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ABSTRACT OF THE DISSERTATION

Wetland plant influence on sediment ecosystem structure and trophic function

by

Christine René Whitcraft
Doctor of Philosophy in Oceanography
University of California, San Diego, 2007

Professor Lisa A. Levin, Chair

Vascular plants structure wetland ecosystems. To examine mechanisms behind
their influence, plants were studied under different scenarios of change: experimental
manipulation of cover, invasion, and response to flushing regimes. I tested the
hypothesis that wetland plants alter benthic communities through modification of abiotic
factors, with cascading effects on microalgae and invertebrate communities. Major plant
effects were observed in all systems studied, but the magnitude of, mechanisms behind,
and exact consequences of plant alterations depended on the particular combination of
physical and biological stresses within the habitat along the marine to terrestrial
continuum. Manipulation of plant cover and light regime, combined with natural
abundance isotope studies in a mid-elevation salt marsh of Mission Bay, CA revealed
how two dominant plants, Spartina foliosa and Sarcocornia pacifica (formally Salicornia
virginica), regulate light, temperature, and moisture, thereby influencing the abundance

of benthic diatoms and the relative importance of microalgal-feeding invertebrates.
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Tamarisk (Tamarix spp.), normally a freshwater invader that has recently
colonized the salt marsh in Tijuana Estuary, was studied in 3 marsh zones with
mensurative benthic assessment techniques and stable isotope enrichment experiments.
Results demonstrate that this plant has (1) impacted the mid-marsh environment most, (2)
accelerated salt marsh succession towards a more terrestrial environment by creating
drier, less organic-rich sediments and an altered macroinvertebrate community (decreased
densities of gastropods and marine oligochaetes, more insects) and (3) entered the food
web through a broad range of invertebrate consumers.

Using similar approaches, the ephemeral seagrass, Ruppia maritima, abundant in
lagoons during periods of inlet closure, was also shown to play a key trophic role in
structuring wetlands in southern California. Results of faunal characterization and
isotope enrichment studies within San Dieguito Lagoon suggest that food webs in these
environments are driven by detrital and epiphytic production. Increased representation of
detritivores in R. maritima habitats relative to unvegetated mudflat appears linked to
animal feeding preferences and the ability of consumers to utilize R. maritima. In
summary, this research developed several experimental methods by which to isolate
structuring mechanisms of vascular plants in wetlands and allowed us to make

generalizations across abiotic gradients in salt marsh ecosystems.
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CHAPTER 1
INTRODUCTION
Background

Vascular plants in both marine and terrestrial ecosystems structure the ecosystems
in which they reside. We can learn a lot about these structuring mechanisms by studying
plants under different scenarios of change: wrack deposition, invasion, restoration,
experimental manipulation, and altered flushing regimes. What changes in an ecosystem
when one plant species replaces another? What changes when plant cover disappears
completely? In investigating these questions, I first examined how they had been pursued
in terrestrial systems and then I focused on answering these questions for coastal wetland
ecosystems.

On land, the role of plants in altering the physical environment is relatively well-
understood, and our knowledge includes the effect of plants on above- and below-ground
biota. We have a reasonable mechanistic understanding of these effects (Table 1.1).
Although vascular plants are recognized as a structuring force in marine benthic
communities, a mechanistic understanding of how this occurs has not been completely
developed. The overall goal of my thesis is to bridge the gap between descriptive and
predictive understanding of how plants affect wetland sediment communities by
illustrating the mechanisms by which the plants modify their ecosystems.

In terrestrial communities, vascular plants act as the major modifiers of the
physical environment, provide primary energy and nutrient sources, and form most of the
structural environment for other organisms. The dominant species of vascular plant

differs for each ecosystem, but from an early point, scientists have recognized that these



plants determine the conditions under which all remaining species exist (Clements 1936).
Plants influence microhabitat conditions and nutrient supply for other organisms at
different trophic levels by root penetration and by production of litter and photosynthetic
products (Gillison et al. 2003, Swift and Anderson 1993, Angers and Caron 1998). In
forested ecosystems, vascular plants control the amount of light reaching the soil surface
and thus influence forest succession (Aubin et al. 2000). In addition, it is well-
documented that large trees shade smaller understory plants and soil surfaces, reducing
temperature, wind speeds, and rainfall (Purves et al. 1995).

Although the influence of plants in structuring ecosystems is acknowledged in
early and modern work, a significant portion of research treats the above-ground and
below-ground systems as separate compartments in isolation from each other. Terrestrial
literature mentions the need to understand the linkages between above- and below-ground
biota (e.g. Hooper et al. 2000, van der Putten et al. 2001), and researchers have recently
begun addressing this gap (Table 1.1). For example, Bardgett et al. (1998) demonstrate
that plant herbivory affects the soil biota and decomposer food web by an alteration of
root structure, carbon allocation, and nutrient supply. Work in grasslands also indicates
that variation in plant cover because of various factors (herbivory, cutting, complete
removal, conversion to agriculture) can affect abiotic parameters and thus control soil
biota abundance and diversity (e.g. Ledeganck et al. 2003, Moon and Stiling 2002,
Blomgvist et al. 2000). These changes in the belowground community also influence the
success, abundance and diversity of the aboveground plant community and thus complete
the feedback loop and influence ecosystem functioning (Setdld 2000, Setéld 2002).

