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System-Level Considerations for Optical Switching in Data Center Networks

by
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Professor George C. Papen, Chair

Traditionally, datacenter networks are constructed with electronic packet switches, which

forward data in a distributed manner. However, packet switches are running in to serious scaling

challenges due to the massive growth in bandwidth requirements within major datacenters. One

possible solution to this situation is to use optical circuit switching, which has significant potential

for both power and cost savings.

However, circuit switching is a completely different paradigm from packet switching, and

as such effectively utilizing circuit switching requires work at all layers in the network, including

the network architecture, switches, transceivers, network interfaces, and protocols.

This dissertation validates the thesis that developing a NIC capable of precision admission

xv



control and characterizing its performance can lead to practical sub-microsecond circuit-switched

networks at scale. Specifically, this dissertation presents novel contributions to two key system-

level issues inherent in utilizing optical circuit switching in datacenter networking applications.

The first contribution of this dissertation quantifies the system-level reconfiguration time of

an optically circuit-switched link. This work is critical for understanding how to build optical links

using high speed optical switches and how to integrate these links into a datacenter environment.

This includes a discussion of system-level reconfiguration time and link-level measurements of an

optically switched link, including bit error rate (BER) characterization of a 25 Gbps link utilizing

a burst-mode receiver, switched by a nanosecond-scale silicon photonic switch.

The second contribution of this dissertation is the development of a network interface

controller (NIC) that can precisely control the injection of packets into an optically-switched

network. This work describes and quantifies the performance of a novel high-performance,

open-source, FPGA-based NIC called Corundum. This NIC is designed to precisely control the

injection of packets from multiple queues into a circuit-switched network using a hardware-based

scheduler. The platform provides the flexibility to implement high precision time synchronization

as well as perform link-level characterization including BER measurements. The development of

such a network interface can lead to practical sub-microsecond circuit-switched networks at scale.
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Chapter 1

Introduction

The web applications and cloud services that underpin the modern Internet are provided by

massive distributed systems running on thousands of computers inside of hyperscale datacenters.

These datacenters are built and operated by service providers such as Google, Microsoft, Facebook,

Amazon, and many others. A modern datacenter can contain tens to hundreds of thousands of

hosts, interconnected by a high-performance network.

Traditionally, datacenter networks are constructed with electronic packet switches. Packet

switches operate individually on each packet, making routing decisions and forwarding each

packet accordingly. One major advantage of packet switches is that they are distributed: no

centralized scheduler or similar is required to control traffic in the network, making it easy for

very large networks to be constructed with packet switches. State-of-the-art electronic packet

switches are built around highly-integrated switch ASICs as this is currently only way to provide

sufficient bandwidth to interconnect all of the ports.

However, packet switches are running in to serious scaling challenges. Bandwidth demand

and the number of hosts inside of datacenter networks is increasing much faster than switch ASIC

bandwidth. Additionally, the number of ports on a single switch ASIC is limited, so using packet

switches in modern datacenter networks involves building many layers of switches in order to

1



provide sufficient ports and sufficient bandwidth. Due to the link rates and distances involved,

many of the connections between packet switches are optical, which requires the use of large

numbers of power-hungry optical transceivers. As a result, as network bandwidth increases, more

and more cost and power must be devoted to the network.

One possible solution to this situation is to use optical circuit switching. Optical circuit

switches operate by making and breaking connections at the physical layer. As a result, the

operation of such a switch is independent of the line rate and modulation format, enabling

switching of very large bandwidths per port. Additionally, optical switches consume a fraction

of the power of an electrical switch of similar port count and bandwidth. Since optical switches

operate in the optical domain, they also reduce the number of required optical transceivers in the

network. Therefore, utilizing optical circuit switching inside a datacenter network has significant

potential for both power and cost savings.

However, circuit switching is a completely different paradigm from packet switching.

In a packet-switched network, hosts can send data at any time, and the packet switches route it

accordingly, storing data temporarily in the case of contention. In a circuit-switched network, the

switches form dedicated connections between end points in the network, and data transmissions

must be coordinated so that data follows the correct paths through the switches. Effectively

utilizing circuit switching requires work at all layers in the network—not just the network

architecture and the design of the circuit switches, but also the design of the transceivers, network

interfaces, and protocols.

This dissertation validates the thesis that developing a NIC capable of precision admission

control and characterizing its performance can lead to practical sub-microsecond circuit-switched

networks at scale. Specifically, this dissertation presents novel contributions to two key system-

level issues inherent in using optical circuit switching in datacenter networking applications. The

first issue is quantifying the system-level reconfiguration time of an optically circuit-switched

link. This work is critical for understanding how to build optical links using high speed optical

2



switches and how to integrate these links into a datacenter environment.

This work is presented in Chapter 2 and is based on a recently published paper [19]. That

chapter describes novel link-level measurements on an optically switched link, including bit error

rate (BER) characterization of a 25 Gbps link utilizing a burst-mode receiver, switched by a

nanosecond scale silicon photonic switch. Key parameters that affect system-level performance

are quantified, including switching time, receiver lock time, and guard intervals.

The second key issue addressed in this dissertation is the development of a network

interface controller (NIC) that can precisely control the injection of packets into one or more

optically-switched networks.

This work is presented in Chapter 3, and describes and quantifies the performance of an

FPGA-based NIC called Corundum. This NIC is designed to precisely control the injection of

packets from multiple queues into a circuit-switched network under the control of a hardware-

based scheduler. The work described in this chapter has been accepted for publication [20].

At a high-level, Corundum is a high-performance, open-source, FPGA-based NIC develop-

ment platform that can support the development of network protocols and architectures, including

practical optically-switched networks. Corundum provides the ability to precisely control packet

transmission into the network on microsecond timescales, enabling the use of microsecond-scale

optical switches in an otherwise standard datacenter environment. The platform provides the

flexibility to implement high precision time synchronization as well as perform link-level char-

acterization including BER measurements similar to those described in Chapter 2. The ability

to quantify the low-level physical layer characteristics of an optically-switched link and provide

precision transmission control over thousands of queues all within a common hardware platform

is a fundamental research contribution of this dissertation. The development of such a network

interface can lead to practical sub-microsecond circuit-switched networks at scale.
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1.1 Background

The motivation for the work presented in this dissertation is perhaps best understood by

providing some historical background on the networking research conducted by our research

group. This background will also highlight my other research contributions, which are not

explicitly discussed in this dissertation.

The optical networking group at UCSD has been exploring the use of circuit switching,

especially optical domain switching, for datacenter networking applications for several years.

Since circuit switching is a completely different paradigm from the packet switching commonly

used in computer networks, it is necessary to do a significant amount of cross-layer optimization

and co-design in order to build an effective system. As a result, the research in our group spans

the entire stack, from high-level network architecture and protocols down to the physical layer

and the design of the optical switches and transceivers. The general theme of many of the research

projects is to try to use as much commercially-available hardware as possible in order to emulate a

relatively realistic datacenter environment at a reasonable scale. This section will present several

of those projects in the context of the lessons learned and my contributions to those projects.

These lessons were the principal motivation for the research topics of my dissertation.

1.1.1 Helios

Helios [14] is some of the early work at UCSD in the domain of optical switching in

datacenter networks. Helios utilized a Glimmerglass 3D-MEMS-based optical crossbar switch to

interconnect programmable ToR switches. The switch used has a switching time of around 12

milliseconds. Software running in the network monitored flow-level information collected by the

packet switches and determined which flows could take advantage of a direct high-bandwidth

optical path, automatically reconfiguring the MEMS switch and packet switches as necessary,

with a response time in the hundreds of milliseconds. This formed the “elephants and mice” era
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of optical switching—find the biggest, longest-lived flows, and offload them from the electrical

network and onto the optical network over timescales of seconds.

However, the real-world applications of such a strategy are somewhat limited. The vast

majority of flows in datacenter networks are too short to be handled by a millisecond-scale optical

switch. The faster the switch, the more traffic could be offloaded to it.

The key lesson learned from Helios is that while optical switching has merit, it must be

significantly more responsive in order to be compatible with more realistic workloads.

1.1.2 Mordia

Following Helios, the goal of Mordia [15, 11, 12, 13, 43] was to build a network using an

optical switch 1000 times faster, switching on the order of microseconds. The Mordia network

was built using binary-MEMS-based wavelength selective switches with a switching time on

the order of 12 microseconds. 24 end-hosts equipped with DWDM transceivers were connected

in groups of four to a fiber optic ring containing add/drop filters and amplifiers. The add/drop

filters injected light from the hosts into the ring, and the wavelength selective switches pulled

it back out and routed it to the receivers. The switches were controlled by an FPGA and could

be reconfigured every 100 microseconds. One lesson from the development of Mordia was that

even though the optical switches could be reconfigured quickly, the end hosts could not keep up

with the changing network configuration. The network stack and NICs could not reliably control

packet transmission into the network on a microsecond time scale so that packets would reliably

arrive at the correct destination. Reliable transmission could only be achieved if a guard interval

significantly larger than the switching time was included in the schedule to account for this

uncertainty. We also discovered that the standard software algorithms for computing schedules

for crossbar switches have serious scaling limitations.

The key take away from Mordia is that building a very fast optical switch is not sufficient.

It is imperative to use proper admission control at the end hosts that can operate reliably on the
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same time scale as the reconfiguration time of the switches. Otherwise, the reconfiguration time

is dominated by the guard time that must added to ensure reliable operation.

My contributions to Mordia, which were done while I was an undergraduate, are given

in references [15, 11, 12, 13, 43]. For this project, I developed the variable optical attenuator

(VOA) driver boards, associated firmware, and control software to balance optical power within

the Mordia ring. I also developed tools for the characterization of the switching speed of the

wavelength-selective switches (WSS) modules and the lock time of the DWDM transceivers. This

work formed the foundation for the system-level reconfiguration time measurements presented in

this dissertation.

1.1.3 REACToR

The goal of REACToR [30] was to build a control plane for Mordia. To do so, one of

the main goals was to develop some form of high-precision control over packet transmission

from the end hosts. This required inserting an FPGA into each link to inject priority flow control

(PFC) pause frames to control the NIC transmit queues. While this methods was effective, it

does not scale beyond 8 end hosts as standard PFC can only control 8 independent traffic classes.

Additionally, there were complications within the network stack where packets would get stuck

in NIC queues when paths were de-scheduled. The Solstice scheduling algorithm was also

developed for REACToR as an improvement on existing scheduling techniques. However, the

computational complexity of Solstice precluded its implementation at datacenter scale.

The lesson learned from REACToR is that hardware-based admission control at the NIC

works very well, but commercial NICs do not provide sufficiently flexible and scalable control

over packet transmission. Additionally, building a scalable reactive control plane including

demand data collection, schedule computation, and distribution is a nontrivial problem.

My contributions to REACToR included the directing the layout of a circuit board for a

48x48 port 10G electrical crosspoint switch. I also developed and integrated the FPGA code for
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controlling both the electrical crosspoint switch and the Mordia switch to test REACToR and

provide FPGA-based performance measurements.

1.1.4 Optical Component Characterization

Along with the lessons learned from Mordia at the system level, we determined that

we needed create tools to facilitate system-level evaluation of optical components for circuit-

switched networks. These components include switches, transceivers, add/drop filters, and

other components. In order to determine how these components behave in a circuit-switched

environment, I developed measurement methods and tools appropriate for this application.

Some of the work in component characterization was part of a collaboration with IBM.

As part of this collaboration, we received a number of high-speed silicon photonic switch chips

for testing. The switches are built from Mach-Zehnder interferometers with PIN diode phase

shifters. They are capable of switching in a few nanoseconds, about 1000 times faster than

the MEMS-based wavelength selective switches used in Mordia. However, the devices are

polarization sensitive, operate over a narrow wavelength band, and suffer from crosstalk and

high coupling loss. Our group carried out BER measurements of the switch chips to evaluate

the crosstalk performance [21]. My contribution to this effort was the construction of a custom

FPGA-based multi-channel BER measurement tool that generated PRBS data to send through a

component under test, counted the errors, and forwarded this to a control computer.

This measurement technique was then adapted to components [1] that were specifically

designed to operate in the Mordia architecture and replace several discrete components with a

single integrated component.

The custom FPGA-based multi-channel BER measurement tool was then used as part of a

collaboration with Berkeley. As part of this collaboration, we received a packaged MEMS-based

crossbar switch chip for testing in our lab. The switch chip is a 12x12 MEMS-based crossbar

switch with a switching time under 1 microsecond [25, 50]. The switch is low loss and low
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crosstalk and is capable of scaling to rather large port counts. However, a key lesson learned

from this work was system-level cost of optical loss in the switch. In order to provide enough

link margin to make BER measurements, we had to use expensive transceivers with avalanche

photodiodes (APD) designed for long-range links.

1.1.5 RotorNet

Returning to system-level issues, the goal of RotorNet [37] was to build an optical switch

with limited connectivity, but fast and deterministic switching between the limited number of net-

work topologies. The development of this switch was the outcome of a study [36] that concluded

that it is extremely difficult to build a MEMS-based optical switch that simultaneously provides

low loss, low crosstalk, large port count, fast switching speed, and full crossbar connectivity.

The selector switch project gives up full crossbar connectivity to provide a fast, low loss, low

crosstalk switch that can scale to large port counts, but can only select from a limited set of fixed

configurations.

The first selector switch prototype was built from a 3D MEMS chip that can switch in

100 microseconds, redirecting light from a common fiber array to one of four other fiber arrays

that are looped back in fixed connection patterns. An FPGA connected a control computer to

the 3D MEMS chip, permitting low latency control of the switch in synchronization with the

end hosts. Custom qdisc kernel modules were used to control the flow of traffic from the end

hosts, which were synchronized to each other and to the switch with PTP. The software-based

admission control was able to keep up reasonably well with the relatively slow optical switch.

However achieving the required timing accuracy required dedicating CPU cores to control the

flow of data without being disturbed by the operating system.

Additionally, the initial design of RotorNet used a distributed algorithm to coordinate

transfers between nodes. RotorNet is also an ’all-optical’ network design; no parallel electrical

network is necessary to handle flows separately from the optical network, as was the case in
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Helios, Mordia, and REACToR.

I had several contributions to RotorNet. First, I developed an FPGA-based packet times-

tamping system for evaluating the accuracy of software-based transmission control techniques.

Second, I developed a switch control FPGA image that received commands from a control

computer over Ethernet and drive DACs on the high voltage MEMS drive board.

1.1.6 IBM Burst-Mode Link Measurements

The initial collaboration with IBM led to a series of internships where I assembled and

characterized the system-level reconfiguration time of a burst-mode link through a silicon photonic

switch chip. This link used two different IBM devices—a silicon photonic switch chip and a

burst-mode receiver. Based on the prior work discussed in this section, I developed an FPGA

design to control the components, generate test data, and count bit errors. This work included

modules to control the switch chip, generate the necessary bit patterns, accumulate bit errors,

and perform frame synchronization. I also assembled the test setup including both chips, the

FPGA, and all of the necessary test equipment and carried out all of the measurements. This work

produced two first-author papers [18, 19] and is discussed in detail in Chapter 2.

1.1.7 Corundum NIC Prototyping Platform

Building on the lessons learned in Mordia, REACToR, and RotorNet with respect to

admission control techniques, I initiated work on a hardware admission control solution, which

is called Corundum. Corundum provides precise hardware control over packet transmission,

with a host interface and level of performance similar to that of a commercial NIC. Additionally,

it provides direct access to physical layer components, enabling link-level measurements at

datacenter scale. This work is has been accepted for publication at FCCM [20], and is discussed

in detail in Chapter 3.
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1.1.8 Summary

This background section presented a historical progression of motivations, results, and

lessons learned from several system-level testbeds and methods of link-level characterization

carried out by our group over several years. This section also discussed my contributions to those

efforts. The topics presented in this dissertation, including the burst-mode link measurements and

development of Corundum, are an outcome of the lessons learned and are a logical progression of

this research.
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Chapter 2

Link-level Considerations

This chapter quantifies various system-level and physical layer aspects of optically-

switched links. Namely, it introduces the concept of system-level reconfiguration time, which

includes not only the physical reconfiguration time of the switch, but also time constants associated

with the receivers and system time synchronization, all of which contribute to the duration that

the links are interrupted during each circuit-switch reconfiguration event.

These reconfiguration events affect all aspects of the network from the physical layer

through the networking protocols. This leads to the end-to-end latency in a circuit-switched

network being different than the end-to-end latency in a packet-switched network. Designing op-

timized optically-circuit-switched networks requires quantifying the system-level reconfiguration

time with respect to other forms of latency within the network.

This chapter experimentally quantifies the system-level reconfiguration time of a burst-

mode optical link through a nanosecond-scale silicon photonic switch to determine realistic

estimates on how fast the physical layer can re-synchronize after each switch reconfiguration.

The material is based on a recently published paper [19].

Chapter 3 follows up with a discussion of network interfaces that can provide the necessary

functionality of precise packet injection to reduce the system-level reconfiguration time.
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2.1 Introduction and Background

Bandwidth requirements within modern hyperscale datacenters have been increasing ex-

ponentially, approximately doubling every year [54]. Traffic within some hyperscale datacenters

can exceed the backbone traffic of the Internet itself. Additionally, high-performance computing

(HPC) systems also continue to scale [59], and many large-scale applications are limited by

bandwidth bottlenecks in various interfaces of the system. Typically, the requirements of different

workloads are not perfectly matched to a fixed set of computing hardware resources. Disaggre-

gation of compute resources through a very high bandwidth scale-up network has significant

promise to improve resource utilization. In summary, building networks capable of meeting the

demands of both the hyperscale and scale-up systems is exceedingly difficult.

Modern datacenter and HPC networks are built from electrical packet switches. Electrical

packet switches route packets from a source to a destination through a network in a distributed,

scalable fashion by forwarding packets peer-to-peer through the network. Packet switches operate

by storing packets in queues and using packet header information to make local routing decisions

based on information in routing tables.

Alternative network designs based on aspects of circuit switching such as time-division

multiple access (TDMA) are being considered [60]. Optical circuit switches work by making and

breaking light paths through the switch. Switching in the optical domain enables rate agnostic

switching, where the data rate per port is not tied to a specific line rate or modulation format.

This work motivates research in datacenter networks with high-bandwidth optical circuit switches

that have the potential to address some of the issues in existing datacenter networks.

The use of active optical switch technologies within a datacenter has several challenges.

Due to the stateless nature of optical circuit switches, it is not possible for an optical circuit

switch to store and forward packets or to make routing decisions based on information extracted

from the packets themselves. Instead, data must be routed end-to-end through all of the switches
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along the path. Therefore, successfully utilizing optical circuit switches in a scale-out network

requires significant coordination at the link level that is not required in a standard packet-switched

network. Scheduling algorithms must be used to determine switch configurations and decide

which data will be sent at what time [17, 31], while synchronization techniques must be used to

ensure that data successfully arrives at the correct destination. Other methods rely on variations

of TDMA and do not require an explicit schedule [37, 35]. Scheduling may also be less of an

issue in scale-up or disaggregated networks with fewer, newer compute nodes. In either case, the

synchronization issue must be solved.

Optical circuit switches also have their own physical-layer scaling challenges. Depending

on the switch technology, there are numerous trade-offs between the number of switch ports, the

reconfiguration speed of the switch, and optical properties such as insertion loss, crosstalk, optical

bandwidth, and noise [27]. While insertion loss limits the number of switches that can be cascaded

before requiring optical amplification and the associated increase in cost, complexity, power

consumption, and optical noise, multiple recent demonstrations have shown that the flip-chip

integration of semiconductor optical amplifiers (SOA) on silicon photonic switches have the

potential to overcome the link margin challenges [26, 7]. The speed and optical properties of a

switch will also vary with the port count. Larger switches can be built as cascades of smaller

switches at the expense of insertion loss and crosstalk.

