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ABSTRACT OF THE THESIS 
 
 
 

Impairment of O-antigen Synthesis in Synechococcus elongatus PCC 7942 Alters Outer 
Membrane Protein Composition 

 
 

by 
 
 
 

Michelle Marie Esteban Prieto 
 

 
Master of Science in Marine Biology 

 
 

University of California San Diego, 2019 
 
 

Bianca Brahamsha, Chair 
 

Now more than ever the growth of algal farming for biofuels and bioproducts as more 

sustainable alternatives to fossil fuels and its derivatives has created a need for more efficient 

cultivation strategies. Unfortunately, however, while open-air ponds are the most cost-effective 

way to grow the microalgae that are used for biofuels and bioproducts, they are also more 

susceptible to invasion by predators. Because of this, strategies for crop protection must be 

developed in order to minimize this pressure from grazers. A mutant of the model 
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cyanobacterium Synechococcus elongatus PCC 7942, called AMC 1908, which lacks the wzm 

(Synpcc7942_1126) gene for O-antigen synthesis, is resistant to grazing by amoebae, which can 

be algal pool predators. In order to determine the molecular mechanisms that could be behind 

this resistance, the outer membrane proteins of S. elongatus PCC 7942 and AMC 1908 were 

compared via SDS-PAGE analysis and proteomics. As expected, the protein compositions of S. 

elongatus PCC 7942 and AMC 1908 outer membranes differed quite substantially. Additionally, 

transport system substrate-binding protein IdiA (Synpcc7942_2175) was found to be more 

abundant in the mutant AMC 1908 when compared to the wild-type PCC 7942. This protein 

could be contributing to S. elongatus AMC 1908’s resistance to grazing by amoebae, but only 

further testing can confirm this. 
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INTRODUCTION 

The Impact of Grazing on the Cultivation of Microalgae for Biofuels and Bioproducts 

In recent years, the microalgal farming industry for the production of biofuels and 

bioproducts has rapidly grown. This has created a demand for more efficient microalgal 

cultivation strategies (Georgianna and Mayfield 2012). Currently, open-air ponds are the most 

cost-effective way to grow the microalgae that are used for biofuels and its co-products 

(Richardson et al. 2014). These ponds are also more susceptible to predation (Shurin et al. 2013). 

Grazing pressure from protozoa, including ciliates, flagellates, and amoebae, is limiting the 

efficiency of algal growth in open-air ponds (Day et al. 2012). This is preventing the production 

of enough microalgal biomass to meet the growing demands of the biofuel and biotechnology 

industries (Schenk et al. 2008). Strategies for crop protection must be developed in order to 

mitigate this pressure from grazers (Ducat et al. 2011). 

 

Synechococcus elongatus PCC 7942 Characteristics 

 One of the microalgal candidates for biofuel production belongs to the phylum 

Cyanophyta, the members of which are commonly referred to as cyanobacteria. Due to their 

ubiquitous nature and high growth efficiency, cyanobacteria can produce the large amounts 

biomass necessary for commercial biofuel production (Koller et al. 2014). Cyanobacteria are 

Gram-negative, which means they possess a cytoplasmic membrane, a peptidoglycan layer, and 

an outer membrane that contains LPS, which is made up of lipid A, core polysaccharides, and O-

antigens (Hoiczyk and Hansel 2000). Certain strains can also have an additional surface layer, or 

S-layer, that lies on top of the outer membrane (Weckesser and Jurgens 1988, McCarren et al. 
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2005). Synechococcus elongatus PCC 7942 is a unicellular freshwater cyanobacterium with a 

small, sequenced genome. Its genetic tractability makes it the perfect model organism for 

conducting comparative studies in photoautotrophic organisms, like the microalgae used for 

biofuel production (Cohen and Golden 2015). For the same reason, it is also a favored organism 

for synthetic biology studies and genetic engineering (Ruffing 2011, Ducat et al. 2011). In this 

study, Synechococcus elongatus PCC 7942 is used as a model organism for studying the 

molecular mechanisms behind grazing resistance. 

 

Known Cyanobacterial Resistance Mechanisms 

Cyanobacteria have naturally evolved their own tactics to avoid detection, capture, 

ingestion, and digestion by predators (Matz and Kjelleberg 2005). With this said, not much is 

known about the molecular mechanisms that are responsible for these adaptations (Apple et al. 

2011). Multiple lines of evidence reveal that the cell surface likely plays a major role in defense. 

In the marine cyanobacterium Synechococcus WH8102, the presence of SwmB, a giant cell 

surface protein, inhibits feeding by the dinoflagellate Oxyrrhis marina, whereas the presence of 

SwmA, an S-layer glycoprotein, makes Synechococcus cells more susceptible to grazing by 

ciliates (Strom et al. 2012). Synechococcus WH7803 mutants with lipopolysaccharide (LPS) 

layer modifications have also been shown to be more resistant to grazing by heterotrophic 

nanoflagellates (Zwirglmaier et al. 2009). Further support of this is demonstrated by the 

resistance of Synechococcus elongatus PCC 7942 O-antigen mutants that have a defective LPS 

to two phylogenetically distinct amoebae (Simkovsky et al. 2012). Another way that 

cyanobacteria could be protecting themselves from protozoan predators is by changing their cell 

surface features. In some cases, this can prevent cell to cell recognition (Roberts et al. 2011). For 
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intstance, two amoebae, Acanthamoeba and Hartmannella vermiformis, and the dinoflagellate, 

Oxyrrhis marina, attach to and capture their prey with sugar-binding and mannose-binding 

lectins. Hindrance of these receptors inhibits prey recognition (Allen and Dawidowicz 1990, 

Venkataraman et al. 1997, Wootton et al. 2007). In addition to this, it has been shown that prey 

morphology, including the formation of stiff filaments in the cyanobacterium Oscilltoria, can 

affect the ingestion ability of Naegleria, a genus of amoebae (Xinyao et al. 2006). Evidently, the 

predator-prey interactions between cyanobacteria and their protozoan predators are diverse and 

complex. Understanding the mechanisms that confer grazing resistance in cyanobacteria at the 

molecular level is incredibly important. Not only will it uncover the basis behind population 

mortality and restructuring in natural environments, but it can also lead to the development of 

more effective strategies for predation limitation in outdoor microalgae pools. 