Although some marine work addresses the link between above- and belowground biota



(Snelgrove et al. 2000, Smith et al. 2000), work in the marine realm and specifically in
salt marshes lacks a mechanistic understanding and research focus on the topic.

The marine literature does address the role of organisms as foundation species
(Dayton 1975) and as ecosystem engineers (Jones et al. 1994, Crooks 2002). Familiar
examples include kelp forests, mussel beds, seagrass meadows and coral reefs (Bruno and
Bertness 2001). Research on marine intertidal systems also demonstrates that vascular
plants have a dominant influence within their communities. Specifically, the presence of
plants in coastal wetlands affects ecosystem-level processes such as hydrology,
sedimentation rates, and nutrient cycling (Bertness 1988, Leonard and Luther 1995,
Zipperer 1996, Levin and Talley 2000) (Table 1.2). Plants regulate marsh ecosystems
directly through carbon and nutrient inputs and through 3-dimensional structure
regulation of resources including nutrient filtering (Valiela et al. 2001). Plant shoots and
detrital material partially fuel the salt marsh food web (Armstrong 1978, Peterson et al.
1985, Levin and Talley 2000). In addition, vascular plants stabilize the sediment and
modify the amount and quality of light reaching the sediment. This light modification
indirectly affects soil properties, such as temperature (Gallagher 1971, Bertness and
Hacker 1994, Levin and Talley 2000) and algal growth (Liining 1980, Seliskar et al.
2002). Critical salt marsh functions (such as nursery habitat provision, coastal
stabilization, runoff filtration, and trophic support) are directly and indirectly tied to the
presence of vascular plants (Gleason et al. 1979, Warren and Neiring 1993). Yet, the
exact role of these plants in modifying the benthic environment and the consequences for
sediment fauna are not well understood (Table 1.2).

Changing plant cover is one of the main sources of spatial heterogeneity in Pacific



coast salt marshes and can influence the abundance and diversity of benthic invertebrates
(i.e. Costa and Davis 1992, Scatolini and Zedler 1996) (Table 1.2). Shifts in vegetation
composition can cause large-scale ecosystem changes due to influence on soil
characteristics, geomorphology, biogeochemistry, regional climate, and activity and
distribution of other organisms (Eviner and Chapin 2003). Anthropogenic influences
(e.g. development, human-mediated invasion) have demonstrated effects on benthic
infaunal diversity in salt marshes, and certain disturbances can serve as large-scale
experiments which advance an understanding of plant and benthic biota interactions.
Specific examples of this disturbance include wrack deposition, changing flushing
regimes (Zedler et al. 2001), invasion (Ayres et al. 2004, Neira et al. 2005), and
restoration (Levin and Talley 2002), which are all known to alter the distribution of
vascular plants in California wetlands.

Changes in coastal salt marsh and tidal flat ecosystems, such as creation or
restoration of wetlands, large-scale invasions, or altered flushing regimes, provide an
unprecedented opportunity to examine the factors influencing succession on much larger
scales than might otherwise be possible. A major function of California salt marshes is
trophic support for shellfish, fish and birds. Thus, the monitoring of trophic functions
(food web architecture and complexity) helps us to understand temporal changes in
ecosystem functioning of wetlands. I have used two approaches for addressing questions
of trophic changes: (1) use of natural abundance, stable isotopic signatures to examine
food web structure, and (2) isotopic enrichment experiments to trace the consumption of
labeled vascular plant detritus. In Chapter II, I have combined plant and animal

monitoring following manipulation of plant cover with natural abundance signatures



(8"°C and & '°N)) of primary producers and lower consumers to identify changes in the
base of the food web and animal trophic groups and to identify trophic complexity in
different plant cover situations. Isotope enrichment experiments provide direct
information about animal food sources and about trophic shifts in feeding mode. In
Chapters IV and VI, I have traced the role of plant detritus in wetland food webs with
isotope enrichment experiments. The results document the effectiveness of stable
isotopes as a tool for evaluating trophic function and help us understand the successional
trajectories for invertebrates and algae (and the associated food webs) in multiple
wetlands through southern California.
Objectives

The overall objective of my thesis research was to develop a conceptual
understanding (and model) (Figure 1.1, Table 1.3) of plant-benthic interactions in
southern California wetlands. This model can be articulated as a series of hypotheses
about the effects of altered light regime and aboveground plant structure. In my thesis
research, I tested the hypotheses that changes in light regime due to loss of the plant
canopy would directly alter (1) abiotic sediment properties such as redox potential,
porewater temperature, porewater salinity, water content, (2) sediment properties such as
grain size and organic matter content, (3) algal community composition, and (4) infaunal
community parameters such as species richness, abundance and community composition.
Additionally, I hypothesized that loss of the plant canopy could indirectly affect the
infaunal community through (1) changes to the structure and composition of algal
community or (2) changes to the abiotic parameters that make the soil environment more

harsh.