Because circuit-switched networks operate by switching physical connections instead of

packets, the speed at which the switches can reconfigure at the link-level is a key performance

metric. Network traffic inside a datacenter consists of flows of various sizes. Faster reconfiguration

of link-level circuits can route smaller blocks of data, enabling a larger fraction of the total

network load to be optically circuit switched. This is illustrated in Fig. 2.1, which shows the

switch throughput as a function of data transfer size for different end-to-end switching times,

highlighting the importance of fast end-to-end reconfiguration when operating on packets or small

flows.
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Figure 2.1: Illustration of circuit switch throughput as a function of data transfer size for
different end-to-end switching times (blue: 10 ns, orange: 10 us, green: 10 ms). The vertical
dashed lines related selected data sizes to link speeds (purple: 400 Gbps, black: 25 Gbps)

Faster circuit switching also requires tighter coordination between network components.

In order to efficiently utilize a nanosecond-scale optical circuit switch in a network, fast-locking

or burst-mode receivers are also required for link retiming and retraining. Burst-mode (BM)

receivers that operate over a large range of input power levels and have locking times similar

to switch reconfiguration times are critical to rapidly recover the clock and data (CDR) after an

interruption in the link [49].

In this chapter, we expand and refine the preliminary results from our earlier work in [18],

demonstrating a switched optical link consisting of a combination of a nanosecond silicon

photonic optical switch [9] and a burst-mode optical receiver [47], coordinated by an FPGA .

2.2 Optically-Switched Architecture and Systems

A notional system-level figure of a photonic-switched network is shown in Fig. 2.2. Data

from one processing node such as a network interface card (NIC) is routed to a second processing

node through a series of optical circuit switches, which are coordinated by a control plane. In

a conventional implementation, the control plane computes a schedule for data transmission,

transfers this schedule to all the transmitters and optical switches, and synchronizes all of
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the components in the network. Admission control components at end hosts report demand

information to the control plane and hold data for transmission until triggered to send it by the

scheduler. For maximum throughput, burst-mode data transmission is required, as will be shown

in Section III. Burst-mode data transmission requires a burst-mode receiver that is designed to

rapidly lock onto the incoming data stream as well as a transmitter that sends the necessary

preamble signal at the correct time to facilitate the operation of the burst-mode receiver.

Control plane

Data plane

BM TX

BM RXSwitch

Switch

Switch
control

Synchronization

TX Data
BM RX
start

Switch
state

HostHostHost NIC HostHostHost NIC

Arbitration, scheduling, flow control, ...

Figure 2.2: Notional schematic of future photonic switch system integration.

The scheduler in the control plane uses a scheduling algorithm to determine how to

configure switches and when to transmit data. Various techniques for computing a schedule

exist, but the scaling properties of these algorithms can be problematic, especially at hyperscale

datacenter scales [30, 31]. Operating a global scheduler also requires collecting a set of demand

information and distributing a schedule based on that information. These operations can require a

significant amount of bandwidth at large scales. Minimizing the latency of these components is

critical for enabling high network performance.

15



2.2.1 Optical Switches

There are a variety of methods for implementing routing in the optical domain [31,

35, 14, 12]. One method is to route different wavelengths with passive components such as

array waveguide gratings (AWGs) and fast tunable lasers [22]. Another method is to use active

switching technologies with fixed-wavelength transmitters. This chapter focuses on the latter

technique.

Switches based on free-space microelectromechanical systems (MEMS) technology can

scale to large port counts with low loss, but suffer from large size, slow switching speed, and high

actuation voltage [36]. Semiconductor optical amplifier (SOA) based switches have been studied,

but suffer from noise and nonlinearities in the amplifiers as well as polarization sensitivity [55].

Thermo-optic Mach–Zehnder (MZ) interferometers and ring resonators may be suitable, but the

time constants associated with the thermo-optic effect limit switching speeds [58]. A switch

design based on MEMS actuated waveguides [23] shows promise for sub microsecond switching

times coupled with good optical performance and reasonable scaling properties.

Switches based on silicon photonics are capable of switching on much shorter timescales.

Electro-optic ring resonators and Mach–Zehnder (MZ) interferometers can both be used to

construct switches that have reconfiguration times on the order of 5 ns [9, 28].

2.2.2 Burst-Mode Receivers

During a switching event, the physical connections to the receivers are changed from

one host to another host. In most deployed datacenters, these hosts do not share a common

clock. Therefore, the clock frequency and phase must be recovered at the receiver. No data can

successfully transit the network until the switches have completed reconfiguring and the receivers

have locked on to the data. As a result, the system-level reconfiguration time is determined

primarily by the sum of the switch reconfiguration time and the receiver lock time. The duty cycle
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is the fraction of time in which data can be sent over the network between each reconfiguration.

More reconfigurations of the switch, with slower switches, or with slower receivers can reduce

the duty cycle and the overall network throughput. This is why fast-locking receivers are required

when using fast optical switches.

Burst-mode receivers are designed to lock onto an input signal without a significant

interruption of data. This is necessary when the links are optically multiplexed in time, either with

an optical switch or by switching transmitters on and off as in passive optical networks (PON). In

a PON, downstream data is transmitted using a broadcast-and-select protocol while upstream data

is transmitted using a time-division multiple access (TDMA) protocol. The upstream receiver in

a 10G-EPON network must be able to lock on to the preamble of each incoming frame within

400 ns, despite varying power levels and clock phase and frequency.

Burst-mode receivers consist of two main components: a variable gain transimpedance

amplifier (TIA) and a burst-mode clock data recovery (CDR) circuit. The variable-gain TIA

adjusts the gain and threshold to track changes in received optical power. The burst-mode CDR

follows the TIA, recovers the clock signal, and detects the data bits. Both the TIA and the CDR

must be able to quickly find the optimal gain, offset, and clock phase for successful recovery of

the data [44].

2.2.3 System-Level Reconfiguration Time

The overall system-level reconfiguration time is the sum of the switch reconfiguration

time, receiver locking time, and all necessary guard times and is illustrated in Fig. 2.3. Fast

optical switches help to reduce the system-level reconfiguration time, but minimizing the overall

system-level reconfiguration time requires precise synchronization between the optical switch,

burst-mode transmitter, and burst-mode receiver. For efficient operation, the receiver lock time

should be matched to the speed of the optical switch.

For a scale-out network, this desirable high data-rate functionality creates many challenges
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Figure 2.3: Illustration of system-level reconfiguration time, including switch reconfiguration
and link training (bit- and frame-synchronization). Not included are scheduling and time-of-
flight.

related to link establishment and coordination. Recent demonstrations have focused on the switch

interface, while using either source-synchronous [33, 64] or non-burst-mode optical links [51].

Source-synchronous data transmission requires distributing the transmit clock to the receivers,

which is complex to implement at datacenter scale. Non-burst-mode receivers recover the clock

from data transmitted with an embedded clock, but are not specifically optimized for fast locking

and as a result limit the achievable system-level reconfiguration time as well as the average

throughput.

Here, we present detailed system-level results for a non-source-synchronous burst-mode

link of an optically-switched network that can reconfigure on nanosecond time scales. The

system-level timing for the link is coordinated by an FPGA.

Utilizing a burst-mode receiver enables fast switch reconfiguration in a scalable fashion.

The FPGA initiates a burst from an optical transmitter, configures the photonic switch, and

signals the receiver to begin a training sequence. Once, locked, the FPGA-based data plane

provides error-free transmission through the switched link. The testbed demonstrates system-level

reconfiguration times of 90 ns at 12.5 Gbps and 60 ns at 20 Gbps for kB-scale packets.
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Figure 2.4: Testbed block diagram. The blocks in the shaded region are implemented in the
same FPGA.

2.3 Implementation

A testbed, shown in Fig. 2.4, was developed to assess the combined performance of a

silicon photonic optical switch chip and a burst-mode receiver. The testbed consists of optical

components, a data plane, and an FPGA to coordinate the link. The link-level components, data

pattern generator, and error detector are implemented on a Virtex UltraScale FPGA on a VCU108

development board. Data from the pattern generator is serialized with a transceiver on the FPGA

and sent to a commercial 100GBASE PSM4 QSFP28 transceiver operating around 1310 nm. The

output of the transceiver is coupled to the input of the silicon photonic switch chip through an

isolator, polarization controller, and lensed fiber. After passing through the switch chip, the light

is coupled out with another lensed fiber, amplified with an O–band praseodymium-doped fiber

amplifier (PDFA), filtered with a tunable optical bandpass filter, attenuated, and coupled in to

the receiver with a fiber probe. The output of the receiver is connected to the FPGA for error

analysis via a pair of demultiplexer chips. The details of this part of the testbed are shown in

Fig. 2.7. Optical power is measured in several places—a tap and detector in the bandpass filter

module, a tap and power meter following the attenuator, and the photodiode bias source meter,

which supplies the bias voltage to the high speed photodiode in the receiver and measures the
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average photocurrent. Control software continuously adjusts the attenuator throughout the tests to

control the photocurrent (optical power) at the receiver.

The complete test setup in the lab is shown in Fig. 2.5 and Fig. 2.6. Fig. 2.5 contains

the burst-mode receiver chip, FPGA, QSFP28 transmitter, level translators, demux board, and

associated components. Fig. 2.6 contains the silicon photonic switch chip, optical components,

and biasing supplies for the CDR chip.

Burst-mode receiver

25 GHz clock Level shifters Demux board

QSFP28 TX FPGA

Figure 2.5: CDR side of setup, including FPGA board, QSFP28 transmitter, burst-mode receiver,
and demux board

2.3.1 Optical Components

The switch used in the testbed is a 2×2 Mach–Zehnder-based silicon photonic switch [9]

configured as a 1× 2 switch. This switch is equipped with two electro-optic phase shifters

driven in push-pull mode and two thermo-optic phase trimmers. It provides fast switching in

about 5 ns, while exhibiting an insertion loss of 1 dB and an extinction ratio > 20 dB over an

optical bandwidth of 12 nm in the O-band. The low crosstalk of this switch leads to a worst-case

power penalty of less than 0.25 dB [8]. Electronic circuits, including digital device drivers and
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Figure 2.6: Switch side of setup, including silicon photonic switch, optical components, and
biasing supplies

a serial-to-parallel interface, are integrated on the die alongside the switching elements [28]. A

switch control module on the FPGA loads new configurations into the switch with a 250 MHz

clock.

The burst-mode receiver used in the testbed has a measured lock time of 31 ns at

25 Gbps [47]. The receiver uses a series of steps to recover the data, including a TIA cali-

bration to adjust the DC bias and a successive approximation search routine to determine the

correct clock phase. Phase interpolators are used to generate the recovered clock. The receiver

completes the input DC level calibration in 12.5 ns and locks onto the data bit edges in 18.5 ns.

The receiver has an internal 1:2 demultiplexer, providing two half-rate data outputs at 12.5 Gbps

as well as a half-rate clock at a nominal rate of 12.5 GHz. The 12.5 Gbps outputs are further

demultiplexed by a factor of 16 in the FPGA-based data plane as described below. The trigger

generator module on the FPGA provides the start signal to trigger the burst-mode locking routine

in the receiver.

Due to the design of the CDR chip, the falling edge of the start signal resets the control
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logic and the phase interpolators in preparation for the rising edge to initiate the locking routine,

causing the link to be interrupted on the falling edge of the start signal. This means that the width

of the start pulse directly affects the length of time the link is interrupted during the CDR locking

operation. This is in contrast with [47], where the locking time is measured from the rising edge

of the start pulse after the CDR has been reset. The shortest pulse that worked reliably was 6 ns

wide and the CDR takes about 4 ns to respond to the falling edge, so the overall locking time

achieved is closer to 42 ns at 20 Gbps instead of the expected 38 ns (extrapolated from 31 ns at

25 Gbps).

2.3.2 Datapath

Data is generated with a custom pattern generator, implemented on a Virtex UltraScale

XCVU095 FPGA. The pattern generator is responsible for generating the preamble that the

burst-mode CDR chip requires—in this case, a 2-UI square wave or 1010 data pattern—as well

as a known data sequence as the payload for BER measurements. The pattern generator uses

a 30-Gbps GTY transceiver on the FPGA to serialize the data for transmission to the QSFP28

module and through the link. The two data rates used in this experiment are 12.890625 Gbps

and 20.625 Gbps, which are 50% and 80% of the data rate of a single lane of 100GBASE-R,

respectively. For brevity, this chapter lists these rates as 12.5 Gbps and 20 Gbps. The pattern

generator supports generating variable-length payloads either from an internal pattern RAM

or an internal PRBS generator. When running in PRBS mode, a continuous PRBS sequence

is generated and segmented into individual payloads, with each payload containing a different

section of the sequence. The pattern generator continuously outputs a repeating preamble pattern,

switching to the configured payload data pattern when triggered.

Following the receiver, an error detector was implemented to assess system-level perfor-

mance. A block diagram of the error detector and connections to the receiver is shown in Fig. 2.7.

This diagram covers the burst-mode receiver, demux, and error detector blocks from Fig. 2.4. The
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Figure 2.7: Block diagram of receiver, FPGA connections, and FPGA receive datapath logic.

burst mode receiver contains a variable gain transimpedance amplifier (TIA), 1:2 demultiplexer,

phase interpolators, and the burst mode CDR logic. When running at 25 Gbps, the output of the

burst-mode receiver chip is a pair of source-synchronous single-ended 12.5-Gbps outputs with a

12.5-GHz clock. The transceivers on the FPGA work at up to 30 Gbps, but can only be used for

receiving serial data with an embedded clock—they do not support reception with an external full-

rate recovered clock. 12.5 Gbps is also too fast for normal source-synchronous FPGA I/O, which

supports a maximum of 1600 Mbps for LVDS inputs. Instead, a pair of external demultiplexer

chips (Adsantec ASNT2011) on a custom FMC (FPGA mezzanine connector) board (shown

in Fig. 2.8) are used to demultiplex each 12.5-Gbps output to sixteen 800-Mbps low-voltage

differential signaling (LVDS) signals that are compatible with normal source-synchronous FPGA

I/O. Level shifters (Adsantec ASNT3111) are used to convert between the single-ended ground-

referenced outputs of the receiver and the differential Vcc-referenced inputs of the demultiplexer

chips. The recovered clock from the burst-mode CDR chip is applied to the demultiplexers

through an amplifier, trombone phase shifter, and wideband resistive power divider. The FMC

board contains two demultiplexers, two LVDS clock dividers, and delay compensation traces to

realign the data after the clock dividers. The clock dividers are required to enable operation in

double data rate (DDR) mode, as 800 Mbps per pin is right on the edge of what the FPGA is

capable of in single data rate (SDR) mode. The LVDS data from the demultiplexers is passed

through LVDS input buffers and DDR flip flops in the FPGA I/O banks for a final demux by a
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factor of 2. Once inside the FPGA, two different error detection techniques are implemented.

Delay 
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to FPGA

Clock and data 
from receiver

Switch control

Figure 2.8: Picture of dual-channel 1:16 demux FMC board.

First, the errors on each of the 16 outputs of each demultiplexer chip are measured with

32 gated error detectors, denoted PRBS in Fig. 2.7. Each gated error detector consists of a linear

feed-forward shift register with the same taps as the corresponding PRBS generator shift register

followed by a gated counter. Bit errors in the data shifted into the shift register produce logical

high levels at the output—one logical high per tap, per error. The gated counter accumulates the

errors when the gate is open, with the gating signal provided by the trigger generator. The gated

error detectors are useful for debugging purposes. Because the error detectors operate on the fully

demultiplexed data, the guard times required for the detectors to synchronize with the incoming

data are quite large. Our previous work [18] only used this technique for error detection. Further

details are provided in Section 2.4.

In this work, an improved method of error detection was also used that is based on a

set of frame-synchronized pattern checkers. Two of these pattern checkers are attached to the
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outputs of each demultiplexer chip, one for each possible data alignment of the 1:2 demultiplexer

in the receiver chip. It is not possible to use a single pattern checker in our testbed as the clock

dividers in the two discrete demultiplexers can come out of sync with each other during the

operation of the burst-mode locking routine due to runt clock pulses from stepping the phase

interpolators on the CDR chip. This would not be an issue with a fully-integrated demultiplexer.

A frame synchronization module, denoted FS in Fig. 2.7, detects the start of frame delimiter (SFD)

between the preamble and the payload data and barrel-shifts the data into the correct alignment

so the pattern checkers, denoted PC in Fig. 2.7, can check the payload data. The start-of-frame

delimiter (SFD) used is the same as the standard Ethernet SFD where the last bit of the 1010

preamble is inverted. A signal from the trigger generator prepares the frame synchronization

logic to lock on to the SFD after each switch reconfiguration. Using frame synchronization vastly

reduces the guard times associated with the error checkers. Note that some guard time is still

required, as bit errors in the preamble will cause the frame synchronizer to lock at the incorrect

offset. In a network setting, the guard time can be reduced by precise injection of the packets into

the network when the switch is changing its state. This is discussed in Chapter 3.

The pattern checkers are capable of comparing payload data to fixed patterns stored in

SRAM or feeding payload data through an LFSR-based PRBS checker. Utilizing both the PRBS

generator in the pattern generator and the PRBS checkers in the frame-synchronized pattern

checkers enables testing with the entire PRBS sequence.

2.3.3 Link-Level Control

A link consisting of both an optical circuit switch and a burst-mode receiver requires

precise synchronization of the datapath to ensure that the error-rate measurements are conducted

when the switch is in the appropriate state. This means that the receiver is locked and valid data

is present at the output of the receiver. A simplified timing diagram of the control signals to

synchronize the switch chip, the burst-mode receiver, and the BER measurements as well as
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selected data signals is shown in Fig. 2.9. The timing diagram shows the timing relationships

between various events, but is not necessarily to scale. Further details of the specific ordering of

the trigger events are provided in Section 2.4.

Software running on a control computer interfaces with all of the datapath components

and test equipment. The control software sets up all of the datapath components for each test,

then alternates between adjusting the optical power, accumulating errors, and reading out error

counters.
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Switch latch

Switch output

BM RX start

BM RX done

BM RX output

A B C D E

Invalid

SFD
PRBS data

Demux output

D
SW

D
PG

D
FS

T
CYCLE

T
PKT

Switch state

Frame sync trigger

Aligned data

F

Preamble
T

SW

Data valid

Figure 2.9: Simplified system timing diagram.

The control signals on the timing diagram are generated by a programmable trigger

generator implemented within the FPGA shown in the gray box in Fig. 2.4. The trigger generator

runs on a 500 MHz clock, providing a delay resolution of 2 ns. This generator triggers the
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burst-mode receiver, pattern generator, switch controller, and frame-synchronized error detector.

The pattern generator is responsible for generating and switching between the preamble used to

lock the burst-mode receiver and the data pattern used by the error detector for evaluating link

performance. In the absence of a trigger, the pattern generator continuously produces a preamble

pattern as shown schematically at the top of Fig. 2.9. The preamble is a 2-unit-interval square

wave (1010 data pattern). A 215−1 bit PRBS was used as the payload because of the long cycle

time of a 231−1 sequence; there are no fundamental limitations in either the photonic switch, the

burst-mode receiver, or the rest of the receive datapath when longer sequences are used [47].

Event (A) in Fig. 2.9 denotes the start of a switch cycle, when the latch signal from the

switch control module on the FPGA, denoted switch latch in Fig. 2.9, commands the switch chip

to latch the new configuration to the PIN diode drivers, thereby causing the switch to reconfigure.

During this event, the pattern generator sends the preamble sequence to the switch during the

switch transition so that the receiver will be ready to lock immediately after the switch has

stabilized in the new configuration.

After a delay DSW, shown at the top of Fig. 2.9, the burst-mode receiver is triggered

at event (B), initiating the burst-mode locking sequence. This event occurs when the trigger

generator module on the FPGA issues the start signal to the burst-mode receiver, denoted in

Fig. 2.9 as BM RX start. At this point, the burst-mode receiver will start its gain adjustment and

clock phase search routines. During this time interval, the preamble signal must be continuously

present at the receiver so that the burst-mode locking routines in the receiver will properly lock

on to the signal. When the locking routine completes, the BM RX done signal is asserted.

