.5 mouse embryos. a, A new scRNA-seq dataset was generated from nuclei derived from individual 
E8.5 mouse embryos via an optimized sci-RNA-seq3 protocol to bridge existing data generated on E8.5 cells via 10x Genomics2 and E9.5 nuclei via 
sci-RNA-seq3 (ref. 4). b, 3D UMAP visualizations of the new E8.5 dataset (E8.5b). All nuclei colored by germ layer are shown in the center, along with 
separate embeddings of neuroectoderm (left), nonhematopoietic mesoderm (bottom right) and endoderm, extraembryonic and hematopoietic cell types 
(top right). c, Twelve mouse embryos, including a single primitive-streak-stage embryo and 11 embryos staged in 1-somite increments from 2 to 12 somites, 
were collected and their nuclei subjected to optimized sci-RNA-seq3. d, Re-embedded two-dimensional (2D) UMAP of cells annotated as forebrain, 
midbrain, hindbrain, spinal cord and neural crest. Arrows correspond to RNA velocity trends97. e, The same UMAP as in d, colored by somite counts.  
The subset of cells from rhombomere 4 that appear to emerge the earliest are highlighted in red circles (Hoxa1+ and Hoxb1+)23,24. f, For each cell type with 
>100 profiled cells, we calculated the Pearson correlation coefficient between the somite number of each cell of that type and the average somite number 
of its five nearest neighbors in the global 3D UMAP embedding. Colors indicate germ layers. g, 3D visualization of the top three PCs of gene expression 
variation in NMPs, calculated on the basis of the 2,500 most highly variable genes. Cells are colored by the somite count of the originating embryo. Genes 
most strongly correlated (Pearson), either positively (red) or negatively (green), with each PC are listed. ExE, extraembryonic; r2–r5: rhombomeres 2–5.
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neural adhesion or neurite outgrown (Ptprz1, Nrcam and Ptn)34–36, 
as well as retinoic acid signaling (Rarb), are negatively correlated.

Reconstruction of trajectories spanning mouse embryogenesis. 
We collated data from three studies spanning E3.5 to E8.5 (refs. 2,9,10),  

the new E8.5 data described above (Fig. 1a,b) and data from 
one study spanning E9.5 to E13.5 but with deeper sequenc-
ing of those libraries (Supplementary Fig. 1) (ref. 4). Altogether, 
these data derive from 480 samples (individual or small pools of 
embryos) from 19 stages spanning E3.5 to E13.5 (successive stages  
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separated by 6 hours to 1 day) and include 1,658,968 cells or nuclei  
(67 to 455,124 per stage) (Supplementary Table 1 and Extended  
Data Fig. 5a–c). For each stage, we performed preprocessing, 
Louvain clustering and manual cluster annotation (Supplementary 
Figs. 5 and 6 and Supplementary Table 2). Here we use ‘cell state’ to 
mean an annotated cluster at a given stage. Altogether, we identi-
fied 473 cell states across the 19 stages, each of which received one  
of 94 cell-type annotations.

For each pair of adjacent stages, we performed anchor-based 
batch correction followed by projection into a shared embedding 
space13. We then applied a k-nearest-neighbor (k-NN) heuristic to 
connect cell states between adjacent stages (Supplementary Note 2). 
Because these are inferred relationships based on transcriptional 
similarity, analogous to pseudotime, we use ‘pseudoancestor’ and 
‘pseudodescendant’ to refer to relationships between cell states 
across time.

For example, clustering and annotation of data from two  
adjacent time points, E6.25 and E6.5, identified five and six cell 
states, respectively (Fig. 2a). Coembedding these data and follow-
ing the aforedescribed procedure, we linked five states at E6.5 to 
five identically annotated states at E6.25. The new state at E6.5, 
annotated as primitive streak, was linked to E6.25 epiblast, which 
we assigned as its pseudoancestor (Fig. 2a). Applying this proce-
dure to E6.5→E6.75 and E6.75→E7.0, the primitive streak was fur-
ther assigned as the pseudoancestor of nascent mesoderm, anterior 
primitive streak and primordial germ cells (Supplementary Fig. 7).

We applied this approach to each pair of adjacent stages 
(Supplementary Figs. 8 and 9; E8.5a and E8.5b were treated as 
distinct, adjacent stages). Although the resultant edge weights 
were bimodally distributed, a cutoff of 0.2 was selected to be more 
inclusive of weaker relationships and ensure connectivity of the 
overall graph (Fig. 2b, Extended Data Fig. 5d,e and Supplementary  
Note 3). The resulting representation is a directed acyclic graph with 
477 nodes and 577 edges that captures TOME (Fig. 2c).

Do molecular trajectories recapitulate cellular phylogenies? To 
reiterate, TOME does not reflect cell lineage but rather cell-state 
relationships inferred on the basis of transcriptional similarity. 
Nonetheless, under the supposition that lineally related cell types 
diverge from one another through a succession of continuous 
molecular states, we can ask whether or not established lineage rela-
tionships are recapitulated by TOME. In Supplementary Table 4, we 
show all edge weights and comment on inferred transitions. Several 
observations merit emphasis.

First, the graph largely respects germ layers (Fig. 2c). There are 
no edges between extraembryonic and embryonic cell states and 
few edges between embryonic cell states of different germ layers. 
Among the strongest edges crossing germ layers are E8.5–E9.5 
edges connecting neural crest to osteoblast progenitors subtypes37 
and an E7.5–E8.0 edge between caudal lateral epiblast and a paraxial 
mesoderm subtype38. Although these examples are supported by the 
literature, we also observe edges between epithelia derived from dif-
ferent germ layers that are probably consequent to transcriptional 
convergence rather than shared lineage4,39.

Second, 80% of cell types are strongly linked to a single pseudo-
ancestor when they first appear (edge weight >0.7). These strong 
edges generally respect established lineage relationships, such as 
parietal and visceral endoderm arising from hypoblast40, noto-
chord and definitive endoderm arising from the anterior primitive 
streak41,42, the first and second heart fields successively arising from 
splanchnic mesoderm43 and many others.

Third, apparent convergences (instances wherein we assign 
more than one pseudoancestor to a cell state) sometimes corre-
spond to a given cell type persisting and ‘contributing’ to another 
cell type over several consecutive time points (e.g., hemoendo-
thelial progenitors→endothelial cells). In other cases, apparent  

convergences may reflect incomplete separation between highly 
related cell types rather than ongoing differentiation (e.g., recurring 
edges between mesodermal subtypes). However, other cases may 
reflect instances where a cell type truly has multiple origins (e.g., 
neural crest and paraxial mesoderm A→osteoblast progenitors A 
and B37; nascent mesoderm and caudal lateral epiblast→paraxial 
mesoderm C (ref. 38)). Of note, not all ‘multiple origin’ instances are 
captured; for example, the established contribution of embryonic 
visceral endoderm to the gut44 is detected at E7.5–E7.75 but falls 
short of the edge weight threshold (Supplementary Table 4).

Fourth, an important limitation of our heuristic approach, made 
apparent by a few clear inaccuracies in the graph, is that true lineage 
relationships for a given cell state can be obscured by the presence 
of a highly similar cell state at the preceding time point. Examples of 
such inaccuracies are discussed in Supplementary Note 4. Of note, 
at least some of these inaccuracies can be resolved through focused 
analyses that leverage the distinction between nascent and spliced 
transcripts (i.e., RNA velocity45) (Fig. 3a,b, Supplementary Note 4, 
Methods, Supplementary Figs. 10 and 11, Extended Data Fig. 6 and 
Supplementary Table 5).

Fifth, a further limitation is that our reliance on discrete cell 
states obscures aspects of development that are inherently continu-
ous. For example, continuous spatial heterogeneity is obscured by 
cell-type or cell-state discretization. Nonetheless, although challeng-
ing to reduce to a graph-based representation, continuous aspects of 
heterogeneity, spatial or otherwise, might be retained in coembed-
dings across time points. For example, for neural-tube-derived cells 
from E8.5b and E9.5, the coembedding is potentially informative 
in both directions (e.g., to identify the subset of E8.5 diencephalon 
cells most related to E9.5 retinal primordium; or the subsets of E9.5 
hindbrain cells most related to specific E8.5-annotated rhombo-
meres) (Fig. 3c).

In summary, molecular trajectories often recapitulate 
well-documented cellular phylogenies, but there are clear limita-
tions. Nonetheless, the graph is largely consistent with our con-
temporary understanding of mammalian development, despite 
being constructed through automated procedures. To facilitate its  
exploration, we created an interactive website in which the 
nodes and edges shown in Fig. 2c can be navigated (http://tome.
gs.washington.edu).

