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ABSTRACT OF THE DISSERTATION

Renormalization Group Analysis of 2+1D Quantum XY Model With Dissipation

by

Changtao Hou

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, June 2016

Dr. Chandra M. Varma, Chairperson

This thesis present the recently theoretical and numerical results on 2D dissipative quantum

XY model. The two-dimensional quantum XY model is applicable to the quantum critical

properties of several experimental systems, such as superconductor to insulator transitions,

ferromagnetic and antiferromagnetic transitions in metals, and loop current order transition

in the cuprates. Renormalization group methods are applied to solve the reformulated ac-

tion of the original model in terms of two type topological excitations: vortices and warps.

The calculations explain the extraordinary properties of the model studied through quan-

tum Monte Carlo simulations: the separability of the correlation function in space and time,

the correlation length in space proportional to logarithm of the correlation length in time

near the transition from disordered phase to ordered phase. The running dynamical critical

exponent is introduced to address the anisotropy between time and space. The effects of

anisotropy fields have been examined through renormalization group method. The transi-

tion from disordered phase to ordered phase of this model has been studied by quantum

Monte Carlo. The divergence of temporal correlation length in function of (Kc −K)/Kc is

v



examined by numerical simulation. The logarithmic relation between temporal correlation

length and spacial correlation length is further confirmed. Also, the same logarithmic rela-

tion for different correlation function with different space separation is found and implicitly

confirmed the separability of correlation function in space and time.
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Chapter 1

Introduction

Superconductivity is a phenomenon of a material to sustain a dissipationless cur-

rent and expel of magnetic fields when cooled below a critical temperature, Tc. It was first

discovered by Heike Kammerlingh-Onnes in 1911[29]. It wasn’t until 1957 that, Bardeen,

Cooper, and Schrieffer (BCS)[8] proposed a microscopic theory for understanding this new

phase of matter. The BCS theory explained superconducting as the condensation of Cooper

pairs, which are pairs of electrons interacting through the exchange of phonons. Until 1986,

physicists had believed that BCS theory forbade superconductivity at temperatures above

about 30K, which is called McMillan’s limit[37]. In that year, Bednorz and Müller[10] dis-

covered superconductivity in a lanthanum-based cuprate material, which had a transition

temperature of 35K. It was soon found that in Y BCO the critical temperature could be

raised to 92K. The high temperature superconductivity demonstrates that the standard

BCS theory might have shortcomings in explaining this new class of materials. It is one of

the major challenges of theoretical condensed matter physics to explain such phenomenon.
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The key clue to understand this problem lies in the common phase diagram and similarity

structure of different materials.

1.1 Phase Diagram of Cuprates

FiG.1.1(a) shows a unit cell of Y Ba2Cu3O7(YBCO), the first high-Tc supercon-

ductor. The unit cell of YBCO consists of three pseudocubic perovskite unit cells. Each

perovskite unit cell contains a Y or Ba atom at the center. All corner sites of the unit cell

are occupied by Cu, and there are fours possible crystallographic sites for oxygen. One of

the key features of the YBCO unit cell is the presence of two layers of CuO2. In YBCO,

the Cu-O plane is known to play an important role for high temperature superconductivity.

When doping x ≈ 0.15(refer as optimal doping), Tc in YBCO is maximal. Other cuprate

superconductors have similar crystal structures and CuO2 planes. FIG.1.1(b) shows the

common two-dimensional layer CuO2 in cuprates high-Tc superconductors materials.

Besides the common crystal structure and CuO2 plane, hole-doped cuprates also

share the generic phase diagram. The generic phase diagram is generated by tuning tem-

perature and doping, which is controlled by chemical substitution in the charge reservoirs.

In FIG.1.2, we show a typical phase diagram of hole-doped cuprates. The x-axis represents

the doping level and the y-axis represents the temperature. Starting at zero doping and low

temperature, the system is a strongly correlated insulating antiferromagnetic(AF) in which

neighboring Cu spins are oppositely aligned up to a Néel-temperature of ∼ 300K. When

holes are introduced into the cuprate plane, the AF state is depressed and is destroyed

completely at x ∼ 0.02. Subsequently, the superconducting(SC) state is developed at low

2



(a) YBCO unit cell (b) CuO2 plane

Figure 1.1: Crystal structure for the first high-Tc superconductor and the common CuO2

plane in cuprates. (a). A unit cell of YBCO. Y and Ba are stacked in the sequency [Ba-Y-

Ba] along the c-axis. Cu occupy corner sites, Cu(1) and Cu(2) in the figure, with respect

the oxygen. The role of Y plane is to serve as spacer between two CuO2 planes. (b). CuO2

plane. The light blue sphere represent oxygen and red sphere represent copper.

3
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Figure 1.2: Schematic phase-diagram of cuprates on hole-doping side(x > 0). AF, SC, and

FL denotes the antiferromagnetic, superconductivity, and Fermi liquid phase, respectively.

The pseudogap line T ∗ is conjectured to continue into the SC state and terminate at T = 0

quantum critical point(QCP). The question mark denotes that how the T ∗ line will end for

zero doping has not been determined.

temperature. The critical temperature reaches its maximum at optimal doping, and the

regions to the left and to the right are called under-doped and over-doped, respectively. The

under-doped region at non-zero temperature is called the pseudogap region. This region

holds several unusual properties and has been the focus of many experiments and theories.

Above the superconducting dome is the strange metal (or marginal Fermi liquid) region.

At high doping levels, the system can be described by the Fermi liquid theory, which cor-

respond to Fermi liquid(FL) state. The line separating the strange metal region and the

Fermi liquid region is believed to be a cross-over line Because of this, the properties change

gradually between these two regions.
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1.2 Marginal Fermi Liquid

At intermediate doping above the critical temperature, one finds the strange metal

region. The transport properties[22, 49, 23] in this particular region differ from what is

predicted by Fermi liquid theory, and the thermodynamic properties are more similar to

those of the Fermi liquids. This metallic state also seems to have a Fermi surface, but it is

marginal in the sense that the quasiparticle weight goes to zero logarithmically. One of the

anomalies in the transport properties is the linear resistivity ρ above Tc, implying a deviant

scattering of the charge carries, which contradicts the Fermi liquid theory prediction of

ρ ∝ T 2.

In 1989, Varma proposed the marginal Fermi liquid hypothesis[55], which could

explain the transport experiments and possibly the superconductivity at low temperatures.

The basic assumption is that the electrons are scattering off a particular kind of bosonic

fluctuation spectrum where the energy scale is set only by temperature,

−Imχ(q, ω, T ) ∝


ω/T ω � T

const ω � T � ωc

(1.1)

Here ωc is a cut-off frequency to be specified by experiments, T is temperature, q is mo-

mentum, and ω is the frequency. The quasiparticle weight can be calculated from these

fluctuations, which is given by[55] z(ω)−1 = [1− ∂ΣR/∂ω] ∝ ln |ωc/ω|, where ΣR is the real

part of the electron self-energy. The proposed fluctuation spectrum causes z(ω) to vanish

logarithmically at the Fermi surface. Also, the fluctuation spectrum is momentum indepen-

dent, implying the spatial locality of the fluctuations. This kind of fluctuation spectrum

suffices to explain all anomalous transport properties of the strange metal region.
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1.3 Loop Current Model

In the under-doped and decreased temperature region, the material reaches pseu-

dogap phase[50, 19, 58, 43, 44], which is characterized by the opening of a highly anisotropic

excitation gap. That is, below the temperature T ∗ but above the critical temperature Tc,

there are regions in the momentum space where gapless excitations exist and other regions

where the excitations are gapped. The are two classes of theories to explain the origin of

this gap. One is that it is associated with a precursor state of superconductivity where

Cooper pairs are formed but do not have global phase coherence. Alternatively, it could

be associated with another form of order that is distinct from superconductivity. If the

pseudogap line T ∗(x) is a phase transition line, it is likely that it terminates at T = 0 in a

quantum critical point. This thesis mainly focues on this scenario because it could explain

strange metal by the fluctuations of the order parameter in the pseudogap state and could

also explain the superconducting pairing in terms of quantum critical fluctuations.

Varma[52, 53, 56] proposes that the pseudogap region represents a phase that

breaks the time-reversal symmetry through a spontaneous ordering of loop-currents or or-

bital currents but preserve translation symmetry of the cuprate lattice. In this way, the

T ∗(x) line represents a true phase transition separating the pseudogap phase, where the

loop currents are ordered in a specific pattern, from the strange metal phase, where the

loop currents are fluctuating. FIG.1.3 illustrates four possible orientations of the loop cur-

rent pattern within each unit cell in the psedugap phase. The quantum critical fluctuations

in the strange metal phase are the fluctuations of the four possible patterns within each

unit cell.

6



Figure 1.3: The loop current pattern which break time-reversal symmetry spontaneously

at T ∗. The loops are generated by currents running through the copper sites and oxygen

sites. The magnetic moments induced by those loop currents are shown as +/-. The arrow

located at copper site show the pseudospin that represent those current patterns.
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1.4 Experiments

The pseudogap phase and the strange metal phase have been extensively studied.

Many experiments confirm the prediction of the marginal Fermi liquid theory in the strange

metal phase as well as loop currents in the pseudogap phase. In this section, we list some

of those key experiments.

1.4.1 Polarized Neutron Scattering

In 2004, Mook et el[39] performed a neutron scattering experiment in Y Ba2Cu3O6.45

and found the data to be consistent with a small, largely c-axis-directed moment, found be-

low about 200K. Later in 2006, Frauqué et el[18] used polarized elastic neutron diffraction

to give direct evidence of a magnetic order parameter. This order parameter characteries

the pseudogap phase in high-Tc cuprates and preserves translations symmetry of the lat-

tice. The symmetry of this unusual magnetic order in cuprates samples corresponds to the

expected symmetry of the orbital moments emanating from a loop current state[55, 52, 51].

They studied five different samples—four samples in the underdoped regime and one in the

overdoped regime. They found the magnetic intensity increases below a certain tempera-

ture, Tmag, in the four underdoped samples, whereas no magnetic signal is observed in the

overdoped sample. In 2010, Balédent, et al[7] found the magnetic order associated with

the pseudogap phase in the archetypal cuprate La2−xSrxCuO4(LSCO) system when hole

doping x = 0.085. Li, et al[34] revealed a fundamental collective magnetic order associated

with the pseudogap through inelastic neutron scattering experiment in HgBa2CuO4+δ.

This further confirm the idea of the loop current model in underdoped curprates.
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1.4.2 Angle-resolved Photoemission Spectroscopy

Angle-resolved photoemission spectroscopy (ARPES)[59], is a direct experimental

technique used to observe the distribution of density of single-particle electronic excitations

in the reciprocal space of solids. ARPES could give information on the direction, speed

and scattering process of valence electrons in the sample being studied. In another sense,

both the energy and momentum information of an electron can be obtained from this

experiment, resulting in detailed studies of Fermi surface and band dispersion. Kaminski,

et al[28] reported that left-circularly polarized photons give a different photocurrent from

right-circularly polarized photons in the pseudogap state of Br2Sr2CaCu2O8+δ. This shows

that time-reversal symmetry is spontaneously broken below T ∗, which therefore corresponds

to a phase transition. They observed such differences only in the underdoped sample below

T ∗, and not in the overdoped samples. They also showed that, for underdoped samples, the

breaking of time-reversal symmetry persists into the superconducting state.

Recently the single-particle self-energies in the pairing and the full lattice symme-

try have been deduced directly from the high resolution laser based ARPES data[13] on

underdoped and overdoped samples of Br2Sr2CaCu2O8+δ. Jin et al[13] deduced the magni-

tude and frequency dependence of the effective interactions both in the full symmetry of the

lattice εN (k, ω) and in the pairing symmetry εp(k, ω). Near Tc, the attractive interactions

εp(k, ω) are identical to the repulsive interactions εN (k, ω), except for a weak repulsive part

near about 50 meV within the experimental uncertainty. Both are independent of k and
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their major part is consistent with the quantum-critical fluctuations of the form given by

Imχ(q, ω, T ) = −χ0 tanh(
E√

(2T )2 + ξ−2
τ

)
1

q2 + ξ−2
r

(1.2)

where ξτ are correlation time and ξr are correlation length.

1.4.3 Magneto-optic Kerr Effect

The magneto-optic Kerr effect describes the change of the polarization states of

light when reflected at a magnetic material. Therefore linearly polarized light experiences

a rotation of the polarization plane, called Kerr rotation θK . A phase difference between

the electric field components perpendicular and parallel to the plane of the incident light

occurs as described by the Kerr ellipticity εK .

A high resolution optical Kerr effect measurements of Y Ba2Cu3O6+x crystals with

various hole doping x has been done[62]. Xia et al identified a sharp phase transition at a

temperature of Ts(x), below which there is a nonzero Kerr angle of order ∼ 1µrad. This

indicates the existence of a phase with broken time reversal symmetry. Also, they found

the Kerr effect crosses the superconducting dome to appear below Tc for a near optimally

doped sample. Later, Aji, et al[1] give a qualitative explanation based on the loop currents

model in the pseudogap region, which further confirm the magnetic order in this regime.

A similar measurement of Pb0.55Bi1.5Sr1.6La0.4CuO6+δ (Bi2201)[24] has also re-

ported the same Kerr rotation. Furthermore, this experiment confirm the line T ∗ is co-

incident with three different measurements—ARPES, polar Kerr effect, and time-resolved

reflectivity. The strong and analogous temperature dependences of the ARPES, polar Kerr

effect, and time-resolved reflectivity data seen between Tc and T ∗ are most naturally un-
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derstood if T ∗ is associated with a real phase transition.

1.5 Microscopic Model

The experiments evidence strongly support the time-reversal and inversion sym-

metry breaking order in the pseudogap region and the predictions of the marginal Fermi

liquid theory. Aji, et al[2] proposed a microscopic model which generalized the Ashkin-

Teller[6] model by including kinetic energy term and dissipation term. The spectrum of

the quantum-critical fluctuations of this quantum generalization model is of the same form

postulated in 1989 to give the marginal Fermi liquid properties.

The four possible loop current configurations in each unit-cell in FIG.1.3 can be

represented by four vectors with arrows representing time reversal symmetry and orientation

representing the only plane of reflection symmetry. The Ashkin-Teller model for such a pair

of Ising degrees of freedom is:

H = −
∑
〈i,j〉

J2(σiσj + τiτj) + J4(σiτiσjτj) (1.3)

where σi and τi are Ising spins. With the transformation cos(θi) = (σi + τi)/2; sin(θi) =

(σi − τi)/2, the Ashkin-Teller model becomes

H =
∑
〈i,j〉

2J2 cos(θi − θj) + J4 cos 2(θi − θj) + h4 cos 4θi. (1.4)

For a quantum theory of the model, two additional terms should be included: the

kinetic energy of the θ variables and the dissipation. Notice that the current between sites i

and j is proportional to (θi−θj). The linear couple between this current and the incoherent

fermion current and decays of this current into fermion current provide the dissipation for

11



the collective modes. This process is identical to that derived by Caldeira and Leggett[15]

for decay of Josephson currents into incoherent fermion currents. After integrating out the

fermion degree of freedoms leads to the Caldeira-Leggett dissipative term in the action of

Sdiss =
α

2

∫ β

0

∫ ∞
−∞

dτ ′
∑
〈ij〉

π2

β2

[(θi(τ)− θj(τ))− (θi(τ
′)− θj(τ ′))]2

sin2(π|τ−τ
′|

β )
(1.5)

where α = 1
4π2σRq with Rq = h/4e2 is the quantum resistance and σ is the conductivity

between sites.

For |J4|/J2 < 1/2, J4 is irrelevant and we could start with J4 = 0 for simplicity.

The final quantum model is given by

S = −2J2

∑
〈ij〉

∫ β

0
dτ cos[θi(τ)− θj(τ)] +

C

2

∑
i

∫ β

0
dτ(

dθ

dτ
)2

+
α

2

∫ β

0

∫ ∞
−∞

dτ ′
∑
〈ij〉

π2

β2

[(θi(τ)− θj(τ))− (θi(τ
′)− θj(τ ′))]2

sin2(π|τ−τ
′|

β )
(1.6)

where C serves as the moment of inertia in the kinetic energy term.
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Chapter 2

Classical and Quantum Phase

Transition

Phase transition, especially second-order phase transition(also called continuous

phase transition), attracts many physicists work on it. Continuous phase transition are

characterized by a divergent susceptibility, an infinite correlation length, and power-law

decay correlation function near critical point. There has lots of second-order phase transi-

tion example, such as, ferromagnetic transition, superconducting transition, and superfluid

transition. In this chapter, we will first discuss classical continuous phase transition. The

Landau mean field model will be used as an example to illustrate the critical exponents and

scaling hypothesis. Then the renormalization group method will be briefly discussed. In

the second part, we will discuss the quantum phase transition and dynamical scaling. The

Hertz-Millis-Moriya theory will be mentioned in the last part.
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2.1 Classical Phase Transition

2.1.1 Introduction

Phase transitions are defined as points in the parameter space where the thermo-

dynamic potential becomes non-analytic. Such a non-analytical can arise only in thermo-

dynamic limit, when the size of the system is assumed to be infinite. Macroscopic systems

typically contain ∼ 1023 degrees of freedom, and as such are very close to being in the

thermodynamic limit. In many classical phase transitions, we could identify a parameter to

distinguish different phases. This parameter will be called order parameter. For example,

the average density is the order parameter in liquid-gas transition; superfluid density is the

order parameter in superconductor-metal transition; magnetization is the order parameter

in ferromagnet-paramagnet transition.