After a second delay DPG shown as event (C) in Fig. 2.9, a trigger output from the trigger

generator informs the pattern generator to stop generating the preamble sequence and switch to a

start of frame delimiter (SFD) followed by the payload data, which is nominally a PRBS. The

timing of the trigger event is adjusted so that the SFD and payload data arrive at the receiver after

it is locked and ready to receive data.
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After a third delay DFS, shown as event (D) in Fig. 2.9, a trigger output from the trigger

generator informs the frame synchronizer in the pattern checker module on the FPGA to start

searching for the start of frame delimiter (SFD). Upon detecting the SFD, the frame synchronizer

barrel-shifts the demultiplexed data into proper alignment for error detection of the entire packet

payload.

Event (E) in Fig. 2.9 denotes the start of aligned payload data after the frame synchronizer.

The end of the packet is denoted event (F), TPKT later. The error detector accumulates errors over

the entire payload.

The error measurement process is repeated with a cycle time TCYCLE. For the timing

parameters used in the testbed, the load signal for the next measurement cycle starts during the

error measurement process due to the significant pipeline delay through the datapath on the FPGA.

The duty cycle TPKT/TCYCLE for several payload sizes at both data rates is shown in Table 2.1. The

system-level reconfiguration time TSW is defined as TCYCLE−TPKT.

2.4 Timing Detail and Comparison with Earlier Work

This section presents details of the experimental setup used in this work and contrasts

this setup to the previous setup used in earlier work [18]. Our previous work reported a 332 ns

system-level lock time using a burst-mode receiver and a nanosecond optical switch chip. While

this result was novel, it resulted in a low circuit-switched duty cycle for typical packet sizes. To

make this method more practical, several key changes were implemented in this experiment to

improve the performance thereby making the system more practical.

The setup used for the work presented in this chapter has the same general structure as

our earlier work, but makes several key changes that lead to significant improvements in the

system-level lock time. These changes were to: (1) optimize the settings of FPGA-based pattern

generator, (2) reduce the width of the burst-mode receiver trigger signal pulse, (3) implement
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frame synchronization, and (4) re-order of the triggering events to compensate for the large delay

of the pattern generator. We consider each of these changes separately.

Two optimizations were made to the FPGA-based pattern generator. The first optimization

was setting the pattern generator datapath width to half the previous value. The second optimiza-

tion was doubling the serializer clock speed. These changes reduced the trigger uncertainty from

the trigger generator from 6.2 to 3.1 ns at 20.625 Gbps. These changes also reduced the serializer

latency by one cycle of the 128 bit interface, or 6.2 ns at 20.625 Gbps. The changes also reduced

the latency of the rest of the pattern generator. Specifically, doubling the clock frequency cuts

the latency of the rest of the pattern generator from 37.2 ns to 18.6 ns at 20.625 Gbps, saving

18.6 ns of latency. The combined changes to the FPGA-based pattern generator reduced the

trigger-to-output delay by 3.1+6.2+18.6 = 27.9 ns.

Changes were also made to the burst-mode receiver trigger signal. Originally, the trigger

signal was configured to be a 20 ns wide active-low pulse. However, the burst-mode receiver

resets on the falling edge of a trigger pulse and initiates the locking routine on the rising edge

of the pulse. This means that the width of the trigger pulse directly impacts the locking time

of the receiver. Therefore, we reduced the width of the trigger pulse. For the current setup, we

determined that a 6 ns pulse was the shortest pulse that would reliably trigger the receiver. This

change yielded a savings of 14 ns for the lock time of the burst-mode receiver.

The use of frame synchronization also improved the system-level reconfiguration time.

Our previous work used only gated BER measurements taken individually on each output of the

discrete demultiplexers. Because of the lower data rate, it takes longer for the PRBS checkers

to synchronize with the payload data. Specifically, when checking PRBS-15 data, each PRBS

checker must see at least 15 data bits before it can lock onto the pattern. Since the data is

demultiplexed by 64 in the FPGA, this requires 8 clock cycles at rate/64 or 24.8 ns at 20.625 Gbps.

Frame synchronization enables handling data at the full interface width, enabling the PRBS

checker to lock in a single 3.1 ns clock cycle.
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Figure 2.10: Comparison of the timing parameters used for our earlier work and the setup used
for this work.
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Finally, changes were made to the ordering of the triggering events to compensate for the

large delay of the pattern generator. This large delay was primarily due to the FPGA serializer

and propagation delay from the pattern generator to the burst-mode receiver. Specifically, we

interchanged the ordering of the burst-mode start trigger and the pattern generator trigger. This

re-ordering led to the burst-mode receiver being triggered after the pattern generator instead of

before as was the case for the previous setup.

With respect to the timing diagram, the previous setup considered the burst-mode trigger

signal to be the reference time (i.e. “t = 0”) for the rest of the trigger signals, as shown in

Fig. 2.10a. For this previous case, the pattern generator start signal was triggered 20 ns after

the burst-mode receiver, shown as DPG in Fig. 2.10a. The pattern generator latency is TPG, the

propagation of the pattern generator output through the optical components and back to the

receiver is TPROP, the lock time of the burst-mode receiver is TLOCK, and the overall system-level

reconfiguration time is TSW. In the timing diagram, the TX data trace represents the output of

the pattern generator, and the BM RX input trace represents the optical signal at the input of the

receiver, after passing through the optical switch. Unlike Fig. 2.9, Fig. 2.10a shows the data at the

input of the burst-mode receiver instead of the output as the focus is on the propagation of the

data from the pattern generator to the receiver along with the related control signals.

In the current setup, the reference time for the rest of the trigger signals was changed to be

before the pattern generator trigger signal. Therefore, in this new reference frame, the burst-mode

trigger signal occurs after the pattern generator trigger signal as shown in Fig. 2.10b. This change

in the experimental setup set the pattern generator trigger at a fixed offset of t = 10 ns after the

reference time. The maximum delay DBM for the burst-mode trigger that produced no bit errors

was t = 252 ns after the pattern generator trigger. This delay yielded the minimum system-level

lock time. Accounting for the 20 ns offset used in the previous setup gives an overall change of

20+252-10=262 ns in the relative timing of the burst-mode trigger signal and the pattern generator

trigger signal between the previous setup and the setup used in this work.
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Because the burst-mode trigger pulse width was reduced by 14 ns, this results in the

rising edge of the burst-mode trigger signal changing to 248 ns. Adding 25 ns from the use

of frame synchronization gives an overall improvement of 273 ns for the system-level locking.

This value is in excellent agreement with the measured 272 ns difference between the 332 ns

system-level reconfiguration time reported in our previous work [18] and the 60 ns reconfiguration

time reported in this work. The system-level reconfiguration time in Fig. 2.10 is depicted as TSW.

2.5 Results

The bit error ratio (BER) of the burst-mode link was tested in three measurement configu-

rations at data rates of 12.5 Gbps and 20 Gbps. The test data included a preamble consisting of

the pattern 0101 . . . and a 1024-byte PRBS15 payload, with a 730-ns overall period at 12.5 Gbps

and a 460-ns overall period at 20 Gbps.

The first configuration was a back-to-back set-up without the photonic switch. With the

photonic switch inserted, the cross and bar states were used to assess the performance. The

same BER measurement was performed in each case, sending multiple data packets containing

segments of PRBS15 over the link and re-locking the burst-mode CDR before each packet.

Fig. 2.11 shows several measured waveforms. The upper two waveforms (denoted BM

RX start and BM RX done) are used to start the burst-mode locking process and notify the system

when that process is completed. The next trace from the top is the input waveform to the switch.

The darker part of this trace is the preamble and the lighter part is the data pattern. The slight

change in the amplitude between these two parts of the waveform is attributed to high-frequency

roll-off of the preamble compared with the PRBS payload that includes more low-frequency

components.

The lower two traces are the waveforms at the cross and bar outputs of the switch. Fig. 2.12

shows a zoomed-in version showing the switching transition. As in Fig. 2.11, the upper two
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Figure 2.11: Waveforms at 20 Gbps with a 1024-Byte payload.

waveforms are the trigger signal to the burst-mode receiver and the done signal in response, the

third waveform is the input to the switch, and the bottom two waveforms are the two outputs of

the switch. The data patterns in the high-speed waveforms do not align between the waveforms

as the waveforms were captured separately and combined based on the burst-mode start trigger.

The data pattern alignment difference of up to 5 ns between the trigger signal and the pattern

generator in the FPGA is due to the crossing from the trigger generator’s 500-MHz clock domain

to the pattern generator, running in the 201.4-MHz serializer transmit clock domain.

The bit error ratio (BER) curves for the back-to-back configuration and for the cross and

bar configurations of the switch chip for each of the two data rates are shown in Fig. 2.13. The

measured eye diagrams (back-to-back and through the switch) at 12.5 Gbps and 20 Gbps are

shown in Fig. 2.14. The BER curves indicate minimal impact on the sensitivity at 12.5 Gbps
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Figure 2.12: Traces inside the dashed box of Fig. 2.11.

and about a 1.5-dB penalty at 20 Gbps, both measured at a BER of 10−12. Part of the penalty at

20 Gbps may be due to interference effects from the switch chip itself or the fiber coupling to the

chip. The sensitivity degradation of approximately 2 dB compared to [47] is mostly attributed to

our data source, the transmitter of a commercial 100GBASE PSM4 QSFP28 module driven by

FPGA serializers with integrated PLLs.

Table 2.1 contains the timing parameters for the links that were evaluated. Data rates of

12.5 and 20 Gbps and payload sizes of 1024 and 2048 bytes were tested. For each configuration,

the timing parameters were adjusted for zero-error performance. TCYCLE is the overall cycle time,
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Table 2.1: Timing parameters and overall duty cycle.

Payload size (B) 2048 1024 2048 1024
Data rate (Gbps) 12.5 12.5 20 20
TCYCLE (ns) 1366 730 858 460
TPKT (ns) 1276.0 640.5 797.5 400.3
TCDR (ns) 64.0 64.0 41.5 41.5
TSW (ns) 90 90 60 60
Duty cycle (%) 93 87 93 87

the time between the start of each switch reconfiguration. TPKT is the length of time required to

transmit the packet, which is checked by the pattern checkers on the FPGA. TCDR is the measured

locking time of the CDR chip, measured from the done output falling to done output rising.
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During this time, data cannot reliably transit through the CDR chip, even if the link has not been

interrupted by the optical switch. TSW is the system-level reconfiguration time; the time during

each switch cycle in which data cannot be sent. In this case, TSW = TCYCLE−TPKT. Finally, the duty

cycle is the fraction of the switch cycle that can be utilized for data transmission. In this case,

D = TPKT/TCYCLE.

The system-level reconfiguration time is the time during a complete switching cycle that

cannot be used for sending valid data. It includes not only the optical switching and burst-mode

receiver lock time, but also a settling delay required before triggering the receiver, and guard

time on both ends for triggering the pattern generator and frame-synchronized error detector. Our

measured values of 60 and 90 ns could be improved through further FPGA optimization or an

ASIC implementation.

2.6 Discussion

This work in this chapter employed a 32-nm CMOS burst-mode receiver that can lock in

31 ns at 25 Gbps [47], which contributes a large part to our measured end-to-end reconfiguration

time. Faster burst-mode receivers locking in 6.8 ns at 56 Gbps have since been demonstrated

in 14-nm CMOS, although that implementation did not include an automatic gain control block

to enable operation over the large dynamic range that may be required in optical switching

applications [40]. Our measured reconfiguration times could also be further improved through

increased integration to remove the discrete demultiplexing of our lab demonstration and by

using an ASIC implementation instead of an FPGA. System-wide synchronization may also

be implemented through other means such as clock distribution, phase-caching [5], or in-band

protocols such as WhiteRabbit [46, 53]. While standards such as IEEE 1588 (PTP) have been

developed for synchronization across a large number of end hosts, very fast synchronization at

the nanosecond scale has only been demonstrated in small-scale test beds.
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While the work presented is necessary for an optical circuit-switched network, it is not

sufficient. To build a complete network, additional components are required that have their own

set of challenges. Any optically-switched network must have a scheduler to compute switch

state and data transmission schedules. For this experiment, a simple deterministic round-robin

schedule was used that did not dynamically adjust to traffic demand. In practice, this system-level

issue is a significant challenge in particular for scale-out networks [35].
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2.7 Conclusion

Fast optical switching has significant potential to improve throughput and power efficiency

in datacenter and high-performance computing applications. However, effectively utilizing fast

optical switching in a network requires precise coordination of the switches and burst-mode

receivers in order to minimize overall system reconfiguration time.

Detailed system-level results for a non-source-synchronous link of an optically-switched

network that can reconfigure on a nanosecond time scale have been presented. The system

combines a nanosecond scale optical switch with a fast-locking burst-mode optical receiver. An

FPGA-based testbed was used for coordination to demonstrate error-free performance of switched

links at 12.5 Gbps and 20 Gbps with measured system-level reconfiguration times of 90 ns and

60 ns, respectively. These system-level results are a vital step in the development of scalable

nanosecond optical networks.

Moreover, any circuit-switched network must synchronize the transmitters, switches,

and receivers. Implementing global synchronization at datacenter scale across many separate

components is complex. For this experiment, the major components were all implemented

on the same FPGA, avoiding several issues that would have to be addressed in a distributed

synchronization scheme.

Admission control at the transmitters is also required to ensure the correct data is sent on

the wire at the correct time. Implementing admission control for nanosecond optical switches

at any scale requires hardware support at the end hosts to achieve the necessary control over

transmit timing.

The work presented here is a significant step towards the integration of optical circuit

switching into datacenter and HPC networks.
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2.8 Sources for Material Presented in This Chapter

Chapter 2, in part, reprints material as it appears in the paper titled: “A dynamically-

reconfigurable burst-mode link using a nanosecond photonic switch,” published in the Journal

of Lightwave Technology, 2020, by Alex Forencich, Valerija Kamchevska, Nicolas Dupuis,

Benjamin G. Lee, Christian Baks, George Papen, and Laurent Schares. The dissertation author

was the primary researcher and author of this material.
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Chapter 3

Corundum NIC

This chapter presents the design of Corundum, an open-source, high-performance, FPGA-

based NIC for circuit-switched networks. As discussed in Chapter 2, precise injection of packets

at the edge of a circuit-switched network is vital to effectively utilize a high speed optical switch.

Software solutions and commercial NICs are not designed for operation in circuit-switched

networks. Therefore, they do not provide the required level of timing performance. This means

that high-precision injection of packets at realistic line rates requires some form of custom

hardware. The motivation for the development of Corundum is the need for precise control of

the injection of packets from multiple queues into a circuit-switched network under the control

of a hardware-based scheduler. The development of such a network interface will enable the

construction of practical sub-microsecond circuit-switched networks at scale.

Corundum is designed to provide a network interface similar in performance to a com-

mercially-available NIC, while enabling implementation of these additional hardware features.

Corundum provides the capability to control packet transmissions with microsecond precision,

enabling operation with microsecond-scale optical switches with no additional software overhead.

Corundum also provides direct access to physical layer components, enabling in situ physical

layer link characterization methods similar to those discussed in Chapter 2.
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3.1 Introduction and Overview

The network interface controller (NIC) is the gateway through which a computer interacts

with the network. The NIC forms a bridge between the software stack and the network, and

the functions of this bridge define the network interface. Both the functions of the network

interface as well as the implementation of those functions are evolving rapidly. These changes

have been driven by the dual requirements of increasing line rates and NIC features that support

high-performance distributed computing and virtualization. The increasing line rates have led to

many NIC functions that must be implemented in hardware instead of software. Concurrently,

new network functions such as precise transmission control for multiple queues are needed to

implement advanced protocols and network architectures.

To meet the need for an open development platform for new networking protocols and

architectures at realistic line rates, we are developing an open-source1 high-performance, FPGA-

based NIC prototyping platform. This platform, called Corundum, is capable of operation up to

at least 94.4 Gbps, is fully open source and, along with its driver, can be used across a complete

network stack. The design is also portable across many different FPGAs, with additional gates

available for further customization even on smaller devices. We show that Corundum’s modular

design and extensibility permit co-optimized hardware/software solutions to develop and test

advanced networking applications in a realistic setting.

3.1.1 Motivation and Previous Work: Transmit Scheduling

The motivation for the development of Corundum can be understood by looking at how

network interface features in existing NIC designs are currently partitioned between hardware

and software. Hardware NIC functions fall into two main categories. The first category consists

of simple offloading features that remove some per-packet processing from the CPU—such

1Corundum codebase: https://github.com/ucsdsysnet/corundum
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as checksum/hash computation and segmentation offloading that enables the network stack to

process packets in batches. The second category consists of features that must be implemented

in hardware on the NIC to achieve high performance and fairness. These features include flow

steering, rate limiting, load balancing, and time stamping.

Traditionally, the hardware functions of NICs are built into proprietary application-specific

integrated circuits (ASICs). Coupled with economies of scale, this enables high performance

at low cost. However, the extensibility of these ASICs is limited and the development cycle to

add new hardware functions can be expensive and time-consuming [16]. To overcome these

limitations, a variety of smart NICs and software NICs have been developed. Smart NICs

provide powerful programmability on the NIC, generally by providing a number of programmable

processing cores and hardware primitives. These resources can be used to offload various

application, networking, and virtualization operations from the host. However, smart NICs do not

necessarily scale well to high line rates, and hardware features can be limited [16].

Software NICs offer the most flexibility by implementing network functionality in soft-

ware, bypassing most of the hardware offloading features. As a result, new functions can be

developed and tested quickly, but with various trade-offs including consuming host CPU cy-

cles and not necessarily supporting operation at full line rate. Additionally, because of the

inherent random interrupt-driven nature of software, the development of networking applica-

tions that require precise transmission control is infeasible [57]. Despite this, many research

projects [45, 48, 24, 56] have implemented novel NIC functions in software by either modifying

the network stack or by using kernel-bypass frameworks such as the Data Plane Development Kit

(DPDK) [6].

FPGA-based NICs combine features of ASIC-based NICs and software NICs: they

are capable of running at full-line rate and delivering low latency and precision timing, while

having a relatively short development cycle for new functions. High-performance, proprietary,

FPGA-based NICs have also been developed. For example, Alibaba developed a fully custom

42



FPGA-based RDMA-only NIC that they used to run a hardware implementation of a precision

congestion control protocol (HPCC) [29]. Commercial products also exist, including offerings

from Exablaze [10] and Netcope [39].

Unfortunately, similar to ASIC-based NICs, commercially-available FPGA-based NICs

tend to be proprietary with basic “black-box” functions that cannot be modified. The closed

nature of basic NIC functionality severely limits their utility and flexibility for developing new

networking applications.

Commercially-available high-performance DMA components such as the Xilinx XDMA

core and QDMA cores, and the Atomic Rules Arkville DPDK acceleration core [3] do not provide

fully configurable hardware to control the flow of transmit data. The Xilinx XDMA core is

designed for compute offload applications and as such provides very limited queuing functionality

and no simple method to control transmit scheduling. The Xilinx QDMA core and Atomic Rules

Arkville DPDK acceleration core are geared towards networking applications by supporting a

small number of queues and providing DPDK drivers. However, the number of queues supported

is small—2K queues for the XDMA core and up to 128 queues for the Arkville core—and neither

core provides a simple method for precise control over packet transmission.

Open-source projects such as NetFPGA [66] exist, but the NetFPGA project only provides

a toolbox for general FPGA-based packet processing and is not specifically designed for NIC

development. Moreover, the NetFPGA NIC reference design utilizes the propriety Xilinx XDMA

core, which is not designed for networking applications. Replacing the Xilinx XDMA core in the

reference NIC design for the NetFPGA board with Corundum results in a much more powerful

and flexible prototyping platform.

FPGA based packet-processing solutions include Catapult [4], which implements network

application offloading, and FlowBlaze [42], which implements reconfigurable match-action

engines on FPGAs. However, these platforms leave the standard NIC functions to a separate

ASIC-based NIC and operate entirely as a “bump-in-the-wire”, providing no explicit control over
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the NIC scheduler or queues.