Inference of the spatial locations of cell states. The spatial rela-
tionships of cells are a crucial aspect of development, but this infor-
mation is lost while profiling disaggregated cells or nuclei. Toward 
addressing this, several groups have developed in silico methods for 
integrating nonspatial scRNA-seq data with spatially resolved gene 
expression data46,47. For example, cryosectioning and bulk RNA-seq 
(geographical position sequencing (GEO-seq)) was recently applied 
to transcriptionally profile precise territories of the mouse embryo 
from E5.5 to E7.5 (ref. 48). Inspired by Peng et al.48, we leveraged 
TOME to estimate the abundance of individual cell types within 
each territory of this dataset49. For many cell types and territories, 
this approach appeared to work quite well (Fig. 4a, Extended Data 
Fig. 7 and Supplementary Table 6). For example, GEO-seq territo-
ries inferred to be composed of rostral and caudal neuroectoderm, 
caudal lateral epiblast and surface ectoderm are clearly distin-
guishable at E7.5 in a pattern consistent with expectation (Fig. 4b)  
(ref. 50). Also at E7.5, subtypes of paraxial mesoderm (A and B) 
are assignable to the anterior and posterior embryo, respectively  
(Fig. 4c). Finally, we observe the expected convergence of embry-
onic visceral endoderm and definitive endoderm cells during gut 
development, although the overlap is not complete44 (Fig. 4d and 
Extended Data Fig. 7b).

Systematic nomination of key TFs for cell-type specification. 
Using pseudotime, embryos could be ordered by age, which in turn 
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Fig. 4 | Inference of the approximate spatial locations of cell states during mouse gastrulation. a, Inference of cell-type contributors to each spatial 
territory of the gastrulating mouse embryo based on the application of CIBERSORTx to GEO-seq data48,49. GEO-seq yields bulk RNA-sequencing data from 
small numbers of cells dissected from precise anatomic regions of the gastrulating embryo48. We then estimated the proportional contribution of each cell 
state to each GEO-seq sample using CIBERSORTx (ref. 49). b, Corn plots48 showing the spatial pattern of inferred contributions of various ectodermal cell 
types at E7.5. c, Corn plots showing the spatial pattern of inferred contributions of various mesodermal cell types at E7.5. d, Corn plots showing the spatial 
pattern of inferred contributions of various endodermal cell types at E7.5, as well as notochord. In each corn plot, each circle or diamond refers to a GEO-seq 
sample and its weighted color to the estimated cell-type composition. Corn plot nomenclature from Peng et al.48. A, anterior; P, posterior; L, left lateral;  
R, right lateral; L1, anterior left lateral; R1, anterior right lateral; L2, posterior left lateral; R2, posterior right lateral; Epi1 and Epi2, divided epiblast; M, whole 
mesoderm; MA, anterior mesoderm; MP, posterior mesoderm; En1 and En2, divided endoderm; EA, anterior endoderm; EP, posterior endoderm.
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enabled us to calculate a smoothed expression profile for each gene 
along the path to each epiblast-derived cell type (Supplementary 
Note 5 and Supplementary Figs. 12–14). In these profiles, at least 

anecdotally, we observed that TFs with established roles in a given 
cell type were often upregulated in association with the cell type’s 
first appearance (Supplementary Fig. 12e).
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Fig. 5 | Systematic nomination of candidate key TFs for cell-type specification. a, We heuristically defined candidate key TFs as those that are expressed 
in the pseudoancestral cell state, are significantly upregulated in the newly emerged cell type and are not significantly upregulated at any sister edges.  
b, Histogram of the number of candidate key TFs for each cell type at the time point of its first emergence. c, The histogram of the number of cell types in 
which each TF was nominated as a candidate key TF. d, Diagram illustrating selected cellular trajectories from TOME, decorated with the top five scoring 
candidate key TFs for each edge. AER, apical ectodermal ridge. Style inspired by Morris et al.98.
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Motivated by this, we sought to systematically identify TFs that 
are candidates for specifying each newly emerging cell type51,52. For 
each branchpoint at which a new cell type first emerged, we heuris-
tically defined candidate key TFs as those (1) significantly upregu-
lated in the newly emerged cell type, relative to the pseudoancestor; 
(2) detected in at least 10% of cells in the newly emerged cell type; 
and (3) not significantly upregulated at any ‘sister’ edges, relative to 
the newly emerged cell type (Fig. 5a). Qualifying TFs were ranked 
by a normalized score based on the extent of upregulation in the 
new cell type versus its ancestor/sister(s).

Altogether, we identified 632 candidate key TFs associated with 
the emergence of one or more of 92 cell types (27 ± 18 per cell type; 
Fig. 5b; Supplementary Table 7). 49% were specific to one or two 
cell types. For example, Gsc (goosecoid) was nominated as a key TF 
for the emergence of the anterior primitive streak, but no other cell 
type, and Srf solely for the first heart field53–55. On the other hand, a 
few TFs (e.g., Meis2 and Dach1) were associated with the emergence 
of dozens of cell types (Fig. 5c). In Fig. 5d, we show the top-scoring 
TFs for selected trajectories. Despite our automated approach that 
relied on a handful of datasets, many of these TFs are established 
as playing critical roles in the emergence of the corresponding cell 
types. For example, the top three TFs identified are Nkx2-5, Mef2c 
and Gata556–58 for the first heart field; Foxj1, T (Brachyury) and 
Noto59–61 for notochord; Sox9, Msx1 and Id2 (refs. 62–65) for neural 
crest; and Etv2, Tal1 and Gata2 (refs. 66–68) for hematoendothelial 
progenitors. In fact, when we performed a cursory literature search 
on the top five TFs for each cell type, we found relevant references 
for 494 of 533 (93%) nominations (Supplementary Table 8).

By a similar heuristic, we also identified 482 candidate key TF 
whose reduced expression is associated with the emergence of 
one or more of 90 cell types (23 ± 26 per cell type; Supplementary 
Table 9 and Methods). For example, at the split from inner cell 
mass to epiblast and hypoblast at E4.5, Gata6 and Nanog are identi-
fied as decreasing in the respective emergence of the epiblast and 
hypoblast69,70. Also, Pou5f1 (Oct4) was identified as a key TF with 
reduced expression in association with 20 cell types but increased 
expression with only one, consistent with its established role in 
stemness (Supplementary Fig. 15a)71,72. In sharp contrast, Nfia and 
Nfib (nuclear factors I/a and I/b) were nominated as key TFs at 
the emergence of 15 and 11 cell types, respectively, but in all cases 
upregulated, consistent with broad roles in lineage progression73,74.

Core promoter motifs associated with cell-type specification. 
Although single-cell chromatin accessibility profiling is increas-
ingly enabling the ascertainment of cis-regulatory programs in 
embryonic and fetal tissues75–77, such data are not yet available for 
a dense time course of early mouse development. As a step forward 
with scRNA-seq data alone, we sought to identify motifs enriched 
in the core promoters of developmentally regulated genes in TOME. 
First, we extended the approach described above to nominate key 
TFs to all genes. This yielded 8,307 ‘key genes’ whose upregula-
tion or downregulation was associated with the emergence of one 
or more of 92 cell types (470 ± 433 per cell type; Supplementary  
Fig. 15b and Supplementary Table 10). Second, we applied HOMER 
(ref. 78) to discover motifs enriched in the core promoters of key genes of  
each cell type. Finally, we estimated q values for discovered motifs 
by data label permutation. At a false discovery rate of 10%, we impli-
cated 119 de novo and 235 known promoter motifs in the emer-
gence of 57 and 34 mouse cell types, respectively (Supplementary 
Tables 11 and 12).

We then asked whether these core promoter motifs corre-
sponded to the binding sites of candidate key TFs for the same cell 
types, which would provide a plausible confirmation of their role. 
We identified 38 such instances, 33 as positive and 5 as negative 
correlations (Supplementary Table 13). For example, the transcrip-
tional activator Rfx3 is sharply upregulated at the emergence of the 

notochord at E7.25, and its cognate motif is strongly enriched at 
the promoters of genes upregulated in these same cells (Extended 
Data Fig. 8a–c) (refs. 59,79). In contrast, the transcriptional repressor 
Snai1 (Snail) is upregulated at the emergence of nascent mesoderm 
at E6.75, but its cognate motif is strongly enriched in the promoters 
of downregulated key genes (Extended Data Fig. 8d–f) (refs. 80,81). 
Interestingly, these enrichments are highly localized near the tran-
scription start site (TSS) for the RFX3 motif but more diffuse for the 
SNAIL1 motif (Extended Data Fig. 8b,e).

A limitation of these analyses is that we restricted our search for 
enriched sequence motifs to the core promoters of up- or down-
regulated key genes. As single-cell, genome-wide chromatin acces-
sibility datasets spanning mouse development are generated, such 
analyses can be extended to enhancer-mediated regulation.

Nomination of cell-type homologs among mouse, frog and fish. 
The origin and evolution of vertebrate cell types are fascinating top-
ics on which the single-cell profiling of embryogenesis may shed 
light82. However, it remains unclear how best to identify ‘cell-type 
homologs’ across vast evolutionary distances. To facilitate the  
alignment of cell types across vertebrates, we applied the same strat-
egy used for TOME to zebrafish (Danio rerio) and frog (Xenopus 
tropicalis) embryogenesis, again relying on published scRNA-seq 
datasets (Supplementary Note 6, Fig. 6 and Supplementary  
Tables 1 and 14–21).