 

A Model System for Studying Grazing Resistance 

Previous studies by Simkovsky et al. (2012) and Ma et al. (2016) have established the 

predator and prey interactions between Synechococcus elongatus PCC 7942 and two 

phylogenetically distinct heterolobosean amoebae, HGG1 and LPG1, as a model system for 

studying the molecular basis for grazing resistance in cyanobacteria. It was found that the 

impairment of O-antigen synthesis in the LPS of S. elongatus PCC 7942 mutants resulted in 

resistance to grazing by both amoebae. This resistance developed over time and was seen in cells 

grown between 8 to 10 days. Electron microscopy of an O-antigen mutant indicated the possible 

presence of an additional layer exterior to the outer membrane that could have been an S-layer 

(R. Simkovsky, unpublished). In order to investigate this further and identify the molecular 

mechanism responsible for this resistance, the protein compositions of the outer membranes of 
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both the wild-type S. elongatus strain (PCC 7942) and the O-antigen mutant strain (AMC 1908) 

were compared. 

 

Synechococcus elongatus PCC 7942 Outer Membrane Protein Composition 

 The first proteomics map of Synechococcus elongatus PCC 7942 categorized proteins 

into 18 functional groups. (Koksharova et al. 2006) These groups included: (1) Proteins Involved 

in Cell Morphogenesis, (2 and 3) Cell Envelope Biogenesis and Peptidoglycan Synthesis 

Proteins, (4 and 5) Protein Synthesis and Post-Translational Protein Processing, (6) Protein-

Protein Interactions, (7) Regulatory Function, (8 to 16) Proteins of General Cyanobacteria Cell 

Metabolism, (17) Oxidative Stress Defense Proteins, and (18) Unknown and Hypothetical 

Proteins. Proteins involved in cell envelope biogenesis and peptidoglycan synthesis included 

those in the outer membrane efflux protein (OEP) family, members of which form channels that 

allow for the export of different substrates. SomA, an outer membrane porin, was also identified. 

This protein and a homologous protein that was also identified contain S-layer homology (SLH) 

domain. Involved in the general (type II) secretion pathway (GSP) in Gram-negative bacteria, 

HofQ was another common protein hit. OstA, the organic solvent-tolerant protein, also came up 

in the proteomics data. It is involved in outer membrane permeability and plays an essential role 

in outer envelope biogenesis. OstA could also be part of a targeting system for outer membrane 

components. Lastly, UDP-N-acetylmuramyl tripeptide synthase and diaminopimelate epimerase 

were found to be major players in PCC 7942 peptidoglycan synthesis. (Koksharova et al. 2006) 
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S-Layer Proteins and their Functions 

S-layers, which are made up of monomolecular crystalline arrays of proteinaceous 

subunits, are one of the most common surface structures on bacteria. Most S-layers are made up 

of a single protein or glycoprotein species with a molecular weight ranging from 40 to 200 kDa. 

Such proteins typically contain high proportions of acidic and hydrophobic amino acids, lysine 

being the predominant basic amino acid. In Gram-negative bacteria, the attachment of the S-

layer to the outer membrane involves the LPS layer. These Gram-negative S-layers have been 

found to provide a selective advantage in competitive habitats. In A. salmonicida, C. fetus, A. 

serpens, and C. crescentus, the presence of S-layers conferred resistance to predation by the 

bacterium B. bacteriovorus, but did not shield against protozoan predators, like the ciliate 

Tetrahymena and the flagellate Paraphysomonas (Koval 1997). In Synechococcus GL-24, the S-

layer lattice serves as a template for fine-grain mineralization in high calcium and sulfate ion 

concentrations. It is shed to prevent clogging of other cell envelope layers (Sara and Sleytr 

2000). 

 

Research Hypothesis 

Considering what is known about cyanobacterial grazing resistance mechanisms, it is 

hypothesized that the S. elongatus O-antigen mutants compensate for outer membrane defects by 

altering the protein composition of their outer cell envelope. These changes in the cell surface 

could then affect recognition or ingestion by the amoebae, protecting the mutant cells from 

grazing. One possibility is that they are overexpressing S-layer proteins and building a surface 

layer around their outer membrane. If this is the case, the proteomics data should consistently 

show an increase in the relative abundance of S-layer proteins in the mutant. The presence or 
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absence of certain proteins can also lend insight into the driving factors behind the mutant’s 

resistance to grazing by amoebae. 

 

Master’s Thesis Goal 

Based on this prior research, the aim of this Master’s thesis is to determine if there is a 

difference in the outer membrane protein composition of PCC 7942, the wild-type strain of S. 

elongatus, and AMC 1908, the mutant S. elongatus strain that lacks the wzm gene involved in O-

antigen synthesis, after 10 days of growth, when the mutant cells exhibit resistance to grazing by 

amoebae. To answer this question, a comparative proteomics analysis was conducted. This 

analysis could lend insight into whether or not S. elongatus O-antigen mutants defend themselves 

against their amoebal predators by altering the proteins in their outer membranes. 

	

MATERIALS AND METHODS 

Growth Conditions 

Liquid: Synechococcus elongatus PCC 7942 wild-type strains and AMC 1908 mutant strains 

were routinely grown at 30°C under medium light (20-25 µE m−2 s−1) until the cultures reached 

an optical density (O.D.) of 0.6 at 750 nm. In order to maintain AMC 1908’s O-antigen 

mutation, it was grown in 50mL BG11 medium with a chloramphenicol concentration of 7.5 

µg/mL. 

 

Solid: In order to determine the outer membrane compositions of cells grown on a solid surface, 

Synechococcus elongatus PCC 7942 wild-type strains and AMC 1908 mutant strains were also 
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grown on BG11 agar plates as follows. 1 mL of PCC 7942 and AMC 1908 liquid cultures with 

an O.D. 750 nm of 0.6 was centrifuged for 2 minutes at 17,000 x g. Supernatants were discarded 

and the pelleted cells were resuspended in the remaining liquid. 100 µL of each concentrated 

culture was then used to make lawns on BG11 + sodium thiosulfate plates. AMC 1908 cultures 

were spread on BG11 + sodium thiosulfate plates with a chloramphenicol concentration of 7.5 

µg/mL. 

 

10- to 13-Day Growth Experiments 

750 mL of BG 11 liquid media was divided equally into 3 500 mL flasks. Each flask was 

inoculated with 5 mL of either PCC 7942 or AMC 1908 culture with an O.D. 750 nm of 0.6. The 

flasks were then grown for 10-13 days at 30°C under medium light (20-25 µE m−2 s−1) with no 

shaking until they reached an O.D. 750 nm of 1. Similarly, 16 BG11 plates inoculated with 100 

µL of concentrated PCC 7942 culture (O.D. 750nm = 1) and 8 BG11 plates inoculated with 100 

µL of concentrated AMC 1908 culture (O.D. 750nm = 1) were grown for 10 days at 30°C under 

medium light (20-25 µE m−2 s−1). 

 

Outer Membrane Purification 

The procedure followed was an adaptation of Brahamsha 1996 and Simkovsky et al. 2012 as 

described below. 