Other projects use pure software implementations or partial hardware implementations.

Shoal [53] describes a network architecture that performs cell routing with custom NICs and

fast Layer 1 electrical crosspoint switches, with the crosspoint switches implementing a fixed

schedule. Shoal was constructed in hardware, but was only evaluated with synthetic traffic with

no connection to any hosts. For a scaled-up evaluation with realistic traffic and application-level

benchmarking, Corundum could be used to provide a host interface for the Shoal NICs.

SENIC [45] describes scalable NIC-based rate-limiting, supporting 10s of thousands of

hardware rate-limiters. A hardware implementation of a simplified scheduler was evaluated in

isolation, but the system-level evaluation was carried out in software with a custom queuing

discipline (qdisc) module. For a scaled-up evaluation with realistic traffic and application-level

benchmarking, Corundum could be used to provide a datapath and host interface for the SENIC

scheduler.

PIEO [52] describes a hardware architecture for a flexible NIC scheduler that is capable

of implementing various types of rate-limiting and scheduling algorithms. The architecture was

implemented and evaluated in hardware in isolation. For a scaled-up evaluation with realistic

traffic and application-level benchmarking, Corundum could be used to provide a datapath and

host interface for PIEO.

NDP [24] is a pull-mode transport protocol for datacenter applications. NDP is a receiver-

pulled protocol, where the receivers control the rate of the senders. NDP was evaluated with DPDK

software NICs and FPGA-based switches. For a scaled-up evaluation with realistic traffic and

application-level benchmarking, Corundum could be used as a base for a hardware implementation

of an NDP NIC, utilizing support for event-driven transmission control in Corundum.

Loom [56] describes a NIC architecture that supports fine-grained scheduling. The

architecture operates on packet descriptors, classifying and enqueuing them in hierarchy of

priority queues (also known as push-in, first-out or PIFOs). The architecture was evaluated as a
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software NIC with BESS. For a scaled-up evaluation with realistic traffic and application-level

benchmarking, Corundum could be used to provide a datapath for the Loom NIC architecture.

The development of Corundum is distinguished from all of these projects because it is

completely open source and can operate with a standard host network stack at practical line

rates. It provides thousands of transmit queues coupled with extensible transmit schedulers for

fine-grained control of flows. This leads to a powerful and flexible open-source platform for the

development of networking applications that combine both hardware and software functionalities.

3.1.2 Motivation and Previous Work: Circuit Switch Admission Control

A particular application of transmit scheduling is to enforce a time-division multiple-

access (TDMA) schedule. This is a requirement in circuit-switched networks where data sent

at the wrong time will not arrive at the intended destination, instead either getting lost during a

switch reconfiguration or arriving at the incorrect destination.

In packet-switched networks, generally the transmit scheduler enforces fairness, ensuring

that the link can be shared fairly between multiple applications, virtual machines, or other data

sources, and/or limiting the data rate to prevent congestion elsewhere in the network. Since packet

switches contain buffers, ensuring that the result is fair on average or the target rates are correct on

average over long timescales is usually sufficient. In this case, software-based implementations

such as Carousel [48] can be highly effective.

However, in circuit-switched networks, the switches operate at the level of links instead

of packets. Circuit switches periodically break physical links and reconnect them in a new

configuration. Any packets traversing the affected links during the reconfiguration process will be

lost, and packets sent while the switch is in an incorrect configuration will arrive at the incorrect

destination. Because of this, in a circuit-switched network, the precise timing of transmitted

packets is paramount. Additionally, as stated in Chapter 2, the system-level reconfiguration time

consists of not only the physical reconfiguration time of the switch itself, but also the locking time

45



of the receivers and any guard bands necessary to account for variance in time synchronization

and packet transmissions. This means that the precision of the admission control method directly

impacts the reconfiguration time of the whole system by determining the size of the guard bands.

The precision of the admission control must be of a similar timescale to the reconfiguration time

of the switch, otherwise the speed of a fast optical switch will be wasted.

Considering the guard delay in terms of bytes and packets is useful in addition to time, as

the number of bytes scales with the line rate and the number of packets is dependent on both the

line rate and packet size.

In software, achieving precise control over packet transmission is extremely difficult at

microsecond timescales. This is due to a large number of sources of timing uncertainty in software,

including operating system scheduling, interrupts, caching, branch prediction, etc. Additionally,

the delay incurred through the driver and NIC can be quite variable, and with commercial NICs

there is little visibility or control over what happens once a packet is handed off to the NIC for

transmission.

In RotorNet [37], two different software-based admission control solutions were imple-

mented. The first utilized a custom qdisc module in the linux kernel, and the second used a

Myricom-specific “Sniffer” kernel bypass framework. The initial optical switch used for RotorNet

has a switching time of 150 μs.

The qdisc solution was able to operate at 10 Gbps on an 800 μs period, divided into a

400 μs day for transferring data and a 400 μs night for reconfiguring the switch. This corresponds

to a guard time of 250 μs, which is 312.5 KB or 208 1.5 KB MTU packets at 10 Gbps. Even with

250 μs of guard delay, this technique was not completely reliable at preventing packet loss—some

experiment runs had around 0.1% packet loss, while a repeat with identical settings might result

in no packet loss. The qdisc solution did not scale to bandwidths significantly higher than 10

Gbps, and the required guard time was heavily dependent on the NIC used.

The Myricom Sniffer solution was able to operate at 10 Gbps on a 1 ms, divided into a
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650 μs day and a 350 μs night. This corresponds to a guard time of 200 μs, which corresponds

to 250 KB or 167 1.5 KB MTU packets at 10 Gbps. Even with a 200 μs of guard delay, this

technique was not completely reliable at preventing packet loss—some experiment runs had

around 0.1% packet loss, while a repeat with identical settings might result in no packet loss.

Additionally, the Myricom Sniffer solution supported only synthetic traffic generated within the

userspace appliation, and is only compatible with Myricom NICs.

In an effort to scale precision admission control to higher data rates, a solution based on

the Berkeley Extensible Software Switch (BESS) was investigated [32]. The BESS software NIC

was capable of reliable operation at around 40 Gbps on a 50 μs period with a 5 μs guard delay,

which corresponds to 62.5 KB or 42 1.5 KB MTU packets at 100 Gbps. However, this solution

only worked with synthetic traffic generated within BESS, and it could not scale to higher line

rates without significantly enlarging the guard delay.

Most recently, experiments with the hardware RDMA WAIT primitive have shown some

promise. On NICs that support RDMA WAIT, it is possible for a control host to precisely trigger

data transfers over the network. Since this is a NIC hardware primitive, the response latency is

consistent and it operates at full line rate. The measured latency has a variance of around 13 μs.

However, this technique can only be used on RDMA applications. Additionally, it requires a

separate host to transmit the control packets which are subject to contention and other delays in

the network as well as three queue pairs per destination.

Commercial smart NICs are another possible platform for implementing transmission

control. However, many smart NICs are designed for line-rate packet processing and as such

are not particularly conducive to implementing flow control across a large number of queues.

In many cases, commercial smart NICs simply do not provide enough queues to provide one

queue per destination or per flow. If packets are classified and enqueued on the NIC itself, then

it is not possible to exert proper backpressure to the networking stack, resulting in head-of-line

blocking and/or packet drops. For example, the Cavium LiquidIO smart NIC only supports 128
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hardware transmit queues over the PCIe interface. It is possible to pause these queues and apply

backpressure to the network stack, but the number of queues is too small to be useful.

A TDMA implementation on a Netronome NFP-3240 NIC with 16 queues was able to

operate on a 100 μs period with 10 μs guard delays [65]. However, the NIC only supported

operation at around 5 Gbps, and since packet classification was implemented on the NIC, it was

susceptible to head-of-line blocking and/or packet loss.

Other commercial smart NICs, such as the Mellanox Innova Flex and the Solarflare

Application Onload Engine, actually provide an FPGA on the NIC in conjunction with a NIC

ASIC. However, these NICs are designed for application offload and as such the FPGA may

not be integrated in a way that provides any control over the flow of data through the NIC. For

example, in the case of the Innova Flex NIC, the only connection to the FPGA is a direct PCIe

link to a PCIe switch on the NIC ASIC. As a result, the FPGA has no control over the NIC

datapath at all and therefore cannot be used to enforce an admission control scheme.

In contrast, the Corundum NIC with its hardware TDMA scheduler controller provides

scalable, accurate TDMA performance across thousands of hardware-managed queues. It is

capable of enforcing a TDMA schedule for arbitrary traffic at full 100 Gbps line rate on a 100 μs

period with a guard delay of less than 2 μs with no software overhead, which corresponds to

25.5 KB or 17 1.5 KB MTU packets at 100 Gbps. This delay is an upper bound and can be

improved with further optimizations. The development of this capability enables the construction

of practical sub-microsecond circuit-switched networks.

3.2 Background

The network interface controller (NIC) is the gateway that connects software running on a

computer to other computers over a network. It is responsible for sending data from application

software on the wire, and for receiving data from the wire to pass to application software for
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processing.

In many modern computers, the NIC sits on the PCIe bus and interacts with the host CPU

via memory read and write operations, which are called memory-mapped IO (MMIO) from the

host to the NIC and direct memory access (DMA) from the NIC to the host.

3.2.1 NIC-to-Host Interface: PCI Express

In many modern computers and servers, the NIC is a peripheral that sits on the PCI

express bus. There are some exceptions to this where the NIC is either integrated onto the same

die as the CPU, including the SPARC Network Interface Unit on certain SPARC processors and

many system-on-chip based devices, or connected using some other interface, such as OpenCAPI

or CCIX. This dissertation will focus on NICs connected via PCI express.

PCI express is a common interface that serves to connect the processor to high bandwidth

peripherals in a computer. The high-level operation of PCI express draws heavily on conventional

PCI as it was intended to be a drop-in replacement from the standpoint of software—it shares

the same configuration spaces, enumeration, bus number and address assignments, etc. as

conventional PCI. However, unlike the shared parallel bus of conventional PCI, PCI express is a

packet-switched interface built from point-to-point links in a tree topology.

The root of a PCI express system is the root complex, which connects the PCI express

components to the host CPU and system memory. The root complex contains one or more

root ports that can be connected to PCI express devices and switches. PCI express devices are

connected to root ports either directly or via PCIe switches in a tree topology.

The transaction layer of PCI express is responsible for transferring data in the form of

memory read and write operations. PCI express devices are allocated ranges of system address

space via base address registers. PCI express switches are configured with the address range of

the devices behind them so they can route requests appropriately. Reliable transmission and order

preservation of transaction layer packets, or TLPs, is ensured by link-level sequence numbers and
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CRCs (LCRC) while traversing links and a retransmission scheme to transparently replay lost or

corrupted TLPs.

Transaction layer packets that carry PCIe traffic consist of a header and a payload. The

payload size is restricted to a configurable maximum payload size parameter which can range

from 128 to 4096 bytes. This parameter is available in the PCIe configuration space of each

device. Most systems support a maximum payload size of 128 or 256 bytes. The maximum

payload size mainly affects write requests and completions carrying data in response to read

requests. The maximum length of a read request is set by a different parameter, the maximum

read request size, which similarly ranges from 128 to 4096 bytes. Most systems set this to 512

bytes, but is common to see it set higher.

The protocol overhead of PCIe TLPs includes 12 or 16 bytes at the transaction layer for

the TLP header plus an additional 8 bytes at the link layer for the LCRC, sequence number, and

framing.

There are two main ways of transferring data over the PCIe bus. First, when the CPU

initiates memory read and write operations against devices, this is referred to as memory-mapped

IO (MMIO). Second, when a device other than the CPU initiates a memory read or write operation,

this is referred to as direct memory access (DMA). When the target is another device instead of

system memory, this is called peer-to-peer DMA.

Transferring large amounts of data over PCI express traditionally relies on the devices

themselves to manage the transfers through DMA instead of the CPU. There are several reasons

for this. The central reason is that the CPU can only operate on very small chunks of data at

once—perhaps 8 bytes at a time for a 64 bit CPU, and possibly up to the size of a cache line with

the aid of prefetching and write combining. Because of this, it requires a large number of CPU

operations to read the data out of main memory into CPU registers, then write it out again to the

PCIe device, resulting in high CPU utilization. Additionally, each one of those writes will likely

traverse the bus as a single write operation, incurring at least 20 bytes additional overhead in TLP
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headers and link layer overhead, resulting in very poor utilization of the PCIe link. When DMA

is used, a device can directly request a large block of data with a single PCIe read request, which

then comes back as one or more completions that can be far larger than the CPU word or cache

line size, resulting in significantly reduced CPU load as well as significantly improved utilization

of the PCIe interface. Additionally, the device can initiate the read or write on its own terms,

when it is ready for the data, reducing buffering requirements. This is especially important for

inbound network traffic that can arrive at any time, even while the CPU is busy.

PCIe also supports the use of interrupts through in-band messages. PCIe supports 3 types

of interrupts: legacy, message-signaled interrupts (MSI), and MSI-X. Legacy interrupts use PCIe

messages and emulate the shared interrupt lines of PCI. MSI and MSI-X use memory writes to

addresses associated with the system interrupt controller to trigger interrupts.

3.2.2 Network Traffic Over PCIe

Transferring network traffic to and from the NIC over PCIe requires a careful design. The

goal is to maximize throughput over the PCIe bus and to minimize per-packet CPU overhead. To

that end, it is necessary to use direct memory access (DMA) to perform most of the actual data

transfers and minimize the use of MMIO.

From the NIC end, sending and receiving packets over PCIe simply requires reading

them out of memory via DMA read requests or writing them into memory via DMA write

requests. In the transmit direction, each packet would be read with a series of one or more read

requests, ideally the maximum possible size (max read request size), extracting the data from

the completions (max payload size), and sending the packet on the wire. In the receive direction,

each packet would be written out with a series of one or more write requests, again ideally of the

maximum possible size (max payload size). This requires the minimum possible number of PCIe

TLPs, and hence the minimum possible PCIe overhead.

However, this is only part of the story—the NIC has to know where transmit packets are

51



located in memory, and where it can write received packets. It also has to be able to communicate

when it is finished processing each packet. This is the function of the driver. The device driver

is the software counterpart to the NIC; it is responsible for connecting the NIC to the operating

system and ultimately to applications that require access to the network.

In the case of outgoing packets, the driver must take packets from the operating system

and then inform the NIC of the corresponding memory address and length of each packet. Once

the NIC has sent the packets on the wire, the driver must free the associated resources (memory,

etc.) so they can be reused. In the case of incoming packets, the driver must allocate space, inform

the NIC of the corresponding memory addresses, and then hand off the received packets to the

operating system once the NIC is finished receiving each packet. Coordinating all of this requires

some form of communication channel between the driver and the NIC.

Context switching on the software side is another factor to take into consideration. Drivers

are event-driven software, so the driver sits around idle until something happens, then is called in

to action, either by the operating system/application software or by an interrupt. Once running, it

makes sense to try to do as much work as possible—instead of processing one single packet at a

time, the driver should be able to process as many packets as possible, amortizing the context

switching overhead across many packets. It is also important to minimize the number of interrupts

that the NIC generates as handling interrupts in the operating system is expensive. To that end,

queues are a very common sight in network stacks. Packets from application software can be

enqueued by the operating system, and then the driver can dequeue and process several packets in

one operation.

Queues also form an efficient means of communication between the driver and the NIC.

Namely, descriptors describing the memory address and size of packets to be sent can be written

in to a DMA accessible buffer, then the NIC can read the descriptors out and process the packets

at its leisure. When finished with a packet, the NIC can write a completion record into a different

DMA accessible buffer than the driver can read out and process. The driver notifies the NIC of
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Figure 3.1: NIC PCIe bandwidth overhead

enqueued packets via MMIO, and the NIC notifies the driver of completions via interrupts. This

communication technique is quite efficient and quite common in commercial NICs.

The overheads of the TLP headers and descriptor and completion data affect the rate at

which network packets can be sent over the PCIe bus. Fig. 3.1 depicts the overhead required for

transmitting and receiving packets over PCI express using descriptor and completion queues for

communication with the driver, assuming a max TLP size of 256 bytes and a max read request

size of 512 bytes. The overhead is quite significant for larger packet sizes; around 1 KB for 9

KB MTU frames. However, the more important figure is the overhead as a fraction of the packet

size. In this case, the overhead for 64 byte minimum size frames is 156 bytes for RX or 176

bytes for TX, or around 250%. This overhead can significantly limit throughput for small packets.

There are two common methods to reduce PCIe overheads. The first is to batch descriptor reads

and completion writes to reduce the TLP header overhead. The second method is to inline small

packets or packet headers directly in the descriptor queue, avoiding the overhead of a separate

DMA read for the payload data.
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3.2.3 OS-Driver Interface

The network device driver interfaces with the operating system through some set of APIs.

These APIs enable the operating system to hand packets off to the driver for transmission as

well as enable the driver to hand received packets off to the operating system for processing.

There will be additional APIs for configuration. This dissertation will focus on Linux, but other

operating systems will have a similar interface.

In a Linux network device driver, the main interface from the operating system is via a

net device object. The driver allocates, configures, and registers one net device object for

each network interface. The net device structure has a field called netdev ops. The driver

initializes this field to point to a net device ops structure that contains a number of function

pointers. These function pointers implement various pieces of driver functionality that the

operating system will call on when needed. Most of these are for configuration and other ancillary

functions, but the most important one is ndo start xmit. This function is called with a reference

to the sk buff for the packet that the kernel wants to transmit.

In the receive direction, the driver allocates sk buff structures from the kernel with

netdev alloc skb ip align and passes the associated memory to the NIC by writing descrip-

tors in the receive queues. The NIC writes out the receive packet data and hands them back

to the driver, which in turn hands the packets to the kernel with napi gro receive. It is also

possible to allocate memory pages with dev alloc pages, hand those off to the NIC to fill with

receive data, then attach the pages to an sk buff from napi get frags, and then hand it off to

napi gro frags.

3.2.4 Offloading

For operation at high data rates, minimizing CPU cycles per packet is paramount. Zero

copy transmit and receive operations are one component of this—copying data using the CPU
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is expensive, so keeping it in the same location in memory and having the NIC read it out from

that location significantly reduces CPU overhead. The same goes for receive operations: if

receive buffers are allocated properly, they can be directly handed off to the operating system for

processing.

Getting the data organized is only one piece of the puzzle. Many protocols require some

form of checksumming for data integrity. All Ethernet frames have a frame check sequence (FCS)

attached that consists of a cyclic redundancy check (CRC) that’s computed over the entire payload.

Similarly, TCP and UDP headers contain a ones complement checksum of the packet header and

payload data. Computing and checking these checksums is also an expensive operation if done in

software.

If these operations are performed in hardware, this results in a significant savings in CPU

overhead. Most NICs offload the Ethernet FCS computation and verification; this is a standard

function of most Ethernet MACs. On may high performance NICs, this is actually a mandatory

offload; the hardware does not support bypassing the FCS computation and verification.

Since TCP and UDP are extremely common protocols, offloading TCP and UDP check-

sums to the NIC is also a common feature. In this case, there is a trade-off between complexity

and flexibility. Some NICs are capable of performing a full checksum offload in hardware,

interpreting the header fields, summing the correct portion of the packet, and then appropriately

inserting or verifying the checksum. This is complicated to implement in hardware, and baking

the functionality into hardware means that it cannot be adapted to new protocols. A more flexible

approach is to leave interpreting the packet headers to software, and have the hardware only deal

with computing checksums over the payload data, under the direction of software. In this way,

the hardware implementation on the NIC is simple and can be reused for many protocols.

Therefore, the standard transmit checksum offload involves computing the header check-

sum in the network stack, inserting it into the checksum field in the packet header, then handing

the packet off to the NIC to complete the checksum. The NIC computes a ones-complement
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checksum from a network-stack-supplied start offset to the end of the packet, then inserts the

checksum into the packet header at the offset provided by the network stack. In the receive

direction, the NIC simply computes the ones complement checksum of the entire Ethernet frame

payload and returns this in the completion record. The network stack must then adjust the

checksum by subtracting out packet header fields that should not be part of the checksum.