Because mouse (Mus musculus) is separated from zebrafish and 
frog by ~450 million and ~360 million years of evolution, respec-
tively, the identification of cell-type homologs based on cross-species 
coembedding proved more challenging than is the case for more 
closely related species such as mouse and human83,84 (Extended 
Data Fig. 9). We therefore attempted two alternative strategies, 
one based on the comparison of transcriptomes and the other on 
the comparison of candidate key TFs, resulting in the assignments 
shown in Fig. 7a (Supplementary Note 6, Extended Data Fig. 10 and 
Supplementary Tables 22–25). Of note, the set of apparent cell-type 
homologs was noisy prior to manual filtering; fully automating 
these assignments remains an outstanding challenge.

Overall, we were able to assign at least one cell-type homolog 
to 52 of 87 embryonic mouse cell states, 49 of 59 zebrafish embry-
onic cell states, and 45 of 60 frog embryonic cell states. Some 
loosely annotated cell types were resolved through homology. For 
example, zebrafish eomesa+ and dlx1a+ differentiating neurons were 
homologous to mouse intermediate progenitor cells and inhibitory 
interneurons, respectively. In certain cases, we observed three-way 
pairwise homology involving a shared candidate key TF (Fig. 7b). 
For example, Gsc, a canonical TF of the Spemann–Mangold orga-
nizer85, was nominated as a key regulator of the anterior primitive 
streak (mouse), dorsal margin involuted (zebrafish) and dorsal mar-
ginal zone (frog). Other such three-way-nominated TF regulators 
and associated cell types include Sox7 for hemogenic endothelium86, 
Tbx2 for the otic placode87,88 and Six1 for myocytes89 (Fig. 7b).

Discussion
Here, we sought to leverage heterogeneously acquired single-cell 
transcriptional data to reconstruct a ‘roadmap’ of the trajectories 
that cells traverse throughout mouse embryogenesis. Although the 
resulting graph is a highly reductionist representation of mamma-
lian development, we believe that it provides a useful entry point 
for analyses that benefit from a global view. For example, in addi-
tion to nominating specific TFs as potential regulators of the emer-
gence of each cell type, we are able to systematically assess which 
TFs and genes have relatively specific versus general roles (Fig. 5 
and Supplementary Fig. 15a,b), as well as other characteristics (e.g., 
upregulated key TFs are associated with broad H3K27me3 domains; 
Supplementary Fig. 15c) (ref. 90). Global views also facilitate the 
identification of ‘cell-type homologs’ through approaches that  
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consider all cell types in each pair of species, analogous to compara-
tive genomics (Figs. 6 and 7).

For integrating time series data collected by destructive meth-
ods, the consistency of in vivo development is a terrific feature 
relative to in vitro systems, which may vary by laboratory, opera-
tor, cell line, etc. Of note, by profiling individual embryos staged at 
one-somite increments around E8.5, we captured rapid, highly coor-
dinated changes in gene expression for some cell types. Extending 
this higher temporal resolution to the entirety of mouse develop-
ment, from fertilization to birth, remains an outstanding challenge. 
TOME also provides a scaffold onto which additional single-cell 
data types can be layered (e.g., chromatin accessibility, methylation 
and histone modifications). We are particularly excited about the 
possibility of linking the temporal unfolding of combinatorial TF 
expression to enhancer accessibility and then enhancer accessibility 
to expression of cis-regulated genes.

Nearly 40 years ago, Sulston and colleagues painstakingly 
mapped out the entirety of the invariant embryonic cell lineage of  
C. elegans, comprising 671 cells1. The Sulston map provided a foun-
dational scaffold for the integration of future experimental results, 
as well as a precise nomenclature that facilitates the scholarly discus-
sion of specific cells within the developing worm. Recently, Packer 
and colleagues intersected the Sulston lineage with the transcrip-
tional profiles of the same cells, shedding fresh light on the relation-
ship between cell states and fates8.

Can equivalently comprehensive views be achieved for the 
developing mouse? For reasons including scale, complexity, vari-
ance and accessibility, this is an extraordinary challenge and one 
that may take decades to fully come to fruition, if indeed it ever 
does. However, given the pace at which relevant technologies are 
emerging and evolving, it feels increasingly possible. For example, 
organism-scale lineage recording, originally developed in zebrafish, 
has recently been adapted to the mouse91–94. Although such methods 
remain far from delivering the resolution and clarity of the Sulston 
lineage, they continue to advance from a technical perspective95,96. 
In particular, the concurrent recording of cell lineage and molecu-
lar histories may pave the way to more detailed models that explic-
itly relate patterns of cell division with the unfolding of cell states 
throughout the developing mouse embryo.
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Methods
Data reporting. For newly generated E8.5b data, no statistical methods were used 
to predetermine sample size. Embryos used in experiments were randomized 
before sample preparation. Investigators were blinded to group allocation during 
data collection and analysis: embryo collection and sci-RNA-seq3 analysis were 
performed by different researchers in different locations. All animal use at The 
Jackson Laboratory was done in accordance with the Animal Welfare Act and 
the American Veterinary Medical Association Guidelines on Euthanasia, in 
compliance with the Institute for Laboratory Animal Research Guide for Care and 
Use of Laboratory Animals, and with prior approval from the animal care and use 
committee under protocol AUS20028.

Generating new E8.5 data using an optimized version of sci-RNA-seq3. For 
newly generated E8.5b data, C57BL/6NJ mice (strain 005304) were used to collect 
12 E8.5 embryos (5 males and 7 females) at The Jackson Laboratory. Mice were 
housed in a barrier research animal facility that maintained a 12-h light/12-h dark 
light cycle, ambient temperature of 65–75 °F (~18–23 °C) and 40–60% humidity. 
Noon of the day on which a vaginal plug was observed following overnight mating 
was defined as E0.5. In brief, timed matings of mice were performed via standard 
husbandry procedures. On the morning of E8.5, individual deciduae were removed 
and placed in ice-cold PBS during the harvest. Individual embryos were dissected 
free of extraembryonic membranes and imaged, and the number of somites present 
was noted prior to snap freezing in liquid nitrogen (Fig. 1c). Samples were stored at 
−80 °C until further processing.

We performed a simplified version of sci-RNA-seq3, further optimized for 
‘tiny’ samples4. Briefly, to each tube, 100 µl of a hypotonic, PBS-based lysis buffer 
was added with diethyl pyrocarbonate as an RNase inhibitor. The resulting 
nuclei were then fixed with four volumes of a mix of methanol and dithiobis 
(succinimidyl propionate). After rehydrating and washing the nuclei carefully 
in a sucrose/PBS/Triton buffer, the nuclei were distributed to a 96-well plate for 
reverse transcription (RT), allocating eight wells per embryo. After RT, nuclei were 
pooled, washed in sucrose/PBS/Triton buffer and redistributed to a fresh plate for 
ligation of the second index primer with T4 DNA ligase. Nuclei were then again 
pooled, washed and redistributed to five final plates for second-strand synthesis, 
extraction, tagmentation and polymerase chain reaction (PCR) to add the third 
index plus a plate index. Products were pooled by PCR plate, size-selected and 
sequenced on an Illumina NovaSeq. A more detailed version of the streamlined, 
tiny sci-RNA-seq3 protocol is available in Martin et al.14. The sequences of all 
oligonucleotides used are provided in Supplementary Table 26.

Processing of sequencing reads of new E8.5 data. For newly generated E8.5b 
data, read alignment and gene count matrix generation were performed using the 
pipeline that we developed for sci-RNA-seq3 (ref. 4), with minor modifications; 
base calls were converted to fastq format using Illumina’s bcl2fastq/v2.20 and 
demultiplexed based on PCR i5 and i7 barcodes using maximum likelihood 
demultiplexing package deML (ref. 102) with default settings. Downstream sequence 
processing and single-cell digital expression matrix generation were similar to 
sci-RNA-seq (ref. 7), except that RT index was combined with hairpin adaptor 
index, and thus the mapped reads were split into constituent cellular indices by 
demultiplexing reads using both the RT index and ligation index (Levenshtein 
edit distance (ED) < 2, including insertions and deletions). Briefly, demultiplexed 
reads were filtered based on RT index and ligation index (ED < 2, including 
insertions and deletions) and adaptor-clipped using trim_galore/v0.6.5 with 
default settings. Trimmed reads were mapped to the mouse reference genome 
(mm10) for mouse embryo nuclei using STAR/v2.6.1d (ref. 103) with default settings 
and gene annotations (GENCODE VM12 for mouse). Uniquely mapping reads 
were extracted, and duplicates were removed using the UMI sequence (ED <2, 
including insertions and deletions), RT index, hairpin ligation adaptor index and 
read 2 end coordinate (i.e., reads with UMI sequence less than 2 ED, RT index, 
ligation adaptor index and tagmentation site were considered duplicates). Finally, 
mapped reads were split into constituent cellular indices by further demultiplexing 
reads using the RT index and ligation hairpin (ED <2, including insertions and 
deletions). To generate digital expression matrices, we calculated the number of 
strand-specific UMIs for each cell mapping to the exonic and intronic regions 
of each gene with Python/v2.7.13 HTseq package104. For multimapped reads, 
reads were assigned to the closest gene, except in cases where another intersected 
gene fell within 100 bp of the end of the closest gene, in which case the read was 
discarded. For most analyses, we included both expected-strand intronic and 
exonic UMIs in per-gene single-cell expression matrices.