 

Liquid: After 10-13 days of growth, the cells were harvested. Absorbance at 750 nm was 

measured. The cultures were also streaked on BG11 plates to check for contamination. 
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Solid: In order to harvest the lawns of cells, 5mL of BG11 was added to each plate, and the cells 

were gently resuspended with a glass spreader. The liquid then was pipetted off of the plate and 

into large autoclaved centrifuge tubes. 1mL was reserved to measure absorbance at 750 nm. 

 

Both: The cells were centrifuged at 17,024 x g for 10 mins. at 20°C. Supernatants were 

discarded. 5mL of BG11 was then added to each of the pellets, and the cells were gently re-

suspended. The re-suspended cells were then spun down at 20°C for another 10 mins. at 5,872 x 

g. Again, supernatants were discarded. After the second spin, 2 mL of ice cold stripping buffer 

[50mM Tris-HCl, 25mM Na2EDTA, pH 8.0, 15% sucrose wt/vol.] was added to each pellet. The 

cells were gently re-suspended and incubated on ice for 15 mins. They were then spun at 11,984 

x g for 10 mins. at 4°C. After this, 2 mL of each supernatant, which now contains the extracted 

outer membranes and the periplasmic contents of the wild-type and mutant S. elongatus cells, 

was pipetted into sterile microfuge tubes. These supernatants went through one final centrifuge 

cycle at 17,000 x g for 3 mins at room temperature to remove any leftover unbroken cells. 980 

µL of each supernatant was then transferred into new tubes. 

 

High Speed Pelleting and Sample Concentration 

In order to further separate the insoluble outer membranes from periplasmic contents and 

proteins solubilized by the EDTA treatment, the extracted membrane supernatants were spun at 

4°C for 4 hours at 69,028 x g at 10°C. The supernatants, which contain the soluble periplasmic 

contents as well as cell surface proteins solubilized by EDTA, were then concentrated around 60 

fold with Amicon Ultra-15 Centrifugal Filter tubes that had a 10,000 Da molecular weight cutoff 
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(Millipore) and were spun at 5,872 x g for 30 mins. The filters were then washed once with 4 mL 

of sterile milliQ and spun for 10 more mins., until the final volume remaining was less than 250 

µL. The pellets were resuspended in 80 to 100 µL of sterile milliQ. 

 

Proteomics 

 The outer membrane pellet and supernatant samples were sent for protein sequencing at 

UC San Diego’s Biomolecular and Proteomics Mass Spectrometry Facility, where they were 

processed as described below. 

 

Sample preparation 

Protein samples were diluted in TNE (50 mM Tris pH 8.0, 100 mM NaCl, 1 mM EDTA) 

buffer. RapiGest SF reagent (Waters Corp.) was added to the mix to a final concentration of 

0.1% and samples were boiled for 5 min. TCEP (Tris (2- carboxyethyl) phosphine) was added to 

1 mM (final concentration) and the samples were incubated at 37°C for 30 min. Subsequently, 

the samples were carboxymethylated with 0.5 mg/ml of iodoacetamide for 30 min at 37°C 

followed by neutralization with 2 mM TCEP (final concentration). Proteins samples prepared as 

above were digested with trypsin (trypsin:protein ratio - 1:50) overnight at 37°C. RapiGest was 

degraded and removed by treating the samples with 250 mM HCl at 37°C for 1 h followed by 

centrifugation at 14000 rpm for 30 min at 4°C. The soluble fraction was then added to a new 

tube and the peptides were extracted and desalted using C18 desalting columns (Thermo 

Scientific, PI-87782). Peptides were quantified using BCA assay and a total of 1 ug of peptides 

were injected for LC-MS analysis. 
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LC-MS-MS 

Trypsin-digested peptides were analyzed by ultra high pressure liquid chromatography 

(UPLC) coupled with tandem mass spectroscopy (LC-MS/MS) using nano-spray ionization. The 

nanospray ionization experiments were performed using a Orbitrap fusion Lumos hybrid mass 

spectrometer (Thermo) interfaced with nano-scale reversed-phase UPLC (Thermo Dionex 

UltiMate™ 3000 RSLC nano System) using a 25 cm, 75-micron ID glass capillary packed with 

1.7-µm C18 (130) BEHTM beads (Waters corporation). Peptides were eluted from the C18 

column into the mass spectrometer using a linear gradient (5–80%) of ACN (Acetonitrile) at a 

flow rate of 375 µl/min for 1h. The buffers used to create the ACN gradient were: Buffer A (98% 

H2O, 2% ACN, 0.1% formic acid) and Buffer B (100% ACN, 0.1% formic acid). Mass 

spectrometer parameters are as follows; an MS1 survey scan using the orbitrap detector (mass 

range (m/z): 400- 1500 (using quadrupole isolation), 120000 resolution setting, spray voltage of 

2200 V, Ion transfer tube temperature of 275 C, AGC target of 400000, and maximum injection 

time of 50 ms) was followed by data dependent scans (top speed for most intense ions, with 

charge state set to only include +2-5 ions, and 5 second exclusion time, while selecting ions with 

minimal intensities of 50000 at in which the collision event was carried out in the high energy 

collision cell (HCD Collision Energy of 30%), and the fragment masses where analyzed in the 

ion trap mass analyzer (With ion trap scan rate of turbo, first mass m/z was 100, AGC Target 

5000 and maximum injection time of 35ms). Protein identification and label free quantification 

was carried out using Peaks Studio 8.5 (Bioinformatics solutions Inc.) 
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SDS-PAGE 

 The concentrations of each outer membrane sample were measured using the Pierce BCA 

Protein Assay Kit according to Thermo Scientific’s recommendations and using Bovine Serum 

Albumin as a standard. Mutant and wild-type pellet and supernatant samples of equal 

concentrations were loaded onto Novex 12% Tris-Glycine Mini Gels, Wedge Well format, 

(Invitrogen) with 7 µL of the PageRuler Plus Prestained Protein Ladder (Thermo Scientific). The 

gels were run at 220V constant voltage for 50 minutes. They were then fixed in a 50% methanol, 

7% acetic acid fixative solution and stained with SYPRO Ruby Red (Invitrogen). The gels were 

then washed with a 10% methanol, 7% acetic acid wash solution and imaged using Bio-Rad’s 

GelDoc System. 

 

Band Sequencing 

Seven bands were cut out from a Tris-Glycine 12% gel loaded with mutant outer 

membrane preparations. The bands were cut into 1mm cubes, suspended in 40 µL of milli-Q 

water, and sequenced as described above. Hypothetical proteins were identified using NCBI’s 

BLAST database. 