Most phase transitions in nature are discontinuous. But continuous phase transi-

tions attracted most people’s attention due to many completely different physical systems

share the same properties near the critical point, at which the thermodynamical potential

will become non-analytical. The macroscopic properties of a system near a continuous phase

transition appear to be independent of the microscopic interactions between particles. It

turns out that the macroscopic properties only depend on some characteristics like dimen-

sionality, symmetry, and presence or absence of long-range interactions. The phenomenon

of different systems exhibiting the same critical behavior is called universality. We can clas-

sify systems into different universality classes according to the critical exponents of their

thermodynamical observations near the critical point.

To clarify the basic idea behind continuous phase transition, we will study a very

14



simple model and calculate critical exponents near the critical point to show that the con-

tinuous phase transitions actually have system independent properties.

2.1.2 Landau Mean Field Theory

In the following, we study a simple spin model in two dimension. The spin s =

(cos θ, sin θ), in which the amplitude of spin has been fixed to be 1 for simplicity. The order

parameter can be defined as

m =
1

v

∑
i

si, (2.1)

where v is the coarse graining region around a given spin and the summation is defined

over all spins in the coarse grain region. By symmetry, the most simplest and nontriv-

ial Hamiltonian for the order parameter one can come up with is the Landau-Ginzburg

Hamiltonian:

βH = βF0 +

∫
d2x[

K

2
(∇m(x))2 +

t

2
m(x) ·m(x) + u(m(x) ·m(x))2 − h ·m(x)], (2.2)

where h is in-plane magnetic field. The partition function of this Hamiltonian is

Z =

∫
Dm(x)exp{−βH}. (2.3)

The mean field or saddle point solution of this partition function is a uniform magnetization

m. The corresponding mean field free energy is

βF = βF0 + V (
t

2
m2 + u(m2)2 − h ·m), (2.4)

where V is the volume of the system. The mean filed magnetization satisfy

tm+ 4um2m− h = 0. (2.5)
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2.1.3 Critical Exponent

The solution of m will depend on parameter t, u, and h. Near the critical point,

we can expand t in power of T − Tc and the coefficients are determined from experiment.

We will have

t = a(T − Tc), (2.6)

with a > 0. u > 0 is needed to get a stable solution. Under zero external magnetic field we

have a solution for e.q.(2.5)

m(h = 0) =


0 for T > Tc√

a
4u(Tc − T )1/2 for T < Tc

(2.7)

So we get our first universal exponent near the critical point and there is a spontaneous

magnetization at low temperature that vanishes with exponent β = 1/2. At the critical

point, t = 0, we can get the relation between magnetization and external field,

m(T = Tc) = (
h

4u
)1/3, (2.8)

i.e. h ∝ mδ with δ = 3. The static magnetic susceptibility can be derived from eq.(2.5) as

χ = (
∂m

∂h
)|h=0 = t+ 12um2 =


1
t for T > Tc

− 1
2t for T < Tc

, (2.9)

so χ ∼ |t|−γ with γ = 1. The free energy for h = 0 is given by

βF = βF0 + V


0 for T > Tc

− t2

16u for T < Tc

. (2.10)

From the free energy we can calculate the heat capacity,

C(h = 0) = −T ∂
2F

∂T 2
≈ C0 + V kBa

2T 2
c ×


0 for T > Tc

1
8u for T < Tc

. (2.11)
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It is obvious from the above equation that heat capacity is discontinuous at the critical

point and C ∼ |Tc − T |−α with α = 0. Now we can consider the correlation length of the

order parameter. The term K(∇m)2 is included for this purpose. Expanding m near its

mean field solution, m =
√
−t
4u + φ for T < Tc and m = φ for T > Tc, we have

βH = −V t2

16u
+
K

2

∫
d2x[(∇φ)2 + ξ−2φ2], (2.12)

where,

ξ−2 =


t for T > Tc

−2t for T < Tc

. (2.13)

Therefore the two-point correlation function is

G(q) =< φ(q)φ(−q) >=
1

K(q2 + ξ−2)
. (2.14)

By using Fourier transformation, we can get

G(x) ∼


1

x(d−1)/2 exp(−x/ξ) for x� ξ

1
xd−2+η for x� ξ

, (2.15)

for d-dimension. If d = 2, we have η = 0. Near the critical point, the correlation function

decays as 1/xd−2. ξ introduced above now has the meaning as correlation length. In the

region x � ξ, the correlation function behaves as a power law function. On the other

hand, in the region x � ξ, the correlation function decays exponentially. From above

calculation, we have ξ ∼ ξ0|t|−ν , where ν = 1/2. There is another interesting result which

is the integration of correlation function will result in bulk susceptibilities. This is related

to fluctuation-dissipation theorem which will not be explored here. In our example, by

integrating the correlation function, we will have

χ ∝
∫
d2xG(x) ∝

∫ ξ

0
d2xlog(x) ∝ ξ2 ∼ t−1, (2.16)
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which has the same scaling from we got before.

2.1.4 Scaling Hypothesis and Renormalization

In the previous section, we derived the critical exponents near the critical point

for Landau-Ginzburg model. Since the various thermodynamic quantities are related, the

critical exponents can not be independent of each other. The divergence of the correla-

tion length in the vicinity of the critical point implies that the correlation length ξ is the

most relevant length scale in the system. It will responses for the singularities of the ther-

modynamic quantities. The divergence of the correlation length also induces a interesting

property of critical system. If we take a snapshot of the critical system and then blow the

snapshot up by a factor λ, the new snapshot will be statistically similar to the old one. This

property of the critical system is called self-similarity. The critical behavior is dominated

by self-similarity up to the scale ξ. By successively eliminating the correlated degrees of

freedom of length scale x � ξ, we could get a relatively simple, uncorrelated degree of

freedom at scale ξ. This procedure is called renormalization group(RG) and it is a very

powerful tool to study both classical and quantum continuous phase transition.

RG normally includes three steps: (1). Coarse graining: In real system, it often

has a natural short length cutoff, a, which is the lattice constant in condensed matter

physics. The first step of RG is to decrease resolution by changing this cutoff to ba(b > 1),

which effectively integrates out high energy degrees of freedom. The coarse graining field is

defined by

m(x) =
1

bd

∫
Cell centered at x

ddx′m(x′), (2.17)
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where d is the dimension of the system.(2). Rescaling: In the second step, we decrease all

length scales by factor b to restore original short length cutoff, i.e., set xnew = xold/b. (3).

Renormalizing: After rescaling, the new field under the new scale will actually be different

from the original fluctuated field. We need to introduce a change of contrast by factor ζ,

through defining a renormalized fluctuated field,

mnew(xnew) =
1

ζbd

∫
Cell centered at bxnew

ddx′m(x′). (2.18)

After doing the three steps, we will get a new partition function which will look close to

the original one but with new coupling constants. This is guaranteed by the self-similarity

of the critical system near the critical point.

In essence, the RG is to rescale the system and then observes how the parameters

of the system, t, h, change if one requires the description of the system in terms of the

rescaled parameters to remain unchanged, t→ t′ = bytt, h→ h′ = byhh.

Now we can investigate the consequence of RG steps, i.e.

Z =

∫
Dme−βH(m) =

∫
Dm′e−βH(m′) = Z ′. (2.19)

Hence lnZ = lnZ ′, which implies the free energy is related by

V f(t, h) = V ′f(t′, h′). (2.20)

In d dimension, the volume of the system is rescaled by a factor of bd, so

f(t, h) = b−df(bytt, byhh). (2.21)

From some simple assumption of the critical system, we could get the a homogenous function

form for the free energy of the critical system. Even though we use a very simple to illustrate
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the idea of RG, the above procedure can be generalized to very complicated system to get

very prominent results.

One can find the relation between different critical exponents from the above

scaling form of the free energy. By choosing a rescaling factor b such that byt is constant,

i.e., b = t−1/yt , we could get

f(t, h) = td/ytgf (h/tyh/yt). (2.22)

From the free energy, we can get heat capacity C ∼ −∂2f
∂t2
∼ |t|d/yt−2 for h → 0 and

magnetization m(t, h = 0) = ∂f
∂h ∼ t

d/yt−yh/yt . Therefore we have

β = 2− α−∆, (2.23)

where ∆ = yh/yt. m(t = 0, h) ∼ |t|d/yt−∆( h
|t|∆ )p and this limit be should independent of t,

we must have p∆ = d/yt = 2− α−∆. Hence

δ = ∆/(2− α−∆) = ∆/β. (2.24)

The susceptibility is computed as χ(t, h) ∼ ∂m
∂h ∼ |t|

d/yt−2∆gχ(h/|t|∆), so χ(t, h = 0) ∼

|t|d/yt−2∆ and

γ = 2∆− 2 + α. (2.25)

Following the same argument, one can get the scaling form for the correlation length ξ ∼

|t|−νg(h/|t|∆). Closing to the critical point, the correlation length is the most important

length scale in the system. Since lnZ is extensive and dimensionless, it must take the form

lnZ = (Lξ )dgs + . . . , where L is the size of system. The leading singular part of free energy

then should have the form f(t, h) ∼ lnZ
Ld
∼ ξd ∼ |t|−dνgf (h/|t|∆), which implies

d/yt = 2− α = dν. (2.26)
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As discussed in the previous section, the correlation function falls off as G(x) ∼ 1
|x|d−2+η .

The response function can be obtained by integrating correlation function, χ ∼
∫
ddxG(x) ∼

ξ2−η ∼ |t|−ν(2−η), so we get another relation between critical exponent,

γ = (2− η)ν. (2.27)

We can see that there are only two independent critical exponents from above five equations

and we derived those relations by only using very simple scaling invariant assumption. In

this sense, RG is really helpful to study critical phenomena.

2.1.5 Fix Point

As shown in previous section, RG defines a successive transformation in the pa-

rameter space, denoted by g. From the definition of RG, we could see this transformation,

denoted as Rb, actually form a semi-group, which does not inverse element.

It could be very complicated to study the general properties of this transformation,

but the self-similarity of Hamiltonian must correspond to fixed point g∗, such that Rbg
∗ =

Rbg
∗. Since the correlation length is decreased by b under RG operation, i.e. ξ(g) =

bξ(Rbg), the correlation length at a fixed point must be zero or infinity. A fix point with

ξ(g∗) = 0 describes independent fluctuations at each point and corresponds to complete

order, or complete disorder phases. A fix point with ξ(g∗) = ∞ describes a critical point,

at which the free energy becomes singular. To study the stability of a fix point, we could

linearize the RG equations around this fix point,

Rbg = Rb(g − g∗ + g∗) ≈Wb(g − g∗), (2.28)

where Wb = ∂Rb
∂g |g=g∗ . Because of the group property,it is easy to see that RbRb′ = Rbb′ .
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To explore the properties of the RG flow, we could diagonalize W with eigenvalues λα(b),

and eigenvectors φα, α = 1, 2, . . . , N , where N is the number of parameters in the Hamil-

tonian, i.e., Wbφα = λα(b)φα. The property RbR
′
b = Rbb′ implies WbW

′
b = Wbb′ . Therefore

λα(b)λα(b′) = λα(bb′). Together with initial condition λα(1) = 1, the above equation im-

plies,

λα(b) = byα . (2.29)

We can clarify the eigenvalues according to its eigenvalues as following,

(1). If yα > 0, gα increases under scaling and the corresponding eigenvector is a relevant

scaling field.

(2). If yα < 0, gα decreases under scaling and the corresponding eigenvector is a irrelevant

scaling field.

(3). If yα = 0, gα is invariant under scaling and the corresponding eigenvector is a marginal

scaling field.

The distinction of three scaling fields in turn implies a classification of different

type of fix points.

(I). Stable fixed points: all the scaling fields are irrelevant or marginal. These points define

what we might call stable phases of matter.

(II). Unstable fixed point: all the scaling fields are relevant.

(III). Critical point or critical surface: both relevant and irrelevant scaling fields are exist.

At critical point, system will have divergence correlation length. A small deviation from

the critical point will lead the system flow to its stable fix point. Therefore critical point is

related to the phase transition point in real system.
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2.2 Quantum Phase Transition

2.2.1 Introduction

Quantum phase transition is a phase transition between different quantum phases

at zero temperature. Unlike classical phase transition, quantum phases transition only takes

place at zero temperature and can only be accessed by tuning a physical parameter. This

parameter could be magnetic field, pressure, and doping in the parent compound of a high-

Tc superconductor. A typical phase diagram is shown in the figure,

p

T

QCP

quantum critical

ordered state disordered state

classical critical

Figure 2.1: Phase diagram of quantum phase transition. QCP denotes the quantum critical

point and p is come parameter in the Hamiltonian.

Due to thermal fluctuations will not play any role at zero temperature, the quantum phase

transition can only be driven by quantum fluctuations with an energy scaly of ~ω. Similar

to classical second order phase transition, a continuous quantum phase transition also has

a critical point, which is called quantum critical point(QCP). The quantum fluctuations

become scale invariant in space and time at the QCP. At finite temperature, quantum fluc-

tuation will compete with thermal fluctuations with energy scale kBT . This competition
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will lead much more rich properties in quantum phase transition. For ~ω > kBT , the quan-

tum fluctuation will dominate the system’s properties. Even for high temperature, when

p→ pc, this condition can still be satisfied, which corresponds the quantum critical region

in Fig.2.1. At high enough temperature and far away from QCP, the system is in disorder

phase and is purely classical. Around the classical phase transition, the system is governed

by thermal fluctuations. There are many system show quantum critical properties.

(1). The Superconductor-insulator transition in two-dimensional thin films by either chang-

ing film thickness or magnetic field. This is a very simple example of quantum phase tran-

sition.

(2). In High-Tc superconductor, the exotic phase diagram is driven by QCP when tuning

doping in the parent compund.

(3). Quantum Hall effect, it is a property of a two-dimensional electron system placed in a

strong transverse magnetic field, B ∼ 10T . As one changing magnetic field under very low

temperature, the transverse conductivity σxy becomes quantized σxy = n e
2

h , where n is an

integer. When varying magnetic field, one can get different n and each corresponds a plateau

in transverse conductivity plot or quantum Hall(QH) phase. The universal properties of

transition between different QH phases can be captured by quantum phase transition.

2.2.2 Quantum-to-classical Mapping

It turns out that many quantum phase transitions can be described as classical

transitions with one additional time-like dimension. We start with partition function Z =∑
n〈n|e−βH |n〉. Notice that if we identify β → it with ~ = 1, we could treat partition

function as time-evolution operator e−iHt. In this form, we can write partition function in
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the language of Feynman’s path-integral formulation. Dividing time into small slice each

with length δτ = β/N , where N is the number of intervals, we have

e−βH = [e−δτH ]N , (2.30)

and

Z =
∑
n

∑
m1,m2,...,mN

〈n|e−δτH |m1〉〈m1|e−δτH |m2〉 . . . 〈mN |e−δτH |n〉, (2.31)

where {mi} are sets of complete states. By transforming partition function in this rather

complex form, we can think each term as a transfer matrix and imaginary time as an

additional spatial dimension. In essence, we transform the original d-dimension problem

into a d+1 dimension problem. The extra dimension is finite with size β in units of τc = 1
Tc

,

which is ultra-violet cutoff.

As an example, we consider quantum XY model in two-dimension. The Hamilto-

nian is,

H =
Ec
2

∑
i

(−i ∂
∂θi

)2 − J
∑
〈ij〉

cos(θi − θj), (2.32)

where 〈ij〉 refers nearest neighbor sites. The first term is kinetic energy and the second

term is potential energy. We use T and V to denote them, separately. For very small δτ ,

one can make the approximation

e−δτH ≈ e−δτT e−δτV . (2.33)

Inserting a complete set of angular-momentum eigenstates |{mk}〉(defined by 〈θk|mk〉 =

eimkθk) can lead the transform matrix take the form,

M =
∑
m

e−δτ/2Ec
∑
km

2
keimk[θk(τj+1−θk(τj)]eδτJ

∑
k cos[θk(τj+1)−θk(τj)]. (2.34)
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By using Poisson summation we have

∑
m

e−δτ/2Ec
∑
km

2
keimk[θk(τj+1−θk(τj)] =

√
(π/δτEc)

∑
n

e−1/2Ecδτ(θ+2πn)2
. (2.35)

The Villain approximation can be applied to get e1/Ecδτ cos(θ). If we choose δτ = 1/
√
EcJ ,

one could get the equivalent classical three-dimensional XY model,

HXY =
1

K

∑
〈ij〉

cos(θi − θj), (2.36)

with K =
√
J/Ec.

2.2.3 Dynamical Scaling

The divergence of the correlation length in classical continuous phase transition

near the critical points immediately tells us that the correlation length and correlation time

will also diverge near QCPs. Besides correlation length, ξ, in classical system, one also need

introduce correlation length in time direction, denoted as ξτ . Generally, at T = 0 and as

p→ pc, both ξ and ξτ will diverge in the manner,

ξ ∼ |p− pc|−ν ,

ξτ ∼ ξz. (2.37)

Here we introduce dynamical-scaling exponent z to take the anisotropy of time and space

into account. For example, in previous section we proved that the quantum 2-D XY model

could be mapped to classical 3-D XY model. Therefore z = 1 in the quantum 2-D XY

model. In general, as pointed out by Hertz[25], the dynamical-scaling exponent z 6= 1 near

quantum critical points.
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The homogeneity hypothesis should also be applied to continuous quantum phase

transition if one follows the same renormalization group argument. One needs to be careful

about the extra imaginary time dimension because it will not scale exactly the same way

as space. First, we consider T = 0, which lead the time dimension become infinite Lτ =∞.