After the single-cell gene count matrix was generated, cells with low quality 
(UMI <200 or detected gene <100 or unmatched_rate ≥0.4) were filtered out, 
and 239,533 cells were left. Each cell was assigned to its original mouse embryo on 
the basis of the RT barcode. For the detection of potential doublet cells, we first 
split the dataset into subsets for each individual and then applied the scrublet/v0.1 
pipeline105 to each subset with parameters (min_count = 3, min_cells = 3, vscore_
percentile = 85, n_pc = 30, expected_doublet_rate = 0.06, sim_doublet_ratio = 2, 
n_neighbors = 30 and scaling_method = ‘log’) for doublet score calculation. Cells 
with doublet scores over 0.2 were annotated as detected doublets. We detected 2% 
potential doublet cells in the whole dataset.

For detection of doublet-derived subclusters for cells, we used an iterative 
clustering strategy based on Scanpy/v.1.6.0101. Briefly, gene count mapping to sex 
chromosomes were removed before clustering and dimensionality reduction, 
and then genes with no count were filtered out and each cell was normalized 
by the total UMI count per cell. The top 1,000 genes with the highest variance 
were selected and the digital gene expression matrix was renormalized after gene 
filtering. The data were log transformed after adding a pseudocount and scaled 
to unit variance and zero mean. The dimensionality of the data was reduced 
by PC analysis (PCA) (30 components) first and then with UMAP, followed by 
Louvain clustering performed on the 30 PCs with default parameters. For Louvain 
clustering, we first fitted the top 30 PCs to compute a neighborhood graph of 
observations with local neighborhood number of 50 by scanpy.pp.neighbors. We 
then cluster the cells into subgroups using the Louvain algorithm implemented 
as scanpy.tl.louvain function. For UMAP visualization, we directly fit the PCA 
matrix into scanpy.tl.umap function with min_distance of 0.1. For subcluster 
identification, we selected cells in each major cell type and applied PCA,  
UMAP, Louvain clustering similarly to the major cluster analysis. Subclusters  
with a detected doublet ratio (by Scrublet) over 15% were annotated as 
doublet-derived subclusters.

For data visualization, cells labeled as doublets (by Scrublet) or from 
doublet-derived subclusters were filtered out. For each cell, we only retain 
protein-coding genes, long intergenic noncoding RNA genes and pseudogenes. 
Genes expressed in less than 10 cells and cells in which fewer than 100 genes were 
detected were further filtered out. The downstream dimension reduction and 
clustering analysis were done with Monocle/3-alpha. The dimensionality of the 
data was reduced by PCA (50 components), first on the top 5,000 most highly 
dispersed genes and then with UMAP (max_components = 2, n_neighbors = 50, 
min_dist = 0.01, metric = ‘cosine’). Cell clusters were identified using the Louvain 
algorithm implemented in Monocle/3 (resolution = 1 × 10−6). We found that the 
above Scrublet and iterative clustering based approach is limited in marking cell 
doublets between abundant cell clusters and rare cell clusters (e.g., less than 1% 
of total cell population). To further remove such doublet cells, we took the cell 
clusters identified by Monocle/3, downsampled each cell cluster to 2,500 cells 
and computed differentially expressed genes (DEGs) across cell clusters with the 
top_markers function of Monocle/3 (reference_cells = 1,000). We then selected 
a gene set combining the top ten gene markers for each cell cluster (filtering out 
genes with fraction_expressing <0.1 and then ordering by pseudo_R2). Cells 
from each main cell cluster were selected for dimension reduction by PCA (10 
components), first on the selected gene set of top cluster specific gene markers and 
then by UMAP (max_components (the dimensionality of the reduced space) = 
2, n_neighbors (the number of neighbors to use during kNN graph construction) 
= 50, min_dist = 0.1 (the minimum distance to be passed to UMAP function), 
metric = ‘cosine’), followed by clustering identification using the Louvain algorithm 
implemented in Monocle/3 (resolution = 1× 10−4 for most clustering analysis). 
Subclusters showing low expression of target cell cluster specific markers and 
enriched expression of nontarget cell cluster-specific markers were annotated as 
doublets derived subclusters and filtered out in visualization and downstream 
analysis. We further filtered out the potential low-quality cells by investigating 
the numbers of UMIs and the proportion of reads mapping to the exonic regions 
per cell (Supplementary Fig. 1b,c), resulting in a set of 154,313 cells (median UMI 
count 7,672; median genes detected 3,463) that were used for reconstructing 
cellular trajectories.

Deeper sequencing of previously reported libraries (E9.5–E13.5). To obtain 
higher-quality data across E9.5–E13.5, we performed a deeper sequencing 
(specifically, three additional NovaSeq runs) of previously reported libraries4. We 
merged the new reads with the previous reads and performed the same strategy of 
data processing that we applied to the newly created E8.5 data. After the single-cell 
gene count matrix was generated, cells with low quality (UMI <200, detected gene 
<100 or unmatched_rate ≥0.4) were filtered out, and 2,432,186 cells remained. 
Compared to the previous data4, the median UMI count per cell improved from 
671 to 1,434, whereas the median genes detected per cell improved from 518 to 735 
(Supplementary Fig. 1a).

Each cell was assigned to its original mouse embryo on the basis of the RT 
barcode. After removing doublets, we further filtered out potential low-quality cells 
based on UMI counts and the proportion of reads mapping to the exonic regions 
per cell (Supplementary Fig. 1b,c), resulting in 1,393,565 cells (median UMI  
count 1,744; median genes detected 851) that were used for reconstructing  
cellular trajectories.

Decoding the transcriptional heterogeneity of NMP cells. To systematically 
identify cell types whose transcriptional dynamics are most highly correlated with 
somite counts, we first manually excluded cell types with fewer than 100 cells, and 
then for each cell type, we calculated the Pearson correlation between cells’ somite 
counts and those of their top five nearest neighbors in a global 3D  
UMAP embedding.

We applied two different strategies to identify the genes (among the top 5,000 
highly variable genes) that were significantly correlated with the top three PCs 
of NMP cells. As the first strategy, we performed a generalized linear regression 
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using the fit_models function (model_formula_str = ~individual_PC) in 
Monocle/3 across the NMP cells. As the second strategy, we performed a Pearson 
regression between each individual PC and the gene expression values, which were 
calculated from original UMI counts normalized to total UMI per cell, followed 
by natural-log transformation. The PCs were calculated on NMP cells only. The 
significant results (false discovery rate <0.05 and absolute coefficients >0.2 by 
Pearson correlation) are shown in Supplementary Table 3.

Systematic reconstruction of the cellular trajectories of mouse embryogenesis. 
Single-cell or single-nucleus RNA-seq data were collected from three studies from 
other laboratories2,9,10 and supplemented with the new E8.5 data (‘E8.5b’) as well 
as data from Cao et al.4 but supplemented and reanalyzed after deeper sequencing 
of the same libraries, as described above. These data span 19 time points between 
E3.5 and E13.5 of mouse embryogenesis, collectively 1,658,968 cells/nuclei from 
480 samples, where each sample consists of either a single mouse embryo or a 
small pool of embryos from the same time point. Further details are provided in 
Supplementary Table 1. For each dataset, we took the UMI count matrix (feature 
× cell) from the data source and separated cells by time point. For each time 
point, we performed conventional scRNA-seq data processing using Seurat/
v3: (1) normalizing the UMI counts by the total count per cell followed by log 
transformation; (2) selecting the 2,500 most highly variable genes and scaling 
the expression of each to zero mean and unit variance; (3) applying PCA and 
then using the top 30 PCs to create a k-NN graph, followed by Louvain clustering 
(resolution = 1); (4) performing UMAP visualization in 2D space (dims (which 
dimensions to use as input features) = 1:30, min_dist = 0.75)13. For some time 
points, we observed obvious batch effects with respect to either study or sample 
identity. We therefore performed an additional batch correction before the PCA, 
following the standard pipeline for dataset integration in Seurat/v3 (https://
satijalab.org/seurat/v3.2/integration.html), using either the study or sample identity 
to split datasets, followed by identifying ‘anchors’ between pairs of post-splitting 
subsets of the datasets (features = 2,500, k.filter = 200, dims = 1:30) (Extended 
Data Fig. 1a,b).