 

Proteomics Data Analysis 

 Protein band assignments (Figure 2.B. and Table 1) were made by sorting the proteomics 

data in descending order by PEAKS protein confidence score (-10logP), which was calculated as 

the weighted sum of the -10logP scores of the protein's supporting peptides, Coverage %, or the 

percentage of the protein sequence that is covered by supporting peptides, Area Sample, or the 

total protein area found in each sample, and lastly, the number of high-confidence supporting 
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peptides (#Peptides). The proteins listed in Table 1 were clearly identified based on their relative 

abundances (Area Sample > 100,000,000) and confidence scores (-10logP > 260) relative to the 

other proteins detected in the sample. 

 Table 2 represents the presence and absence of specific proteins in the wild-type and 

mutant outer membrane preparation datasets. It was generated by a combination of Python 

scripts that compared the outer membrane proteomics data files from the S. elongatus PCC 7942 

and AMC 1908 outer membrane preparations from cultures grown in liquid. The script pulled all 

of the proteins with the same accession number into one file. The proteins in that file were then 

sorted in descending order according to Area Sample. Anything with an area less than 

180,000,000 was cut off. All proteins that had a -10logP value that was greater than 315, a 

Coverage % that was greater than 40, a #Peptides value that was greater than 15, and a Spec 

Sample value that was greater than 80 were included in the table. These cutoffs were based on 

the proteins that had the highest abundance (Area Sample) and significance (-10logP). Table 2 

also lists the peak area ratios for each of the common proteins between S. elongatus PCC 7942 

and AMC 1908. Using the quantitative proteomics data file that included proteins that had a fold 

change greater than 2 between the peak areas of each sample, these ratios were calculated by 

dividing the wild-type peak area by the mutant peak area for the PCC 7942 column and dividing 

the mutant peak area by the wild-type peak area for the AMC 1908 column. 

 The resulting data processed as described above was combined with data generated by a 

separate Python script that compared the outer membrane proteomics data files from the S. 

elongatus PCC 7942 outer membrane preparation from cultures grown in liquid to those from 

AMC 1908. The script pulled all of the proteins with accession numbers that were present in the 

mutant sample, but not present in the wild-type sample. The proteins in that file were then sorted 
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in descending order according to Area Sample. Anything with an area less than 2,200,000 was 

cut off. All proteins that had a -10logP value that was greater than 25, a Coverage % that was 

greater than 5, a #Peptides value that was greater than 1, and a Spec Sample value that was 

greater than 2 were included in Table 2. Again, these cutoffs were based on the proteins in the 

file that had the highest abundance (Area Sample) and significance (-10logP). 

The proteins unique to the wild-type outer membrane preparation in Table 2 were 

identified in the same way as the previously described data, but for accession numbers present in 

the wild-type and not in the mutant. The Sample Area cutoff for this file was 12,000,000. This 

value was chosen according to the relative abundances of the other, less significant proteins in 

the sample. The rest of the cutoffs were the same as those listed in the paragraph above. 

 Tables 3 and 4 were generated using the quantitative proteomics data file that included 

proteins that had a fold change greater than 2 between the peak areas of each sample. Table 3 

lists the proteins present in both the wild-type outer membrane preparation and the mutant outer 

membrane preparation that were significantly more abundant in the wild-type based on ratios 

calculated by dividing the wild-type peak area by the mutant peak area. All ratios greater than 11 

were included. 

Table 4 lists the proteins present in both the wild-type outer membrane preparation and 

the mutant outer membrane preparation that were significantly more abundant in the mutant 

based on ratios calculated by dividing the mutant peak area by the wild-type peak area. All ratios 

greater than 5 were included. This cutoff differs from that of Table 3, because the number of 

proteins that were more abundant in the mutant was much greater than the number of proteins 

that were more abundant in the wild-type. Cutoffs were adjusted according to the relative 

abundance of the proteins within each calculated sample set. 
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RESULTS 

Verifying Grazing Resistance of S. elongatus AMC 1908 

Figure 1 verifies S. elongatus AMC 1908’s resistance to grazing by two phylogenetically 

distinct amoebae. Each of the four lawns pictured in Figure 1 were inoculated with two 

phylogenetically distinct amoebae, HGG1 and LPG1, on the same day. After seven days, it was 

evident that the amoebae HGG1 and LPG1, which were spotted in the center of plates A and B, 

respectively, had grazed a significant amount of the S. elongatus PCC 7942 lawns. The S. 

elongatus AMC 1908 cultures on plates C and D remained completely intact despite inoculation 

with the same set of amoebae. This particular set of lawns acted as resistance controls for the 

solid culture batch that was used for the SDS-PAGE gels in Figure 3 and part of Figure 4. The 

results pictured in Figure 1 agree with what has been shown for this mutant in the past 

(Simkovsky et al. 2012, Ma et al. 2016). 

 

SDS-PAGE Analysis of S. elongatus PCC 7942 and AMC 1908 Outer Membrane 

Preparations 

In order to get a first look at outer membrane protein differences between S. elongatus 

PCC 7942 and AMC 1908, purified outer membrane preparations (high speed pellets) along with 

periplasmic material and any solubilized proteins that were separated from the outer membrane 

pellets (supernatants) were run alongside wild-type and mutant whole cells grown in liquid 

culture. Figure 2 shows band differences between wild-type and mutant samples that were 

extracted from cultures grown in liquid media. Seven bands consistently showed up in the 

mutant outer membrane preparation samples. (See Figures 3 and 4.) These bands are boxed in 
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red in Figure 2.A. They are labeled in Figure 2.B., which magnifies the seven bands. Of these 

bands, Mutant Band 1 (MB1), MB2, and MB7 were not visible in the lanes loaded with wild-

type samples. MB3, MB4, MB5, and MB6 were all visible in the wild-type outer membrane 

preparation sample (Lane 3). These four bands were around the same intensity in both the wild-

type and mutant outer membrane preparation samples loaded with equal concentrations in Lanes 

3 and 5, respectively. Each of the seven bands was sequenced. Table 1 assigns each band with its 

identified protein based on LC-MS sequencing. The high-speed supernatant samples, which 

should consist of periplasmic and solubilized material, differed from the high-speed pellet 

samples, which should contain mostly outer membrane material. Based on a visual analysis, 

there are more proteins present in the supernatant samples (Figures 2, 3, and 4). The seven strong 

sequenced bands that show up in all of the high-speed pellet samples are also either relatively 

very faint (Figures 3 and 4) or absent (Figure 2) in the high-speed supernatant samples. 