Viewed at rescaled length r′ = r/b and time τ ′ = τ/bz, the rescaled free energy density will

be f ′ = bd+zf . This will give the scaling equation

f(t, h) = b−(d+z)f(byt |t|, byhh), (2.38)

where |t| = |p − pc|/pc indicates a dimensionless control parameter in the system. Again,

we can extract information by choosing b = t−1/yt ,

f(t, h) = t(d+z)/ytgf (h/|t|∆), (2.39)

with ∆ = yh/yt. Following the same procedure as in classical phase transition, one could

get different critical exponents in terms of the scaling dimensions yt and yh. The critical

exponents, α, β, and γ can be written in terms of yt and yh as,

α = 2− d+ z

yt
,

β =
d+ z − yh

yt
,

γ =
2yh − d− z

yt
. (2.40)

From these equations, one could easily verify that

β = 2− α−∆,

γ = 2∆− 2 + α,

2− α = (d+ z)ν. (2.41)
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We could also generalize the classical correlation function to quantum case to get the scaling

form

G(r, τ) = b−(d+z−2+η)G(r/b, τ/bz), (2.42)

where η is the anomalous dimension of the correlation function. By choosing scaling factor

b = r, b = τ1/z, respectively, we could get

G(r, τ) = 1/rd+z−2+ηG1(τ/rz),

G(r, τ) = 1/τ (d+z−2+η)/zG2(r/τ1/z). (2.43)

The susceptibility can be calculated through the correlation function,

χ =

∫ Lτ

0
dτ

∫ L

0

∫
ddrG(r, τ). (2.44)

where Lτ = β and L is the size of system. Near the critical point, we could consider r � ξ

due to the correlation function is exponential decaying out of this region. Therefore we get

χ ∼
∫ Lτ

0
dτ

∫ L

0
ddr1/rd+z−2+ηG1(τ/rz). (2.45)

By choosing the infinitesimal space-time shells, we could integrate over in such a way that

τ ∝ rz. In this way, the scaling function G1(τ/rz) is constant, and the integral is simplified

to

χ ∼
∫ ξ

0
drrzrd−11/rd+z−2+η = ξ2−η. (2.46)

We can identify another scaling law,

γ = (2− η)ν. (2.47)
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2.2.4 Finite Size Scaling at T 6= 0

As zero temperature cannot be accessed in experiment, we need to understand how

to modify the scaling form for T 6= 0. Two things could happen for nonzero temperature:

first, the quantum phase transition of a system can only happen at zero temperature and

its finite-temperature physics is purely classical; second, the transition persists to T 6= 0

but crosses over to a different universality class. The 2-D XY model follows this form. At

T = 0, the QCP for the transition from order to disorder phases is characterized by the

exponent of the 3D XY model. However, at T 6= 0 the system is effectively two dimensional

and undergoes a Kosterlitz-Thoules transition. For p → pc, there exists a crossover region

which separates kBT > ~ω and kBT < ~ω. So there exists a finite temperate region near

QCP in which quantum fluctuate will dominate and this open a door to detect quantum

criticality experimentally.

For finite temperature, the extra imaginary time dimension is finite with size

Lτ = ~β. We also know that, near the QCP, the correlation length ξ and correlation time

ξτ are only two relevant length scales for the system. Naturally, if ξτ ∼ Lτ , the system

will know it is effective d dimensional; on the other hand, for ξτ � Lτ , the system will

effectively know it is in d+ 1 dimension and its characteristic fluctuation frequencies obey

~ω � kBT .

The form of the finite size scaling is given by Privman[46]

O(k, ω, p, T ) = LdO/zτ O(kL1/z
τ , ωLτ , Lτ/ξτ ). (2.48)

As discuss previously, Lτ = ~β defines the size of imaginary time dimension to a charac-

teristic length ∼ L1/z
τ , which associate with the temperature. L is the characteristic length
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to measure the wave vector k, and Lτ is the characteristic time to measure frequency ω.

The distance to the zero-temperature critical coupling is measured via the ratio of Lτ to

zero-temperature correlation time ξτ .

2.3 Hertz-Millis-Moriya Theory

The quantum criticality of itinerant ferromagnet has been studied extensively,

pioneered by Moriya [40], Hertz [25], Béal-Monod and Maki [9] and by others [38, 11].

None of these could explain the extraordinary resulting in strange metal region of cuprates,

in which (1) the correlation function is separated in momentum and frequency, (2) the

correlation length in space is proportional to the logarithm of the correlation length in

time, this may imply a infinity z →∞ dynamical critical exponent. This result cannot be

obtained by just simply setting z →∞ in the conventional theories.

In the context of strongly correlated electron systems, one is mainly interested

in magnetic phase transitions in metals. The effective action may be derived from the

Hamiltonian integral representation by integrating out the electron degrees of freedom [25]

or by more conventional techniques [40]. The resulting action could be written as[25, 36]

S =
1

2

∑
q,ω

(r0 + q2 +
|ω|
γ(q)

)|φ(q, ω)|2 + u0

∫ β

0
dτddr[φ(r, τ)]4, (2.49)

where φ(r, τ) is the order parameter after integrating out the itinerate fermion degree

of freedom and the second term is the self-interaction of order parameter. The dynamic

contribution |ω|/γ(q) is the damping of fermions by particle-hole paris excited across the

Fermi level. Their phase space increases linearly with ω. For a ferromagnetic transition,

γ(q) = vF q as q → 0, i.e., the damping rate diverges due to the abundance of particle-hole
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pairs with small momentum. This will lead to a theory with dynamical exponent z = 3.

For an antiferromagnetic transition, the damping γ(q) ∼ γ0, is independent of q, yielding

z = 2.

The model defined by the action (2.49) has been studied near its critical point

using the perturbative RG. To define a RG transformation, one investigates how a change

of the cutoff (both in momentum and in frequency) and its subsequent rescaling can be

absorbed in a redefinition of the coupling constants. The schema used in Hertz’s paper is

simultaneously changing the cutoff in momentum space, Γq → Γq/b, and frequency space,

Γω → Γω/b
z, where dynamical exponent z is introduced to take the anisotropy of scaling in

momentum and frequency into account.

The detail of the RG steps is not interesting in this thesis, one could refer to

Hertz’s[25] and Millis’s[38] paper for detail calculations. Over here, the scaling of several

thermodynamic quantities are summarized in Table (2.1).

d=2,z=2 d=3,z=2 d=2,z=3 d=3,z=3

α ln ln 1
T T 1/2 ln 1

T T 1/3

C T ln 1
T −T 3/2 T 2/3 T ln 1

T

Table 2.1: Results for Landau-Guizburg-Wilson quantum critical point in the quantum

critical regime T � |r|z/2. α is the thermal expansion and C is specific heat[36].

The static susceptibility for a ferromagnet is χ ≈ χ0 − DT in d = 2, z = 2 with

nonuniversal constants χ0 and D. χ ≈ χ0−D′T 3/2 in d = 3. For a quantum phase transition

driven by a magnetic field B, the susceptibility χ = ∂M/∂B = −∂2F/∂B2 has the scaling

form χ ∝ T (d+z−2/ν)/z in the quantum critical regime.
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Chapter 3

Monte Carlo Simulation

Monte Carlo method is a very useful tool for simulating system with large number

of degrees of freedom. In statistical physics, it is very hard to find the exact form of

the partition function for most systems. Monte Carlo can be used in studying the phase

transition by repeatedly drawing sample with a probability determined by partition function

and calculating statistical average based on large samples. By using law of large number,

the accuracy of Monte Carlo simulation follows ∼ 1√
N

, where N is the number of samples

draw by predefined procedure. The Metropolis algorithm is the most popular method to

be used to draw samples, which is also the foundation of our implementation of quantum

Monte Carlo simulation. This chapter will cover some basics idea of Monte Carlo. Then,

two applications of Monte Carlo simulation in real physics systems will be discussed and

some novel results will presented.
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3.1 The basics of Monte Carlo simulations

In statics physics, one of the most important quantities is partition function Z,

Z =
∑
s

e−βH(s) (3.1)

where s is possible state and H(s) is the Hamiltonian of the system. Then, the probability

of a given state s is given by

P (s) =
e−βH(s)

Z
(3.2)

After getting the distribution of state, one could easily calculate the thermal average of any

physics quantity by taking average over all states,

〈O〉 =
∑
{s}

O(s)P (s) (3.3)

Here, the Boltzmann factor P (s) acts as a weight factor determining the relative contribu-

tion of each configuration to the average. The total number of configurations |{s}| will be

denoted by Nconfig.

A very straightforward way to calculate the thermal average numerically is by

taking a large number of subsample S ⊂ {s} with size |S| = N . Then the sample average

Ō =
1

N

∑
s∈S

O(s)P (s) (3.4)

will be a good estimation of the thermal average of O as long as N is fairly large enough. In

practice, however, the number Nconfig becomes extremelly large even for small system sizes.

As a example, for a Ising system with M spins, the total configuration will be Nconfig = 2M ,

which grows exponentially with system size. When system is in equilibrium, only states near
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equilibrium will have important contribution to the average. The straightforward method

will draw many samples with very small contribution, so it is very inefficient. The solution

is importance sampling, where the sampled configurations are no longer the uniformly

distributed set S, but instead a set S′ selected according to some chosen distribution. An

naturally choosing is the Boltzmann distribution P (s) itself, which will ensure that the

dominated configurations will be sampled more often than those only have low weight. If

one can generate such subsample S′, the estimator reduces to the simple average

Ō =
1

N

∑
s∈S′

O(s) (3.5)

The next challenge is to sample configurations from the Boltzmann distribution.

Generally, sample from the Boltzmann distribution is as hard as computing partition func-

tion directly. The way in Monte Carlo is Markov Chain sampling, in which one needs to

construct a Markov chain that has the desired distribution as its equilibrium distribution.

The state of the chain after a number of steps is used as a sample of the desired distribution.

The idea is that if a configuration s is selected from the equilibrium distribution, one may

find rules to generate a new configuration s′ in a random fashion from the previous one.

The rules should make sure that s′ does not differ too much from s than it could have been

sampled directly from the same distribution.

When using Markov chains in Monte Carlo sampling, two conditions need to be

satisfied: ergodicity and detailed balance. The sampling is ergodic if any other configuration

can be reached starting from an arbitrary configuration by a Markov chain with a finite

number of steps. This property will make sure that the sampling method can draw samples

from the entire configuration space. The detailed balance condition is to ensure that a
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Markov chain sampling equilibrium configurations will remain in equilibrium. This can be

written in the following condition,

P (s)p(s→ s′) = P (s′)p(s′ → s) (3.6)

where P (s) is the Boltzmann probability distribution and p(s → s′) is the probability for

transitioning from configuration s to s′.

The last question is that in general the equilibrium distribution is not known at

the beginning of simulation. But, it can be shown that detailed balance will ensures that a

Markov chain on average will approach equilibrium as it moving on, irrespective of where

the starting configuration. In practice, one could run the Monte Carlo sampling for several

steps to start the simulation. In this way, the simulation will loss the information of where

it start and reach the equilibrium configurations.

3.1.1 The Metropolis algorithm

Metropolis algorithm is a way to generate Markov chain from the configuration s

by changing a single degree of freedom at a time. For example, we will flip a spin in Ising

model at each sampling step. The following steps describe the Metropolis algorithm in

general. Let f(x) be a function that is proportional to the desired probability distribution

P (x).

1. Initialization: Choose an arbitrary point s0 to be the first sample, and choose an arbi-

trary probability distribution Q(s′|s) which gives the distribution for next sample s′ con-

dition on the previous sample s. For Metropolis algorithm, Q must be symmetric, i.e.

Q(x|y) = Q(y|x). The function Q is called jumping distribution.
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2. For each iteration t:

• Generate a candidate s′ for the next sample by sampling from the distribution Q(s′|st).

• Calculate the acceptance ratio r = f(s′)/f(st). This ratio will be used to decide whether

to accept or reject the candidate. Because f is proportional to distribution of P , one

have r = P (s′)/P (st).

• If r ≥ 1, accept the new sample by setting st+1 = s′. Otherwise, accept this candidate

with probability r. If the candidate is rejected, set st+1 = xt.

In statistical physics, we can choose Q(s′|st) = e−∆S . ∆S = S(s′) − S(s) is the

change in the action. Then one can get the probability of transition from configuration s

to s′ as

p(s→ s′) = min(1, e−∆S) (3.7)

In practice, one could update the configuration through the lattice in a sequential way,

proposing a randomly chosen new state of the state at each site. In another words, the step

from one configuration to the next is a local update of the configuration. When one has

visited all sites on the lattice, one performed one Monte Carlo sweep. After each sweep, we

could record the observable at that configuration.

3.2 Quantum Monte Carlo Method

Quantum Monte Carlo[60] includes a large number of computational methods

whose purpose is to study the complex quantum systems. In many-body physics, one typi-
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cally needs to find many-body wave function to solve the Shcródinger equation for a given

system. The challenge is that the many-body wave function has an exponentially large size,

which in many case is not feasible. Traditionally, people approximate the many-body wave

function as an symmetric or antisymmetric function of one-body orbitals. This method

has several drawbacks, one is that this simple wave function does not include quantum

many-body correlations; another is that the convergence is very slow.

Quantum Monte Carlo is a way to directly study the many-body wave function

beyond simple approximations. In some circumstance, quantum Monte Carlo could give an

exact solution of many-body problem, while in other case quantum Monte Carlo could give

very good approximation of the ground state for the many-body system. For more detail

discussion, one could read textbooks[33, 12] and review article[21]

As we discussed in chapter 2, a d-dimensional quantum action could be mapped

to (d+1)-dimensional classical problem in the path integral formulation. In this sense,

quantum version of Markov Chain Monte Carlo works the same as classical Monte Carlo

by generating a set of samples through Markov Chain Monte Carlo sampling.

3.3 Phase diagram of Quantum 2+1d XY Model with Dissi-

pation

3.3.1 Monte Carlo Simulation

The quantum Monte Carlo can be applied to the action[1.6] to study the phase

diagram of this model[63, 48]. In quantum Monte Carlo simulation, we choose a 2D square

lattice with N × N lattice sites. The imaginary time axis [0, β] is discretized into Nτ
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slices. Periodic boundary conditions are imposed along x, y, and τ directions. The (2+1)D

quantum XY model could be written in this discretized lattice as

S = −K
∑
〈x,x′〉,τ

cos(∆θx,x′,τ +
Kτ

2

∑
x,τ

(θx,τ − θx,τ−1)2

+
α

2

∑
〈x,x′〉,τ

π2

N2
τ

[∆θx,x′,τ −∆θx,x′,τ ′ ]
2

sin2(π|τ−τ
′|

Nτ
)

− h4

∑
x,τ

cos(4θx,τ ) (3.8)

where Kτ = C/∆τ ,K = 2J2∆τ , h4 = h4∆τ , ∆τ = β/Nτ , and ∆θx,x′,τ = θx,τ − θx′,τ .

In this way, K, Kτ , α, and h4 are all dimensionless variables. The ultra-violet cut-off ∆τ

is fixed and set to 1. The temperature is controlled by N−1
τ . As Nτ → ∞, we could in

principal approach the quantum limit T → 0.

The same numerical procedure as in [48] is used for the Monte Carlo simulations.

Discretized θx,τ = n2π/32 is used to speed up the simulation rather than a continuous

variable. The typical system size is N = 50 and Nτ = 200.

The simulation starts from a random configuration of {θx,τ}. Each Monte Carlo

sweep is done by update all angles at each site locally from θx,τ to θx,τ + θ′, where θ′

is a random angle between −2π and 2π. The parallel tempering is used to speed up the

relaxation. In the simulation, first 104 sweeps are dropped and take 106 measurements for

all observables.

The following quantities are calculated to characterize the different phases and

phase transition among them.

1. Action susceptibility. The action susceptibility is defined as

χS =
1

N2Nτ
(〈S2〉 − 〈S〉2) (3.9)

where 〈· · · 〉 denotes the average over the Monte Carlo measurements. In classical system,
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S = βH, χS is related to specific heat. As T → 0, it measures zero-point fluctuations which

are expected to be singular at the critical point. Therefore it is used to identify the critical

point in this QMC simulation.

2. Helicity Modulus. The helicity modulus or stiffness measures the change of energy

resulting from small twist of spins along the spatial direction,

Υx =
1

N2Nτ

〈 ∑
〈x,x′〉

∑
τ

cos(∆θx,x′,τ )

〉
− K

N2Nτ

〈( ∑
〈x,x′〉

∑
τ

sin(∆θx,x′,τ )

)2〉
(3.10)

3. Order parameter. For XY spins, the order parameter M(x, τ) = (cos θx,τ , sin θx,τ ). The

magnetization is defined as

M =
1

N2Nτ

〈∣∣∣∣∑
x,τ

eiθx,τ
∣∣∣∣〉. (3.11)

The two dimensional magnetization is also calculated to find the 2D order in the plane at

a given time τ and then average over τ , which is given by

M2D =
1

N2Nτ

〈∑
τ

∣∣∣∣∑
x

eiθx,τ
∣∣∣∣〉 (3.12)

4. Correlation Function of the Order Parameter. The correlation function is

Gθ(x, τ) =
1

N2Nτ

∑
x′,τ ′

〈e
i(θx′+x,τ ′+τ−θx′,τ ′

)
〉 (3.13)

Gθ(x→∞, τ →∞)→M2 while Gθ(x→∞, τ = 0)→M2
2D.

5. Vortices and warps: densities and correlations. The vortices and warps could be identify

numerically from the four link variables of a plaquette,

ρv(x, τ) =
1

2π
(∇×m)i,j,τ = (mx

i,j,τ +my
i+1,j,τ −m

x
i+1,j+1,τ −m

y
i,j+1,τ )/(2π), (3.14)
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Figure 3.1: Examples of vortex (a) and warp (b) in Monte Carlo simulation. The numbers

at the lattice site are θ’s in units of 2π/32 and are non-compact variables. The numbers

in the links are the velocity fields. (a) For the number shown, the vortex is 1. (b), the

change of (∇ ·m)i,j,τ for two neighboring time slices is close to −2π, is identifying as an

antiwarp[63].

where mx,y are restricted to be within (−π, π). ρv(x, τ) = ±1 if (∇ ×m)i,j,τ = ±2π.