For cell clustering, we manually adjusted the resolution parameter toward 
modest overclustering and then manually merged adjacent clusters if they had 
a limited number of DEGs relative to one another (for this purpose, DEGs 
were defined as genes expressed at mean >0.5 UMIs per cell across the pair of 
clusters with a more than fourfold difference between the clusters) or if they both 
highly expressed the same literature-nominated marker genes. Subsequently, we 
annotated individual cell clusters using two to five literature-nominated marker 
genes per cell-type label (Supplementary Table 2). Many of the cell-type labels and 
associated marker genes were obtained from the four studies that generated the 
data. However, we double checked each cell-type assignment, often with additional 
marker genes. Importantly, we revisited and revised some of the cell-type or 
trajectory annotations of Cao et al.4 (e.g., ependymal cell→roof plate or isthmic 
organizer cells→mesencephalon/MHB). A full list of these annotation revisions 
is provided in Supplementary Table 27. To benchmark the robustness of cell-type 
annotations, we applied the sklearn.svm.LinearSVC function in scikit-learn/1.0 
with fivefold cross-validation using the expression values of all genes as predictors 
(Supplementary Figs. 5 and 6).

To connect each cell state observed at a given time point with its 
pseudoancestors, we first merged all cells from that time point and the preceding 
time point using Seurat/v3. Integration and batch correction were performed as 
described above, except that we also split based on time point identity (features = 
2,500, k.filter = 200, dims = 1:30). Because of the very large number of cells, we 
used a reciprocal PCA-based space13 to find anchors for pairs of time points that 
included data from (Cao et al.)4. After integration, we performed PCA and then 
used the top 30 PCs to coembed cells as a 3D UMAP (min_dist = 0.75), from 
which we calculated Euclidean distances between individual cells from the earlier 
and later time points.

We then determined edge weights between cell states of the successive time 
points using a bootstrapping strategy. For cells of each cell state at the later time 
point, we identified their five closest neighbor cells from the earlier time point 
and then calculated the proportion of these neighbors derived from each potential 
antecedent cell state. We repeated these steps 500 times with 80% subsampling 
from the same embedding. We then took the median proportions as the set of 
weights for edges between a cell state and its potential antecedents. To evaluate 
the robustness of this approach to the choice of coembedding space, we repeated 
it using Euclidean distances between cells in PCA space (dims = 30) instead 
of UMAP space (dims = 3). The resulting edge weights were highly correlated 
(Pearson correlation coefficient = 0.993). We evaluated the above approach with 
k parameters (for the k-NN) other than five and found the resulting edge weights 
to be highly correlated with those obtained with k = 5 (Pearson correlation 
coefficients from 0.9994 to 0.9999 for k = 8, 10, 15 and 20). Edge weights >0.2 from 
the UMAP embedding were retained for the resulting acyclic directed graph shown 
in Fig. 2c.

We repeated this strategy to generate similar graphs for zebrafish (D. rerio) and 
frog (X. tropicalis) embryogenesis, again relying on publicly available scRNA-seq 
datasets. For zebrafish, we integrated data from two studies that overlapped at 
three time points (hpf6, hpf8 and hpf10); we excluded cells from hpf4 because of 

excessive batch effects3,6. For frog, we used cells from a single study5. Further details 
regarding data sources are available in Supplementary Table 1.

RNA velocity analysis. Three datasets were used in performing RNA velocity 
analysis: the Pijuan-Sala et al. dataset, the newly generated E8.5 dataset and the 
dataset resulting from deeper sequencing of Cao et al. 2019 libraries4. For the 
Pijuan-Sala et al. dataset, which was generated on the 10x Genomics platform, 
we downloaded the raw data (E-MTAB-6967) and reprocessed them using 
kb-python106. For the new E8.5 data as well as the deeper sequencing of Cao et al. 
2019 libraries, both generated with sci-RNA-seq3, we processed the raw data 
using the basic sci-RNA-seq pipeline followed by extracting the spliced reads and 
unspliced reads for each cell using velocyto4,45. The RNA velocity analysis and 
UMAP visualization were performed with Scanpy/v.1.6.0 and scVelo97,101. Briefly, 
genes with low expression were filtered out (min_counts (minimum number 
of counts required for a gene to pass filtering (spliced)) = 5, min_counts_u 
(minimum number of counts required for a gene to pass filtering (unspliced)) = 5), 
and each cell’s counts were normalized toward the median UMI counts per cell 
by a scaling factor. The 3,000 genes with the highest variance were selected, 
and the data were log transformed after adding a pseudocount. The spliced and 
unspliced count matrices were similarly filtered and normalized. We then applied 
scvelo.pp.memoments and scvelo.tl.velocity for velocity estimation (n_pcs = 30, 
n_neighbors = 30), followed by scvelo.tl.velocity_graph and scvelo.tl.umap for data 
visualization (min_dist = 0.75).

To infer the cell-state transitions between adjacent time points based on RNA 
velocity, cells from each pair of adjacent time points were integrated, and this 
was followed by applying the RNA velocity analysis using scVelo97. Of note, we 
did not perform RNA velocity analysis for cell states before E6.5 and during the 
transition between E8.5a and E8.5b because of limited numbers of cells or the 
major technological transition, respectively. For cell states from E8.5b onward, 
we performed a random downsampling on each cell state to 1,500 cells prior to 
RNA velocity analysis to reduce computational costs. The resulting transition 
probabilities between individual cells (stored in a velocity_graph matrix), were 
calculated using cosine correlation between the potential cell-to-cell transitions 
and the inferred velocity vector (ranging from 0 to 1). To calculate the transition 
probability from cell state A at the earlier time point to cell state B at the later time 
point, we summed the transition probabilities of all cells within A to all cells within 
B, followed by normalizing the total cell number of B. Finally, the edge weight from 
A to B was further calculated by normalizing their transition probability to the 
total transition probabilities that originated from A.

Inferring the molecular histories of individual cell types. For this particular 
analysis, because one dataset did not include the extraembryonic tissues4, we 
excluded cells annotated as derived from the extraembryonic lineages (embryonic 
visceral endoderm, extraembryonic visceral endoderm, parietal endoderm and 
extraembryonic ectoderm). For E6.5, the sequencing depths were very different 
between datasets, so we only used cells from the Pijuan-Sala et al. dataset. In 
addition, the Pijuan-Sala et al. dataset pooled multiple embryos per sample, so 
we used sample identity instead of embryo identity. In the end, four samples from 
the Cheng et al. dataset, 34 samples from the Pijuan-Sala et al. dataset, 12 samples 
from the new E8.5 data (E8.5b) and 61 samples from the deeper sequencing of 
Cao et al. libraries were used for the pseudobulk analysis. UMI counts mapping to 
each sample were aggregated to generate a pseudobulk RNA-sequencing profile 
for each sample. We then applied the fit_models function of Monocle/3 to identify 
genes that were highly correlated with the embryos’/samples’ staged age (model_
formula_str = ~stage + dataset). To mitigate major batch effects between cell versus 
nucleus-derived subsets of the data, we separately performed DEG analysis on the 
samples from before and including E8.5a (n = 34, from Pijuan-Sala et al. dataset) 
versus including and after E8.5b (n = 73), and we then took the union of the top 
3,000 genes with the lowest q values identified in each subset. We then filtered out 
genes that were significantly different between the pre- and post-E8.5a/b subsets 
(P value < 0.05). This left 534 genes, which were used to construct a pseudotime 
trajectory using DDRTree as implemented in Monocle/v2 (ref. 107). Each embryo/
sample was assigned a pseudotime value on the basis of its position along the 
trajectory. Of note, this ordering was highly robust to 80% subsampling (all 
Pearson correlation coefficients were >0.99 between pseudotimes derived from 100 
iterations of 80% subsampling versus the full dataset).

Deconvolution of cell composition of GEO-seq sample using CIBERSORTx. 
This analysis was performed by running deconvolution on each GEO-seq sample 
using CIBERSORTx with default parameters48,49. GEO-seq samples were collected 
from distinct spatial positions in the mouse embryo with mixed cell populations 
from E5.5, E6, E6.5, E7 and E7.548. For each stage, we first learned a gene 
expression signature for each cell state at the corresponding time point. Because 
single-cell profiles from E6 were missing from the scRNA-seq data integrated here, 
we used data from E6.25 instead.

Systematic nomination of key TFs for cell-type specification. The list of 1,636 
mouse proteins that are putatively TFs was collated from AnimalTFDB/v3 (http://
bioinfo.life.hust.edu.cn/AnimalTFDB/)108. For each edge in TOME at which a 
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given cell type first emerged, we used three criteria to identify key TF candidates: 
(1) its expression significantly increased in the newly emerged cell type relative to 
the pseudoancestral cell state (Seurat/v3; adjusted P value < 0.05, nonparametric 
Wilcoxon rank-sum test), (2) it was significantly more highly expressed in 
the newly emerged cell type relative to its sister edges deriving from the same 
pseudoancestor (by the same test and threshold) and (3) it was detected in at least 
10% of cells of the newly emerged cell type. For each such candidate key TF, we 
scaled its log fold-change calculated by either criterion 1 or criterion 2 to unit 
variance and zero mean (across the set of candidate key TF identified for a given 
newly emerged cell type) and then averaged these scaled fold-change values to 
determine a score intended to convey its importance relative to other candidate key 
TFs for the same cell type.

To identify TFs whose reduced expression was associated with the emergence 
of each cell type, we looked for those that (1) were detected in at least 10% of cells 
of the pseudoancestral cell type, (2) were significantly downregulated in the newly 
emerged cell type relative to the pseudoancestor (Seurat/v3; adjusted P value  
< 0.05, nonparametric Wilcoxon rank-sum test) and (3) were both detected in at 
least 10% of cells and significantly more highly expressed at sister edges relative to 
the newly emerged cell type (by the same test and threshold).