 

SDS-PAGE Analysis of S. elongatus PCC 7942 and AMC 1908 Cultures Grown on Plates 

versus in Liquid Media 

 To compare the outer membrane profiles of liquid and plate-grown cultures, S. elongatus 

PCC 7942 and AMC 1908 outer membrane preparation samples along with their separated 

periplasmic and solubilized protein samples were extracted from cultures grown on plates and in 

liquid media. Figure 2.A. shows a Tris-Glycine 12% gel loaded with samples extracted from S. 

elongatus PCC 7942 and AMC 1908 cultures cultivated in liquid media. Figure 3 is an image of 

the same type of gel loaded with samples extracted from S. elongatus PCC 7942 and AMC 1908 

cultures cultivated on plates. Figure 4 shows a side-by-side comparison of the same samples that 

were loaded into the gels in Figures 2 and 3, minus their whole cell samples. In Figure 4, it is 



16	
	

easier to see that there are similarities in the band patterns between samples extracted from solid 

versus liquid cultures. The biggest differences amongst the four outer membrane preparation 

samples (Figure 4, Lanes 1-4) are between the mutants grown on plates (Lane 4) and in liquid 

culture (Lane 3). The mutant outer membrane preparation extracted from cells grown on plates in 

Lane 4 contains a lot more visible bands than the preparation extracted from cells grown in flasks 

(Lane 3). Between 35 and 10 kDa, there are 6 intense bands that are either not visible or are very 

faint in the flask sample (Lane 3). There are also two bands between 70 and 250 kDa in the plate 

sample (Lane 4) that are not in the flask sample (Lane 3). There are no notable differences 

between the wild-type outer membrane preparation samples from cells grown on plates and in 

flasks, Lanes 2 and 1, respectively. 

The supernatant samples in Lanes 6 through 9 of Figure 4 exhibited more variability than 

the pellet samples in both pattern and abundance between samples extracted from solid and 

liquid cultures. Among these four lanes, there were clear band pattern differences between the 

flask (Lanes 6 and 8) and plate (Lanes 7 and 9) samples. At around 20 kDa, there is a notable 

alternation of intense bands between the flask and plate samples. In the flask samples (Lanes 6 

and 8), the first band in the pair of bands at ~20 kDa is more intense. This changes in the plate 

samples. In Lanes 7 and 9, the lower band in the pair is more intense. At 30 kDa, there is a 

similar pattern difference. 30 kDa bands in the flask samples (Lanes 6 and 8) are clearly more 

intense than those in the plate samples (Lanes 7 and 9). Lastly, in the mutant supernatant 

extracted from cells grown in flasks (Lane 8), there appears to be a band missing just below 35 

kDa that is present in the three other lanes. The rest of the differences in Lanes 6 through 9 

mostly look like variations in band intensity. For instance, just below the band at 55 kDa, there is 

an intense band in the mutant plate supernatant sample (Lane 9) that is very faint in both of the 
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wild-type samples. In addition, above the strong band present in both wild-type supernatant 

samples (Lanes 6 and 7) at 35 kDa, there is another less intense band at around 45 kDa that is not 

present in both mutant supernatant samples (Lanes 8 and 9). Other than that, there aren’t many 

notable differences between the wild-type and mutant supernatant samples. 

Despite band differences between each of the samples in Figure 4, the seven sequenced 

bands (Figure 2.B. and Table 1) were present in mutant outer membrane preparations extracted 

from both liquid and solid cultures. They are boxed in red in Figure 3. Not only are these bands 

consistent between the mutants grown under both conditions, but they also exhibit similar band 

intensities (Figure 4). We noticed that cells grown on plates, unlike those grown in liquid, 

underwent some lysis during the harvesting process and the variability seen in membrane 

preparations may be due to the contamination from cytoplasmic proteins. 

 

S. elongatus PCC 7942 and AMC 1908 Outer Membrane Protein Composition 

Shotgun proteomic analysis of a single sample of S. elongatus PCC 7942 and AMC 1908 

outer membrane preparations was carried out in order to identify and compare proteins present in 

the wild-type and in the mutant. In total, 787 proteins were detected in the PCC 7942 outer 

membrane preparation (high speed pellet) and 697 proteins were detected in the AMC 1908 outer 

membrane preparation. Additionally, 727 proteins were detected in the periplasmic and 

solubilized material (supernatant) of PCC 7942 and 800 proteins were detected in the 

periplasmic and solubilized material of AMC 1908. Table 2 shows 11 proteins that were present 

at similar abundances in both the wild-type and mutant outer membrane preparations. These 

proteins are those highlighted in green under both the PCC 7942 and AMC 1908 columns, and 
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they are consistent with those pointed out in Figure 2. Of the common PCC 7942 and AMC 1908 

proteins indicated in Table 2, 6 were present in the seven sequenced bands (Figure 2.B. and 

Table 1). These 6 included the proteins identified for MB1, MB3, MB4, MB5, MB6, and MB7 

(Table 1). Based on peak abundance ratios (Table 2), 5 of these 6 proteins were at the same 

relative abundance in both the mutant and the wild-type. The only exception was the transport 

system substrate-binding protein IdiA (MB7), which was significantly more abundant in the 

mutant compared to the wild-type (Tables 2 and 4) at a ratio of 7.14. This evidence of 

overexpression is also consistent with MB7’s intensity on each of the gels (Figures 2, 3, 4, and 

5). Phycocyanin was also among the common proteins in PCC 7942 and AMC 1908. However, 

because phycocyanin is a photosynthetic pigment that is not associated with the outer membrane 

(Nagarajan et al. 2019), these proteins are likely cytosolic contaminants that occurred due to cell 

lysis during the outer membrane purification process. Other proteins, like porins and proteins 

involved in binding and transport, would be expected to be found in the outer membrane 

(Koksharova et al. 2006). 

 

Quantitative Proteomic Differences between S. elongatus PCC 7942 and AMC 1908 Outer 

Membranes 

Table 2 also lists proteins that are present in the mutant outer membrane preparation but 

are missing in the wild-type outer membrane preparation. These proteins are those indicated with 

a green “P” for “present” under the AMC 1908 column and a red “ND” for “not detected” under 

the PCC 7942 column. Proteins that are only found in the wild-type outer membrane preparation 

are indicated with a green “P” under the PCC 7942 column and a red “ND” under the AMC 1908 

column. Compared to the other more abundant proteins within the proteomics dataset, these 
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unique proteins were less significant and had lower coverage percentages (Coverage %) and 

peptide counts (#Peptides). This may be an indication that they may not represent significant or 

reproducible differences. Proteomics replicates must be performed to confirm whether or not 

these proteins consistently show up as only present in the mutant and vice versa. 