Similarly, the warps can be calculated as following, first calculate divergence of vector field

(∇ ·m)i,j,τ = (mx
i,j,τ −mx

i−1,j,τ +my
i,j,τ −m

y
i,j−1,τ )/4 (3.15)

Then warps are calculated as

ρw(x, τ) = 1, if(∇ ·m)i,j,τ+1 − (∇ ·m)i,j,τ > 2π − δθ

ρw(x, τ) = −1, if(∇ ·m)i,j,τ+1 − (∇ ·m)i,j,τ > −2π + δθ (3.16)

where δθ � 2π to accommodate small angle changes due to spin waves. Examples of

vortices and warps are shown in FIG.3.1 The densities of vortices and warps are computed

ρv =
1

N2Nτ

∑
x,τ

〈|ρv(x, τ)|〉,

ρw =
1

N2Nτ

∑
x,τ

〈|ρw(x, τ)|〉 (3.17)
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Also their correlation functions are computed

Gv(x, τ) =
1

N2Nτ

∑
x′,τ ′

〈ρv(x′ + x, τ ′ + τ)ρv(x
′, τ ′)〉,

Gw(x, τ) =
1

N2Nτ

∑
x′,τ ′

〈ρw(x′ + x, τ ′ + τ)ρw(x′, τ ′)〉. (3.18)

3.3.2 Phase Diagram

The dissipative quantum XY model without the four-fold anisotropic field h4 has

been studied. The phase diagram for small Kτ = 0.01 has been obtained through Monte

Carlo simulation and is shown in FIG.(3.2). From the simulation, three distinct phases

are identified, ”Disordered” phase, ”Quasi-ordered” phase, and ”Ordered” phase. The

properties of all the three phases are summarized in Table(3.1). In the following three

subsection, the properties of the phase transition will be illustrated.

Quantity Disordered Quasi-ordered Ordered

M 0 limN→∞M → 0 finite

ρv O(1) � 1 � 1

Gv(x) exponential decay power law power law

ρwO(1) O(1) � 1

Gw(τ) 1/τ2 1/τ2 1/τα(α > 2)

Υx 0 finite,jump at transition finite, no jump at transition

Gθ(x, 0) exponential quasi-long range long range

Gθ(0, τ) exponential exponential long range

Table 3.1: Properties of three phases of the dissipative quantum 2+1D XY model[63].

3.3.3 Phase transition from disordered to quasi-ordered phase

By fixing α = 0.01 and varying K, the phase transition from disordered phase

to quasi-ordered phase is obtained. Several static observables are used to identify the
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Figure 3.2: Phase diagram for the quantum 2+1D XY model with dissipation in α−K plane

for Kτ = 0.01. The transition lines are determined through non-analyticity of several static

observables with a lattice size N = 50, Nτ = 200. The dashed line denote the way to change

of parameters. The phase diagram is obtained by several ways to change parameters[63].

transition point, as shown in FIG.(3.3). The characteristics of this phase transition can

be described by Kosterlitz-Thouless transition, in which a quasi long-range spatial order is

developed when K increase. The helicity modulus Υx becomes finite in the quasi-ordered

phase. The correlation functions for vortices and warps are shown in FIG.(3.4). When K

increases, Gv(x, 0) changes from an exponential decay in the disordered phase to a power-law

decay in quasi-ordered phase. The warp correlation function Gw(0, τ) remains unchanged

in both sides and follows the asymptotic form ∝ 1/τ2. This confirms that the transition

from disordered phase to quasi-ordered phase is consistent with the Kosterlitz-Thouless

transition.
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phase. The phase transition point Kc can be identified as the non-analytical point in the

figure. Here, Kτ = 0.01,α = 0.01, and K is varies. The lattice size is N = 50 and

Nτ = 200[63].
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Figure 3.4: Correlation function of warps and vortices of phase transition from disordered

phase to quasi-ordered phase. Here, Kτ = 0.01,α = 0.01, and K is varies. The lattice size

is N = 50 and Nτ = 200[63].

43



 0

 0.5

 1

 0.01  0.02  0.03
10

-6

10
-4

10
-2

10
0

M
, 

M
2

D
, 

χ
S

ρ
v
, 

ρ
w

, 
G

v
w

α

M
M2D

χS /10

ρv

ρw

Gvw*100

Figure 3.5: Static properties of phase transition from quasi-ordered phase to ordered phase.

The phase transition point αc can be identified as the non-analytical point in the figure.

Here, Kτ = 0.01,K = 1.5, and α is varies. The lattice size is N = 50 and Nτ = 200[63].

3.3.4 Phase transition from quasi-ordered phase to ordered phase

For fixed K > Kc, one could tune the transition from quasi-ordered phase to

ordered phase by varying α. Various static properties are shown in FIG.(3.5) and critical

value αc is read from the non-analytical point. The spatial properties, such as M2D, ρv, and

Υx have small non-analytic change at the critical point αc. The density of warps, on the

other hand, changes its slope at αc and decrease exponentially as α increase. The correlation

function, as shown in FIG.(3.6) also confirms that this phase transition is mainly driven

by warps. The warp correlation function change from 1/τ2 in the quasi-ordered phase to

1/τa(a ∼ 3 for α = 0.023) in the ordered phase. Near αc, 1/τ decay is observed and is

consistent with analytical analysis[2, 3]. From the figures, one could also see the correlation

function of vortices has no change from quasi-ordered phase to ordered phase.
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Figure 3.6: Correlation function of warps and vortices of phase transition from quasi-ordered

phase to ordered phase. Here, Kτ = 0.01,K = 1.5, and α is varies. The lattice size is N = 50

and Nτ = 200[63].

3.3.5 Phase transition from disordered phase to ordered phase I

This phase transition is particularly interesting as it gives the quantum critical

fluctuation spectrum as proposed in[55]. To study this phase transition, K = 0.4 has been

chosen and α is varied. First, we exam the static properties of this phase transition and

the results are shown in FIG.(3.7). The helicity modulus Υx and magnetization m become

finite for α > αc. Both vortex and warp densities change their slope across αc. In another

word, long range order develop simultaneously along spatial and temporal directions. One

also should noticed that the density of warps decay faster than vortex density across the

critical point. Through the vortices and warps correlation function, as shown in FIG.(3.8),

one could notice the change of warps correlation is more drastic than change of vortex

correlation.
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Figure 3.7: Static properties of phase transition from disordered phase to ordered phase.

The phase transition point αc can be identified as the non-analytical point in the figure.

Here, Kτ = 0.01,K = 0.4, and α is varies. The lattice size is N = 50 and Nτ = 200[63].
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The most important and novel results are revealed by order parameter correlation

function. In FIG.(3.9), the order parameter correlation functions have been shown. From

the figure, one could see that Gθ(x, τ) could be separated into two parts for a fixed x

and for a fixed τ . For α < αc, they tend to go to zero for large τ or x, and for τ > τc,

they approach to a constant value for large x and τ . From the numerical simulation, the

asymptotic behavior of Gθ(x, τ) turns out to be a separable function in x and τ as

Gθ(x, τ) =
A

τ1+ητ
e−(τ/ξτ )1/2 1

xηx
e−x/ξx , (3.19)

where ξx and ξτ are correlation length along spatial and temporal direction, respectively.

The anomalous exponent ητ ≈ 0. By fitting the correlation functions for different α to the

scaling form in Eq.(3.19), ξx and ξτ as a function of α could be obtained. The results are

shown in FIG.(3.10). In the fluctuation regime, the behavior of ξτ is in the same form as

in the theoretical prediction, which is given by

ξτ (α− αc) = τce
a
√
αc/(αc−α), (3.20)

where a is a constant of O(1) and τc ≈ 0.12 from the simulation. The estimated τc is also

consistent with theoretical estimation which is given by τc = 1/
√
K/Kτ = 0.16 with K =

0.4 and Kτ = 0.01. The relation of ξx and ξτ also illustrates in FIG.(3.10). Numerically,

one could fit the data in the form ξx ∝ ξ1/z
τ with z > 8. But z =∞ is more reasonable due

to it is consistent with z =∞ in [2]. Within numerical uncertainty, we have

ξx/ξ0 ≈ ln(ξτ/τc). (3.21)
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The phase transition point αc can be identified as the non-analytical point in the figure.

Here, Kτ = 0.01,K = 0.4, and α is varies. The lattice size is N = 50 and Nτ = 200.

3.3.6 Phase transition from disordered phase to ordered phase II

The phase transition from disordered phase to ordered phase can also be examined

by fixing α and changing K. The statistic to identify the phase transition is shown in

FIG.(3.11). The order parameter correlation function is shown in FIG.(3.12). From which,

we can extract the correlation length as a function of (Kc − K)/Kc, which is shown in

FIG.(3.13). The left graph shows the correlation length in time as a function a (Kc−K)/Kc

for different x = 3, 4. By fitting the line, we get the exponent around 0.5 0.6. The lines for

x = 3 and x = 4 tending to collapse each other implies the separation between time and

space. The right graph verifies that ξx/ξ0 ≈ ln(ξτ/τc).
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Figure 3.12: Order parameter correlation function for Kτ = 0.01, α = 0.026, and varying

K. The lattice size is N = 50 and Nτ = 200. (a). Order parameter correlation function for

fixed x = 4 and varying τ . (b). Order parameter correlation function for fixed τ = 4 and

varying x.

3.3.7 Magnetic Susceptibility

The measured thermodynamic properties in Y Fe2Al10[61], Cv(T ), χ(T ), M(B, T )

have been fit by the scaling ansatz for the free-energy near a quantum critical point, which

takes the form(one can refer chapter 2 for more detail)

f(T,B) = T (d+z)/ytfF (B/T yb/yt) = B(d+z)/yb f̃F (T/Byt/yb), (3.22)

where T is the temperature and B is the in-plane magnetic filed which can tune the tran-

sition to B = 0, T = 0 and introduce a cross-over from quantum critical properties to

Fermi liquid properties. z is the dynamical critical exponent. The scaling dimension satisfy

yt = z. The experiments give χ(T ) ∝ T−γ with γ ≈ 1.4 from T ≈ 20 to about 2K. This

quasi-2D metallic system is well described by the 2D dissipative quantum XY model, which
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give us an opportunity to compare the Monte Carlo simulation of magnetic susceptibility

of 2D dissipative quantum XY model with the experimental measurement.

From both the analytical and numerical calculations, the order parameter corre-

lation function has the form in the quantum critical regime,

G(r, τ) = χ0 log(r0/r)e
−r/ξr 1

τ
e−τ/ξτ , (3.23)

with ξτ = τce
√
αc/(αc−α) and ξr/ξ0 = ln(ξτ/τc). The static magnetic susceptibility can then

be found by integrating the order parameter correlation function over r and τ ,

χ(0, 0) = χ0

∫
d2r1d

2r2

∫
dτ1dτ2 log(r0/|r1 − r2|)e−|r1−r2|/ξr 1

|τ1 − τ2|
e−|τ1−τ2|/ξτ

= χ0

∫
d2Rd2r

∫
dτ ′dτ log(r0/|r|)e−|r|/ξr

1

τ
e−|τ |/ξτ

≈ V χ0ξ
2
rξτ log(ξτ ), (3.24)

where R = (r1 + r2)/2, r = r1 − r2, τ ′ = (τ1 + τ2)/2, τ = τ1 − τ2, and V is the volume

of the system. Considering the scaling Tξτ = 1 and ξr ∼ log(ξτ ), the scaling of magnetic

susceptibility could be written as

χ(0, 0) ∼ T−1 log(T )3. (3.25)

In quantum Monte Carlo, the magnetization is defined as in 3.11. The static

susceptibility can be calculated as

χ =
1

N2Nτ
(〈M2〉 − 〈M〉2. (3.26)

By changing Nτ , which effectively change the temperature for 50× 50 lattice, we could get

the finite size scaling of χ. In this calculation, we fixed Kτ = 0.01, K = 0.4 and sweep α.

The Nτ is chosen from 50 up to 200. In unit of τc, this will give result of temperature in
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range from 0.02τc to 0.005τc. With τc ≈ 20K, the lowest temperature is about 0.1K. So it

is suitable to compare with experiments.

The finite size scaling for χ is shown in FIG.(3.14) and FIG.(3.15). From the

graph, the experiment ansatz form T−1.4 and theoretical expression T−1(log T )2 can both

fit the quantum Monte Carlo equally good.
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Chapter 4

Renormalization Group Analysis of

2+1D Quantum XY Model with

Dissipation

4.1 Introduction

The dissipative quantum XY model (1.6) is introduced [16, 17] to understand the

superconductor to insulator transitions in 2 D films as a function of the normal state resis-

tance [35]. The model is directly applicable to quasi-2D metallic ferromagnets with strong

XY anisotropy. A realization of this model has been found with remarkable properties in

the quantum-critical region [61]. It has also been shown recently that quasi-2D metallic

anti-ferromagnets, with commensurate or incommensurate planar order and incommensu-

rate uni-axial order also map to the dissipative XY model [54]. Metallic anti-ferromagnets
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are of great experimental interest; they are realized by the Fe-based compounds, where

superconductivity occurs in a region around the antiferromagnetic quantum-critical point,

and in several heavy-fermion compounds. The same model also describes the statistical

mechanics of the loop-current order proposed for under-doped cuprates [53] ending in a

quantum-critical point in a region of doping of the highest Tc. In the Fe-compounds, in

the heavy-fermions and in the cuprates, the normal state singular Fermi-liquid properties

in the quantum-critical region, for example the resistivity and the entropy, have the same

functional dependence on temperature. This motivated the idea that although the micro-

scopic physics for these materials is quite different, the statistical mechanical model may

be the same. Several new properties and a new phase has been discovered recently for the

transitions in 2D superconducting films [47], which are not well understood. The dissipative

quantum XY model has also been invoked [30] for the plateau transitions in quantum Hall

effect. These diverse interesting problems call for a thorough understanding of the phase

diagram and the correlation functions of the order parameter near the transitions of this

model.

The classical XY model in 2D does not belong to the Landau-Ginzburg-Wilson

(LGW) class of models for phase transition. The renormalization to zero of the fugacity

of the vortices leads to a phase transition in which there is no order parameter but a dis-

continuity in the long-wavelength order parameter stiffness. The kinetic energy in the pure

quantum XY model make the model Lorentz invariant. Therefore the quantum-transition

and the associated critical fluctuations are the same as in the classical 3D XY model near

its classical transition, which is in the LGW class. However, by including dissipation, the

56



model has a much richer phase diagram [48, 63]. The form of the order parameter cor-

relation functions discovered [63] are quite unlike the form expected in extensions of the

LGW theories to quantum-critical phenomena [40, 25]. The dissipative quantum XY model

can be transformed [2, 3] to a much simpler model in which the properties are governed

by topological excitations, two-dimensional vortices and ’warps’. Warps are instantons of

monopole anti-montpole combinations with zero net charge as well as dipole. We use the

re-expression of the dissipative quantum XY model in terms of warps and vortices and per-

form renormalization group calculations, which has some interesting new technical aspects,

to reproduce the principal features of the phase diagram and of the essential aspects of the

correlation functions discovered in the Monte-Carlo calculations. This leads to a deeper

understanding of the results obtained by numerical methods.

The action of the (2+1)D quantum dissipative XY model of the angle θ(x, τ) at

space-imaginary time point (x, τ) is

S = −J
∑
〈x,x′〉

∫ β

0
dτ cos(θx,τ − θx′,τ ) +

C

2

∑
x

∫ β

0
dτ

(
dθx
dτ

)2

+
α

2

∑
〈x,x′〉

∫
dτdτ ′

π2

β2

[
(θx,τ − θx′,τ )− (θx,τ ′ − θx′,τ ′)

]2
sin2

(
π|τ−τ ′|

β

) , (4.1)

τ/2π is periodic in β, the inverse of temperature 1/(kBT ). 〈x,x′〉 denotes nearest neighbors.

The first term is the spatial coupling term as in classical XY model. The second term is the

kinetic energy where C serves as the moment of inertia. The third term describes quantum

dissipations of the ohmic or Caldera-Leggett type [15]. The last term describes effects of

anisotropy on a lattice with four-fold anisotropy.
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4.2 Mapping to warps and vortics

In Refs.[2, 3], it is shown that after making a Villain transformation [57] and

integrating over the small oscillations or spin-waves, the action is expressed in terms of link

variables which are differences of θ’s at nearest neighbor sites. Here we briefly work through

the main steps to derived the final results. The Villain transform involves expanding the

periodic function in terms of a periodic Gaussian,

exp

[
− βJ

∑
〈ij〉

(1− cos(θi − θj))
]
≈
∑
mij

exp

[
− βJ

∑
〈ij〉

(θi − θj − 2πmij)
2/2

]
(4.2)

where mij are integers that live on the links of the square lattice. On a square lattice one

can choose each site as i = (x, y). One could combine mx,y;x+1,y and mx,y;x,y+1 into a two

components vector mx,y. Keeping the leading quadratic term θx,y − θx+1,y ≈ −a∇xθxy,

where a is the lattice constant we have

(θxy − θx+1,y − 2πmx
x,y)

2 ≈ a2(∇xθxy)2 + 4πa∇xθxymx
x,y + 4π2mx2

x,y (4.3)

where mx
x,y is the x component of the vector field mxy. In Fourier space, this term can be

written as

∑
mij

exp

[
− βJ

∑
〈ij〉

(θi − θj − 2πmij)
2/2

]

=
∑
m

exp

[
J

2

∑
ω,k

(a2k2θ(ω,k)2 + 4πiaθ(ω,k)k ·m(ω,k) + 4π2m(ω,k) ·m(ω,k))

]
(4.4)

The dissipation term can also be written in Fourier space as

Sdiss = α
∑
ω,k

|ω|k2θ(ω,k)2. (4.5)
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Combing the dissipation term with the kinetic term and integrating out the θ fields, the

effective model is now written as

Z =
∑
m

exp

[∑
k,ω

−4π2Jm ·m+
4π2J2c(k ·m)2

(C/c)ω2 + Jck2 + α|ω|k2

]

=
∑
m

exp

[∑
k,ω

−4π2J
Jc|k ×m|2

(C/c)ω2 + Jck2 + α|ω|k2
− 4π2J

ω2m ·m(C/c+ αk2/|ω|)
(C/c)ω2 + Jck2 + α|ω|k2

]
(4.6)

where we redefined J → Ja2∆τ , C → Ca2/∆τ , α → αa3, m →m/a, and c = a/∆τ with

∆τ is the slice of imaginary time dimension.