3.3 Implementation

Corundum has several unique architectural features. First, hardware queue states are stored

efficiently in FPGA block RAM, enabling support for thousands of individually-controllable

queues. These queues are associated with interfaces, and each interface can have multiple ports,

each with its own independent transmit scheduler. This enables extremely fine-grained control

over packet transmission. The scheduler module is designed to be modified or swapped out com-

pletely to implement different transmit scheduling schemes, including experimental schedulers.

Coupled with PTP time synchronization, this enables time-based scheduling, including high

precision TDMA.

The design of Corundum is modular and highly parametrized. Many configuration and

structural options can be set at synthesis time by Verilog parameters, including interface and port

counts, queue counts, memory sizes, scheduler type, etc. These design parameters are exposed

in configuration registers that the driver reads to determine the NIC configuration, enabling the

same driver to support many different boards and configurations without modification2.

The current design supports PCIe DMA components for the Xilinx UltraScale PCIe hard

IP core interface. Support for the PCIe TLP interface commonly used in other FPGAs is not

implemented, and is future work. This support should enable operation on a much larger set of

FPGAs.
2Corundum codebase: https://github.com/ucsdsysnet/corundum
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The footprint of Corundum is rather small, leaving ample space available for additional

logic, even on relatively small FPGAs. For example, the Corundum design for the ExaNIC

X10 [10], a dual port 10G design with a PCIe gen 3 x8 interface and 512 bit internal datapath,

consumes less than a quarter of the logic resources available on the second smallest Kintex

UltraScale FPGA (KU035). Table 3.1 lists the resources for several target platforms.

The rest of this section describes the implementation of Corundum on an FPGA. First, a

high-level overview of the main functional blocks is presented. Then, details of several of the

unique architectural features and functional blocks are discussed.

3.3.1 High-Level Overview
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Figure 3.2: Simplified block diagram of the Corundum NIC.

A simplified block diagram of the Corundum NIC is shown in Fig. 3.2. At a high level,

the NIC consists of 3 main nested modules. The top-level module primarily contains support

and interfacing components. These components include the PCI express hard IP core and DMA

interface, the PTP hardware clock, and Ethernet interface components including MACs, PHYs,

and associated serializers. The top-level module also includes one or more interface module

instances. The interface module corresponds to an operating-system-level network interface (e.g.

eth0). Each network interface module contains the queue management logic which maintains the

queue state for all of the NIC queues—transmit, transmit completion, receive, receive completion,

and event—as well as descriptor and completion handling logic. The network interface module
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also contains one or more port module instances. The port module contains the transmit and

receive datapaths, transmit and receive engines, transmit scheduler, and a scratchpad RAM for

temporarily storing incoming and outgoing packets during DMA operations.

For each network interface, the transmit scheduler in the port module decides which

queues to send from. The transmit scheduler generates commands for the transmit engine, which

coordinates operations on the transmit datapath. The scheduler module is a flexible functional

block that can be modified to support arbitrary schedules, which may be event driven. The default

implementation of the scheduler is simple round robin. All ports that use the same interface

module share the same set of transmit queues and appear as a single, unified interface to the

operating system. This enables flows to be migrated between ports or load-balanced across

multiple ports by changing only the transmit scheduler settings without affecting the rest of the

network stack. This dynamic, scheduler-defined mapping of queues to ports is a unique feature

of Corundum that can enable research into new protocols and network architectures, including

parallel networks such as P-FatTree [38] and optically-switched networks such as RotorNet [37]

and Opera [35].

In the receive direction, incoming packets pass through a flow hash module to determine

the target receive queue and generate a command for the receive engine, which coordinates

operations on the receive datapath. Since all ports in the same interface module share the same

set of receive queues, incoming flows on different ports are merged together into the same set

of queues. It is also possible to add customized modules to the NIC to perform processing on

incoming data before it traverses the PCIe bus.

A more detailed block diagram of Corundum is shown in Fig. 3.3. This diagram includes

key functional blocks and interconnections inside the NIC.

The components on the NIC are interconnected with several different interfaces including

AXI lite, AXI stream, and a custom segmented memory interface for DMA operations, which

will be discussed later. AXI lite is used for the control path from the driver to the NIC. It is
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Figure 3.3: Block diagram of the Corundum NIC. PCIe HIP = PCIe hard IP core; AXIL M =
AXI lite master; DMA IF = DMA interface; PTP HC = PTP hardware clock; TXQ = transmit
queue manager; TXCQ = transmit completion queue manager; RXQ = receive queue manager;
RXCQ = receive completion queue manager; EQ = event queue manager; MAC + PHY =
Ethernet media access controller (MAC) and physical interface layer (PHY).

used to initialize and configure the NIC components and to control the queue pointers during

transmit and receive operations. AXI stream interfaces are used for transferring packetized data

within the NIC, including both PCIe transmission layer packets (TLPs) and Ethernet frames. The

segmented memory interface serves to connect the PCIe DMA interface to the NIC datapath and

to the descriptor and completion handling logic.

The majority of the NIC logic runs in the PCIe user clock domain, which is nominally

250 MHz for all of the current design variants. Asynchronous FIFOs are used to interface with

the MACs, which run in the serializer transmit and receive clock domains as appropriate—156.25

MHz for 10G, 390.625 MHz for 25G, and 322.266 MHz for 100G.

The following sections describe key functional blocks within the NIC.

3.3.2 Pipelined Queue Management

Communication of packet data between the Corundum NIC and the driver is mediated

via descriptor and completion queues. Descriptor queues form the host-to-NIC communications

channel, carrying information about where individual packets are stored in system memory.
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Completion queues form the NIC-to-host communications channel, carrying information about

completed operations and associated metadata. The descriptor and completion queues are

implemented as ring buffers that reside in DMA-accessible system memory, while the NIC

hardware maintains the necessary queue state information. This state information consists of

a pointer to the DMA address of the ring buffer, the size of the ring buffer, the producer and

consumer pointers, and a reference to the associated completion queue. The required state for

each queue fits into 128 bits.

The queue management logic for the Corundum NIC must be able to efficiently store and

manage the state for thousands of queues. This means that the queue state must be completely

stored in block RAM (BRAM) or ultra RAM (URAM) on the FPGA. Since a 128 bit RAM

is required and URAM blocks are 72x4096, storing the state for 4096 queues requires only 2

URAM instances. Utilizing URAM instances enables scaling the queue management logic to

handle at least 32,768 queues per interface.

In order to support high throughput, the NIC must be able to process multiple descriptors

in parallel. Therefore, the queue management logic must track multiple in-progress operations,

reporting updated queue pointers to the driver as the operations are completed. The state required

to track in-process operations is much smaller than the state required to describe the queue state

itself. Therefore the in-process operation state is stored in flip-flops and distributed RAM.

The NIC design uses two queue manager modules: queue manager is used to manage

host-to-NIC descriptor queues, while cpl queue manager is used to manage NIC-to-host com-

pletion queues. The modules are similar except for a few minor differences in terms of pointer

handling, fill handling, and doorbell/event generation. Because of the similarities, this section

will discuss only the operation of the queue manager module.

The BRAM or URAM array used to store the queue state information requires several

cycles of latency for each read operation, so the queue manager is built with a pipelined architec-

ture to facilitate multiple concurrent operations. The pipeline supports four different operations:
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register read, register write, dequeue/enqueue request, and dequeue/enqueue commit. Register-

access operations over an AXI lite interface enable the driver to initialize the queue state and

provide pointers to the allocated host memory as well as access the producer and consumer

pointers during normal operation.
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Figure 3.4: Block diagram of the queue manager module, showing the queue state RAM and
operation table. Ind = index, Addr = DMA address, Op = index in operation table, Act = active,
LS = log base 2 of queue size, Cpl = completion queue index, Tail = tail or consumer pointer,
Head = head or producer pointer, Com = committed; QI = queue index; Ptr = new queue pointer

A block diagram of the queue manager module is shown in Fig. 3.4. The BRAM or

URAM array used to store the queue state information requires several cycles of latency for each

read operation, so the queue manager is built with a pipelined architecture to facilitate multiple

concurrent operations. The pipeline supports four different operations: register read, register

write, dequeue/enqueue request, and dequeue/enqueue commit. Register-access operations over

an AXI lite interface enable the driver to initialize the queue state and provide pointers to the

allocated host memory as well as access the producer and consumer pointers during normal

operation.

Each queue has three pointers associated with it, as shown in Fig. 3.5—the producer
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Figure 3.5: Queue pointers on software ring buffers.

pointer, the host-facing consumer pointer, and the shadow consumer pointer. The driver has

control over the producer pointer and can read the host-facing consumer pointer. Entries between

the consumer pointer and the producer pointer are under the control of the NIC and must not be

modified by the driver. The driver enqueues a descriptor by writing it into the ring buffer at the

index indicated by the producer pointer, issuing a memory barrier, then incrementing the producer

pointer in the queue manager. The NIC dequeues descriptors by reading them out of the descriptor

ring via DMA and incrementing the consumer pointer. The host-facing consumer pointer must

not be incremented until the descriptor read operation completes, so the queue manager maintains

an internal shadow consumer pointer to keep track of read operations that have started in addition

to the host-facing pointer that is updated as the read operations are completed.

The dequeue request operation on the queue manager pipeline initiates a dequeue operation

on a queue. If the target queue is disabled or empty, the operation is rejected with an empty or

error status. Otherwise, the shadow consumer pointer is incremented and the physical address

of the queue element is returned, along with the queue element index and an operation tag.

Operations on any combination of queues can be initiated until the operation table is full. The

dequeue request input is stalled when the table is full. As the read operations complete, the

dequeue operations are committed to free the operation table entry and update the host-facing

consumer pointer. Operations can be committed in any order, simply setting the commit flag in

the operation table, but the operation table entries will be freed and host-facing consumer pointer
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will be updated in-order to ensure descriptors being processed are not modified by the driver.

The operation table tracks in-process queue operations that have yet to be committed.

Entries in the table consist of an active flag, a commit flag, the queue index, and the index of the

next element in the queue. The queue state also contains a pointer to the most recent entry for

that queue in the operation table. During an enqueue operation, the operation table is checked

to see if there are any outstanding operations on that queue. If so, the consumer pointer for the

most recent operation is incremented and stored in the new operation table entry. Otherwise,

the current consumer pointer is incremented. When a dequeue commit request is received, the

commit bit is set for the corresponding entry. The entries are then committed in-order, updating

the host-facing consumer pointer with the pointer from the operation table and clearing the active

bit in the operation table entry.

Both the queue manager and completion queue manager modules generate notifications

during enqueue operations. In a queue manager, when the driver updates a producer pointer on an

enabled queue, the module issues a doorbell event that is passed to the transmit schedulers for the

associated ports. Similarly, completion queue managers generate events on hardware enqueue

operations, which are passed to the event subsystem and ultimately generate interrupts. To reduce

the number of events and interrupts, completion queues also have an armed status. An armed

completion queue will generate a single event, disarming itself in the process. The driver must

re-arm the queue after handling the event.

3.3.3 Transmit Scheduler

The default transmit scheduler used in the Corundum NIC is a simple round-robin sched-

uler implemented in the tx scheduler rr module. The scheduler sends commands to the

transmit engine to initiate transmit operations out of the NIC transmit queues. The round-robin

scheduler contains basic queue state for all queues, a FIFO to store currently-active queues and

enforce the round-robin schedule, and an operation table to track in-process transmit operations.
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Similar to the queue management logic, the round-robin transmit scheduler also stores

queue state information in BRAM or URAM on the FPGA so that it can scale to support a large

number of queues. The transmit scheduler also uses a processing pipeline to hide the memory

access latency.

The transmit scheduler module has four main interfaces: an AXI lite register interface

and three streaming interfaces. The AXI lite interface permits the driver to change scheduler

parameters and enable/disable queues. The first streaming interface provides doorbell events from

the queue management logic when the driver enqueues packets for transmission. The second

streaming interface carries transmit commands generated by the scheduler to the transmit engine.

Each command consists of a queue index to transmit from, along with a tag for tracking in-process

operations. The final streaming interface returns transmit operation status information back to the

scheduler. The status information informs the scheduler of the length of the transmitted packet, or

if the transmit operation failed due to an empty or disabled queue.

The transmit scheduler module can be extended or replaced to implement arbitrary

scheduling algorithms. This enables Corundum to be used as a platform to evaluate experimental

scheduling algorithms, including those proposed in SENIC [45], Carousel [48], PIEO [52], and

Loom [56]. It is also possible to provide additional inputs to the transmit scheduler module,

including feedback from the receive path, which can be used to implement new protocols and

congestion control techniques such as NDP [24] and HPCC [29]. Connecting the scheduler

to the PTP hardware clock can be used to support TDMA, which can be used to implement

RotorNet [37], Opera [35], and other circuit-switched architectures.

The structure of the transmit scheduler logic is similar to the queue management logic in

that it stores queue state in BRAM or URAM and uses a processing pipeline. However there are a

number of significant differences. First, the scheduler logic is designed so that the scheduler does

not stall when a queue is empty and a subsequent dequeue operation fails. Second, the scheduler

contains a FIFO to enforce the round-robin schedule. The use of this FIFO requires an explicit
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reset routine to make the internal state (namely the scheduled flag bits) consistent after a reset.

Third, the scheduler also contains logic to track the active state of each queue based on incoming

doorbell requests and dequeue failures.
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Figure 3.6: Block diagram of the transmit scheduler module, showing queue state RAM and
operation table. Ind = index, En = queue enable, GE = global enable, SE = schedule enable, Act
= active, Sch = scheduled, QI = queue index, DB = doorbell, H = head, N = next, P = previous

A block diagram of the transmit scheduler module is shown in Fig. 3.6. The transmit

scheduler is built around a scheduled queue FIFO. This FIFO stores the indices of the currently-

scheduled queues. An active queue is one that is presumed to have at least one packet available

for transmission, an enabled queue is one that has been enabled for transmission, and a scheduled

queue is one that has an entry in the scheduler FIFO. A queue will be scheduled (marked as

scheduled and inserted into the FIFO) if it is both active and enabled. A queue will be descheduled

when it reaches the front of the schedule FIFO, but is not enabled or not active. Queue enable
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states are controlled via three different enable bits per queue: queue enable, global enable, and

schedule enable. The queue enable and global enable bits are writable via AXI lite, while the

schedule enable bit is controlled from the scheduler control module via an internal interface. A

queue is enabled when the queue enable bit and either the global enable or schedule enable bits

are set. Queues become active when doorbell events are received, and queues become inactive

when a transmit request fails due to an empty queue.

Tracking the queue active states must be done carefully for several reasons. First, the

driver can update the producer pointer after enqueuing more than one packet, so the number of

generated doorbell events does not necessarily correspond to the number of packets that were

enqueued. Second, because the queues are shared among all ports on the same interface, multiple

ports can attempt to send packets from the same queue, and the port transmit schedulers have

no visibility into what the other schedulers are doing. Therefore, the most reliable method for

determining that a queue is empty is to try sending from it, and flagging the failure. Note that the

cost of an error is much higher when the queue is active than when the queue is empty. Attempting

to send from an empty queue costs a few clock cycles and temporarily occupies a few slots in

corresponding operation tables. However, assuming a queue is empty when it is not will result

in packets getting stuck in the queue. Fixing this stuck queue will not occur until the OS sends

another packet on that queue and triggers another doorbell. Therefore, it is imperative to properly

track doorbell events during transmit operations, as it is possible for a doorbell event to arrive

after a dequeue attempt has failed, but before the failed transmit status arrives at the transmit

scheduler module.

The pipeline in the transmit scheduler supports seven different operations: initialize,

register read, register write, handle doorbell, transmit complete, scheduler control, and transmit

request. The initialize operation is used to ensure the scheduler state is consistent after a reset.

Register access operations over an AXI lite interface enable the driver to read all of the per-queue

state and set the queue enable and global enable bits. The pipeline also handles incoming doorbell
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requests from the transmit queue manager module as well as queue enable/disable requests from

the scheduler control module. Finally, the transmit request and transmit complete operations are

used to generate transmit requests and handle the necessary queue state updates when the transmit

operations complete.

Queues can become scheduled based on a register write that enables an active queue, a

doorbell that activates an enabled queue, a scheduler operation that enables an active queue, and a

transmit completion on an enabled queue that is either successful or has the doorbell bit set in

the operation table. Queues can only be descheduled when the queue index advances to the front

of the scheduler FIFO. If this occurs when the queue is both active and enabled, then the queue

can be rescheduled and a transmit request generated. When the transmit operation completes, the

transmit status response will be temporarily stored in a small FIFO and then processed by the

pipeline to update the corresponding operation table entry and, if necessary, reschedule the queue.

The operation table tracks in-process transmit operations. Entries in the table consist of

an active flag, the queue index, a doorbell flag, a head flag, a next pointer, and a previous pointer.

The next and previous pointers form a linked list, enabling entries to be removed in any order

while preserving the doorbell flag in the table. This prevents doorbells from getting ’lost’ and

the queue being mistakenly marked as inactive. A separate linked list is formed for each queue

with active transmit operations. The operation table is implemented in such a way that it fits in

distributed RAM.

3.3.4 Ports and Interfaces

A unique architectural feature of Corundum is the split between the port and the network

interface so that multiple ports can be associated with the same interface. Most current NICs

support a single port per interface, as shown in Fig. 3.7a. When the network stack enqueues

a packet for transmission on a network interface, the packets are injected into the network via

the network port associated with that interface. However, in Corundum, multiple ports can be
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Figure 3.7: NIC port and interface architecture comparison

associated with each interface, so the decision over which port a packet will injected into the

network can be made by hardware at the time of dequeue, as shown in Fig. 3.7b.

All ports associated with the same network interface module share the same set of transmit

queues and appear as a single, unified interface to the operating system. This enables flows to

be migrated between ports or load-balanced across multiple ports by changing only the transmit

scheduler settings without affecting the rest of the network stack. The dynamic, scheduler-defined

mapping of queues to ports enables research into new protocols and network architectures,

including parallel networks such as P-FatTree [38] and optically-switched networks such as

RotorNet [37] and Opera [35].

3.3.5 Datapath and Transmit and Receive engines

Corundum uses both memory-mapped and streaming interfaces in the datapath. AXI

stream is used to transfer Ethernet packet data between the port DMA modules, Ethernet MACs,

and the checksum and hash computation modules. AXI stream is also used to connect the PCIe

hard IP core to the PCIe AXI lite master and PCIe DMA interface modules. A custom, segmented

memory interface is used to connect the PCIe DMA interface module, port DMA modules, and

descriptor and completion handling logic to internal scratchpad RAM.

The width of the AXI stream interfaces is determined by the required bandwidth. The

core datapath logic, except the Ethernet MACs, runs entirely in the 250 MHz PCIe user clock

domain. Therefore, the AXI stream interfaces to the PCIe hard IP core must match the hard core
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interface width—256 bits for PCIe gen 3 x8 and 512 bits for PCIe gen 3 x16. On the Ethernet

side, the interface width matches the MAC interface width, unless the 250 MHz clock is too slow

to provide sufficient bandwidth. For 10G Ethernet, the MAC interface is 64 bits at 156.25 MHz,

which can be connected to the 250 MHz clock domain at the same width. For 25G Ethernet,

the MAC interface is 64 bits at 390.625 MHz, necessitating a conversion to 128 bits to provide

sufficient bandwidth at 250 MHz. For 100G Ethernet, the MAC interface is 512 bits at 322.266

MHz, which is connected to the 250 MHz clock domain at 512 bits because it only needs to run

at around 195 MHz to provide 100 Gbps.
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Figure 3.8: Simplified version of Fig. 3.3 showing the NIC datapath.