Table 3 identifies proteins significantly more abundant in the wild-type outer membrane 

preparation when compared to the mutant outer membrane preparation. Conversely, Table 4 lists 

the proteins that were significantly more abundant in the mutant outer membrane preparation 

when compared to the wild-type outer membrane preparation. Among the seven sequenced 

bands, only MB7 (Figure 2.B. and Table 1), the transport system substrate-binding protein IdiA, 

is significantly overexpressed in the mutant at a ratio of 7.14 (Tables 2 and 4). This protein was 

not significantly abundant in the wild-type outer membrane preparation. 

 

DISCUSSION 

A First Look at Protein Differences: SDS-PAGE analysis of S. elongatus PCC 7942 and 

AMC 1908 Outer Membranes 

 According to the results of the gel in Figures 2 and 3, there are band differences between 

S. elongatus PCC 7942 and AMC 1908 outer membrane preparations extracted from cultures 

grown in both liquid media (Figure 2) and on plates (Figure 3). This supports the hypothesis that 

the lack of the O-antigen is leading to outer membrane protein composition changes in the 

mutant. At a qualitative level, this initial SDS-PAGE analysis answers the most basic question: 

Are there protein composition differences between the outer membranes of S. elongatus PCC 

7942 and AMC 1908? 
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 Because the outer membrane purification procedure was resulting in cell lysis and 

cytosolic contamination when outer membranes were extracted from cells grown on plates, the 

next question was: Are there protein composition differences between the outer membranes 

extracted from cultures grown in liquid versus solid media? This question was answered in 

Figure 4, which compares wild-type and mutant liquid culture extracts and plate extracts side by 

side. Between the outer membrane samples in Lanes 1 to 4, the band patterns are more or less 

consistent. The flask and plate wild-type samples in Lanes 1 and 2 appear to have the exact same 

patterns. The mutants share four intense bands with the wild-type samples (Figure 2). Between 

the mutant outer membrane samples (Lanes 3 and 4), however, there are more bands present in 

the plate extract (Lane 4) than in the outer membrane preparations extracted from cells grown in 

liquid culture. This could be an indication that the mutant cultures grown on plates are more 

sensitive to lysis during the outer membrane purification process. The additional bands could be 

proteins associated with the cytoplasm. This remains to be determined. 

 In the sample supernatants (Lanes 6 to 9), which are expected to contain periplasmic 

proteins and other solubilized material, a similar occurrence is seen (Figure 4). Again, between 

the wild type samples (Lanes 6 and 7), there aren’t striking differences in band pattern. Among 

the mutant samples extracted from liquid and solid culture (Lanes 8 and 9, respectively), 

however, there were several band differences. The majority of these differences were differences 

in abundance, although the plate sample (Lane 9) contained additional visible bands that were 

not present in the sample extracted from liquid culture. Just like in the mutant outer membrane 

samples (Lanes 3 and 4), this increase in visible proteins is probably a product of cell lysis 

during the purification process. There are striking differences in protein abundances between 

supernatant samples grown in liquid versus solid media at around 20 and 30 kDa. In addition, in 
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the mutant flask supernatant sample in Lane 8, a band is missing just below 35 kDa. While 

interesting, these bands were not sequenced. However, if the outer membrane purification 

protocol can be modified to reduce cell lysis on plates and minimize cytosolic contamination, it 

would be valuable to do a proteomics comparison between outer membrane pellet and 

supernatant preparations extracted from cultures grown on plates versus in flasks. 

 The final question that can be answered via SDS-PAGE analysis is the following: What 

are some of the notable outer membrane protein differences between the wild-type and the 

mutant? In Figure 2, MB1, MB2, and MB7 were not visible in the lanes loaded with wild-type 

samples. These proteins are extracellular solute-binding protein, branched-chain amino-acid 

ABC transport system periplasmic binding protein, and transport system substrate-binding 

protein IdiA, respectively (Table 1). Quantitative proteomics data later revealed that these three 

proteins were not actually absent in the wild-type outer membrane preparation. They just 

appeared to be absent when run on a gel. This could be due to a number of reasons, including the 

possibility of multiple proteins overlapping on the gel, solubility issues, and/or post-translational 

modifications. Nevertheless, according to the proteomics ratios, while extracellular solute-

binding protein, branched-chain amino-acid ABC transport system periplasmic binding protein, 

and transport system substrate-binding protein IdiA were present in both wild-type and mutant 

outer membrane preparations, only the transport system substrate binding protein IdiA was 

significantly more abundant in the mutant. 
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Testing the S-layer Hypothesis 

 Because S-layer proteins easily solubilize into monomers when cations such as Ca2+ are 

chelated (McCarren et al. 2005, Sara and Sleytr 2000), they would be expected to show up in the 

supernatant of the purified outer membrane samples, which should contain solubilized material. 

An uncharacterized conserved hypothetical protein containing an S-layer homology domain 

(Synpcc7942_0443) was identified in both S. elongatus PCC 7942 and AMC 1908. Contrary to 

what was expected, it was present in the high speed pellets of the outer membrane preparations. 

This may be because it did not solubilize as easily as typical S-layers do. However, it was not 

more abundant in the mutant sample, and its presence in both S. elongatus PCC 7942 and AMC 

1908 does not support the idea that it may be responsible for grazing resistance. 

 

Quantitative Proteomics Differences between S. elongatus PCC 7942 and AMC 1908 Outer 

Membranes Identify Proteins that Could be Involved in Resistance 

 According to the proteomics data, only one of the 3 unique bands, MB1, MB2, and MB7 

(Figure 2 and Table 1), identified in the mutant outer membrane samples on gels is more 

abundant in the mutant outer membrane. This band, MB7, was identified as transport system 

substrate-binding protein IdiA (Table 1). It was significantly more abundant than the wild-type 

based on a peak area ratio of 7.14 (Tables 2 and 4). With this said, it was still present in the wild-

type at high enough abundances to be included in Table 2, which indicates common outer 

membrane proteins between the wild-type and the mutant. Table 2 also lists proteins that are 

present in the mutant outer membranes and not in the wild-type outer membranes. Amongst the 

proteins in this table, type IV pilus assembly protein PilO (Synpcc7942_2451) stood out. Other 

pili proteins were present in the wild-type and mutant samples, but not type IV pilus assembly 
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protein PilO. This was only present in the mutant. Pili are a known bacterial defense mechanism 

(Harvey et al. 2018), and since this particular protein is present in the mutant outer membrane 

and not in the wild-type outer membrane, it could be involved in resistance, potentially affecting 

the ingestion or digestion of S. elongatus AMC 1908 by amoebae. This type IV pilus assembly 

protein could even be masking the detection of AMC 1908 by amoebae if they rely on a different 

surface receptor to recognize their prey (Harvey et al. 2018). With all of this said, while this 

particular protein had a high sample area of 1210000000, its -10logP was 30.82, its peptide count 

was 2, and it only had 7% coverage. This means it is likely not significant. More proteomics 

replicates must be carried out in order to determine whether or not PilO consistently shows up in 

only the mutant and not the wild-type. Electron microscopy and a pili stain could also reveal 

whether or not the mutants are actually forming pili. 