The list of 2,547 zebrafish TFs and 1,236 frog TFs was collated from 
AnimalTFDB/v3 (http://bioinfo.life.hust.edu.cn/AnimalTFDB/)108. Candidate key 
TFs for each cell-type emergence in these species were identified and scored as 
described above for mouse.

Coembedding of cell states from three species. We first created a list of 
orthologous genes across the three species by liftover of all gene identities from 
the three species to the corresponding human gene identities based on either 
BioMart (Ensembl Genes 102)109 or the original study in the case of frog5. A list 
of 22,815 genes was compiled, wherein each of the genes was orthologous in 
at least two species. Of note, we retained all of the possible orthologous gene 
pairs learned from BioMart, including ‘1-to-1’, ‘1-to-many’ and ‘many-to-many’ 
categories. To create the transcriptional features of each cell state, we first averaged 
cell-state-specific UMI counts, normalized by the total count, multiplied by 
100,000 and natural-log-transformed after adding a pseudocount. We then divided 
all the cell states from three species into four groups: the mouse single-cell group 
(n = 151), the mouse single-nucleus group (n = 277), the zebrafish group (n = 205) 
and the frog group (n = 192). We treated each cell state as a pseudocell, performing 
the anchor-based batch correction approach implemented by Seurat/v3 (n_features 
= 5,000, k.filter = 100, dims = 1:30, min_dist = 0.6) (ref. 13). For cell states 
spanning multiple time points, cells from each time point were treated as a separate 
pseudocell for the purposes of this analysis.

Identification of interspecies correlated cell types using nonnegative 
least-squared regression. We first created a list of orthologous genes between 
each pair of species (n = 17,333 for mm versus zf, n = 14,249 for mm versus xp 
and n = 13,326 for zf versus xp) based on either BioMart (Ensembl Genes 102)109 
or the original study in the case of frog5. Of note, we retained all of the possible 
orthologous gene pairs learned from BioMart, including 1-to-1, 1-to-many and 
many-to-many categories. To identify correlated cell types between each pair of 
species, we first calculated an expression value for each gene in each cell type by 
averaging the log-transformed normalized UMI counts of all cells of that type 
across all time points at which the cell type appeared. Extraembryonic cell types 
(inner cell mass, hypoblast, parietal endoderm, extraembryonic ectoderm, visceral 
endoderm, embryonic visceral endoderm and extraembryonic visceral endoderm 
for the mouse; blastomere, enveloping layer, periderm and forerunner cells for 
the zebrafish) were excluded from this analysis. For mouse E6.5, we only used 
cells from a single study2. For each pair of species, we took homologous genes and 
applied nonnegative least-squares regression to predict gene expression in target 
cell type (Ta) in dataset A based on the gene expression of all cell types (Mb) in 
dataset B, Ta = β0a + β1aMb, based on the union of the 1,200 most highly expressed 
genes and 1,200 most highly specific genes in the target cell type. We then switched 
the roles of datasets A and B; that is, predicting the gene expression of target cell 
type (Tb) in dataset B from the gene expression of all cell types (Ma) in dataset 
A, Tb = β0b + β1bMa. Finally, for each cell type a in dataset A and each cell type 
b in dataset B, we combined the two correlation coefficients, β = 2(βab + 0.001)
(βba + 0.001), to obtain a statistic for which high values reflect reciprocal,  
specific predictivity.

To identify candidate cell-type homologs, we manually reviewed pairings 
with a β score >1 × 10−4 that ranked highly from the perspective of both species 
(i.e., where cell type B was one of the top five matches for cell type A and vice 
versa). We next performed a manual selection based on the following criteria: 
(1) excluding pairs of cell types which derive from different germ layers or major 
groups (Extended Data Fig. 9) (e.g., blood progenitors (mm) versus optic cup 
(zf)); (2) excluding pairs of cell types that emerged at very different temporal 
stages (e.g., rostral neuroectoderm (mm) versus DEL (zf)); (3) excluding cell types 
only expected in one species or the other (e.g., hatching gland (zf) is not expected 
in mouse); (4) for cell types that were correlated with multiple cell types with 
ancestor-descendant relationships in the other species, we selected the one that was 
more ancestral (e.g., hindbrain (mm) was correlated with both hindbrain ventral 

(zf) and hindbrain (zf), and we assigned it to hindbrain (zf)); (5) for cell types that 
were correlated with multiple cell types in the other species that lacked a clear 
ancestor–descendant relationship, we selected the pair with the highest β score. 
The details of manual selection are provided in Supplementary Table 23.

Identification of correlated cell types between species based on overlapping key 
TF candidates. For each possible interspecies pairing of cell types, we identified 
orthologous TFs that were nominated in both species and then calculated, as 
an estimate of relative likelihood, the product of the frequencies in which each 
of these TFs were nominated as key in their respective species (to account for 
the fact that some TFs are nominated in many cell types and therefore more 
likely to overlap; Fig. 5c). To identify which such instances were potentially 
significant, we repeated these procedures after taking random samples of key TFs 
without replacement (10,000 times) and retained pairings with estimated relative 
likelihoods more extreme than 99% of permutations. We then performed a similar 
manual selection, details of which are provided in Supplementary Table 24.

Of note, we also attempted interspecies cell-type pairing using key genes 
instead of key TFs for each cell type (Supplementary Table 28). However, the 
correlated cell types identified by overlapping key genes were noisier than other 
approaches. For example, anterior floor plate (mm) was correlated to diencephalon 
(aplnr2+) (zf) as expected, but it was also correlated to seven other cell types from 
zebrafish, including erythroid, midbrain ventral, myotome, diencephalon, roof 
plate, mesoderm lateral plate (tbx1+) and dorsal margin involuted. As the other 
strategies appeared less noisy and therefore easier to manually curate, we did not 
carry this third approach forward.

We compared our cell-type alignments between zebrafish versus frog to a 
recent study110 that also sought to align the same datasets. We could find consistent 
alignments for 35 of 46 pairs of cell types that they identified (Supplementary Table 
29). Note that neither we nor they simply used the original data and annotations, 
but we reprocessed them in different ways. For example, we combined scRNA-seq 
data from two zebrafish studies3,6 followed by reannotation of the merged set of 
cells from each individual time point, whereas the other study sometimes merged 
multiple cell types into one (optic cup and retina pigmented epithelium→optic). 
These differences make a full comparison challenging. Nonetheless, at least on a 
high-level check, these entirely independent efforts are mostly in agreement, which 
is encouraging.

Identification of cis-regulatory motifs involved in in vivo cell-type specification. 
As a first step toward identifying cis-regulatory motifs involved in cell-type 
identification, we extended to all genes the approach described above to nominate 
key TFs whose upregulation or downregulation is associated with the emergence of 
each cell type. For each edge in TOME at which a given cell type first emerged, we 
used three criteria to identify key gene candidates: (1) its expression significantly 
increased in the newly emerged cell type relative to the pseudoancestral cell state 
(Seurat/v3; adjusted P value < 0.05, nonparametric Wilcoxon rank-sum test), (2) 
it was significantly more highly expressed in the newly emerged cell type relative 
to its sister edges deriving from the same pseudoancestor (by the same test and 
threshold) and (3) it was detected in at least 10% of cells of the newly emerged 
cell type. To identify genes whose reduced expression was associated with the 
emergence of each cell type, we looked for those that (1) were detected in at least 
10% of cells of the pseudoancestral cell type, (2) were significantly downregulated 
in the newly emerged cell type relative to the pseudoancestor (Seurat/v3; adjusted P 
value < 0.05, nonparametric Wilcoxon rank-sum test) and (3) are both detected in 
at least 10% of cells and significantly more highly expressed at sister edges relative 
to the newly emerged cell type (by the same test and threshold).

We used HOMER/v4.11 (ref. 78) to identify DNA sequence motifs that are 
specifically enriched in the core promoters of key genes (−300 to +50 bp of 
annotated TSSs). Running the findMotifs.pl function with default parameters, each 
test set was defined as the core promoters of either upregulated or downregulated 
key genes at specific cell edges (excluding sets with fewer than five key genes) and 
compared to a background set of core promoters of key genes from all edges not in 
the test set. Motif quality was evaluated based on a q value, which was calculated 
for each motif by 100 iterations of randomizing data labels and rerunning 
HOMER. In addition, motifs were aligned to known motif binding sequences 
based on the JASPAR and internal HOMER databases with default parameters111. 
Mapping of specific motif positions around the TSS was assessed with the HOMER 
function annotatePeaks.pl using the following parameters: tss mm10 -hist 10 -ghist.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data have been made freely available via http://tome.gs.washington.edu. The 
data generated in this study can be downloaded in raw and processed forms from 
the National Center for Biotechnology Information (NCBI) Gene Expression 
Omnibus (GEO) under accession numbers GSE186069 (new E8.5 data) and 
GSE186068 (deeper sequencing of Cao et al. libraries). The following publicly 
available datasets were used in this project: AnimalTFDB/v3 (http://bioinfo.
life.hust.edu.cn/AnimalTFDB/), the mouse gastrulation dataset generated by 
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Pijuan-Sala et al. (https://github.com/MarioniLab/EmbryoTimecourse2018 and 
ArrayExpress (E-MTAB-6967)), the mouse pregastrulation dataset generated by 
Mohammed et al. (NCBI GEO (GSE100597)), the mouse pregastrulation dataset 
generated by Cheng et al. (NCBI GEO (GSE109071)), the zebrafish embryogenesis 
dataset generated by Farrell et al. (NCBI GEO (GSE106587)), the zebrafish 
embryogenesis dataset generated by Wagner et al. (NCBI GEO (GSE112294)) 
and the frog embryogenesis dataset generated by Briggs et al. (NCBI GEO 
(GSE113074)).