The vector field m can be written as a sum of a longitudinal, ml, and a transverse

component, mt which by definition satisfy ∇×ml = 0 and ∇ ·mt = 0. The vorticity field

ρv(r, τ) is then related to the transverse component alone and is given by

∇×mt(r, τ) = ρv(r, τ) = ρvc
∑
i,µ

δ(r − ri)δ(τ − τµ), (4.7)

where (ri, τµ) is the location of the vortices and ρvc is the charge of the vortex.

Unlike the 3D XY model, a new topological excitation is introduced to take the

longitudinal component into account. This new topological excitation is given by a warp

field ρw(r, τ) defined through a nonlocal relation in space,

dml(r, τ)

dτ
=

∫
d2Rρw(R, τ)

r −R
|r −R|3

(4.8)

ρw is event where the longitudinal component changes. One can see FIG.(4.1) for a warp

in time dimension.
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Figure 4.1: A warp defined in the time dimension in which the divergence of m field

changes[3].

In terms of the m, the Fourier transformed warp field ρw(k, ω) is

iω

ck
k ·m(k, ω) = ρw(k, ω). (4.9)

In terms of ρv, ρw, the action, in the continuum limit, could be split into three

parts: S = Sv + Sw + S′w,

Sv =
1

L2β

∑
k,ω

J

k2
|ρw(k, ω)|2,

Sw =
1

L2β

∑
k,ω

α

4π|ω|
|ρw(k, ω)|2,

S′w =
1

L2β

∑
k,ω

G(k, ω)

(
JC − αC|ω|

4πc
− α2k2

16π2

)
|ρw(k, ω)|2, (4.10)

where G(k, ω) = 1
Jck2+(C/c)ω2+α|ω|k2 .

4.3 Failure of Wilson RG and Hertz Theory

To study the quantum critical properties of this transformed action, one could use

Wilson renormalization group method and Hertz’s procedure to introduce fixed dynamical

critical exponent. The predictions follow this procedure turns out not consistent with neither

numerical simulation nor experimental results. In the following, the Wilson renormalization

group method is given for the action of warps.
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The action for the warps is

Sw =
1

L2β

∑
k,ω

α

4π|ω|
|ρw(k, ω)|2 +

∆w

T

∑
i

ρw(ri, τi)
2 (4.11)

where ∆w is the core energy of warps. The S′w is neglected for a moment and will include

in later discussion. One could follow the same procedure in [41] to get a transformed action

through using the Stratonovich-Hubbard transformation,

Sw =
∑
ω

α

4π
|ω|φ(ω)φ(−ω)− yw

∫ β

0
cos(φ)dτ (4.12)

Following the standard Wilson RG procedure, one could split φ field into fast mode and

slow mode,

φ(ω) = φs(ω) + φf (ω) (4.13)

where,

φs(ω) =


φ(ω) if |ω| < Λ− dΛ

0 otherwise

(4.14)

and

φf (ω) =


φ(ω) if Λ− dΛ < |ω| < Λ

0 otherwise

(4.15)

with Λ be the upper cut-off of the frequency. Then one could obtain an effective action

for the slow modes by integrating the fast modes. This effective action with slow modes

will have a cut-off Λ− dΛ instead of Λ. To get back the original action, one should rescale

the cut-off by dΛ/Λ. Finally, the renormalization group equations are read by compare the

rescaled action with the original action. We will get the following RG equations, the detail
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calculation could be found in the book [41]

dyw
d ln Λ

= (
1

α
− 1)yw,

dα

d ln Λ
= 0 (4.16)

These turn out not quite right for warps problem. The right way to do the renormalization

group calculation is given in [4, 5]. It could also be found in the appendix due to it is very

important for this thesis.

Another issue is more critical for quantum dissipative XY model. As mentioned in

quantum Monte Carlo simulation, the correlation function of this model can be separated

into space and time, which is quite different with Hertz’s theory. The three distinct parts

of the phase diagram cannot be explained through the way by introducing fixed dynamical

critical exponent. Without the S′w term, the problem is completely two independent degree

freedoms which lives in space and time, respectively. Then one will predict that there are

four different phases, which correspond the combinations of order and disorder of warps

and vortices. To address this problem, we need to include the S′w term and generalize the

Hertz’s idea by considering the running dynamical critical exponent to take the anisotropy

of space and imaginary time into account, which will be discussed in detail in the following

chapter.

4.4 Renormalization Group Equations

As shown in last section, the renormalization group analysis must be done in real

space, keeping the relevant terms, the action of the model can be written in space and in
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imaginary time as,

S = α
∑
i 6=j

ρw(ri, τi) ln
|τi − τj |
τc

ρw(rj , τj)

+g
∑
i 6=j

ρw(ri, τi)
1√

|ri − rj |2 + v2(τi − τj)2
ρw(rj , τj)

+
J

2π

∑
i 6=j

ρv(ri, τi) ln
|ri − rj |

ac
ρv(rj , τj) + ln yw

∑
i

|ρw(ri, τi)|2 + ln yv
∑
i

|ρv(ri, τi)|2.

(4.17)

The integration over r, r′ is over all space points over imaginary time τ from 0 to 1/T . Here

g =
√
JC/4π, v2/c2 = J/C, C = C/τc are dimensionless variables, and c = a/τc, a is the

lattice constant and τc is the short time cut-off.

The first term in (4.17) is the action of the classical vortices interacting with each

other through logarithmic interactions in space but the interactions are local in time. The

second term describes the warps interacting logarithmically in time but locally in space.

The third term is the action for a (anisotropic) Coulomb field between warps, which if

present alone for the isotropic case is known [45] will not to cause a transition; it will be

seen to be marginally relevant in the present problem in which the space-time anisotropy

is required to flow. The short distance core-energy of the warps and vortices is taken care

of by the final terms in which yv and yw are the fugacities of the vortices and the warps,

respectively.

The warp and the vortex variables in the first two terms are orthogonal since they

are related respectively to the divergence and rotation of a vector field. With just these

two terms alone, the problem is easy. If the first term dominates, one expects a transition

of the class of the classical Kosterlitz-Thouless transition through the renormalization of
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the fugacity of vortices to 0. But the ordered phase would have bound vortex-anti-vortex

pairs in space with nothing to correlate them in time. If the second term dominates, there

is a quantum transition to a phase with binding of warp-antiwarp pairs in time but not

in space. Four distinct phases would therefore be found in the α − KKτ plane. This is

unlike the phase diagram of Fig. (3.2). We will show that given the growth of correlations

due to the renormalization of the density of isolated vortices or of isolated warps → 0, the

actual critical points are determined by the third term. The third term scales time and

space differently, depending on the flow due to the first two terms. This leads to ordering

at T = 0 both in time and space to a state with symmetry of the 3D XY model over most

of the phase diagram but an interesting region in which the system is spatially ordered for

small times but disordered at larger times persists. The transformation to the topological

model relies on a finite dissipation coefficient α. One cannot take the limit α → 0 and

expect to get back the properties of the (2+1) d quantum XY model without dissipation,

which should have a quantum transition of the class of 3d classical XY model.

The Renormalization Group (RG) equations for the coupling J and the vortex

fugacity yv may be obtained following the same procedure of Kosterlitz [31] or Jose et

al.[26]. The renormalization of these quantities can be obtained by scaling the spatial

length scale `r = ln(r/a), where a, the lattice constant serves as the short-distance cut-off

are,

dJ = −πy2
vJ

2d`r (4.18)

dyv = (2− J

4π
)yvd`r (4.19)

To derive the RG equation for the parameters for the warps, we consider the
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effective interaction between two warps at a point in space and separated by time τ > τc.

This pair will be modified by the screening due to the creation of a virtual pair, at times

τ ′ and τ ′′, τc < |τ ′ − τ ′′| < τce
d`τ , where `τ = ln(τ/τc) and τc is the short-time cutoff. We

integrate over the coordinates of the two virtual warps to get a renormalized interaction

between the real pair. The RG equations for α can be derived by scaling `τ in this way.

But the fugacity of warps is renormalized by both rescaling `τ and, due to the third term

in the action (4.17), by rescaling `r. Therefore we must also consider the renormalization

of the parameters g and v. A scale dependent v = d|r|/dτ is equivalent to allowing a

scale-dependent dynamical critical exponent,

z ≡ d`τ/d`r. (4.20)

The renormalization procedure for yw, g and v is given in the appendix. The results are

dα = −2αy2
wd`τ , (4.21)

dyw = yw
(
(1− α)d`τ + (2− g)d`r

)
, (4.22)

dg = −gd`r −
8π3

3

g2y2
w

vac

(
(
1

4
+
v2

2
)dlτ + (1 +

v2

3
)dlr

)
, (4.23)

dv =
(
d`τ − d`r

)
v. (4.24)

These equations may be written as scaling equations either with respect to `r or `τ by using

z defined by Eq. (4.20). For example, (4.24) may be written as

dv

d`τ
= (1− y)v; y = z−1 (4.25)
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It is obviously redundant to keep both y and v. We note the identity

dy

d`τ
− y =

τ

r

dv

d`τ
− (

τ

r
)2v2 (4.26)

Using the above equation, (4.25) can be re-written as

dy

dlτ
= 2y(1− y). (4.27)

4.5 RG Flow analysis

We now have a complete set of RG equations. First, we note that Eq. (4.27)

will give the fixed points y∗ = 1,∞, 0, in which y∗ = 1 is a stable fixed point. From Eq.

(4.25), we note that near y∗ = 1, the velocity has a stable fixed point at its initial value.

The z∗ = ∞ fixed point is unstable, corresponding to the unstable fixed point for velocity

at v∗ = ∞. The z∗ = 0 fixed point is also unstable, corresponding to the unstable fixed

point at v∗ = 0. These results are in accordance with the investigations on expansion about

isotropy of the classical anisotropic coulomb gas model in 3D [32], i.e. the model with only

the third term in (4.17). We find that the 2D limit, (i.e. v∗ = 0) as well as the 1D limit

(v∗ = ∞) is unstable (i.e. has critical points) towards the stable isotropic problem. We

now consider the regimes of initial parameters in which the three different regions in the

phase diagram in (3.2) are obtained, and calculate the correlation lengths in time and space

about the critical points separating them:

I. J/2π . 4, α . 1: Looking at the first two terms of the transformed action,

(4.17), or the RG Eqs. (4.18, 4.21), the fugacity of both vortices and warps is large in this

region. Therefore the model is in its quantum disordered state in this region, corresponding

to region A in the phase diagram in Fig.(3.2).
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II. J/2π . 4 and α ≈ 1: In this region, we must first analyze the equations for

the warps, Eqs.(4.21, 4.22, 4.23). We note from Eqs. (4.21, 4.22) that for z∗ →∞, and the

initial α > 1, α flows asymptotically to → const for long time. yw will flow to 0, provided

g remains finite or zero. For initial α < 1, α flows asymptotically to 0 and yw to +∞ at

long times. Therefore α∗ = 1 is an unstable critical point. We note from (4.23) that near

the α∗ = 1 fixed point, as z → ∞ and yw → 0, g flows to zero, consistent with the above

requirement.

We expand near the unstable α = 1− fixed point to find

yw ∝
(
e−τ/ξτ − 1); ξτ ∝ e(b0/(α−1))1/2

. (4.28)

b0 is a coefficient of O(1). Let us study J and yv near this point. To do so, we convert all

scaling in terms of `τ by using Eqs. (4.20,4.27). The flow of the vortex parameters J and

yv is now given by

dJ

dlτ
= −1

z
πy2

vJ
2

dyv
dlτ

=
1

z
(2− J

4π
)yv

(4.29)

We also have the equation

dyv
dyw

=
1

z(1− α)
(2− J

4π
)
yv
yw

(4.30)

Near the critical point z∗ → ∞, but (1 − α) → 0. From Eq. (4.27), one finds the leading

behavior of 1/z = 0 + O(τ−2). But α approaches its fixed point of 1 exponentially slowly

with τ−1. Therefore the (1 − α) term is not important compared to z. If (2 − J/4π) does
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not flow, as is found self-consistently, then we will get

yv ∝ y1/z
w , i.e. for 1/z → 0, yv ∝ ln yw. (4.31)

We can get the correlation length in space from the relation, k ∝ ω1/z. For 1/z → 0, this

gives that the spatial correlation length ξr is proportional to logarithm of the temporal

correlation length ξτ . We can also get the same result explicitly from d`r = (1/z)d`τ and

the result that 1/z ∝ τ−2 near this fixed point.

The same results for the RG flows are also obtained from the numerical solution

of the equations near this critical point. The critical point corresponds to the quantum-

disordered (A) to 3D ordered transition (B) in Fig.(3.2). The correlation lengths in time

and space deduced above have been found in extensive Monte-carlo calculations [63]. We

understand now that the physical region of the conjecture made in Ref. (Lijun that the

freezing of warps drives the freezing of vortices. It is that the growing fugacity of warps

drives a flow of the space-time metric parameter z so that the fugacity of the vortices, Eq.

(??) becomes time-dependent even for values of J below the critical Kosterlitz-Thouless

value of 8π.

III. α . 1 and J/4π ≈ 2: In this region, it is appropriate to start the analysis

with examination of Eqs. (4.18) for flow of J and yv. Eqs. (4.18) have the standard KT

flow with the KT point J∗ = 8π near which yv → 0. For J > 8π, yw flows towards 0 and

J flows to const. Following Nelson and Kosterlitz, the spatial stiffness has a jump at the

transition. Now we examine whether this is changed by the action of warps. We start by

assuming that such a fixed point corresponds to the z → 0 unstable fixed point. We will

soon check that this is consistent. From Eq. (4.25), z → 0 leads to v → 0 at the fixed point.
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Let us study how warps are affected by this. From Eq. (4.23), g flows to 0. The equations

(4.21), (4.22) may be written in terms of the scale length `r as

dα

d`r
= −2zαy2

w (4.32)

dyw
d`r

= yw
(
z(1− α) + 2

)
. (4.33)

We note that neither the fugacity yw nor α flow in this case. So warps remain completely

unaffected by the vortex freezing. There is no development of correlation in time, as we can

check directly. This is consistent with the assumption that this fixed point corresponds to

z∗ = 0. We have a phase in which the spatial correlations become of the ordered Berezinsky-

Kosterlitz-Thouless phase but there are no correlations in time. This corresponds to the

transition from the quantum-disordered phase A to the quasi-ordered phase C in Fig. (3.2).

The results are consistent with the Monte-carlo calculations, which give that the transitions

at T → 0 in this regime of parameters is a pure Kosterlitz-Thouless transition with a jump

of spatial stiffness, with the correlations of the order parameter unchanged from those in

the disordered phase. The phase transition A-C may well correspond to the superconductor

to a Normal metal transition found in superconducting films [14]. If so, phase C must be

an unusual metal. This matter requires further investigations.

IV. J/4π & 2, α → 1−: As discussed in III, for these values of J , yv → ∞ and

isolated vortices are frozen for α < 1. As α → 1−, yv remains stable at this value and

the RG equations for α and yw are simply (4.21) and (4.22), respectively. So yw → 0 as

α → 1 and density of isolated warps tends to 0 rapidly for α > 1. For α > 1, long-range

correlations develop in time as well as space and the ordered state is similar to that obtained

directly from the quantum disordered state discussed in II above.
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4.6 Summary

The above analysis leads to the flow diagrams, as shown in FIG.(4.2). From the

two flow diagrams, one could easily identify three stable fix points, which are correspond

to the three distinct phases in Monte Carlo simulations. The different behavior of flows for

α > 1 and α < 1 imply α = 1 is a critical point. Another critical poing J/4π = 2 is also

identified from α < 1 flow diagram.

In FIG.(4.3), we plot the phase diagram based on renormalization group analysis.

From the quantum Monte Carlo simulations, we know that the quantum critical point

weakly depend on J . But from first order RG calculations, the quantum critical point is

α = 1, which independent of J . The dependent of J is believed to arise only under high

order RG calculations. The key result, ξr ∼ ln ξτ , is reproduced from RG calculation by

introduce running dynamical critical exponent z.

4.7 Correlation Function

The correlation function for the order parameter following the same procedure as

we do the Villain transformation. The correlation function is given by

Ciµ,jν =< eiθiµe−iθjν >≡
∫
Dθe−S̄∫
Dθe−S

(4.34)

where S̄ = S + i(θiµ − θjµ − 2π
∑

pathm), the last term will not change the evaluation

because all m are integers. This is added to reproduce the non-dissipation result. Using

the usual Villain transformation with the definition of new auxiliary field ~η which live on

the site of the space lattice. ηx is 1 or 0 depending on whether or not the path include the
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Figure 4.2: The sketch of the flows of the coupling constants based on expansion around

the fix points. The left panel shows the flow diagram for α < 1. The right panel shows the

flow diagram for α > 1.

link xyµ to (x + 1yµ). The same definition for ηy. Similarly we define η0 which is 1 or 0

depending on whether or not the path include the link xyµ to (xyµ+ 1). We get

S̄ = S +
1

L2β

∑
ln

(2πJ)G(kl, ωn)

{
(−iωnη0∗/2)(ikl ·m) + (−ikl × ~η∗) · (ikl ×m) + c.c.