Returning to MB7 (Figure 2.B. and Table 1), which is significantly overexpressed in the 

mutant pellet (Table 4), in Synechococcus elongatus PCC 7942, this particular transport system 

substrate-binding protein, also known as iron deficiency induced protein, or IdiA 

(Synpcc7942_2175), allows for growth under iron or manganese stress and accumulates under 

iron and manganese limited conditions (Nodop et al. 2008). IdiA is homologous to iron-binding 

proteins and is likely involved in transporting iron into the cell (Michel et al. 1999, Webb et al. 

2001). Insertional inactivation of the idiA gene that encodes for IdiA in S. elongatus PCC 7942 

prevented growth under iron and manganese stress (Michel et al. 1996). Since the AMC 1908 

mutant’s resistance develops over time and is seen at 8 to 10 days of growth, it’s possible that as 

the iron and manganese in BG11 are getting used up by the increasing cell density of S. 

elongatus AMC 1908, IdiA begins to accumulate in response (Michel et al. 1996). If this is the 

case, it is unclear why the same phenomenon is not seen in the wild-type. The overexpression of 



24	
	

this transport system substrate-binding protein could then be conferring AMC 1908’s resistance 

to grazing by amoebae by outcompeting the amoebae for iron. This can be directly tested with 

iron limitation experiments. IdiA is a proposed marker for iron scavenging (Webb et al. 2001). If 

this is true, then AMC 1908 mutants may be using up the iron in BG11, thus leaving none for the 

amoebae. Ecologically, this could also makes sense, as it could protect mutants in nutrient 

limited conditions from grazers that would only further lessen their chances of survival. 

 

Future Directions 

 In order to determine whether or not the protein of interest identified, transport system 

substrate-binding protein IdiA, plays a role in S. elongatus AMC 1908’s development of 

resistance, genetic experiments can be conducted. The idiA gene that encodes for said protein 

could be knocked out in AMC 1908 (Clerico et al. 2007, Taton et al. 2014, Chen et al. 2016), 

and a grazing assay (Simkovsky et al. 2012, Ma et al. 2016) could be used to test if the knockout 

mutant is still resistant to grazing by amoebae or not. Similarly, an overexpression experiment 

could also be conducted. IdiA could be overexpressed in S. elongatus PCC 7942 (Clerico et al. 

2007, Taton et al. 2014, Chen et al. 2016). Once again, the grazing assay (Simkovsky et al. 

2012, Ma et al. 2016) could be used to test whether the overexpression of transport system 

substrate-binding protein IdiA confers resistance to grazing by amoebae in the wild-type. 
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FIGURES AND TABLES 
 

	

Figure 1: 10-day-old PCC 7942 and AMC 1908 lawns were spotted with the amoebae HGG1 
and LPG 1 on Day 1. The plates were left under constant light at room temperature for 7 days. 
(A) PCC 7942 lawn spotted with HGG1 in the center of the plate. (B) PCC 7942 lawn spotted 
with LPG1 in the center of the plate. (C) AMC 1908 lawn spotted with HGG1 in the center of the 
plate. (D) AMC 1908 lawn spotted with LPG1 in the center of the plate. 
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Figure 2: (A) Tris-Glycine 12% gel loaded with PCC 7942 and AMC 1908 whole cells grown in 
liquid culture (Lanes 1 and 2) and equal concentrations (1.6 µg) of their purified outer membrane 
samples (Lanes 3, 5, 6, and 7). Lane 4 was loaded with the same sample as Lane 5, but at its 
maximum protein concentration (5.8 µg). Lane M contains the PageRuler Plus Prestained Protein 
Ladder. The red box highlights the seven bands that were sequenced. (B) Close-up image of the 
seven bands that were sequenced. See Table 1 for protein sequence identification results. 
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Figure 3: Tris-Glycine 12% gel loaded with PCC 7942 and AMC 1908 whole cells grown on 
plates (Lanes 1 and 2) and equal concentrations (1.6 µg) of their purified outer membrane 
samples (Lanes 3-6). Lane M contains the PageRuler Plus Prestained Protein Ladder. The red 
box highlights the seven bands that were sequenced. (See Figure 2 and Table 1). 
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Figure 4: Tris-Glycine 12% gel loaded with equal concentrations (1.6 µg) of PCC 7942 and 
AMC 1908 outer membrane pellets from cells grown in liquid and on plates (Lanes 1-4) and 
equal concentrations of their supernatants (Lanes 6-9). Lane M contains the PageRuler Plus 
Prestained Protein Ladder. The red box highlights the seven bands that were sequenced. (See 
Figure 2 and Table 1). 
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Table 1: Proteomic analysis of discrete bands cut out of an SDS-PAGE gel. (See Figure 2). 

Band	 Mol.	
Weight	on	
Gel	(Da)	

Protein	Description	 Gene	
Name	

Locus	Tag	 Avg.	Predicted	
Mol.	Mass	(Da)	

MB1	 37000	 extracellular	solute-
binding	protein	

--	 Synpcc7942
_0246	

39326	

MB2	 43000	 branched-chain	amino-
acid	ABC	transport	
system	periplasmic	
binding	protein	

livJ	 Synpcc7942
_2496	

42504	

MB3	 45000	 bicarbonate-binding	
protein	CmpA	

cmpA	 Synpcc7942
_1488	

49108	

MB4	 50000	 ABC-type	nitrate/nitrite	
transport	system	

substrate-binding	protein	

nrtA	 Synpcc7942
_1239	

48425	

MB5	 53000	 porin;	major	outer	
membrane	protein	

somA(1)	 Synpcc7942
_1464	

57139	

MB6	 55000	 porin;	major	outer	
membrane	protein	

somB(2)	 Synpcc7942
_1635	

57909	

MB7	 35000	 transport	system	
substrate-binding	protein	

idiA	 Synpcc7942
_2175	

40260	
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Table 2: Presence and absence of proteins in outer membrane preparations (high speed pellets) of 
S. elongatus PCC 7942 and AMC 1908. P (green) = present, ND (red) = not detected. Ratios 
under PCC 7942 are WT:MUT peak area. Ratios under AMC 1908 are MUT:WT peak area. 