Code availability
The Python and R codes used to analyze the RNA-sequencing data are available 
at https://github.com/ChengxiangQiu/tome_code. The following common, freely 
available data analysis software packages were used in this project: bcl2fastq version 
2.20 (https://support.illumina.com), deML version 1.1.3 (https://github.com/
grenaud/deML), HTseq version 0.6.1 (https://github.com/htseq/htseq),  
trim_galore version 0.6.5 (https://github.com/FelixKrueger/TrimGalore), STAR 
version 2.6.1d (https://github.com/alexdobin/STAR), scrublet version 0.1  
(https://github.com/swolock/scrublet), Scanpy version 1.6.0 (https://github.com/
theislab/scanpy), Monocle version 2, 3, and 3-alpha (https://cole-trapnell-lab.
github.io/monocle3), DDRTree version 0.1.5 (https://github.com/cole-trapnell-lab/
DDRTree), Seurat version 3 (https://github.com/satijalab/seurat), scikit-learn 
version 1.0 (https://github.com/scikit-learn/scikit-learn), kb-python version  
0.25.0 (https://github.com/pachterlab/kb_python), velocyto version 0.6  
(https://github.com/velocyto-team/velocyto.py), CIBERSORTx (https://github.
com/ysuzukilab/Cibersortx) and HOMER version 4.11 (https://github.com/
IGBIllinois/HOMER).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Integration of datasets generated by different groups using different scRNA-seq technologies. a, As illustrated by a UMAP of 
coembedded E6.5 cells, batch effects are observed between three studies, as well as different embryos from the same study. The same UMAP is shown 
several times on the bottom of the panel, with colors highlighting cells from different studies or samples. b, UMAP of the same cells as in panel a with 
batch correction prior to integration13. The same UMAP is shown several times on the bottom of the panel, with colors highlighting cells from different 
studies or samples. In addition, the same UMAP is shown on the upper right, but colored by cell-type annotation. c, UMAP visualization of co-embedding 
of data from E8.5a (cells) generated on the 10x Genomics platform2 and E9.5 (nuclei) generated using sci-RNA-seq34, before batch correction13. The same 
UMAP is shown twice for both, with colors highlighting cells from either E8.5a (left) or E9.5 (right). E9.5 profiles were based on deeper sequencing of the 
same libraries reported in Cao et al.4. d, UMAP of the same cells as in panel c but with batch correction prior to integration13. Left and right as in panel c. 
ExE: extraembryonic. EmVE: embryonic visceral endoderm. ExVE: extraembryonic visceral endoderm.
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Extended Data Fig. 2 | Integrating and coembedding cells from e8.5a, e8.5b and e9.5. For panels a and c, E9.5 profiles were based on deeper sequencing 
of the same libraries reported in Cao et al.4. a, UMAP visualization of coembedded cells at E8.5a generated on the 10x Genomics platform2 and nuclei at 
E9.5 generated using sci-RNA-seq34 after batch correction13. The same UMAP is shown twice for both, with colors highlighting cells/nuclei from either 
E8.5a (left) or E9.5 (right). b, UMAP visualization of coembedded cells at E8.5a generated on the 10x Genomics platform2 and nuclei at E8.5b generated 
using sci-RNA-seq34 after batch correction13. The same UMAP is shown twice for both, with colors highlighting cells/nuclei from either E8.5a (left) or 
E8.5b (right). c, UMAP visualization coembedded nuclei at E8.5b and nuclei at E9.5, both generated with sci-RNA-seq34, after batch correction13. The 
same UMAP is shown twice for both, with colors highlighting nuclei from either E8.5b (left) or E9.5 (right).
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Extended Data Fig. 3 | Resolution of hindbrain segmentation in newly created e8.5 dataset. a, Subview of global 3D UMAP visualization highlighting 
subsets of cells annotated as rhombomeres 1 - 6 (r1 - 6) in E8.5 data generated with optimized sci-RNA-seq3 protocol. b, Re-embedded 2D UMAP of cells 
annotated as forebrain, midbrain, presumptive cerebellum, r1–r6, spinal cord and neural crest, although neural crest cells are excluded from visualization. 
c, The same UMAP as in panel b, colored by gene expression of marker genes used for annotation of anatomical regions. Telencephalon: Otx2+, Fgf8 + ; 
Diencephalon: Otx2+, En1-, En2-; Midbrain: Otx2+, En1+, En2+, Fgf8-; MHB (midbrain–hindbrain boundary): boundary of Fgf8 and Wnt1; Presumptive 
cerebellum: Fgf8+, En1+, En2+, Wnt1-, Gbx2 + ; r1: a ‘wedge’ between cerebellum and r2, Fgf8-, Hoxa2-; r2: Fst+, Hoxa2+, Hoxb2-; r3: Egr2+, Hoxb2+, Hoxa3-, 
Hoxb3-; r4: Fst+, Hoxa1+, Hoxb1+, Hoxa3-, Hoxb3-; r5: Egr2+, Hoxa3+, Hoxb3+, Mafb + ; r6: Mafb+, Egr2-, Hoxb4-21,22,112–115. The subset of cells from r4 which 
appear to emerge earlier than the other rhombomeres cells are highlighted by red circles in the third row (Hoxa1+, Hoxb1+)23,24. d, The same UMAP as in 
panel b, colored by gene expression of marker genes for the dorsal-ventral axis (Wnt1 is a dorsal marker; Nkx6-1, Foxa2 and Nkx2-2 are ventral markers)25,26. 
The same genes are highlighted in the 3D subview of panel a are shown below. Gene expression values shown in panel c-d were calculated by normalizing 
the UMI counts by the estimated size factors followed by log10-transformation.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Decoding of transcriptional heterogeneity within NMPs. a, Subview of global 3D UMAP visualization highlighting spinal cord 
(blue), neuromesodermal progenitors (red), and paraxial mesoderm B (green). b, The same 3D UMAP as panel a but zooming in to highlight NMP cells, 
colored according to expression levels of markers of mesodermal (Tbx6, T) or neuroectodermal (Sox2) state28,29. Gene expression values were calculated 
by normalizing the UMI counts by the estimated size factors followed by log10-transformation. c, Embeddings of NMP cells (n = 14,869 cells) in PCA 
space with visualization of top three PCs, calculated on the basis of the 2,500 most highly variable genes, in 2D. Cells are colored by the somite count 
of the originating embryo. d, Correlations between top three PCs (rows 1-3) and the normalized expression of selected genes (Tbx, T, Sox2; columns 
1-3), cell cycle indices (columns 4-5) or somite counts (column 6) (n = 14,869 cells). Red boxes highlight the strongest absolute correlation in each row. 
Coefficients and unadjusted p-values were calculated by two-sided Pearson correlation and are shown above the plots. Gene expression values were 
calculated from original UMI counts normalized to total UMIs per cell, followed by natural-log transformation. Cell cycle indices were estimated using 
the CellCycleScoring function of Seurat/v3 (S.Score and G2M.Score). e, The 114 genes most strongly correlated with PC3 (which appears to correlate to 
somite counts) were identified using two-sided Pearson correlation (out of the 5,000 most variable genes; FDR < 0.05 and absolute coefficients > 0.2; 
Supplementary Table 3). The sklearn.svm.LinearSVR function in scikit-learn/1.0 was applied to assess whether the somite counts of the originating embryos 
of NMP cells could be predicted from their transcriptional profiles. The distributions of true (x-axis) vs. predicted (y-axis) somite counts for NMP cells 
are shown, without (top) or with (bottom) permutation of somite count labels (n = 14,869 cells). Coefficients and unadjusted p-values were calculated 
by two-sided Pearson correlation and are shown above the plots. In the boxplots shown in panel d and e, the center lines show the medians; the box limits 
indicate the 25th and 75th percentiles; the whiskers extend to the 5th and 95th percentiles; the outliers are represented by the dots.
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Extended Data Fig. 5 | Integration of datasets spanning e3.5 to e13.5 of mouse development. a, The number of cells per stage obtained from three 
previous studies2,9,10, new E8.5 data obtained via optimized sci-RNA-seq3, and deeper sequencing of Cao et al.4. b, The number of cells per embryo 
corresponding to specific somite counts from new E8.5 data. c, Box plot of log2(UMI counts) per cell across the stages and studies (n = 1,658,968 cells).
The center lines show the medians; the box limits indicate the 25th and 75th percentiles; the whiskers extend to the 5th and 95th percentiles; the outliers 
are represented by the dots. d, The same strategy of creating the edges between adjacent time points was performed after randomly shuffling the 
cell-state annotations for cells within each time point, followed by repeating this process 1,000 times, resulting in a null distribution of edge weights. After 
permutation, less than 1% of potential edges are assigned weights greater than 0.2 (red line). e, To quantify the quality of the integration between adjacent 
time points, we focused on cells at the later time point assigned to annotations that were also present at the earlier time point. We then calculated the 
fraction of these cells’ ancestral k-nearest neighbors (in the global 3D UMAP co-embedding) that were assigned the identical annotation. The mean 