+

[
(C/c)ω2

n + α|ωn|k2

]
(m · ~η) + |ωnη0/2 + kl · ~η∗/2|2

}
(4.35)

with

S =
∑
ln

[
4π2Jm ·m− 4π2J2c(kl ·m)2

(C/c)ω2
n + Jck2

l + α|ω|k2
l

]
(4.36)

and G(kl, ωn) = 1
Jck2

l +(C/c)ω2
n+α|ωn|k2

l
. With the relation between m field and vortex and

warp density

m = ρv
ik × ẑ
k2

+ ρw
c

iω
k̂ (4.37)
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Figure 4.3: The sketch of the phase diagram from the renormalization group analysis. The

blue dash line is obtained from the quantum Monte Carlo simulations.

we have

S̄ = Sv + Sw +
1

L2β

∑
ln

(2πJ)G(kl, ωn)

{
(−iωnη0∗/2)(ikl ·m)

+
C + cαk2

l /|ωn|
ikl

(k · ~η)ρw + c.c.

+ |ωnη0/2 + kl · ~η∗/2|2
}

+
1

L2β

∑
ln

[
2πJ

k2
(−ik × ~η∗) · ẑρv + c.c.

]
(4.38)

Due to warps and vortices are completely decoupled, we could calculate the correlation

function contributed from those two objects and spin wave separately and the final result

will be the product of those three functions. So we write

Ciµ,jν = Cviµ,jνC
w
iµ,jνC

sw
iµ,jν (4.39)

with

Cviµ,jν =

∫
Dθe−S̄w∫
Dθe−Sw

,

Cwiµ,jν =

∫
Dθe−S̄v∫
Dθe−Sv

,

Csw
iµ,jν = e

− 1
L2β

∑
ln(2πJ)G(kl,ωn)|ωnη0/2+kl·~η∗/2|2 (4.40)
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where

S̄w = Sw +
1

L2β

∑
ln

(2πJ)G(kl, ωn)

{
(−iωnη0∗/2)(ikl ·m)

+
C + cαk2

l /ωn
kl

(k · ~η)ρw + c.c.

}
S̄v = Sv +

1

L2β

∑
ln

[
2πJ

k2
(−ik × ~η∗) · ẑρv + c.c.

]
(4.41)

The detail calculation of the correlation function can be found in the appendix, the final

result is given in the following

Ciµ,jν =
c0

[1− cos(2πτT )]1/2α
(

ac
|ri − rj |

)−J
2y2
vexp

(
− 2πT

+∞∑
n=1

1− cos(ωnτ))

|ωn|+ (α/4π∆w)−1

)
× exp

(
−
∫ ∞
−∞

dω

2π

∫
dk

(2π)2

eik·r−iωτ

Jck2 + (C/c)ω2 + α|ω|k2

)
(4.42)
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Chapter 5

Effects of Anisotropic Fields in

Dissipative Quantum 2+1D XY

Model

5.1 Introduction

In the previous chapter, we show that the phase diagram of dissipative quantum

2+1D XY model will be reproduced by one loop renormalization group calculation. To

derive the results, we introduced a scale-dependent dynamical critical exponent. To fully

understand the quantum criticality for this model, we need include the symmetry breaking

term, which arisen naturally in the loop current model to describe that loop current pat-

terns can take one of the four possible configurations in the pseudogap region. In classical

two dimensional XY model, such symmetry breaking terms has been studied[26]. Jose, et
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al found that the four-fold symmetry-broken term is irrelevant in the fluctuation region but

is highly relevant in the order state. In the two dimensional quantum XY model with dissi-

pation, Aji [2, 3] proved that the four-fold anisotropy will only renormalize the dissipation

strength α and change the position of the quantum critical point. Later, Lijun [63] used

quantum Monte Carlo simulation to show that the four-fold anisotropic field will weakly

change the position of quantum critical point but keep all the quantum criticality, such as

separability of correlation function, scale-invariant fluctuation spectrum.

In this chapter, we will use renormalization group method to study the effect of

the p-fold anisotropic fields. We will show that in the quantum critical region, the p-fold

symmetry-broken fields will be relevant if the anisotropy exceed a certain strength. We

will also demonstrate that, in the 2D limit, our results will go back to the results in two

dimensional classical XY model with anisotropic fields.

5.2 Symmetry Breaking Term

We now analyze the effect of the anisotropy field on the local quantum-critical

point in action (4.1). For the four-fold symmetry broken term, p = 4. To handle such a

term in the action we use the following approximation:

ehp cos(pθi) ≈
∑
qi

eln(yp)q2
i+ipqiθi , (5.1)

where qi is an integer field that lives at each site and yp = hp/2. For large value of yp the

approximation is reliable as the sum will be dominated by the terms qi = 0,±1. Use the
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same procedure by integrating out the phase variable, one could arrive the following action,

S = Sv + Sw + S′w +
1

L2β

∑
ω,k

Gc2

(
2pπJ

k

ω
ρw(k, ω)q(−k,−ω) + p2|q(k, ω)|2

)
+

1

L2β

∑
ω,k

ln(yp)|q(k, ω)|2,

(5.2)

Sv, Sw, and S′w are given in 4.10. The symmetry broken term will introduce a new type

of integer charge which is linearly coupled with warp. For convenient, we called this new

charge as p-charge. In real space, this term can be written as

Sp =
c2p2

4g

∑
i 6=j

ρq(ri, τi)
1√

|ri − rj |2 + v2(τi − τj)2
ρq(rj , τj) + ln(yp)

∑
i

|ρq(ri, τi)|2

− icp

2

∑
i 6=j

ρw(ri, τi)
sign(τi − τj)
|ri − rj |

ρq(rj , τj) (5.3)

The renormalization equations can be derived by following the same procedure as before,

see appendix for more detail, we get

dyp =

[
d`τ + (2− c2p2

4g
)d`r

]
yp,

dg = −8π3

3

g2y2
w

vg2τc

[
(
1

4
+
v2

2
)d`τ + (1 +

v2

3
)d`r

]
+

2π3

3

c2p2y2
p

vτc

[
(
1

4
+
v2

2
)d`τ + (1 +

v2

3
)d`r

]
,

(5.4)

the first term in g comes from the Coulomb interaction for warps and the second term

comes from the interaction between warps and p-charges. In the supplementary we also

show there is a duality between warps and p-charges. This duality will leads to the scaling

equation for g, which derived by Jose[26] for two dimensional XY model with anisotropy
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fields. We have the following renormalization group equations for all coupling constants.

dα = −2αy2
wdlτ ,

dg = −8π3

3

g2y2
w

vτc

[
(
1

4
+

v2

2v2
c

)dlτ + (1 +
v2

3v2
c

)dlr

]
+

2π3

3

c2p2y2
p

vτc

[
(
1

4
+

v2

2v2
c

)dlτ + (1 +
v2

3v2
c

)dlr

]
,

dyw =

{
(1− α)dlτ + (2− g)dlr

}
yw,

dyp =

{
dlτ + (2− c2p2

4g
)dlr

}
yp,

dv = (dlτ − dlr)v,

dJ = −πy2
vJ

2dlr,

dyv = (2− J

4π
)yvdlr. (5.5)

Firstly, we notice that the scaling equation for velocity v remain the same, which

imply that the scaling equation for z remain the same. Solve the equation dz/d`τ = 0 will

give three fix points z = 0,∞, and 1. Expanding around these fix points, one could easily

verify that z = 0(2D limit) and z = ∞(1D limit) are unstable fix points and z = 1 is the

stable fix point.

Secondly, if we change hp to −hp in the original action, the effective action will

not change after integrating spin-wave fluctuations. This symmetry require that our renor-

malization equations also have this symmetry. One could easily check our renormalization

equations satisfy this symmetry. This symmetry requirement also imply to first order cal-

culation, the critical point will not change.
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5.3 Properties near the quantum critical point

Near the quantum critical point α = 1, the quantum dissipative XY model without

anisotropic term is mainly control by the behavior of warps. The dynamical critical exponent

will approach to infinity in this case. One could focus mainly on the renormalization group

equations of warps and p-charges, which are given by

dα

d`τ
= −2αy2

w,

dyw
d`τ

= yw

[
(1− α) +

1

z
(2− g)

]
,

dyp
d`τ

=

[
1 +

1

z
(2− c2p2

4g
)

]
yp,

dg

d`τ
= −8π3

3

g2y2
w

τc
f(v) +

2π3

3

c2p2y2
p

τc
f(v),

dv

d`τ
= (1− 1

z
)v. (5.6)

where f(v) = 1
4v+ v

2v2
c

+ 1
vz+ v

3v2
cz

. We will show later that f(v) ∼ v ∼
√
z near z =∞ critical

point. Expanding around the unstable fixed point α = 1−1, we still have 1/z = 0 + τ−2.

Therefore, v = v0e
`τ for large z. This equality means v ∼ τ ∼

√
z. Setting dg/d`τ = 0, one

could find four fix points (1). yw = 0, yp = 0, g = constant, α = constant; (2). yw =∞, yp =

0, g = 0, α = 0; (3). yw = 0, yp = ∞, g = ∞, α = constant; (4). gyw = 1
2cpyp. Expanding

around these fix points, one could study the stability of the fix points. We will show that

the first one is a unstable fix point, the second and third one are stable fix points, and the

last one is a critical point.
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5.3.1 Stability of yw = 0, yp = 0, g = constant, α = constant

We expand around this fix point by writing yw = δyw, yp = δyp, g = g∗ + δg, α =

α∗ + δα. We have

dδα

d`τ
= −2α∗δy2

w,

dδyw
d`τ

= (1− α∗ − g∗/z)δyw,

dδyp
d`τ

= [1− c2p2/(4zg∗)]δyp,

dδg

d`τ
=

8π3

3τc
(−g∗2δy2

w +
1

4
c2p2δy2

p)
√
z. (5.7)

We substitute f(v) ∼
√
z in the above equations. Notice z ∼ τ2, we can simplify the above

equations for δyw and δyp to get dδyw/d`τ = (1− α∗)δyw and dδyp/d`τ = δyp. The second

equation immediately tells us yp will flow away from 0 as δyp = e`τ ∼ τ . This proves that

the fix point yw = 0, yp = 0, g = constant, α = constant is unstable.

5.3.2 Stability of yw =∞, yp = 0, g = 0, α = 0

Expanding around this fix point, we have y−1
w = δyw, yp = δyp, g = δg, α = δα.

This expansion will lead to

dδα

d`τ
= −2δαδy−2

w ,

dδy−1
w

d`τ
= (1− δα− δg/z)δy−1

w ,

dδyp
d`τ

= [1− c2p2/(4zδg)]δyp,

dδg

d`τ
=

8π3

3τc
(−δg2δy−2

w +
1

4
c2p2δy2

p)
√
z. (5.8)

We will show that this fix point is stable consistently as long as gyw > 1
2cpyp and α < 1.

If gyw > 1
2cpyp or δgδy−1

w > 1
2cpδyp, the first term in dδg will dominate. We will prove
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that this inequality will always be satisfied as long as the initial condition does. Neglecting

the second term, which we will show that the second term will approach to zero, we have

dδg/d`τ = −8π3

3τc
δg2δy−2

w

√
z. As long as δg → 0 and δα → 0, δy−1

w will also flow to ∞

as τ1. Therefore dδg/d`τ ∼ −δg2τ3 and this will lead δg ∼ τ−3. As δy−1
w → ∞, δα

will leads α flow to zero. Therefore, δg ∼ τ−3 for large τ . zδg ∼ τ−1 will results in

dδyp/d`τ ∼ −c2p2τ/4δyp. From this we see that δyp → 0 as e−c
2p2τ/4, which is fast than

δgδy−1
w ∼ τ−2. This discussion shows that δgδy−1

w > 1
2cδyp will always be satisfied along the

flows. We conclude that yw = ∞, yp = 0, g = 0, α = 1 is a stable fix point if gyw > 1
2cpyp

and α < 1.

5.3.3 Stability of yw = 0, yp =∞, g =∞, α = constant

We expand around this fix point by writing yw = δyw, y
−1
p = δyp, g

−1 = δg, α =

α∗ + δα. We have

dδα

d`τ
= −2α∗δy−2

w ,

dδyw
d`τ

= (1− α∗ − 1

zδg
)δyw,

dδy−1
p

d`τ
= [1− c2p2δg/(4z)]δy−1

p ,

dδg−1

d`τ
=

8π3

3τc
(−δg−2δy2

w +
1

4
c2p2δy−2

p )
√
z. (5.9)

We will demonstrate that this fix point will be stable if either gyw < 1
2cpyp and α < 1 or

α > 1. We first prove the case for α > 1. In this case, α∗ > 1. Therefore, dδyw/d`τ =

−(α∗ − 1 + 1
zδg )δyw. From this equation, we immediately see that δyw flows to zero. The

second term in dδg−1 will dominate and we will show it does so consistently. Neglecting the

first term, dδg−1/d`τ = 2π3

3τc
c2p2δy−2

p

√
z. Due to both δg−1 and z flow to zero, dδy−1

p /d`τ =
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δy−1
p . Therefore, we have δy−1

p = e`τ ∼ τ . Plugging into the equation for δg−1, we can see

that δg−1 ∼ τ3. From this, we solve the scaling equation for δyw and find that δyw ∼ e−τ .

Therefore δg−1δyw ∼ τ3e−τ flows to zero while pδy−1
p ∼ τ flows to infinity.

In the following, we will show that if gyw <
1
2cpyp and α < 1, this fix point is also

stable. We will assume δg → 0 and will check this consistently. Following this, δy−1
p ∼ τ .

Under the initial condition gyw <
1
2cpyp, we neglect the first term in dδg−1 equation and find

that δg−1 ∼ τ3. Following this, δyw ∼ e−τ . Therefore the condition δg−1δyw < 1
2cpδy

−1
p

will be satisfied due to the former goes to zero as τ3e−τ and the latter goes to infinity as τ .

5.3.4 Summary of the flows near the quantum critical point

To summary, we find that the critical point is still αc = 1. For α < αc, a new

critical line gyw = 1
2cpyp arisen. When α < αc, if gyw >

1
2cpyp, the anisotropic fields will be

irrelevant; on the other hand, if gyw <
1
2cpyp, the anisotropic fields will be highly relevant.

This condition could be understood in terms of bare parameter by noticing that g =
√
JC
4π ,

yw = e−∆wτc , and yp = hp/2. This critical line is then written as

√
JCe−∆wτc = πcphp (5.10)

where ∆w is the core energy of warps and is propotional to α. For very large hp, hp cos(pθi)

will forces that the angle θi can only take one of the p different states. This will lead the

ordered of warps. For small hp, the warps are still favorable and the system will be in the

quantum fluctuating regime and anisotropic fields are irrelevant.

For α > αc, the warps will be in ordered state, which will driven the ordered of

p-charges. Therefore, in the ordered phase, anisotropic fields are relevant.
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In FIG.(5.1), we summary the above expansion analysis. The two critical lines

gyw = 1
2cpyp and α = 1 are represented by two dashed lines in the graph. We see from the

graph that there are two stable fixed points, corresponding ordered of warps and ordered of

p-charges. The quantum critical point α = 1 is still unchanged under first order calculations

for small hp, while for large hp the quantum fluctuations will be effected.

yp

gyw

Α

1

Figure 5.1: The sketch of the flow diagram based on the expansion around fix points

near z∗ = ∞. The two dashed lines represent the critical line gyw = 1
2cpyp and α = 1,

respectively.

5.4 Summary

From the above analysis, we see that the anisotropic fields will have different effects

in dissipative quantum XY model. In the quantum fluctuation regime, small anisotropic

fields will not change the quantum criticality, which is dominated by the fluctuation of
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warps. But for large anisotropic fields, the quantum fluctuations will be destructed by the

ordered of p-charges. In physics, this result is understood due to large symmetry breaking

fields will lead the frozen of angle θ. In turn, the frozen of the order parameter will induce

the ordered of warps.
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Chapter 6

Conclusions

The dissipative quantum XY model is first proposed [16, 20] to explain the su-

perconductor to insulator transition in thin superconducting films. Later, the same model

but with four-fold anisotropy has also been proposed as a model for the observed magnetic

order in underdoped region of the cuprates and the fluctuation of such order in quantum

critical region of cuprates[3, 2].

By using renormalization group methods and introducing running dynamical crit-

ical exponent to take the anisotropy of space and time into account, we solved the reformu-

lated model of the 2D dissipative quantum XY model. The fixed points in the RG equations

of this model corresponding exactly the three distinct phase in quantum Monte Carlo sim-

ulation. The quantum critical properties of the transition from disordered phase to ordered

phase are studied by expanding the coupling constants near the unstable fixed point. We

found the spacial correlation length has logarithmic relation with the temporal correlation

function. We also proved that the quantum critical fluctuation can be separate in space

84



and time. The novel idea of running dynamical critical exponent is quite different with

the Hertz-Millis-Moriya Theory by just choosing fixed dynamical critical exponent. The

effects of symmetry breaking near quantum critical point have been examined. For small

anisotropy fields, the quantum criticality remain the same, while the quantum fluctuations

will be destructed for large anisotropy fields.