A block diagram of the NIC datapath is shown in Fig. 3.8, which is a simplified version

of Fig. 3.3. The PCIe hard IP core (PCIe HIP) connects the NIC to the host. Two AXI stream

interfaces connect the PCIe DMA interface module to the PCIe hard IP core—one for read and

write requests, one for read data. The PCIe DMA interface module is then connected to the

descriptor fetch module, completion write module, port scratchpad RAM modules, and the RX

and TX engines via a set of DMA interface multiplexers. In the direction towards the DMA

interface, the multiplexers combine DMA transfer commands from multiple sources. In the

opposite direction, they route transfer status responses. They also manage the segmented memory

interfaces for both reads and writes. The top-level multiplexer combines descriptor traffic with

packet data traffic, giving the descriptor traffic higher priority. Next, a pair of multiplexers
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combine traffic from multiple interface modules. Finally, an additional multiplexer inside each

interface module combines packet data traffic from multiple port instances.

The transmit and receive engines are responsible for coordinating many of the operations

necessary for transmitting and receiving packets. The transmit and receive engines can handle

multiple in-progress packets for high throughput. As shown in Fig. 3.3, the transmit and receive

engines are connected to several modules in the transmit and receive data path, including the port

DMA modules and hash and checksum offload modules, as well as the descriptor and completion

handling logic and the timestamping interfaces of the Ethernet MACs.

The transmit engine is responsible for coordinating packet transmit operations. The

transmit engine handles transmit requests for specific queues from the transmit scheduler. For

each request, the transmit engine will allocate an entry in its operation table and issue a request

to the descriptor read module. Once the descriptor is read, the transmit engine will extract the

packet data pointer and length as well as the transmit checksum command from the descriptor.

The transmit engine will then issue a read request to the PCIe DMA engine to read the packet

data into internal RAM. When the read completes, the transmit engine will issue a read request to

the port DMA engine to read the packet data for transmission. The packet will then pass through

the transmit checksum module, MAC, and PHY. Once the packet is sent, the transmit engine

will receive the PTP timestamp from the MAC, build a completion record, and pass it to the

completion write module.

Similar to the transmit engine, the receive engine is responsible for coordinating packet

receive operations. Incoming packets pass through the PHY and MAC and arrive at the receive

hashing module. This module extracts the IP addresses and TCP/UDP ports to compute a standard

Toeplitz flow hash, which is used to generate the receive queue index in the receive request for

the receive engine. For each request, the receive engine will allocate an entry in its operation

table and issue a write request to the port DMA engine to write the packet data into internal RAM.

The receive engine will also store the PTP timestamp from the MAC as well as the computed IP

70



checksum and flow hash. Once the packet data is written, the receive engine will issue a request

to the descriptor read module. Once the descriptor is read, the receive engine will extract the

packet data pointer and the packet length and issue a write request to the PCIe DMA engine to

write the packet data out into the buffer in host memory. When the write completes, the receive

engine will build a completion record and pass it to the completion write module.

The descriptor read and completion write modules are similar in operation to the transmit

and receive engines. These modules handle descriptor/completion read/write requests from the

transmit and receive engines, issue enqueue/dequeue requests to the queue managers to obtain the

queue element addresses in host memory, and then issue requests to the PCIe DMA interface to

transfer the data. The completion write module is also responsible for handling events from the

transmit and receive completion queues by enqueuing them in the proper event queue and writing

out the event record.

3.3.6 PCI Express

For optimal performance, the Corundum NIC uses a fully custom PCI express DMA

engine. This is necessary due to the tight integration required between the PCIe DMA engine and

the rest of the NIC components.

The PCI express interface consists of several pieces. The Xilinx UltraScale FPGA provides

a PCI express hard IP core that handles the PCI express link layer and physical layer components,

presenting a streaming transaction layer interface to the user logic. This interface is connected to

a set of PCI express modules to bridge the PCI express transaction layer to the design. There are

two main components involved in this: the PCIe AXI lite master, and the PCIe DMA interface

module.

The PCIe AXI lite master module terminates memory read and write operations against

a PCI express BAR to an AXI lite interface. The AXI lite master module provides access

via memory-mapped IO (MMIO) to internal register space to the driver for configuration and
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management, including access to the queue pointers in the queue management logic.

The PCIe DMA interface itself consists of two parts: the write side (device-to-host) and

the read side (host-to-device). The PCIe DMA write engine receive commands from user logic

that contain the transfer internal address, PCIe address, and length. The transfers are divided

into individual PCIe write request operations based on PCIe TLP size and address alignment

rules. For each TLP, read requests are issued on the internal segmented interface to fetch the

write data. As the read data arrives, TLP headers are attached and the data is barrel-shifted into

proper alignment. Since the segmented interface is twice the width of the AXI stream interface to

the PCIe hard IP core, no extra cycles are required for data realignment. The write DMA engine

tracks the write request TLPs through the PCIe hard IP core with transmit sequence numbers,

only reporting the write operation as complete once it has been transmitted over the PCIe link.

When all TLPs have been sent for a given operation, a completion status record is returned to

user logic. The core also tracks the number of available transmit flow control credits to ensure

that outgoing requests are not blocked by the PCIe hard IP core.

The PCIe read DMA interface is a bit more complex. It receives read requests from user

logic that contain the internal address, PCIe address, and length. The transfers are divided into

individual PCIe read request operations based on PCIe TLP size and address alignment rules.

PCIe tags are then allocated, and read request TLPs are issued. The destination internal address

for each issued read request is stored in an intermediate table, indexed by PCIe tag. As completion

TLPs arrive, the internal address is fetched from the table, the data is barrel-shifted to the proper

alignment, and write requests are issued on the internal segmented interface. Again, since the

segmented interface is twice the width of the AXI stream interface to the PCIe hard IP core, no

extra cycles are required for data realignment. After all writes for a given DMA transfer are

completed, a completion status record is returned to user logic. The core also tracks transmit

sequence numbers to ensure the PCIe hard IP core transmit buffer does not overflow, which would

result in blocking outgoing requests.
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3.3.7 Segmented Memory Interface

For high performance, Corundum internally uses a custom segmented memory interface.

The interface is split into segments of maximum 128 bits, and the overall width is double that of

the AXI stream interface from the PCIe hard IP core. For example, a design that uses PCIe gen 3

x16 with a 512-bit AXI stream interface from the PCIe hard core would use a 1024-bit segmented

interface, split into 8 segments of 128 bits each. This interface provides an improved “impedance

match” over using a single AXI interface, enabling higher PCIe link utilization by eliminating

issues with backpressure and alignment. Namely, the interface guarantees that the DMA interface

can perform a full-width, unaligned read or write on every clock cycle.

Each segment operates similar to AXI lite, except with three interfaces instead of five:

one channel provides the write address and data, one channel provides the read address, and one

channel provides the read data. Unlike AXI, bursts and reordering are not supported, simplifying

the interface logic. Interconnect components (multiplexers) are responsible for preserving the

ordering of operations, even when accessing multiple RAMs. The segments operate completely

independently of each other with separate flow control connections and separate instances

of interconnect ordering logic. Also, operations are routed based on a separate select signal

and not by address decoding, eliminating the need to assign addresses and enabling the use

of parametrizable interconnect components that appropriately route operations with minimal

configuration.

Byte addresses are mapped onto segmented interface addresses with the lowest-order

address bits determining the byte lane in a segment, the next bits selecting the segment, and the

highest-order bits determining the word address for that segment. For example, in a 1024-bit

segmented interface, split into 8 segments of 128 bits, the lowest 4 address bits would determine

the byte lane in a segment, the next 3 bits would determine the segment, and the rest would drive

the address bus for that segment.
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3.3.8 Ethernet Interfaces

For the 10G and 25G design variants, Corundum uses an open source 10G/25G Ethernet

MAC and PHY that supports PTP timestamping. The open source MACs are more compatible

with the Python simulation framework. Additionally, using open-source MACs and PHYs also

permits optimization for operation in a circuit-switched environment, including the removal of

features that can cause unnecessary disruptions to the transmit side when the receive side is down

and changes to the PHY layer components to improve frame synchronization performance.

The 100G design variants currently rely on the Xilinx UltraScale+ hard 100G CMAC

cores with support for RS-FEC [62].

3.3.9 Checksum Offloading

Checksum offloading moves the task of computing a ones complement checksum over the

packet payload data from the CPU to the NIC, resulting less CPU load per packet sent or received

over the network. Corundum currently implements basic transmit and receive IP checksum

offloading.

Receive IP checksum offloading hardware on the NIC computes a ones complement sum

over the entire Ethernet payload of every received frame, which is included in the completion

record. The networking stack can then offset this checksum by subtracting out the checksum

of any header fields that are not part of the IP layer checksum, which requires fewer operations

than summing the complete payload, resulting in a reduction in per-packet CPU overhead. This

checksum offload technique has the additional advantage of being protocol agnostic; it can be

applied to any protocol that uses ones-complement checksums without changes to the hardware.

Transmit IP checksum offloading hardware on the NIC computes a ones complement sum

over a portion of the packet, inserting the result into the packet at the specified location. The

network stack is responsible for computing the pseudo-header checksum over the appropriate
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fields, inserting the partial checksum in the packet header, and then informing the NIC of the

location of both the checksum field and the offset to the start of the payload data.

3.3.10 Device Driver

The Corundum NIC is connected to the Linux kernel networking stack with a kernel

module. The module is responsible for initializing the NIC, registering kernel interfaces, allocating

DMA-accessible buffers for descriptor and completion queues, handling device interrupts, and

passing network traffic between the kernel and the NIC. The kernel module also provides

an interface for userspace software to access NIC registers, permitting configuration of NIC

components including port schedulers, visibility into internal NIC state for debugging and

characterization, and access to other hardware components including optical module configuration

interfaces for monitoring and FPGA configuration flash for firmware updates.

The NIC uses register space to expose parameters including the number of interfaces,

number of ports, number of queues, number of schedulers, maximum transport unit (MTU)

size, and presence of PTP timestamping and offload support. The driver reads these registers

during initialization so it can configure itself and register kernel interfaces to match the NIC

design configuration. This auto-detection capability means that the driver and NIC are loosely

coupled; the driver generally does not need to be modified with respect to the core datapath when

used across different FPGA boards, different Corundum design variants, and different parameter

settings.

3.3.11 Simulation Framework

An extensive open-source, Python-based simulation framework is included to evaluate

the complete design. The framework is built using the Python library MyHDL and includes

simulation models of the PCI express system infrastructure, PCI express hard IP core, NIC driver,
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and Ethernet interfaces. The simulation framework facilitates debugging the complete NIC design

by providing visibility into the state of the entire system.

The core of the PCIe simulation framework consists of about 4,500 lines of Python and

includes transaction-layer models of PCIe infrastructure components including root complex,

functions, endpoints, and switches as well as high-level functionality including configuration

space, capabilities, bus enumeration, root complex memory allocation, interrupts, and other

functions. The framework supports both memory-mapped and IO space operations between any

combination of devices, including host-to-device memory-mapped IO (MMIO), device-to-host

direct memory access (DMA), and device-to-device peer-to-peer DMA. Additional modules,

consisting of another 4,000 lines of Python, provide models of the FPGA PCIe hard IP cores,

exchanging transaction-layer traffic with the simulated PCIe infrastructure and driving signals

that can be connected to a cosimulated Verilog design.

Simulating Corundum requires a few lines of code to instantiate and connect all of the

components. Listing 3.1 shows an abbreviated testbench to send and receive packets of various

sizes using the simulation framework, with the Verilog design cosimulated in Icarus Verilog.

The testbench instantiates simulation models for the Ethernet interface endpoints, PCIe root

complex, and driver, and connects these to the cosimulated design. Then, it initializes the PCIe

infrastructure, initializes the driver model, and sends, receives, and verifies several test packets of

various lengths.

3.4 Results

The 100G variant of the Corundum NIC was evaluated on an Alpha Data ADM-PCIE-9V3

board, installed in a Dell R540 server (dual Xeon 6138), connected to a Mellanox ConnectX-5

NIC in an identical server with a QSFP28 direct attach copper cable. Two more Mellanox

ConnectX-5 NICs installed in the same machines were also evaluated for comparison. Eight

76



from myhdl import *
import pcie , pcie_us , pcie_usp , axis_ep
# signals
clk_250mhz = Signal(bool(0))
# etc.
# sources and sinks
qsfp_0_source = axis_ep.AXIStreamSource()
qsfp_0_source_logic = qsfp_0_source.create_logic(

qsfp_0_rx_clk ,
# etc.

)
# etc.
# set up PCIe infrastructure
rc = pcie.RootComplex()
# create driver instance
driver = mqnic.Driver(rc)
# create PCIe hard IP core instance
dev = pcie_usp.UltrascalePlusPCIe()
rc.make_port().connect(dev)
pcie_logic = dev.create_logic(

m_axis_cq_tdata=s_axis_cq_tdata ,
# etc.

)
# connect to Verilog design
dut = Cosimulation(

"vvp -m myhdl testbench.vvp -lxt2",
clk_250mhz=user_clk ,
# etc.

)

@instance
def check():

# initialization
yield rc.enumerate()
yield from driver.init_dev(dev.functions[0].get_id())
yield from driver.interfaces [0].open()
# test packets of various lengths
for k in range(64, 1515):

data = bytearray([x%256 for x in range(k)])
# send and receive a packet
yield from driver.interfaces [0]. start_xmit(data , 0)
yield qsfp_0_sink.wait()
pkt = qsfp_0_sink.recv()
assert pkt.data == data
qsfp_0_source.send(pkt)
yield driver.interfaces [0].wait()
pkt = driver.interfaces [0].recv()
assert pkt.data == data

Listing 3.1: Abbreviated NIC testbench. Includes setting up PCIe, Ethernet, and driver models,
initialization, and sending and receiving test packets. Most signals removed for brevity.
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instances of iperf3 were used to saturate the link, and both NICs were configured with an MTU

of 9000 bytes.

For the current implementation, the NIC is able to separately achieve 95.5 Gbps RX

and 94.4 Gbps TX (Fig. 3.9a). Under the same conditions, the Mellanox ConnectX-5 NIC runs

at 97.8 Gbps for both RX and TX. When running additional instances of iperf to fill the link

in both directions simultaneously, the performance degrades to 65.7 Gpbs RX and 85.9 Gbps

TX (Fig. 3.9b). For the existing testbed, the performance of the Mellanox NIC also degraded

to 83.4 Gbps for both RX and TX. The degradation of both Corundum and the ConnectX-5

in full-duplex mode suggests that the software driver may be a significant contributor to the

reduction in performance. Specifically, the current version of driver only supports the Linux

kernel networking stack. A driver that supports a kernel-bypass framework such as DPDK should

improve the performance for full-duplex mode and is an objective of future work.

Figures 3.9c and 3.9d compare the performance for an MTU of 1500 bytes. For this case,

Corundum can separately achieve 75.0 Gbps RX and 72.2 Gbps TX (Fig. 3.9c) and simultaneously

achieve 53.0 Gbps RX and 57.6 Gbps TX (Fig. 3.9d). The performance difference for Corundum

between TX and RX seen in Fig. 3.9c as the number of iperf instances increases is caused by

a limitation on the number of in-process transmit packets coupled with PCIe round-trip delay.

Increasing the number of in-process transmit operations supported in hardware should increase the

throughput and is planned future work. For comparison, under the same conditions, the Mellanox

ConnectX-5 NIC can separately achieve 93.4 Gbps for both RX and TX and simultaneously

achieve 70.6 Gbps RX and 72.1 Gbps TX.

To test the performance of PTP timestamping, two Corundum NICs in 10G mode were

connected to an Arista 40G packet switch operating as a PTP boundary clock. The NICs were

configured to output a fixed frequency signal derived from PTP time, which was captured

by an oscilloscope. When Corundum is implemented with PTP timestamping enabled, the

hardware clocks can be synchronized with linuxptp to better than 50 ns. The time synchronization
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Figure 3.9: NIC TCP throughput measurements
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performance is unchanged when the link is saturated.

Table 3.1: Resource utilization

Board FPGA PCIe IF TXQ MTU MAC Speed LUT FF BRAM URAM
ADM-PCIE-9V3 XCVU3P 3 x16 2x1 8K 2 K 10 G 10 G 69.5 K (18%) 73.1 K (9%) 252 (33%) 20 (6%)
ADM-PCIE-9V3 XCVU3P 3 x16 2x1 8K 2 K 25 G 25 G 66.9 K (17%) 73.1 K (9%) 239 (33%) 20 (6%)
ADM-PCIE-9V3 XCVU3P 3 x16 2x1 8K 16 K 100 G 94.4 G 61.8 K (16%) 75.6 K (10%) 331 (33%) 20 (6%)

ExaNIC X10 XCKU035 3 x8 2x1 1K 2 K 10 G 10 G 41.0 K (20%) 47.1 K (12%) 149 (28%) -
ExaNIC X25 XCKU3P 3 x8 2x1 8K 2 K 10 G 10 G 43.9 K (27%) 51.8 K (16%) 132 (37%) 20 (42%)
ExaNIC X25 XCKU3P 3 x8 2x1 8K 2 K 25 G 25 G 41.5 K (26%) 52.5 K (16%) 127 (35%) 20 (42%)

NetFPGA SUME XC7V690T 3 x8 2x1 512 2 K 10 G 10 G 43.0 K (10%) 50.8 K (6%) 133 (9%) -
VCU108 XCVU095 3 x8 1x1 2K 2 K 10 G 10 G 28.4 K (5%) 26.7 K (2%) 107 (6%) -
VCU118 XCVU9P 3 x16 2x1 8K 2 K 10 G 10 G 70.1 K (6%) 73.9 K (3%) 252 (12%) 20 (2%)
VCU118 XCVU9P 3 x16 2x1 8K 16 K 100 G 94.4 G 62.5 K (5%) 78.3 K (3%) 331 (15%) 20 (2%)

VCU1525 XCVU9P 3 x16 2x1 8K 2 K 10 G 10 G 69.6 K (6%) 73.1 K (3%) 252 (12%) 20 (2%)
VCU1525 XCVU9P 3 x16 2x1 8K 16 K 100 G 94.4 G 62.4 K (5%) 77.6 K (3%) 331 (15%) 20 (2%)

Resource utilization of several variants of the Corundum design on several FPGA boards

is shown in Table 3.1. The footprint of Corundum is rather small, leaving ample space available

for additional logic, even on relatively small FPGAs. For example, the Corundum design for

the ExaNIC X10, a dual port 10G design with a PCIe gen 3 x8 interface and 512 bit internal

datapath, consumes less than a quarter of the logic resources available on the second smallest

Kintex UltraScale FPGA (KU035).

3.5 Case-Study: Time-Division Multiple Access (TDMA)

Precise network admission control is an vital networking functionality at high line rates.

Corundum provides thousands of transmit queues that can be used to separate and control transmit

data on a fine time scale synchronized across multiple end hosts. This functionality provides a

unique toolbox that can be used develop new and powerful NIC functions. Determining what

network functions to implement and the impact these functions have on network performance is

an active research area [45] [48] [24] [52].

To demonstrate how Corundum can be used for precision transmission control, we

implemented a simple form of TDMA with a fixed schedule. The schedule can be synchronized

across multiple hosts via IEEE 1588 PTP. Basic TDMA support in Corundum is designed to
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be minimally intrusive on the overall architecture. TDMA is implemented by enabling and

disabling queues in the transmit scheduler according to PTP time, under the control of the

tx scheduler ctrl tdma module. Queue enable and disable commands are generated in the

TDMA scheduler control module and sent to the transmit scheduler at the beginning and end

of each timeslot. The TDMA scheduler operates under the assumption that the timeslots are

sufficiently long so that the TDMA scheduler control module can prepare for the next timeslot

during the current timeslot. In addition, a relatively small number of queues must be active during

each timeslot so the skew between the first and last queue enabled or disabled is small.

Timing signals for the schedule are generated from PTP time by the tdma scheduler

module. This module provides several signals: single cycle pulses at the start of the schedule and

the start and end of each timeslot, along with the index of the current timeslot. The timing signals

for the TDMA schedule are defined by the schedule start time, schedule period, timeslot period,

and timeslot active period. The TDMA scheduler module computes the start and stop times for

each timeslot in each iteration of the schedule and generates the appropriate timing signals via

threshold comparison with the current PTP time provided by the PTP hardware clock (PHC) on

the NIC.