proportion for different values of k are reported in the histogram. Of note, the lower value of this metric for E8.5a-E9.5 (red label) than E8.5a-E8.5b or 
E8.5b-E9.5 provides quantitative support for our claim that the new E8.5b data improved integration across the E8.5 to E9.5 (Extended Data Fig. 2).
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Extended Data Fig. 6 | TOMe edges nominated by k-NN versus RNA velocity-based heuristics are largely concordant. a, Histogram of all potential edge 
weights calculated by RNA velocity. The y-axis is on a log2 scale. Edges with weights above 0.2 (red line) were retained. b, After calculating the transition 
probability for individual cells between adjacent time points using scVelo97, the same strategy of creating the edges was performed after randomly shuffling 
the cell-state annotations for cells within each time point, followed by repeating this process 1,000 times, resulting in a null distribution of edge weights. 
After permutation, less than 1% of potential edges are assigned weights greater than 0.2 (red line). c, Ignoring edges prior to E6.5 as well as between E8.5a 
and E8.5b (see text), out of 15,261 potential edges, there were 123 edges nominated by the k-NN strategy only (weight > 0.2), and 75 edges nominated by 
the RNA velocity strategy only (weight > 0.2), and 392 nominated by both strategies. d, Directed acyclic graph showing inferred relationships between cell 
states across early mouse development. Layout identical to Fig. 2c. Each row corresponds to one of 94 cell-type annotations, columns to developmental 
stages spanning E3.5 to E13.5, nodes to cell states, and node colors to germ layers. Edges nominated with weights above 0.2 by RNA velocity only are 
shown in red, by k-NN in blue, and by both strategies in purple. ExE: extraembryonic. PNS: peripheral nervous system. MHB: midbrain–hindbrain boundary. 
Di: diencephalon.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | estimated cell-type proportions for different regions of the gastrulating mouse embryo, arranged by inferred cell-type 
relationships over time. a, The inferred cell–state proportions of each GEO-seq territory are robust to downsampling. For time point which GEO-seq 
data was available (E5.5, E6.0, E6.5, E7.0, and E7.5), we estimated a gene expression signature for each cell state from scRNA-seq data, either by using 
all the cells or by downsampling to a maximum of 50 cells per state, and then repeated the inference of cell-type contributors to each spatial territory of 
the gastrulating mouse embryo based on the application of CIBERSORTx to GEO-seq data48,49. The Pearson correlation of resulting estimated cell–state 
proportions for each GEO-seq territory with downsampling (y-axes) or without downsampling (x-axes) are shown. Of note, we did not use downsampling 
in the results shown in Fig. 4b, As described in Fig. 4a, inference of cell-type contributor(s) to each spatial territory of the gastrulating mouse embryo 
based on the application of CIBERSORTx to GEO-seq data48,49. As scRNA-seq data from E6.0 was unavailable, we used data from E6.25 instead. Black 
edges correspond to edges between cell states over time estimated by TOME (only edges with the largest weights are shown). In each corn plot, each 
circle or diamond refers to a GEO-seq sample, and its weighted color to the estimated cell-type composition. Corn plot nomenclature from Peng et al.48. 
A, anterior; P, posterior; L, left lateral; R, right lateral; L1, anterior left lateral; R1, anterior right lateral; L2, posterior left lateral; R2, posterior right lateral; 
Epi1 and Epi2, divided epiblast; M, whole mesoderm; MA, anterior mesoderm; MP, posterior mesoderm; En1 and En2, divided endoderm; EA, anterior 
endoderm; EP, posterior endoderm.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Correlation between key TF expression and up- or downregulation of putative targets of regulation. a, UMAP visualization of 
coembedded cells from cell states including anterior primitive streak, definitive endoderm, gut, and notochord (mouse E7.25 → E7.5) colored by cell type 
(left), Rfx3 gene expression (middle) or RFX3 motif score (right), respectively. The RFX3 motif score for each cell was calculated by averaging the gene 
expression of 135 key genes for notochord emergence bearing this motif in their core promoters, and then subtracting the mean expression of a reference 
set of randomly sampled genes, using the score_genes function of Scanpy101. b, Positional bias of RFX3 binding motif along the core promoters of key genes 
for notochord emergence (right panel), an expanded region for key genes for notochord emergence (left top panel), or an expanded region for background 
(left bottom panel). The y-axes indicate the % of key genes or background genes with the RFX3 motif with 10 bp bins. c, The motif logo of the top de novo 
motif for notochord emergence and its two best alignments in the known motif database. d, UMAP visualization of coembedded cells from cell states 
including primitive streak and nascent mesoderm (mouse E6.5 → E7.25) colored by cell types (left), Snai1 gene expression (middle) or SNAIL1 motif score 
(right), respectively. The SNAIL1 motif score was calculated as in panel a, based on 21 key genes for nascent mesoderm emergence bearing this motif in 
their core promoters. e, Positional bias of SNAI1 binding motif along the core promoters of key genes for nascent mesoderm emergence (right panel), an 
expanded region for key genes for nascent mesoderm emergence (left top panel), or an expanded region for background (left bottom panel). The y-axes 
indicate the % of key genes or background genes with the SNAIL1 motif with 10 bp bins. f, The known motif logo of SNAIL1.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Coembedding of 825 cell states from three species by integrating their transcriptional features. For cell states spanning multiple 
time points, cells from each time point were treated separately for the purposes of this analysis. To create a transcriptional feature corresponding 
to each cell state (that is a pseudocell), we first averaged cell-state-specific UMI counts, normalized by the total count, multiplied by 100,000 and 
natural-log-transformed after adding a pseudocount. We then divided all resulting 825 pseudo-cells from the three species into four groups: the mouse 
single-cell group (n = 151), the mouse single-nucleus group (n = 277), the zebrafish group (n = 205), and the frog group (n = 192), and performed the 
anchor-based batch correction13. UMAP visualization shows coembedded pseudo-cells from the mouse (red), the zebrafish (blue), and the frog (green). 
Each circle corresponds to a pseudocell, and the numbers correspond to the cell–state labels shown below. The grey dotted curves (manually added) 
highlight 15 major groups, each including representatives from all three species. Cell states from the extraembryonic lineages (inner cell mass, hypoblast, 
parietal endoderm, extraembryonic ectoderm, visceral endoderm, embryonic visceral endoderm, and extraembryonic visceral endoderm for the mouse; 
blastomere, EVL, periderm, forerunner cells for the zebrafish) were excluded from this analysis. For E6.5 of mice, we only used cells from a single study2. 
PNS: peripheral nervous system. MHB: midbrain–hindbrain boundary. Di: diencephalon. DEL: deep cell layer. EVL: enveloping layer.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Correlated cell types between species based on nonnegative least-squares regression. a, Correlated cell types between each pair 
of species based on nonnegative least-squares (NNLS) regression (Methods). Shown here is a heat map of the normalized β values between 87 cell types 
from the mouse, 59 cell types from the zebrafish, and 60 cell types from the frog. The order of cell types listed in the heat map is the same as each cellular 
trajectory plot (Fig. 2c; Fig. 6b,c). PNS: peripheral nervous system. MHB: midbrain–hindbrain boundary. Di: diencephalon. DEL: deep cell layer. b, The 
log2-scaled number of all possible pairs, highly ranked pairs, and biologically plausible pairs of cell types evaluated by nonnegative least-squared (NNLS) 
regression. ‘All possible pairs’ refers to all potential cell type pairings considered; ‘highly ranked pairs’ refer to pairings with β > 1e-4 and that ranked highly 
from the perspective of both species; ‘plausible pairs’ refer to pairings which were retained after manual review for biological plausibility (Supplementary 
Table 23). Actual numbers are shown above each bar, with y-axis on log2 scale. c, The log2-scaled number of all possible pairs, highly ranked pairs, and 
biologically plausible pairs of cell types evaluated on the basis of overlapping, orthologous candidate key TFs. ‘All possible pairs’ refers to all potential cell 
type pairings considered; ‘highly ranked pairs’ refer to pairings with with estimated relative likelihoods more extreme than 99% of permutations; ‘plausible 
pairs’ refer to pairings which were retained after manual review for biological plausibility (Supplementary Table 24). Actual numbers are shown above each 
bar, with y-axis on log2 scale.
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