We also used quantum Monte Carlo simulation to study the transition from or-

dered phase to disordered phase and ordered phase by fixing α, Kτ , and changing K. The

divergence of temporal correlation length as a function of (Kc − K)/Kc is examined and

the power of 0.5 0.6 is extracted from Monte Carlo simulation. Also, from the correlation

function of different time and space, the relation of temporal correlation length and spacial

correlation length is investigated. ξr ∼ ln ξτ is further confirmed through this direction

of changing variable. We also found for different x = 3 and x = 4, ξτ (τ, x) has the same

relation of (Kc −K)/Kc within the numerical uncertainty, this should prove that ξτ (τ, x)

is actually independent of x and imply the separation of correlation function in space and

time.

Through finite size scaling, we studied the scaling of static magnetic susceptibility

for lattice size N = 50 and different Nτ range from 50 to 200. In terms of ultra-violet cutoff

τc, the temperature we are studying is from 0.02τc to 0.005τc. If τc = 20K, this numerical

simulations are in the same temperature range as in experiment. From the simulation,

we found that χ ∼ T−1.4 which consistent with experiment and we also shown that the

theoretical expression T log2(T ) could also fit the data equally well.
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Appendix A

Derivation of the Renormalization
Group Equations for Warps

Since warps and vortices are orthogonal objects, one may consider the partition
function as the product of their partition functions. As in Eq. (??) of the text, the action
for the warps, Sw = S0

w + S′w consists of two terms,

Sw = α
∑
i 6=j

ρw(ri, τi) ln
|τi − τj |
τc

ρw(ri, τj)δ(ri − rj),

S′w = −
√
JC

4π

∑
i 6=j

ρw(ri, τi)
1√

v2(τi − τj)2 + |ri − rj |2
ρw(rj , τj), (A.1)

where v =
√

Jc2

C .

The partition function for warps is

Z =
∑
n

y2n
w

∫ ∞
ac

d2r2n

a2
c

· · ·
∫ +∞

ac

d2r1

a2
c

∫ β

0

dτ2n

τc
· · ·
∫ τ2−τc

0

dτ1

τc

×
∑

{ρw=±1}

exp

[
α
∑
i 6=j

∫
d2riρw(ri, τi) ln

|τi − τj |
τc

δ(ri − rj)ρw(rj , τj)

+ g
∑
i 6=j

ρw(ri, τi)
1√

v2(τi − τj)2 + |ri − rj |2
ρw(rj , τj)

]
. (A.2)

Here y is the fugacity of the warps, and we have defined yw = ya2
cτc, and g =

√
JC
4π , and

we have normalized the space and time integrals to diminsionless variables in terms of the
lattice constant a and the upper cut-off in time, τc. We consider only ρw(r, τ) = ±1, as
higher charged warps are unimportant for low energy phenomena.

The first term in the partition function is much more singular than the second
term. In the first term warps interact locally in space. We consider renormalization of
interactions between a pair of warps due to a pair of virtual warps by summing over all
possible interactions between the virtual pair and the others. The renormalized interactions
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at longer and longer distances and longer and longer times are found by integrating over
spatial scales increasing by ed`r and time-scales increasing by ed`τ . Let the warps be located
at (ri, τi) and (rj , τj) with charge ρw(ri, τi) = +1 and ρw(rj , τj) = −1, respectively. The
virtual warps pair have ρw(r′, τ ′) = +1 and ρw(r′′, τ ′′) = −1 and satisfy ac < |r′ − r′′| <
ace

dlr and τc < |τ ′ − τ ′′| < τce
dlτ . Let ri = (ri, τi) and define,

U(ri, rj) = αδ(ri − rj) ln
|τi − τj |
τc

+ g
1√

v2(τi − τj)2 + |ri − rj |2
, (A.3)

The effective interaction of the pair of warps is given by

e−Ueff(ri,rj) = < e−U(ri,rj) > |short = e−U(ri,rj)−δU(ri,rj), (A.4)

where the expectation value is the statistical average over the partition function in Eq.(A.2)
over the integrated short scale.The second equality is due to the effective interaction can be
written as the bare interaction plus the renormazed interaction after integrating the virtual
pair. To lowest order in yw, we have

e−δU(ri,rj) =
1 + y2

w

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc

∫
dτ ′′

τc
e−U(r′,r′′)eC(ri,ri;r

′,r′′)+D(ri,rj ;r
′,r′′) +O(y4

w)

1 + y2
w

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc

∫
dτ ′′

τc
e−U(r′,r′′) +O(y4

w)

= 1 + y2
w

∫
d2r′

ac

d2r′′

ac

∫
dτ ′

τc

∫
dτ ′′

τc
e−U(r′,r′′)

[
eC(ri,ri;r

′,r′′)+D(ri,rj ;r
′,r′′) − 1

]
+ O(y4

w)

(A.5)

where C(ri, ri; r
′, r′′) is the contribution from virtual pairs to the interaction of two warps at

the same space site, D(ri, rj ; r
′, r′′)is the contribution from virtual pairs to the interaction

of two warps at a different time and space site. We divide the term C into five parts:(I).ri =
r′ = r′′;(II).ri 6= r′, r′ = r′′;(III).ri 6= r′ 6= r′′;(IV).ri = r′, r′ 6= r′′;(V).ri = r′′, r′ 6= r′′. By
summing over two possibilities of charge distribution of neutral warps pair, only the first
two terms left. We then have

C1 =

[
α ln

|τi − τ ′|
|τi − τ ′′|

|τj − τ ′′|
|τj − τ ′|

]
δ(r′ − r′′)δ(ri − r′),

C2 =
g√

(ri − r′)2 + v2(τi − τ ′)2
− g√

(ri − r′′)2 + v2(τi − τ ′′)2

− g√
(ri − r′)2 + v2(τj − τ ′)2

+
g√

(ri − r′′)2 + v2(τj − τ ′′)2
. (A.6)

For D term, we divide the whole space and time into nine piece:(I).ri 6= r′ 6= r′′ 6=
rj ;(II).ri = r′ 6= r′′ 6= rj ;(III).ri = r′′ 6= r′ 6= rj ;(IV).rj = r′ 6= r′′ 6= ri;(V).rj = r′′ 6= r′ 6=
ri;(VI).ri = r′ 6= r′′ = rj ;(VII).ri = r′′ 6= r′ = rj ;(VIII).ri = r′ = r′′ 6= rj ;(IX).rj = r′ =
r′′ 6= ri. Following the same argument, by summing over all charge distribution of neutral
pair, only the first term is non-zero.

D1 =
g√

(ri − r′)2 + v2(τi − τ ′)2
− g√

(ri − r′′)2 + v2(τi − τ ′′)2

− g√
(rj − r′)2 + v2(τj − τ ′)2

+
g√

(rj − r′′)2 + v2(τj − τ ′′)2
. (A.7)
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Now we evaluate them term by term. For C1, we are trying to find the term proportion to
ln

τj−τi
τc

, and for all D terms we will separate the term proportion to g/r. Let us assume
τi < τ ′′ < τ ′ < τj . So∫

d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc

dτ ′′

τc
C1 =

dlτ
a4
c

[
2α ln

τj − τi
τc

]
,∫

d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc

dτ ′′

τc
C2 = −4π2(dlτ + dlr)

g

a2
c

(τj − τi). (A.8)

and

J1 =

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc

dτ ′′

τc
D1 = −4π2(dlτ + dlr)

g

a2
c

(τj − τi). (A.9)

So, we have

e−δU(ri,rj) = 1 + y2
w

∫
d2r′

ac

d2r′′

ac

∫
dτ ′

τc

∫
dτ ′′

τc

[
C1 +

1

2
D2

1

]
= 1 + 2α

y2
w

a4
c

dlτ ln
τj − τi
τc

+
1

2
y2
w

∫
d2r′

ac

d2r′′

ac

∫
dτ ′

τc

∫
dτ ′′

τc
D2

1 (A.10)

Let

K =
1

2

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc

∫
dτ ′′

τc
D2

1

=
1

2
g2

∫
d2R

a2
c

∫
d2r

a2
c

∫
dτs
τc

∫
dτ

τc

[
[r · (ri −R) + v2τ(τi − τs)]2

[(ri −R)2 + v2(τi − τs)2]3

+
[r · (rj −R) + v2τ(τj − τs)]2

[(rj −R)2 + v2(τj − τs)2]3

−2
r · (ri −R) + v2τ(τi − τs)

[(ri −R)2 + v2(τi − τs)2]3/2
r · (rj −R) + v2τ(τj − τs)

[(rj −R)2 + v2(τj − τs)2]3/2

]
(A.11)

where τ = τ ′ − τ ′′ and τs = (τ ′ + τ ′′)/2. By integrating out the coordinates of center of
mass of the virtual pair and longer spatial and time scales, keep the term in order of O(dlr)
and O(dlτ ), we arrive at

K = −8π3

3

g2

vτc

[
(
1

4
+

v2

2v2
c

)dlτ + (1 +
v2

3v2
c

)dlr

]
1√

(ri − rj)2 + v2(τi − τj)2
(A.12)

Combine all terms, we get

e−δU(ri,rj) = 1 + y2
w

{
2α
dlτ
a4
c

ln
τj − τi
τc

− 8π3

3

g2

vτc

[
(
1

4
+

v2

2v2
c

)dlτ + (1 +
v2

3v2
c

)dlr

]
× 1√

(ri − rj)2 + v2(τi − τj)2

}
(A.13)
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Re-exponentiate it, we get

e−Ueff = e−U(ri,rj)e

(
2y2
wdlτ

α

a4
c

ln
τj−τi
τc
− 8π3

3
g2

vτc
[( 1

4
+ v2

2v2
c

)dlτ+(1+ v2

3v2
c

)dlr]
1√

(ri−rj)2+v2(τi−τj)2

)
(A.14)

So keeping logarithm correction we get

α̃ = α− 2α
y2
w

a4
c

dlτ ,

g̃ = g − 8π3

3

g2

vτc

[
(
1

4
+

v2

2v2
c

)dlτ + (1 +
v2

3v2
c

)dlr

]
. (A.15)

Now in our renormalized action, the short cutoff becomes τce
dlτ and ace

dlr .

Zr =
∑
n

y2n
w

∫ +∞

acedlr

d2r2n

a2
c

· · ·
∫
acedlτ

d2r1

a2
c

∫ β

0

dτ2n

τc
· · ·
∫ τ2−τcedlτ

0

dτ1

τc

×
∑

{ρw=±1}

exp

[
α̃
∑
i 6=j

∫
d2riρw(ri, τi) ln

|τi − τj |
τc

δ(ri − rj)ρw(rj , τj)

+ g̃
∑
i 6=j

ρw(ri, τi)
1√

v2(τi − τj)2 + |ri − rj |2
ρw(rj , τj)

]
.

(A.16)

We need rescale r → re−dlr and τ → τe−dlτ to get back the original action. Doing so we
have

Zr =
∑
n

y2n
w e

4ndlre2ndlτ

∫ +∞

ac

d2r2n

a2
c

· · ·
∫
ac

d2r1

a2
c

∫ β

0

dτ2n

τc
· · ·
∫ τ2−τc

0

dτ1

τc∑
{ρw=±1}

exp

[
α̃
∑
i 6=j

∫
d2riρw(ri, τi) ln

|τi − τj |edlτ
τc

δ(ri − rj)ρw(rj , τj)

+ g̃
∑
i 6=j

ρw(ri, τi)
e−dlr√

v2e2dlτ−2dlr(τi − τj)2 + |ri − rj |2
ρw(rj , τj)

]
.

(A.17)

This will contribute extra correction to g, yw, and v

dg = −gdlr,

dyw =

{
(1− α)dlτ + (2− g)dlr

}
yw,

dv = (dlτ − dlr)v. (A.18)
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Finally, we arrive our renormalization equations for warps by adding up the contribution
from renormalization and rescaling

dα = −2α
y2
w

a4
c

dlτ ,

dg = −gdlr −
8π3

3

g2

vτc

[
(
1

4
+

v2

2v2
c

)dlτ + (1 +
v2

3v2
c

)dlr

]
,

dyw =

{
(1− α)dlτ + (2− g)dlr

}
yw,

dv = (dlτ − dlr)v. (A.19)
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Appendix B

Derivation of Cviµ,jν

Follow the same procedure as we did in calculating the contribution from warps,
we will get(to get the final result, there are some tricks need to be done, which can be found
in the paper by Jose[26])

Cviµ,jν = exp

(
− J2

2
a ln
|ri − rj |

ac

)
(B.1)

where

a =

∫ +∞

ac

dr

a2
c

〈ρv(0)ρv(r)〉 (B.2)

〈ρv(0)ρv(r)〉 is the correlation function of vortices and is defined with respect to the action
of vortices, which is given by

〈ρv(0)ρv(r)〉 = −2y2
v

(
r

ac

)−J/2π
(B.3)

so we get

Cviµ,jν = (
ac

|ri − rj |
)−J

2y2
v (B.4)
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Appendix C

Derivation of Csw
iµ,jν

The contribution from spin wave can be calculated in the same way as the above.
But we can derive it in a much more straight forward way by noticing that the action of
spin wave is given by

Ssw =
1

L2β

∑
ln

((C/c)ω2
n + Jck2

l + α|ωn|k2
l )θ(kl, ωn)θ(−kl,−ωn) (C.1)

so

Csw
iµ,jν = 〈ei(θiµ−θjν)〉sw = e−

1
2
〈θiµθjν〉sw (C.2)

Because the spin wave action is quadratic, we have

〈θiµθjν〉sw =
1

L2β

∑
ln

eikl·r−iωnτ

Jck2
l + (C/c)ω2

n + α|ωn|k2
l

=

∫ ∞
−∞

dω

2π

∫
dk

(2π)2

eik·r−iωτ

Jck2 + (C/c)ω2 + α|ω|k2
(C.3)

We use r = ri − rj and τ = τµ − τν to simplify notation and we convert the summation
into integration under the limit T → 0. We have

Csw
iµ,jν = e

−
∫∞
−∞

dω
2π

∫
dk

(2π)2
eik·r−iωτ

Jck2+(C/c)ω2+α|ω|k2 (C.4)
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Appendix D

Fourier Transform of the Linear
Coupling Term

The linear coupling term between warps and p-charges is given by

1

L2β

∑
k,ω

Gc22pπJ
k

ω
ρw(k, ω)ρq(−k,−ω) (D.1)

where G = 1
(C/c)ω2+Jck2 . The Fourier transformation of this coupling term is then given by

G =

∫
dω

2π

∫
d2k

(2π)2

c22pπJ

(C/c)ω2 + Jck2

k

ω
eik·r−iωτ

=
ic3pπJ

C
sign(τ)

∫
d2k

(2π)2

1− e−vk|τ |

v2k
eik·r

=
ic3pJ

2Cv2
sign(τ)

∫ +∞

0
dk(1− e−vk|τ |)J0(kr)

=
ic3pJ

2Cv2
sign(τ)(

1

|r|
− 1√

r2 + v2τ2
) =

icp

2
sign(τ)(

1

|r|
− 1√

r2 + v2τ2
) (D.2)

where v =
√
Jc2/C. To derivate the above equality, we used∫

dω

2π

1

ω2 + a2

1

ω
e−iωτ =

isign(τ)(1− e−a|τ |)
2a2

,∫ 2π

0
dxeia cos(x) = 2πJ0(x),∫ +∞

0
dxJ0(x) = 1,∫ ∞

0
dxe−axJ0(x) =

1√
1 + a2

. (D.3)

wherer J0(x) is the zeroth order Bessel function.
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Appendix E

Derivation of the Renormalization
Group Equations for Warps and
p-Charges

Since there is no coupling between p-charges and vortices, one may consider renor-
malization of warps and p-charges together. The action for the warps and p-charges is given
by,

Swp = α
∑
i 6=j

ρw(ri, τi)δ(ri − rj) ln
|τi − τj |
τc

ρw(rj , τj) + ln(yw)
∑
i

|ρw(ri, τi)|2

+g
∑
i 6=j

ρw(ri, τi)
1√

|ri − rj |2 + v2(τi − τj)2
ρw(rj , τj)

+
c2p2

4g

∑
i 6=j

ρq(ri, τi)
1√

|ri − rj |2 + v2(τi − τj)2
ρq(rj , τj) + ln(yp)

∑
i

|ρq(ri, τi)|2

+
icp

2

∑
i 6=j

ρw(ri, τi)

[
sign(τi − τj)
|ri − rj |

− sign(τi − τj)√
|ri − rj |2 + v2(τi − τj)2

]
ρq(rj , τj) (E.1)

where g =
√
JC
4π , v =

√
Jc2

C , yw and yp are fugacity of warps and p-charges which take into

account the core-energy of the topological defects.
The first term in the partition function is much more singular than the other

terms. In the first term warps interact locally in space. Follow the same procedure as in
appendix A, we consider renormalization of interactions between a pair of warps due to a
pair of virtual warps and p-charges by summing over all possible interactions between the
virtual pairs and the others. The renormalized interactions at longer and longer distances
and longer and longer times are found by integrating over spatial scales increasing by ed`r

and time-scales increasing by ed`τ . Let the warps be located at (ri, τi) and (rj , τj) with
charge ρw(ri, τi) = +1 and ρw(rj , τj) = −1, respectively. The virtual warps pair have
ρw(r′, τ ′) = +1 and ρw(r′′, τ ′′) = −1, as well as the virtual p-charges pair, ρq(r

′, τ ′) = +1
and ρq(r

′′, τ ′′) = −1. Both of the warps pair and p-charges pair satisfy ac < |r′−r′′| < ace
dlr
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and τc < |τ ′ − τ ′′| < τce
dlτ . Let ri = (ri, τi) and define,

Uw(ri, rj) = αδ(ri − rj) ln
|τi − τj |
τc

+ g
1√

v2(τi − τj)2 + |ri − rj |2
,

U q(ri, rj) =
c2p2

4g

1√
v2(τi − τj)2 + |ri − rj |2

(E.2)