3.5.1 TDMA Scheduler Control Module

The TDMA scheduler control module is responsible for generating the queue enable and

disable commands, based on the timing information from the TDMA scheduler module.

A block diagram of the TDMA scheduler control module is shown in Fig. 3.10. The

TDMA scheduler control module consists of per-queue, per-timeslot enable bits and three FI-

FOs. Two FIFOs, start queue ts 0 and start queue ts n, store the active queue indicies

for timeslot index 0 and index N, the third, stop queue stores the active queue indicies for the

current timeslot. The enable bits are exposed to the driver via a register interface over AXI

lite. During each timeslot, the TDMA scheduler control module resets start queue ts 0 and

81



TDMA scheduler controller

TDMA
Sched.

Ind TS0 TS1 TS2

0 1 0 1

1 1 1 0

2 0 1 1

1

0

2

0

2

1

FIFO fill
TS start TS end

PTP

AXI lite

Start 0 Start N StopEnable bits

TX
Sched.

TS index

Timing

Figure 3.10: Block diagram of the TDMA scheduler control module.

start queue ts n and then iterates over all of the enable bits to populate the FIFOs with the

appropriate queue enable commands for timeslot 0 and the presumed next timeslot, given by

incrementing the current timeslot index. At the start of the next timeslot, the module will check

the timeslot index and generate queue enable commands from the appropriate FIFO. While gener-

ating queue enable commands, the module also fills stop queue with the same queue indicies.

After generating all of the enable commands, the module will prepare for the next timeslot. At

the end of the timeslot, the module generates queue disable commands from stop queue. The

timeslot must be long enough for these operations to complete.

The TDMA scheduler control module runs in the 250 MHz PCIe user clock domain. As a

result, it takes 4 ns per queue to iterate over each transmit queue to prepare for the next timeslot

(about 32.8 us total for 8,192 transmit queues). Similarly, it takes 4 ns to generate each enable or

disable command to send to the transmit scheduler module.

3.5.2 TDMA Performance

The 100G TDMA variant of the Corundum NIC with 256 transmit queues was evaluated

on an Alpha Data ADM-PCIE-9V3 board, installed in a Dell R540 server (dual Xeon 6138),

connected to a Mellanox ConnectX-5 NIC. Eight instances of iperf3 were used to saturate the

link, and both NICs were configured with an MTU of 9 kB. With TDMA disabled, the NIC runs
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at 94.0 Gbps. The TDMA scheduler was configured run a schedule with period 200 μs containing

two timeslots of 100 μs, enabling all transmit queues in the first timeslot and disabling them in

the second. A timeslot active period of 90 μs was used to account for an 8 μs interval for the 11

packets in the transmit datapath (11 × 0.72 μs per packet) at 100 Gbps plus 1 μs to disable all

256 queues. Under those conditions, Corundum could control the data leaving the NIC with a

precision of two packet lengths or 1.4 μs. A histogram of the achieved transmit timing is shown

in Fig. 3.11a, with a detail view of the start and end of the timeslot shown in Fig. 3.11b and

Fig. 3.11c. There is an approximately 13 μs tail that consists of around 0.1% of the transmitted

packets; it should be possible to minimize this tail with additional work on the transmit datapath

components.

An additional test was run at 10 Gbps line rate with an MTU of 1500 bytes using a

schedule with a period of 200 μs. This period was partitioned into two timeslots of 100 μs. A

timeslot active period of 60 μs was used to account for a 38 μs interval for the 32 packets in the

transmit datapath (32 × 1.2 μs per packet) at 10 Gbps plus 1 μs to disable all 256 queues. Under

those conditions, Corundum could control the data leaving the NIC with a precision of two packet

lengths or 2.4 μs. A histogram of the achieved transmit timing is shown in Fig. 3.12a, with a

detail view of the start and end of the timeslot shown in Fig. 3.12b and Fig. 3.12c.

3.6 Case-Study: In Situ Physical Layer Characterization

The NIC is an ideal vantage point for performing physical layer measurements of links in

a datacenter environment. This is particularly useful when optical switching is involved as it can

provide detailed insight into the operation of all of the links through the switch in all possible

switch configurations, without requiring physical disruption of the network. Corundum provides

an ideal platform for this type of measurement as it provides direct access to the serializers as

well as a high-resolution time reference that can be synchronized across all of the NICs in the
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Figure 3.11: TDMA timing histogram with 9 KB packets at 100 Gbps
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Figure 3.12: TDMA timing histogram with 1.5 KB packets at 10 Gbps
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network.

In an optically-switched network, the received optical power is impacted by variability

in both the transmitter launch power and the attenuation through different paths in the optical

switch fabric. In general, the power level at the receiver is a function of the network configuration,

which can change rapidly over time. This can produce a change in the locking characteristics

of the receiver and a corresponding time-varying bit error ratio (BER) that can adversely affect

network performance. Accurately characterizing the receiver locking characteristics and the

time-varying BER for switched optical links as function of the network configuration is a critical

but challenging measurement problem.

Bit errors can be resolved in time by binning them in temporal bins. This technique can

be applied to any optical network by setting the switches to reconfigure according to a sequential,

repetitive schedule during the measurement phase. It is particularly well-suited to characterizing

optical networks that are designed to reconfigure according to a fixed schedule [34]. Bit errors

can be temporally resolved using a method analogous to a sampling oscilloscope, with errors

accumulated in temporal bins based on the relative time with respect to an accurate trigger event.

This is an extension of BER measurements of switched links using gated error detectors [18].

The BER measurement design uses a PRBS generator and error detector, either standalone,

built into the FPGA serializers, or built into Ethernet PHY modules, coupled with a BER

measurement module that accumulates bit errors. A block diagram of the BER measurement

components is shown in Fig. 3.13a.

The PRBS generator module generates a standard PRBS of length of 231−1. The serdes

on the FPGA deserializes the hard-detected output from the optical transceiver and feeds the

values into a linear-feedback shift register (LFSR)-based PRBS checker. This module implements

a feed-forward version of the LFSR used to generate the PRBS. The output of the LFSR is one

logic-high value per bit error, per LFSR tap. The output of the LFSR is summed in small batches,

then passed to the BER measurement module where it is accumulated into a small RAM. A set of
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Figure 3.13: Link-level measurement block diagrams

counters generate the bin index, which determines the RAM address. The trigger signal resets the

counters such that following the trigger, any bit errors that occur are accumulated in sequential

bins. The bin counts are read out of the RAM by control software.

The temporal resolution of the accumulated errors in each bin is limited by the accuracy

of the trigger signal. Practically, there is a trade-off between bin width and overall measurement

time, although it is possible to trade time resolution for BER accuracy by summing adjacent bins

during post-processing.

Using this capability, we characterized the time-resolved BER of an optical network.

For this case, highly-concurrent synchronized BER measurements can be obtained across mul-

tiple network nodes using multiple synchronized instances of the basic measurement shown

in Fig. 3.13a. A block diagram is shown in Fig. 3.13b. For this measurement, we integrated

the BER measurement functionality into Corundum. This provides the capability for in situ

network BER measurements. We achieve precise synchronization of the multiple FPGA-based

NICs and the optical switch in the network using the IEEE 1588 Precision Time Protocol (PTP).

Our implementation of this protocol yields sub-100 ns precision, which is sufficient for BER

measurements with a temporal bin size larger than 1 μs.

The number of instances of the time-resolved BER measurement implemented on each

NIC depends on the network configuration and number of uplinks per node. As an example, a
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nine-server testbed with three 10 Gb/s uplinks per server was connected to an optical switch

that supported 54 periodic network configurations (3 configurations repeated 18 times) for each

uplink [34]. The BER measurement module on the NIC can concurrently acquire 32 time bins for

each of the 54 configurations. The switch reconfigures every 222 μs, so capturing 128 bins per

configuration in four offset measurements results in a resolution of 1.7 μs. For this measurement,

each NIC collected 3×54×32 = 5184 concurrent measurements. Across all of the hosts, a total

of 5184× 9 = 46,656 concurrent measurements can be collected. Fig. 3.15 shows heat maps

collected from all 27 receivers, while Fig. 3.14 shows the heat maps for one of three Rx channels

on four hosts with the y axis denoting the network configuration. There is a large variation in the

time-resolved receiver locking characteristics caused by the combination of the variable transmit

power and path-dependent loss through the optical network. This kind of automated diagnostic

analysis is essential for identifying and correcting link-level problems in multi-node optically

switched networks.
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Figure 3.14: Selection of heat maps from four receivers

3.7 Conclusion

In this chapter, we presented Corundum, an open-source, high-performance, FPGA-based

NIC, capable of operation at a line rate of at least 94.4 Gbps. This measured performance

is sufficient to develop and test new networking applications at realistic line rates. Because
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Corundum is open source, it provides a powerful prototyping platform for network research and

development, including NIC-based schedulers such as SENIC [45], Carousel [48], PIEO [52], and

Loom [56], new protocols and congestion control techniques such as NDP [24] and HPCC [29],

and new network architectures, such as P-FatTree [38], RotorNet [37], and Opera [35]. Optimizing

the design to improve performance for smaller packet sizes as well as demonstrate new networking

protocols based on precise packet transmission are objectives of ongoing work.

3.8 Sources for Material Presented in This Chapter

Chapter 3, in part, reprints material that has been submitted for publication in a paper

titled: “Corundum: An Open-Source 100-Gbps NIC,” submitted to the FCCM conference, by

Alex Forencich, Alex C. Snoeren, George Porter, and George Papen. The dissertation author

was the primary researcher and author of this material. The dissertation author was the primary

researcher and author of this material.
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Chapter 4

Future Research Directions

The work presented in this dissertation validates the hypothesis that developing a NIC

capable of precision admission control and characterizing its performance can lead to practical

sub-microsecond circuit-switched networks at scale.

Two essential contributions were presented. The first contribution was quantifying the

system-level reconfiguration time of an optically circuit-switched link. This work was presented

in Chapter 2 and included a description of novel link-level measurements on an optically switched

link, including bit error rate (BER) characterization of a 25 Gbps link utilizing a burst-mode

receiver, switched by a nanosecond-scale silicon photonic switch. Several key parameters that

affect system-level performance were quantified including reconfiguration time, receiver lock

time, and guard intervals.

The second contribution of this dissertation is the development of a network interface

controller (NIC) that can precisely control the injection of packets into one or more optically-

switched networks. This work was presented in Chapter 3, and describes and quantifies the

performance of an FPGA-based NIC called Corundum. This NIC was designed to precisely

control the injection of packets from multiple queues into a circuit-switched network under the

control of a hardware-based scheduler in an otherwise standard datacenter environment. The
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platform provides the flexibility to implement high-precision time synchronization as well as

perform in situ link-level characterization including BER measurements similar to those described

in Chapter 2.

The ability to quantify the low-level physical layer characteristics of an optically-switched

link and provide precision transmission control over thousands of queues all within a common

hardware platform are necessary fundamental functionalities for the development of practical

sub-microsecond circuit-switched networks at scale.

In a larger context, while this dissertation establishes a necessary framework for circuit-

switched networks by the development of precision hardware admission control, this work, by

itself, is not sufficient to construct a practical sub-microsecond circuit-switched network. Here, in

this concluding chapter, we briefly discuss future work that can provide the sufficient conditions

for practical sub-microsecond circuit-switched networks.

The sufficient conditions are based on the type of circuit-switched network. Other work

within our group [38] has demonstrated the advantages of parallel networks irrespective of

whether they are packet-switched or circuit switched. Accordingly, future work based on this

dissertation is focused on determining the sufficient conditions for the development of a parallel

circuit-switched network, which may not necessarily be optical.

In this context, Corundum provides unique architectural features to support parallel

networks. Specifically, all ports that are part of the same interface on the Corundum NIC share

the same set of transmit queues and appear as a single, unified interface to the operating system.

This enables hardware schedulers on the NIC to determine which traffic is sent out of each

uplink port. Using this functionality, flows can be migrated between ports by changing only

the transmit scheduler settings without affecting the rest of the network stack. This dynamic,

scheduler-defined mapping of queues to ports was implemented in Corundum to enable research

into new parallel network protocols and network architectures. Specifically, based on the work

presented in this dissertation, future work includes using Corundum to demonstrate the viability
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of the Opera networking protocol [35]. This demonstration will go a long way to establishing the

sufficient conditions for a practical parallel circuit-switched network. In this larger context, the

development of event-driven scheduler modules that can precisely pace packet injection may also

have applications within conventional packet-based networks. Additional future work includes

the investigation of network interface architectures that can scale to millions of queues to provide

per-destination control at datacenter scale.

Using Corundum to demonstrate Opera is only part of the story. At the physical layer,

there are many competing optical circuit-switched technologies at the sub-microsecond scale

and all of these technologies require precision admission control. In this context, future work

includes investigating techniques to extend these admission control features to operate on shorter

timescales and support faster optical switches.

A complementary future direction is to investigate new physical-layer protocol features

that are specifically designed for operation with fast optical switches. Current network line

protocols are not designed for fast switching and as a result can require hundreds of microseconds

or more to recover from an interruption. The development of these methods, which explicitly

incorporate the burst-mode nature of an optically circuit-switched link, can increase the link

bandwidth and reduce the system-level reconfiguration time. Additionally, these methods can

open the door for in-band synchronization that utilizes the optical switch itself as a means for

synchronizing network components.

The goal of all of this future research is to determine an appropriate and practical par-

titioning between hardware and software for parallel network interfaces for circuit-switched

networks. The existing hardware/software partitioning of traditional, ASIC-based NICs has been

a significant impediment to the development of an efficient interface with high-speed optical

switches. This interface is essential to construct an efficient, scalable, optically-switched network.

Realizing a network interface specifically designed for optical switching applications in

reconfigurable hardware will facilitate research across the entire stack towards practical, high-
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performance optical switching at scale. The practical functionalities developed through this

research can then be integrated into future networking components including software stacks,

NICs, and switches and used to improve the efficiency of the next generation of datacenter

networks.
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Appendix A

ARM AMBA AXI

The ARM Advanced Microcontroller Bus Architecture (AMBA) Advanced eXtensible

Interface (AXI) is an interface protocol specification [2] for high-performance, on-chip interfaces.

This appendix contains some high-level notes about AXI, for complete details refer to the

specification.

There are three main flavors of AXI: AXI, AXI lite, and AXI stream. AXI stream

supports streaming data transfers, optionally framed, with optional sideband signals for transaction

identification and routing. AXI and AXI lite are memory-mapped interfaces that consist of five

AXI stream-like interfaces in parallel, one each for read address, read data, write address, write

data, and write response. AXI is a burst-oriented protocol that can efficiently transfer large blocks

of data. AXI lite is a simplified version of AXI that only supports single word memory operations.

A.1 AXI Stream

The five channels of AXI all use the same handshaking scheme as AXI stream—a valid

signal sent along with the data and sideband signals, and a ready signal flowing in the opposite

direction. The source or master side generates the data, sideband signals, and the valid signal,

and the sink or slave device receives the data, sideband, and valid signal and generates the ready
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clock

tdata 1 2 3 1 2 3

tvalid

tready

tlast

(a) Back-to-back transfers

clock

tdata 1 2

tvalid

tready

tlast

(b) Pause after each transfer

Figure A.1: AXI stream handshake timing examples

signal. Data is transferred from the source to the sink when both the ready and valid signals are

high. Therefore, the source can present anything on the data and sideband outputs while valid is

low, but once it has placed valid data on its outputs and asserted valid, it must hold the outputs

in that state with valid high until ready is asserted from the sink. If ready is high on the same

cycle that valid is asserted, then the source can either deassert valid or present fresh data on the

next clock edge. The sink device generates backpressure by deasserting the ready signal when it

is not ready to receive data. It is permitted for the sink to use the the data and sideband signals

while valid is high and ready is low, notifying the source by asserting ready when the slave is

finished with that data.

A.2 Notes on Timing Closure

Inserting registers into an AXI stream interface to break timing paths can be done in one

of several ways. If the ready path does not need to be broken, then the ready signal can be passed

through combinatorially and the rest of the signals can be registered, loading new values when the

registers are empty. This results in full throughput and no stall cycles with 1 register per signal.

If the ready path must be broken, then there are two options for inserting registers. One

method is to use one set of registers for all signals and alternate between storing a new value and

shifting out the stored value. This results in half throughput by inserting 1 stall cycle for every

transfer, but uses 1 register per signal. Another method is to use a skid buffer.
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A skid buffer has an extra set of registers in it to handle the case where the sink deasserts

its ready signal in the middle of a back-to-back transfer from the source. Since the ready signal is

generated by a flip flop, the ready signal to the source will be asserted for one extra cycle and so

the corresponding data must be stored in the register slice until it can be transferred through to

the sink. This method results in full throughput with no stall cycles, but requires two registers

and one 2 to 1 mux per signal.

It is also possible to break timing with a FIFO, but generally FIFOs will only be inserted

where they are specifically needed as they use more logic resources than a flip-flop based register

slice.

One interesting component to be aware of on Xilinx FPGAs is the SRL primitive. These

primitives can have very favorable input delays on some parts. As a result, building registers or

even shallow FIFOs by inferring SRLs instead of flip-flops can provide timing advantages.

A.3 AXI and AXI Lite

AXI and AXI lite are memory-mapped interfaces that consist of five streaming interfaces—

write address (AW), write data (W), write response (B), read address (AR), and read data (R).

AXI is a burst-oriented protocol that can efficiently transfer large blocks of data. AXI lite is a

simplified subset of AXI that is missing most of the sideband signals and only supports single

word reads and writes and is not tolerant of any reordering.

AXI supports multiple burst types to enable efficient transport of large blocks of data. The

supported burst types are fixed, increment, and wrap. Fixed bursts are used to repeatedly access a

single address for filling or emptying a FIFO. Increment bursts start at a specified address and

then increment to higher addresses. Wrap bursts are used for unaligned cache line transfers where

an operation can start in the middle of a cache line and then wrap around to the beginning of the

cache line.
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clock

awaddr ADR

awprot

awvalid

awready

wdata DATA

wstrb STRB

wvalid

wready

bresp

bvalid

bready

(a) AXI lite write

clock

araddr ADR

arprot

arvalid

arready

rdata DATA

rresp

rvalid

rready

(b) AXI lite read

Figure A.2: AXI lite transfers

AXI also supports locked operations (a*lock), secure operations (a*prot), cache control

(a*cache), and quality of service (a*qos).

Figure A.2 depicts AXI lite read and write operations. See the full specification [2] for a

complete description of the protocol.

A.4 Notes on Byte Packing and Rearranging

Aligned transfers across parallel interfaces are relatively simple to implement. If all

operations are byte-aligned and the interfaces involved are a single byte wide, inserting, removing,

truncating, copying, etc. are relatively trivial to implement. However, unaligned transfers across

wide parallel interfaces can be significantly more complex to implement correctly. This is

especially obvious when building high-bandwidth DMA and data mover components that move

data between memory-mapped and streaming interfaces. The AXI DMA, PCIe AXI DMA, and

AXI CDMA engines all need to contend with this. The PCIe DMA engine needs to deal with this

even for aligned operations due to how the PCIe TLPs are formatted.
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Unaligned operations my require extra cycles at the start and/or end of the transfer,

depending on the source and destination alignment as well as the transfer length. Consider a

transfer of length k on a parallel interface that can transfer N words per cycle, with input offset oi

and output offset oo. For memory-mapped AXI, the offsets oi and oo can be computed from the

address as ox = ADDRx mod N. The number of cycles required for a transfer is cx = d(ox+k)/Ne.

An empty cycle will be generated at the start of a transfer if the first output cycle requires

bytes from the first two input cycles. This occurs when ci > 1 and oi > oo. In this case, the entire

first input cycle will be stored and output will not start until the second cycle.