Locus	Tag	 Protein	 PCC	
7942	

AMC	
1908	

Synpcc7942_1488	 bicarbonate-binding	protein	CmpA	 0.89	 1.12	

Synpcc7942_1635	 porin;	major	outer	membrane	protein	 1.93	 0.52	

Synpcc7942_1464	 porin	 1.11	 0.90	

Synpcc7942_1239	 ABC-type	nitrate/nitrite	transport	system	substrate-binding	
protein	 1.03	 0.97	

Synpcc7942_2444	 phosphate	binding	protein	 1.19	 0.84	

Synpcc7942_0246	 extracellular	solute-binding	protein	 0.70	 1.43	

Synpcc7942_1224	 ABC-transporter	membrane	fusion	protein	 0.47	 2.13	

Synpcc7942_1052	 phycocyanin	subunit	beta	 0.97	 1.03	

Synpcc7942_0443	 S-layer	homology	 8.29	 0.12	

Synpcc7942_1397	 hypothetical	protein	Synpcc7942_1397	 1.62	 0.62	

Synpcc7942_2175	 transport	system	substrate-binding	protein	IdiA	 0.14	 7.14	

Synpcc7942_2451	 type	IV	pilus	assembly	protein	PilO	 ND	 P	

Synpcc7942_2431	 hypothetical	protein	Synpcc7942_2431	 ND	 P	

Synpcc7942_0997	 50S	ribosomal	protein	L32	 ND	 P	

Synpcc7942_0976	 hypothetical	protein	Synpcc7942_0976	 ND	 P	

Synpcc7942_1491	 nitrate	transport	ATP-binding	subunits	C	and	D	 ND	 P	

Synpcc7942_1009	 XRE	family	transcriptional	regulator	 ND	 P	

Synpcc7942_2248	 nucleoid	protein	Hbs	 ND	 P	

Synpcc7942_2492	 ATPase	 ND	 P	

Synpcc7942_2354	 peptidylprolyl	isomerase	 P	 ND	

Synpcc7942_1613	 hypothetical	protein	Synpcc7942_1613	 P	 ND	

Synpcc7942_2608	 hypothetical	protein	Synpcc7942_2608	 P	 ND	

Synpcc7942_1384	 hypothetical	protein	Synpcc7942_1384	 P	 ND	

Synpcc7942_2257	 hypothetical	protein	Synpcc7942_2257	 P	 ND	

Synpcc7942_2539	 hypothetical	protein	Synpcc7942_2539	 P	 ND	

Synpcc7942_0195	 hypothetical	protein	Synpcc7942_0195	 P	 ND	

Synpcc7942_0905	 hypothetical	protein	Synpcc7942_0905	 P	 ND	

Synpcc7942_1909	 hypothetical	protein	Synpcc7942_1909	 P	 ND	
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Table 3: Proteins significantly more abundant in the outer membrane preparation (high speed 
pellet) of S. elongatus PCC 7942 compared to AMC 1908 using a cutoff of 11 

Locus	Tag	 Protein	 WP78:MP78	
Synpcc7942_1182	 NADH	dehydrogenase	subunit	J	 100.00	
Synpcc7942_0905	 hypothetical	protein	Synpcc7942_0905	 50.00	
Synpcc7942_1128	 hypothetical	protein	Synpcc7942_1128	 50.00	
Synpcc7942_0374	 hypothetical	protein	Synpcc7942_0374	 50.00	
Synpcc7942_1678	 hypothetical	protein	Synpcc7942_1678	 33.33	
Synpcc7942_0158	 hypothetical	protein	Synpcc7942_0158	 25.00	
Synpcc7942_0289	 preprotein	translocase	subunit	SecA	 25.00	
Synpcc7942_0318	 hypothetical	protein	Synpcc7942_0318	 20.00	
Synpcc7942_1515	 Ser/Thr	phosphatase	 20.00	
Synpcc7942_0969	 carboxymethylenebutenolidase	 20.00	
Synpcc7942_1632	 hypothetical	protein	Synpcc7942_1632	 16.67	
Synpcc7942_2152	 hypothetical	protein	Synpcc7942_2152	 14.29	
Synpcc7942_0128	 hypothetical	protein	Synpcc7942_0128	 14.29	
Synpcc7942_0424	 photosystem	q(b)	protein	 12.50	
Synpcc7942_2086	 hypothetical	protein	Synpcc7942_2086	 12.50	

Synpcc7942_1484	 UDP-N-acetylmuramoylalanyl-D-
glutamate—2,6	diaminopimelate	ligase	 12.50	

Synpcc7942_1427	 ribulose	1,5-biphosphate	carboxylase	small	
subunit	 11.11	

 

 

 

 

 

 

 

 

 

 

 

 

	



32	
	

Table 4: Proteins significantly more abundant in the outer membrane preparation (high speed 
pellet) of S. elongatus AMC 1908 compared to PCC 7942 using a cutoff of 5 

Locus	Tag	 Protein	 MP78:WP78	

Synpcc7942_0632	 50S	ribosomal	protein	L10	 5.26	

Synpcc7942_2491	 DNA	gyrase	subunit	B	 5.56	

Synpcc7942_2006	 hypothetical	protein	Synpcc7942_2006	 5.56	

Synpcc7942_0896	 septum	site-determining	protein	MinD	 5.56	

Synpcc7942_0226	 twin-arginine	translocation	protein	TatA	 5.88	

Synpcc7942_1944	 pyruvate	dehydrogenase	(lipoamide)	 6.25	

Synpcc7942_1656	 catalase/peroxidase	HPI	 6.67	

Synpcc7942_2175	 transport	system	substrate-binding	protein	IdiA	 7.14	

Synpcc7942_0757	 hypothetical	protein	Synpcc7942_0757	 7.69	

Synpcc7942_0513	 ATPase	 9.09	

Synpcc7942_1381	 ATPase	 9.09	

Synpcc7942_0095	 two	component	transcriptional	regulator	 9.09	

Synpcc7942_0105	 NAD	synthetase	 9.09	

Synpcc7942_2118	 DUF1816	domain-containing	protein	 10.00	

Synpcc7942_0886	 30S	ribosomal	protein	S7	 10.00	

Synpcc7942_1524	 DNA-directed	RNA	polymerase	subunit	beta	 10.00	

Synpcc7942_0313	 pentapeptide	repeat-containing	protein	 12.50	

Synpcc7942_0628	 spermidine	synthase	 14.29	

Synpcc7942_1654	 hypothetical	protein	Synpcc7942_1654	 14.29	

Synpcc7942_1723	 carotene	isomerase	 20.00	

Synpcc7942_2387	 c-type	cytochrome	 25.00	

Synpcc7942_2171	 starvation	induced	DNA	binding	protein	 33.33	

Synpcc7942_1591	 RNA	binding	S1	 33.33	
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