The effective interaction of the pair of warps is given by

e−U
w
eff(ri,rj) = < e−U

w(ri,rj) > |short = e−U
w(ri,rj)−δUw(ri,rj), (E.3)

where the expectation value is the statistical average over the partition function over the
integrated short scale.The second equality is due to the effective interaction can be written
as the bare interaction plus the renormalazied interaction after integrating the virtual pair.
To lowest order in yw and yp, we have

e−δU
w(ri,rj) =

1 + y2
w

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc
dτ ′′

τc
e−U

w(r′,r′′)eC(ri,ri;r
′,r′′)+D(ri,rj ;r

′,r′′)

1 + y2
w

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc
dτ ′′

τc
e−Uw(r′,r′′) + y2

p

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc
dτ ′′

τc
e−Uq(r′,r′′)

+
y2
p

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc
dτ ′′

τc
e−U

q(r′,r′′)eE(ri,rj ;r
′,r′′)

1 + y2
w

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc
dτ ′′

τc
e−Uw(r′,r′′) + y2

p

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc
dτ ′′

τc
e−Uq(r′,r′′)

= 1 + y2
w

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc

∫
dτ ′′

τc
e−U

w(r′,r′′)

[
eC(ri,ri;r

′,r′′)+D(ri,rj ;r
′,r′′) − 1

]
+y2

p

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc

∫
dτ ′′

τc
e−U

q(r′,r′′)

[
eE(ri,rj ;r

′,r′′) − 1

]
(E.4)

where C(ri, ri; r
′, r′′) is the contribution from the virtual warps pair to the interaction of

two warps at the same space site, D(ri, rj ; r
′, r′′)is the contribution from the virtual warps

pair to the interaction of two warps at a different time and space site. E(ri, rj ; r
′, r′′) is the

contribution from the virtual p-charges pair to the interaction of two warps at a different
time and space. We divide the term C into five parts:(I).ri = r′ = r′′;(II).ri 6= r′, r′ =
r′′;(III).ri 6= r′ 6= r′′;(IV).ri = r′, r′ 6= r′′;(V).ri = r′′, r′ 6= r′′. By summing over two
possibilities of charge distribution of neutral warps pair, only the first two terms left. We
then have

C1 =

[
α ln

|τi − τ ′|
|τi − τ ′′|

|τj − τ ′′|
|τj − τ ′|

]
δ(r′ − r′′)δ(ri − r′),

C2 =
g√

(ri − r′)2 + v2(τi − τ ′)2
− g√

(ri − r′′)2 + v2(τi − τ ′′)2

− g√
(ri − r′)2 + v2(τj − τ ′)2

+
g√

(ri − r′′)2 + v2(τj − τ ′′)2
. (E.5)

For D term, we divide the whole space and time into nine piece:(I).ri 6= r′ 6= r′′ 6=
rj ;(II).ri = r′ 6= r′′ 6= rj ;(III).ri = r′′ 6= r′ 6= rj ;(IV).rj = r′ 6= r′′ 6= ri;(V).rj = r′′ 6= r′ 6=
ri;(VI).ri = r′ 6= r′′ = rj ;(VII).ri = r′′ 6= r′ = rj ;(VIII).ri = r′ = r′′ 6= rj ;(IX).rj = r′ =
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r′′ 6= ri. Following the same argument, by summing over all charge distribution of neutral
pair, only the first term is non-zero.

D1 =
g√

(ri − r′)2 + v2(τi − τ ′)2
− g√

(ri − r′′)2 + v2(τi − τ ′′)2

− g√
(rj − r′)2 + v2(τj − τ ′)2

+
g√

(rj − r′′)2 + v2(τj − τ ′′)2
. (E.6)

For the E term, we have

E = − icp
2

{
sign(τi − τ ′)
|ri − r′|

− sign(τi − τ ′)√
|ri − r′|2 + v2(τi − τ ′)2

− sign(τi − τ ′′)
|ri − r′′|

+
sign(τi − τ ′′)√

|ri − r′′|2 + v2(τi − τ ′′)2
− sign(τj − τ ′)

|rj − r′|
+

sign(τj − τ ′)√
|rj − r′|2 + v2(τj − τ ′)2

+
sign(τj − τ ′′)
|rj − r′′|

+
sign(τj − τ ′′)√

|rj − r′′|2 + v2(τj − τ ′′)2

}
(E.7)

The virtual p-charges pair is located in between the two warps, so τi < τ ′, τ ′′ < τj . The
above expression can be simplified

E =
icp

2

{
− 1

|ri − r′|
+

1√
|ri − r′|2 + v2(τi − τ ′)2

+
1

|ri − r′′|

− 1√
|ri − r′′|2 + v2(τi − τ ′′)2

− 1

|rj − r′|
+

1√
|rj − r′|2 + v2(τj − τ ′)2

+
1

|rj − r′′|
+

1√
|rj − r′′|2 + v2(τj − τ ′′)2

}
(E.8)

The evaluation of C and D follow the same procedure as in appendix A. We focus
on E term due to the coupling between warps and p-charges. Defining the center of mass
coordinate R = (r′ + r′′)/2, r = r′ − r′′, τs = (τ ′ + τ ′′)/2 and τ = τ ′ − τ ′′, we have

E =
icp

2

{
− 1

|ri −R− r/2|
+

1√
|ri −R− r/2|2 + v2(τi − τs − τ/2)2

+
1

|ri −R+ r/2|
− 1√

|ri −R+ r/2|2 + v2(τi − τs + τ/2)2

− 1

|rj −R− r/2|
+

1√
|rj −R− r/2|2 + v2(τj − τs − τ/2)2

+
1

|rj −R+ r/2|
+

1√
|rj −R+ r/2|2 + v2(τj − τs + τ/2)2

}
(E.9)

Due to ac < |r| < ace
dlr and τc < τ < τce

dlτ , we could expand for small r and τ . Therefore
we get,

E =
icp

2

{
− r · (ri −R)

|ri −R|3
+
r · (ri −R) + v2τ(τi − τs)

[|ri −R|2 + v2(τi − τs)2]3/2

−r · (rj −R)

|rj −R|
+
r · (rj −R) + v2τ(τj − τs)

[|rj −R|2 + v2(τj − τs)2]3/2

}
(E.10)
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Therefore the contribution to effective two warps interaction from p-charges is

Jp = y2
p

∫
d2r′

ac

d2r′′

ac

∫
dτ ′

τc

∫
dτ ′′

τc
e−U

q(r′,r′′)

[
eE(ri,rj ;r

′,r′′) − 1

]
= y2

p

∫
d2R

ac

d2r

ac

∫
dτs
τc

∫
dτ

τc

[
E +

1

2
E2

]
, (E.11)

in which we transformed the integration to center of mass integration. The angle integration
of R will immediately gives

y2
p

∫
d2R

ac

d2r

ac

∫
dτs
τc

∫
dτ

τc
E = 0 (E.12)

Therefore we have

Jp =
y2
p

2

∫
d2R

a2
c

d2r

a2
c

∫
dτs
τc

∫
dτ

τc
E2

= −
c2p2y2

p

4

∫
d2R

a2
c

d2r

a2
c

∫
dτs
τc

∫
dτ

τc

[
r · (ri −R)r · (rj −R)

|ri −R|3|rj −R|3

+
[r · (ri −R) + v2τ(τi − τs)][r · (rj −R) + v2τ(τj − τs)]
[|ri −R|2 + v2(τi − τs)2]3/2[|rj −R|2 + v2(τj − τs)2]3/2

]
(E.13)

in which we used the angle integration of R is zero again. Let

I =

∫
d2R

a2
c

d2r

a2
c

∫
dτs
τc

∫
dτ

τc

r · (ri −R)r · (rj −R)

|ri −R|3|rj −R|3
,

K =

∫
d2R

a2
c

∫
d2r

a2
c

∫
dτs
τc

∫
dτ

τc

[
r · (ri −R) + v2τ(τi − τs)

[|ri −R|2 + v2(τi − τs)2]3/2

× r · (rj −R) + v2τ(τj − τs)
[|rj −R|2 + v2(τj − τs)2]3/2

]
(E.14)

Defining the center of mass of the warps X = (ri + rj)/2, x = ri − rj , τX = (τi + τj)/2,
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and τx = τi − τj , we have

I =

∫
d2R

a2
c

d2r

a2
c

∫
dτs
τc

∫
dτ

τc

r · (X − x/2−R)r · (X + x/2−R)

|X − x/2−R|3|X + x/2−R|3

=

∫
d2R

a2
c

d2r

a2
c

∫
dτs
τc

∫
dτ

τc

r · (R+ x/2)r · (R− x/2)

|R+ x/2|3|R− x/2|3
,

K =

∫
d2R

a2
c

∫
d2r

a2
c

∫
dτs
τc

∫
dτ

τc

[
r · (X − x/2−R) + v2τ(τX − τx/2− τs)

[|X − x/2−R|2 + v2(τX − τx/2− τs)2]3/2

× r · (X + x/2−R) + v2τ(τX + τx/2− τs)
[|X + x/2−R|2 + v2(τX + τx/2− τs)2]3/2

]
=

∫
d2R

a2
c

∫
d2r

a2
c

∫
dτs
τc

∫
dτ

τc

[
r · (R+ x/2) + v2τ(τs + τx/2)

[|R+ x/2|2 + v2(τs + τx/2)2]3/2

× r · (R− x/2) + v2τ(τs − τx/2)

[|R− x/2|2 + v2(τs − τx/2)2]3/2

]
(E.15)

In the above, we changed variables R → R −X and τs → τs − τX . The result for K can
be found in Appendix A, which is

K =
8π3

3

1

vτc

[
(
1

4
+

v2

2v2
c

)dlτ + (1 +
v2

3v2
c

)dlr

]
1√

(ri − rj)2 + v2(τi − τj)2
(E.16)

Carrying out the angle integration of r will leads to

I =

∫ +∞

0

RdR

a2
c

∫ 2π

0
dθ

∫
r3dr

a4
c

∫
dτs
τc

∫
dτ

τc

R2 − x2/4

[(R2 + x2/4)2 −R2x2 cos2 θ]3/2
(E.17)

This integration turns to be zero by doing the R integral first. In summary, we have

e−δU
w(ri,rj) = 1 + y2

w

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc

∫
dτ ′′

τc

[
C1 +

1

2
D2

1

]
+
y2
p

2

∫
d2R

a2
c

d2r

a2
c

∫
dτs
τc

∫
dτ

τc
E2

= 1 + 2α
y2
w

a4
c

dlτ ln
τj − τi
τc

− 8π3

3

g2y2
w

vτc

[
(
1

4
+

v2

2v2
c

)dlτ + (1 +
v2

3v2
c

)dlr

]
× 1√

(ri − rj)2 + v2(τi − τj)2

+
2π3c2p2

3

y2
p

vτc

[
(
1

4
+

v2

2v2
c

)dlτ + (1 +
v2

3v2
c

)dlr

]
1√

(ri − rj)2 + v2(τi − τj)2

(E.18)
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Re-exponentiate it, we get

e−U
w
eff = e−U

w(ri,rj)e

(
2y2
wdlτ

α

a4
c

ln
τj−τi
τc
− 8π3

3

g2y2
w

vτc
[( 1

4
+ v2

2v2
c

)dlτ+(1+ v2

3v2
c

)dlr]
1√

(ri−rj)2+v2(τi−τj)2

)

×e

(
2π3c2p2

3

y2
p

vτc

[
( 1

4
+ v2

2v2
c

)dlτ+(1+ v2

3v2
c

)dlr

]
1√

(ri−rj)2+v2(τi−τj)2

)
(E.19)

So keeping logarithm correction we get

α̃ = α− 2α
y2
w

a4
c

dlτ ,

g̃ = g − 8π3

3

g2y2
w

vτc

[
(
1

4
+

v2

2v2
c

)dlτ + (1 +
v2

3v2
c

)dlr

]
+

2π3c2p2

3

y2
p

vτc

[
(
1

4
+

v2

2v2
c

)dlτ + (1 +
v2

3v2
c

)dlr

]
. (E.20)

The effective interaction for p-charges can be calculated by following the same
produce as above. Let the p-charges be located at (ri, τi) and (rj , τj) with charge ρq(ri, τi) =
+1 and ρq(rj , τj) = −1, respectively. The virtual warps pair have ρw(r′, τ ′) = +1 and
ρw(r′′, τ ′′) = −1, as well as the virtual p-charges pair, ρq(r

′, τ ′) = +1 and ρq(r
′′, τ ′′) = −1.

Both of the warps pair and p-charges pair satisfy ac < |r′−r′′| < ace
dlr and τc < |τ ′−τ ′′| <

τce
dlτ . The effective interaction of p-charges is given by

e−U
p
eff(ri,rj) = < e−U

p(ri,rj) > |short = e−U
p(ri,rj)−δUp(ri,rj). (E.21)

To lowest order in yw and yp, we have

e−δU
p(ri,rj) =

1 + y2
w

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc
dτ ′′

τc
e−U

w(r′,r′′)eE(ri,ri;r
′,r′′)

1 + y2
w

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc
dτ ′′

τc
e−Uw(r′,r′′) + y2

p

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc
dτ ′′

τc
e−Uq(r′,r′′)

+
y2
p

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc
dτ ′′

τc
e−U

q(r′,r′′)eD
′(ri,rj ;r′,r′′)

1 + y2
w

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc
dτ ′′

τc
e−Uw(r′,r′′) + y2

p

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc
dτ ′′

τc
e−Uq(r′,r′′)

= 1 + y2
w

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc

∫
dτ ′′

τc
e−U

w(r′,r′′)

[
eE(ri,ri;r

′,r′′) − 1

]
+y2

p

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc

∫
dτ ′′

τc
e−U

q(r′,r′′)

[
eD
′(ri,rj ;r′,r′′) − 1

]
(E.22)

Following the same analysis before, we have

e−δU
p(ri,rj) = 1 +

y2
w

2

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc

∫
dτ ′′

τc
E2(ri, rj ; r

′, r′′)

+
y2
p

2

∫
d2r′

a2
c

d2r′′

a2
c

∫
dτ ′

τc

∫
dτ ′′

τc
D′2(ri, rj ; r

′, r′′) (E.23)
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with

D′ =
c2p2/4g√

(ri − r′)2 + v2(τi − τ ′)2
− c2p2/4g√

(ri − r′′)2 + v2(τi − τ ′′)2

− c2p2/4g√
(rj − r′)2 + v2(τj − τ ′)2

+
c2p2/4g√

(rj − r′′)2 + v2(τj − τ ′′)2
. (E.24)

Define the center of mass of the virtual p-charges pair, R = (r′ + r′′)/2, r = r′ − r′′,
τs = (τ ′ + τ ′′)/2 and τ = τ ′ − τ ′′ and integrating the center of mass coordinates, we will
have

e−δU
p(ri,rj) = 1− π3

6

c4p4y2
p

vg2τc

[
(
1

4
+

v2

2v2
c

)dlτ + (1 +
v2

3v2
c

)dlr

]
1√

(ri − rj)2 + v2(τi − τj)2

+
2π3

3

c2p2y2
w

vτc

[
(
1

4
+

v2

2v2
c

)dlτ + (1 +
v2

3v2
c

)dlr

]
1√

(ri − rj)2 + v2(τi − τj)2

(E.25)

Re-exponentiate it, we get

e−U
p
eff = e−U

p(ri,rj)e

(
−π

3

6

c4p4y2
p

vg2τc
[( 1

4
+ v2

2v2
c

)dlτ+(1+ v2

3v2
c

)dlr]
1√

(ri−rj)2+v2(τi−τj)2

)

×e

(
2π3

3

c2p2y2
w

vτc
[( 1

4
+ v2

2v2
c

)dlτ+(1+ v2

3v2
c

)dlr]
1√

(ri−rj)2+v2(τi−τj)2

)
(E.26)

So keeping logarithm correction we get

g̃−1 = g−1 − 2π3

3

c2p2y2
p

vg2τc

[
(
1

4
+

v2

2v2
c

)dlτ + (1 +
v2

3v2
c

)dlr

]
+

8π3

3

y2
w

vτc
[(

1

4
+

v2

2v2
c

)dlτ + (1 +
v2

3v2
c

)dlr]. (E.27)

This equation is exactly the same as we got by consider the effective interaction for warps.
This should be due to the duality in the warps and p-charges problem. Considering yp → yw,

yw → yp, and g → c2p2

4g , the action for warps and p-charges remain the same. Therefore,
one do not need to introduce a new coupling constant for 1/g which is required for general
problems. This duality is first derived by Jose et al [26]. Later, a general model has been
considered by Kadanoff[27]. Nelson et al [42] also proved such duality in a special problem,
see (A27) in [42].

Now in our renormalized action, the short cutoff becomes τce
dlτ and ace

dlr . We
need rescale r → re−dlr and τ → τe−dlτ to get back the original action. Doing so we will
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get extra contributions to coupling constants g, yw, yp, v, and g−1,

dg = −gdlr,
dg−1 = −g−1dlr,

dyw =

{
(1− α)dlτ + (2− g)dlr

}
yw,

dyp =

{
dlτ + (2− p2

4g
)dlr

}
ypd,

dv = (dlτ − dlr)v. (E.28)

Finally, we arrive our renormalization equations for warps and p-charges by adding up the
contribution from renormalization and rescaling,

dα = −2α
y2
w

a4
c

dlτ ,

dg = −8π3

3

g2

vτc

[
(
1

4
+

v2

2v2
c

)dlτ + (1 +
v2

3v2
c

)dlr

]
+

2π3

3

c2p2

vg2τc

[
(
1

4
+

v2

2v2
c

)dlτ + (1 +
v2

3v2
c

)dlr

]
,

dyw =

{
(1− α)dlτ + (2− g)dlr

}
yw,

dyp = (2− c2p2

4g
)ypdlr,

dv = (dlτ − dlr)v. (E.29)
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