An extra cycle will be generated at the end of a transfer if the last cycle spills over after

shifting. This occurs either when co > ci, or when co = ci and an empty cycle was generated at

the start of the operation (i.e. when ci > 1 and oi > oo). In this case, an extra output cycle is

required to transfer the remainder of the last input cycle.

Fig. A.3 depicts an example transfer, with k = 10, N = 4, oi = 1, and oo = 0, depicting

both an empty cycle at the start (as ci = d(1+10)/4e= 3 > 1 and oi > oo) as well as an extra

cycle at the end (as co = ci, ci > 1, and oi > oo).
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A2 A3 A4

A2 A3 A4

B1 B2 B3 B4

C1 C2 C3

(a) Cycle 1: Fill buffer, no transfer

A2 A3 A4 B1 B2 B3 B4

A2 A3 A4

B1 B2 B3 B4

C1 C2 C3

A2 A3 A4 B1

(b) Cycle 2: unaligned transfer

B1 B2 B3 B4 C1 C2 C3

A2 A3 A4

B1 B2 B3 B4

C1 C2 C3

A2 A3 A4 B1

B2 B3 B4 C1

(c) Cycle 3: unaligned transfer

C1 C2 C3

A2 A3 A4

B1 B2 B3 B4

C1 C2 C3

A2 A3 A4 B1

B2 B3 B4 C1

C2 C3

(d) Cycle 4: empty buffer

Figure A.3: Byte re-packing on a streaming interface
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Appendix B

Segmented Memory Interface

For the highest possible performance, Corundum internally uses a custom segmented

memory interface. The interface is split into segments of maximum 128 bits, and the overall width

is double that of the AXI stream interface from the PCIe hard IP core. This interface provides

an improved “impedance match” to the PCIe DMA engine over using a single AXI interface,

enabling higher interface utilization by eliminating issues with backpressure and alignment.

Each segment operates similar to AXI lite, except with three interfaces instead of five—

one channel provides the write address and data, one channel provides the read address, and

one provides the read data. Bursts are not supported, and interconnect logic is responsible for

preserving the ordering, even when accessing multiple RAMs. The segments operate completely

independently of each other, with separate handshaking connections and separate instances

of interconnect ordering logic. Also, operations are routed based on a separate select signal

and not by address decoding, greatly simplifying address assignment and enabling the use

of parametrizable interconnect components that appropriately route operations with minimal

configuration.

Byte addresses are mapped onto segmented interface addresses with the lowest-order

address bits determining the byte lane in a segment, the next bits determining which segment,
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and the highest-order bits determining the word address for that segment. For example, a 512

bit PCIe interface would use a 1024 bit segmented interface, split into 8 segments of 128 bits,

where the lowest 4 address bits would determine the byte lane in a segment, the next 3 bits would

determine the segment, and the rest would drive the address bus for that segment. Operations

on blocks of contiguous bytes can extend across multiple segments, up to the full width of the

interface, depending on the alignment.

One of the main advantages of using a double-width segmented interface is that it supports

arbitrary barrel-shifts to realign data without requiring any additional clock cycles and the

resulting backpressure and reduction in throughput. For a segmented interface with k segments,

it is possible to operate on contiguous blocks of up to (k−1)/k of the total interface width in

each cycle for the worst-case alignment. With a double width interface, only two segments are

required to support fully unaligned operations, but fixing the segment width at 128 bits permits

efficient operation with PCIe TLP straddling.

Example reads and writes of four adjacent words on a two-segment interface, starting on

the second segment, is depicted in Figure B.1.

Figure B.2 depicts an example unaligned memory write on a segmented interface. The

first and third cycles use the same address for both segments, while the second cycle wraps

around, with the two segments accessing adjacent addresses in the same clock cycle. On an

interface of the same width, one extra cycle would be required to handle the realignment. On

a non-segmented double-width interface, the second cycle that wraps around would have to be

split across two cycles. In this case, it would be possible to merge both of those operations with

the adjacent operations, but this would not be possible if it was the first or the last cycle in the

operation.
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clock

wr cmd be 0 BE BE

wr cmd addr 0 A1 A2

wr cmd data 0 D1 D3

wr cmd valid 0

wr cmd ready 0

wr cmd be 1 BE BE

wr cmd addr 1 A0 A1

wr cmd data 1 D0 D2

wr cmd valid 1

wr cmd ready 1

(a) Segmented write

clock

rd cmd addr 0 A1 A2

rd cmd valid 0

rd cmd ready 0

rd resp data 0 D1 D3

rd resp valid 0

rd resp ready 0

rd cmd addr 1 A0 A1

rd cmd valid 1

rd cmd ready 1

rd resp data 1 D0 D2

rd resp valid 1

rd resp ready 1

(b) Segmented read

Figure B.1: Transfers on segmented interface
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A2 A3 A4

B1 B2 B3 B4

C1 C2 C3

A2 A3 A4

(a) Cycle 1: unaligned write across two segments,
same address

A2 A3 A4

B1 B2 B3 B4

C1 C2 C3

A2

B3 B4

A3 A4 B1 B2

(b) Cycle 2: wrapped unaligned write across two
segments, adjacent addresses

A2 A3 A4

B1 B2 B3 B4

C1 C2 C3

A2

B3 B4 C1 C2

A3 A4 B1 B2

C3

(c) Cycle 3: unaligned write across two segments,
same address

Figure B.2: Byte re-packing on a segmented interface
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Appendix C

PCI Express

PCI express is a packet-based protocol enabling high performance memory-mapped

access and message passing over parallel high-speed serial links. This appendix contains some

high-level notes about PCI express and the Xilinx PCIe UltraScale and UltraScale+ hard IP cores,

for complete details refer to the PCIe specification [41] and the relevant Xilinx documentation.

C.1 General Notes

C.1.1 Configuration

There are two types of configuration packets, type 0 and type 1. Type 1 packets are meant

to be routed through switches, while type 0 packets are peer-to-peer. Endpoints that are not

switches ignore type 1 configuration packets. Switches convert type 1 packets that are targeted to

devices directly connected to their downstream ports into type 0 packets.

Endpoint bus and device numbers are never explicitly configured on the device through

configuration space registers. The device is expected to capture them from received type 0

configuration packets. The bus and device numbers of a given device are determined by the

configuration of the switches.

105



C.1.2 TLP Size

PCI express has three main parameters that control transaction-layer packet (TLP) sizes:

maximum request size, maximum payload size, and read completion boundary. Maximum request

size determines the maximum allowable read request size. This parameter ranges from 128 bytes

to 4096 bytes in powers of two. On many systems, this is set to 512 bytes, but it can range up

to 4096 bytes. Maximum payload size determines the maximum allowable packet payload for

write requests and completions. This parameter ranges from 128 bytes to 4096 bytes in powers of

two. On many systems, this is set to 128 or 256 bytes. The author is not aware of any commodity

server hardware supporting TLP payload sizes larger than 256 bytes. Read completion boundary

informs devices of the root complex’s read completion boundary setting, either 64 or 128 bytes.

All endpoints must use a read completion boundary of 128 bytes, but the root complex can

optionally support a read completion boundary of 64 bytes. The read completion boundary setting

is meant only to inform endpoints of the root complex configuration and can be used to enable

optimizations to better utilize the 64 byte read completion boundary when it is enabled.

C.1.3 Malformed TLPs and Error Reporting

TLPs are considered malformed when certain rules are violated. When a malformed TLP

is detected at a receiver, it is discarded and logged as an uncorrectable (fatal) error. See [41]

section 2.3 and table 6-5.

If a request triggers an unsupported request or a completer abort on a posted transaction,

the completer should report an uncorrectable error. If a request triggers an unsupported request or

a completer abort on a non-posted transaction, the completer should return a completion with

the appropriate status and report a correctable error (advisory non-fatal error). See [41] section

6.2.3.2.4.1.
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C.2 Xilinx UltraScale PCIe Core

Xilinx Virtex 7, UltraScale, UltraScale+ FPGAs contain PCI express hard IP cores.

However, these cores are a little bit different than what traditionally appears on FPGAs. The

UltraScale PCIe hard IP core does things a little differently.

First, it does not pass TLP headers through to the user application directly, it reformats

them. This provides a few advantages. First, the user logic doesn’t need to know the captured

device and bus information, the hard IP core captures this internally and inserts it appropriately

into generated packets, simplifying the necessary interconnections. Second, the header size is

fixed so user logic doesn’t have to deal with multiple payload start offsets on the same interface.

The hard IP core also internally bifurcates incoming requests and messages from incoming

completions and provides these TLPs on separate interfaces. The core also internally multiplexes

outgoing requests and completions. This can simplify user logic somewhat as the request

handling/completion generation logic (MMIO/DMA target) is usually going to be quite distinct

from the request generation/completion handling logic (DMA initiator/bus master). As a result,

the core has four main streaming interfaces instead of two: the requester request (RQ) interface,

for outgoing DMA read and write requests; the requester completion (RC) interface, for incoming

completions in response to requests on the RQ interface; the completer request (CQ) interface, for

incoming MMIO/DMA read and write requests; and the completer completion (CC) interface, for

outgoing completions in response to requests on the CQ interface. The core also has additional

logic to handle certain messages, allowing the request handler user logic to handle only memory

read and write requests to the device’s BARs.

C.2.1 General Notes

Several signals on the hard core must be properly initialized for the link to operate.

These are pcie cq np req, cfg config space enable, and cfg link training enable. The
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first parameter, cfg link training enable must be high for the link to come up. Then,

cfg config space enable must be high for the device to be enumerated by BIOS and/or

the operating system. pcie cq np req must be properly handled or tied high so that non-posed

requests (read requests) will be delivered to the completion request interface. If pcie cq np req

is tied low, reads against BARs on the device will time out. See [61] table 2-12 and table 2-18.

C.2.2 Utilization of Wide Interfaces

Since PCIe operations are relatively small and the interpacket gap is also small, transferring

PCIe TLPs over a wide bus can result in low utilization.

The maximum TLP payload size rarely set above 128 or 256 bytes on modern servers. The

overhead per frame is 12 or 16 bytes for the header, depending on the address size, plus 4 bytes

per TLP prefix, plus 8 bytes for link layer overhead, totaling to 20 to 28 bytes for typical TLPs.

The overhead is a serious problem for wide interfaces as it can significantly limit achievable

throughput over wide interfaces. For an interface like AXI stream or Avalon, all of the TLPs must

start in byte lane 0. On a 256 bit bus, 32 bytes are transferred on every clock cycle, so the data

portion of a 256 byte TLP requires 4 clock cycles to transfer. However, the header requires 12 or

16 bytes on top of the payload, leaving 16 or 20 empty byte lanes. Since the link layer overhead is

8 bytes, that leaves 8 to 12 equivalent byte times on the table for every TLP transferred. For a 512

bit bus, this problem is even worse. With 64 bytes transferred in each clock cycle, that leaves 48

or 52 empty byte lanes after each TLP, or 40 or 44 bytes after removing link layer overhead. This

gap is depicted in Figure C.1a. For 256 byte TLPs on a 512 bit bus, this reduces the achievable

payload bandwidth to 80% (100.8 Gbps) of the raw link bandwidth vs. 89% (112.0 Gbps) with

straddling enabled or 91.4% (115.2 Gbps) considering only TLP header and link layer overheads.

The solution to this is to modify the interface to support starting TLPs in the gap after a

previous TLP. This results in increased throughput over the bus, at the cost of significant interface

headaches. This is depicted in Figure C.1b. The Xilinx PCIe hard cores support TLP straddling
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D13 D14 D15
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(a) TLP straddling disabled

H0 H1 H2 D0 D1 D2 D3 D4
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D13 D14 D15 H0 H1 H2 D0
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H0 H1 H2 D0 D1 D2 D3 D4

D5 D6 D7 D8 D9 D10 D11 D12

D13 D14 D15

(b) TLP straddling enabled

Figure C.1: TLP packing

on some of their interfaces, which modifies the AXI interface to handle transferring (parts of)

multiple TLPs per clock cycle. In 256 bit mode, straddling is only supported for completion

TLPs on the requester completion (RC) interface. With TLP straddling enabled, two TLP start

positions are supported at byte lane 0 and 16. In 512 bit mode, the underlying core is simply run

at 500 MHz and a soft ’shim’ is used to convert from 256 to 512 bits [63]. As a result, straddling

is supported on all interfaces, with the RC interface supporting starting TLPs on 16 or 32 byte

intervals (2 or 4 TLP start positions per cycle) and the other interfaces supporting only 32 byte

intervals (2 TLP start positions per cycle).

C.2.3 Flow Control

PCI express uses credit-based flow control to manage buffer space. Each virtual channel

on a given PCIe link maintains an independent set of credits. There are six types of credits: posted

header, posted data, non-posted header, non-posted data, completion header, and completion data.

Each TLP generally requires one data credit per 4 dwords (16 aligned bytes) of payload and 1

header credit. TLPs may only be transmitted over a link if sufficient credit is available. The link
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parter releases credits as buffer space is freed by periodically sending updateFC data-link-layer

packets (DLLP).

The Xilinx PCIe hard IP core on Virtex 7, UltraScale, and UltraScale+ exposes the current

flow control credit counts on its cfg fc * ports. If the core cannot accept a TLP on the RQ

interface, it will block and assert backpressure by deasserting s axis rq tready. To prevent

head of line blocking between read and write request TLPs, it is advisable to check the appropriate

credit counts before sending requests. However, there are a few additional considerations with

the Xilinx PCIe hard IP core.

First, the core does not perform any buffering for posted write requests. If a posted write

it sent to the core while insufficient header and data credits are available, the core will block the

RQ interface until credits are freed, preventing read request TLPs from being sent. Therefore,

checking cfg fc ph and cfg fc pd (with cfg fc sel set to 3’b100 to select available transmit

credits) is imperative before generating every write request TLP.

Second, the core reserves buffer space to store completion packets, and non-posted

requests will not be released from the core if there is insufficient buffer space to store the

corresponding completions. Inferring from ILA captures, it appears that the completion buffer

on the UltraScale+ hard IP core is around 16 KB in size, supporting up to 32 outstanding read

requests for 512 bytes (common max read request size setting) at any given time. Additionally,

there is a FIFO inside the hard IP core for storing these non-posted requests. The FIFO appears

to be able to store around 24 non-posted read request TLPs. Once the buffer is full, additional

requests will cause the RQ interface on the core to block, preventing write requests from being

sent to the core.

The core does provide credit counts that are intended to reflect the internal buffer status—

pcie tfc nph av and pcie tfc npd av—but these do not appear to be implemented correctly

as they can get stuck at 0 when the link is idle. Therefore, a different method is required to track

the non-posted transmit FIFO occupancy.

110



C.2.4 Transmit Sequence Numbers

The Xilinx PCIe hard IP core on Virtex 7, UltraScale, and UltraScale+ supports transmit

sequence numbers to track TLPs through the transmit pipeline. This is the only way to know

when a specific TLP has actually been sent over the PCIe link. The main use case is to ensure that

the view from host software is consistent. Namely, the host must always have an accurate view of

which DMA read and write operations have been completed, specifically reads on internal device

registers should not imply that a write operation is complete when the write request TLP has not

yet left the PCIe IP core. Transmit sequence numbers enable a tag to be associated with each

transmit TLP that is returned from the core via the pcie rq seq num/pcie rq seq num valid

ports.

Using transmit sequence numbers also appears to be the only reliable way to measure the

occupancy of the core non-posted transmit FIFO. The pcie tfc nph av and pcie tfc npd av

ports on the core that are intended to indicate the occupancy of this FIFO often return nonsensical

values. However, monitoring the number of outstanding transmit sequence numbers provides

the same information, and is relatively simple to implement in a DMA engine that already has

to track sequence numbers to report when all requests associated with each operation have been

transmitted from the core. Therefore, it is imperative to track transmit sequence numbers and

limit the number of read requests in the transmit pipeline to prevent head-of-line blocking of

write requests on the core RQ interface.
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[46] M. Rizzi, M. Lipiński, T. Wlostowski, J. Serrano, G. Daniluk, P. Ferrari, and S. Rinaldi.
White Rabbit clock characteristics. In 2016 IEEE International Symposium on Precision
Clock Synchronization for Measurement, Control, and Communication (ISPCS), pages 1–6,
Sep. 2016.

[47] A. Rylyakov, J. E. Proesel, S. Rylov, B. G. Lee, J. F. Bulzacchelli, A. Ardey, B. Parker,
M. Beakes, C. W. Baks, C. L. Schow, and M. Meghelli. A 25 gb/s burst-mode receiver for low
latency photonic switch networks. IEEE Journal of Solid-State Circuits, 50(12):3120–3132,
Dec 2015.

[48] A. Saeed, N. Dukkipati, V. Valancius, V. The Lam, C. Contavalli, and A. Vahdat. Carousel:
Scalable traffic shaping at end hosts. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’17, page 404–417, New York, NY,
USA, 2017. Association for Computing Machinery.

[49] L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L.
Schow, P. Fuentes, O. Mattes, and C. Minkenberg. A throughput-optimized optical network
for data-intensive computing. IEEE Micro, 34(5):52–63, Sept 2014.

[50] T. J. Seok, H. Y. Hwang, J. S. Lee, A. Forencich, H. R. Grant, D. Knutson, N. Quack,
S. Han, R. S. Muller, L. Carroll, G. C. Papen, P. O’Brien, and M. C. Wu. 12×12 packaged
digital silicon photonic MEMS switches. In 2016 IEEE Photonics Conference (IPC), pages
629–630, Oct 2016.

[51] Y. Shen, P. Samadi, Z. Zhu, A. Gazman, E. Anderson, D. Calhoun, M. Hattink, and
K. Bergman. Software-defined networking control plane for seamless integration of silicon

116



photonics in datacom networks. In 2017 European Conference on Optical Communications
(ECOC), pages 1–3, 2017.

[52] V. Shrivastav. Fast, scalable, and programmable packet scheduler in hardware. In Proceed-
ings of the ACM Special Interest Group on Data Communication, SIGCOMM ’19, page
367–379, New York, NY, USA, 2019. Association for Computing Machinery.

[53] V. Shrivastav, A. Valadarsky, H. Ballani, P. Costa, K. S. Lee, H. Wang, R. Agarwal, and
H. Weatherspoon. Shoal: A network architecture for disaggregated racks. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 19), pages 255–270,
Boston, MA, Feb. 2019. USENIX Association.

[54] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai,
B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer,
U. Hölzle, S. Stuart, and A. Vahdat. Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network. SIGCOMM ’15.

[55] R. Stabile, A. Albores-Mejia, and K. A. Williams. Monolithic active-passive 16× 16
optoelectronic switch. Optics Letters, 37(22):4666–4668, Nov 2012.

[56] B. Stephens, A. Akella, and M. Swift. Loom: Flexible and efficient NIC packet scheduling.
In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19),
pages 33–46, Boston, MA, Feb. 2019. USENIX Association.

[57] B. Stephens, A. Akella, and M. M. Swift. Your programmable NIC should be a pro-
grammable switch. In Proceedings of the 17th ACM Workshop on Hot Topics in Networks,
HotNets ’18, page 36–42, New York, NY, USA, 2018. Association for Computing Machin-
ery.

[58] K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba,
H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima.
Ultra-compact 8×8 strictly-non-blocking si-wire piloss switch. Opt. Express, 22(4):3887–
3894, Feb 2014.

[59] Top 500 supercomputers. http://top500.org.

[60] B. C. Vattikonda, G. Porter, A. Vahdat, and A. C. Snoeren. Practical TDMA for datacenter
ethernet. In Proceedings of the 7th ACM European Conference on Computer Systems,
EuroSys ’12, pages 225–238, New York, NY, USA, 2012. ACM.

[61] Xilinx. UltraScale Devices Gen3 Integrated Block for PCI Express v4.4, Apr 2018.

[62] Xilinx. UltraScale+ Devices Integrated 100G Ethernet Subsystem v2.6, May 2019.

[63] Xilinx. UltraScale+ Devices Integrated Block for PCI Express v1.3, Jun 2019.

117
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