This model was tested in three different southern California wetland systems that
are subject to change: (1) a salt marsh in Mission Bay, CA (USA) where one native
species, Salicornia spp. (pickleweed), is slowly replacing another, Spartina foliosa
(Pacific cordgrass) and where restoration activities are underway; (2) a large estuary
reserve (Tijuana River, CA, USA) where a renown riparian invader Tamarix ramosissima
(tamarisk or saltcedar) has made its first full-scale appearance in a salt marsh; and (3) a
lagoon in Del Mar, CA (USA) where episodic inlet blockage leads to loss of flushing and
blooms of the seagrass, Ruppia maritima (widgeongrass). By addressing similar
questions about plant effects in three systems and with plants of different architectures, I
examined whether specific mechanistic plant-benthos interactions and processes are

pervasive across systems, disturbance forms, or species.
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Significance

Wetland systems are ideal for examining the forces that structure natural
communities (Bertness and Yeh 1994). They have simple vascular plant communities
with a relatively low diversity of species. Sharp physical gradients exist in intertidal
habitats that allow detailed examination of abiotic factors that structure communities.
Effects of plant community disturbance on abiotic sediment properties and on positive
interactions between different plant species are well-documented (Bertness 1988,
Bertness and Yeh 1994, Seliskar et al. 2002) as are ecosystem-level consequences of
these disturbances. However, responses of below-ground invertebrates are less well
known or in some cases, completely unaccounted for.

In addition to being ideal systems due to their structure, understanding how
wetlands function is imperative to effectively managing them. A management strategy
for wetland loss is restoration; a management strategy for invasion is eradication; a
management strategy for coastal lagoons is construction of permanent jetties. Yet, the
efficacy of all of these strategies remains uncertain. Existing studies reveal that
generally, vascular plants exert structuring influence on the associated edaphic
environment and macroinvertebrate assemblages with potential consequences for
ecosystem functioning (Tables 1.2, 1.4, 1.5). Understanding how vascular plants affect
the associated benthic community and the mechanisms driving these effects will provide
valuable information for the conservation and management of these systems.

Due to the rapid rate of wetland decline worldwide, the time to ask these
questions is now. Destruction of wetland habitat has significantly reduced the amount of

wetlands across the country. During the pre-settlement era, the United States contained



approximately 390 million acres of freshwater and marine wetlands; 50% of this wetland
area was lost between 1790 and 1980 (Dahl 1990). Individual state statistics reflect this
trend; for example, in the Mississippi Delta, 100 km? of wetlands are lost per year (Day et
al. 2000). Here in California, less than ten percent of the original area of coastal wetlands
remains (Schoenherr 1992). In addition to loss of actual land area, wetlands are
threatened by non-native species invasions that can also change plant cover and the
structural characteristics that define the ecosystem itself (Vitousek 1990, Ruiz et al. 1999,
Crooks 2002). The ecosystem-level consequences of this wetland reduction, especially in
a low-diversity system such as a salt marsh, are unknown.
Scope of the dissertation

Restoration and changes in hydrology affect the distribution of the two dominant
plant species in southern California marshes, Spartina foliosa and Salicornia spp..
Certain plant species, including Pacific Cordgrass, Spartina foliosa, cannot survive unless
regular ocean flushing occurs (Bradshaw 1968, Zedler et al. 1992). Thus Spartina foliosa
is absent from most lagoons that close periodically or from embayments where ocean
flushing is restricted. When this species disappears, the endangered clapper rails that
nest in stands of Spartina also disappear. It is not known whether there are other
Spartina-dependent species whose distribution might be regulated by ocean flushing in
this way. Polychaetes, molluscs and peracarid crustaceans are more common in better
flushed or lower elevation Spartina-vegetated sediments, while insects and oligochaetes
dominate Salicornia-vegetated habitat (Levin et al. 1998, Talley and Levin 1999, Levin
and Talley 2000). In Chapter II, using clipping (structural) and light (shading)

manipulations in two salt marsh vegetation zones (one dominated by Spartina foliosa and
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one by Salicornia virginica), | hypothesized that both S. foliosa and S. virginica exert
influence on abiotic sediment properties and thus have cascading impacts on the benthic
algal and animal community.
Invasion

Invasions by introduced plants are one of the most serious threats to global
biodiversity today (e.g. - Heywood 1989, Lonsdale 1999, Gaskin and Schaal 2002).
Although invasion is a natural process, the rate and mechanisms by which species are
transported are anthropogenically altered, causing invasions to become a major
conservation concern. Invasion affects all ecosystems, but the rate of invasion is
increasing most quickly in wetlands (Posey 1988, Ruiz et al. 1997).

This thesis examines the consequences of Tamarix spp. invasion into Tijuana
River National Estuarine Research Reserve (TRNERR). Considered one of United
States’ worst invaders (Stein and Flack 1996), tamarisk or salt cedar (Tamarix spp.) is an
aggressive, woody invasive plant that has become established over 1.5 million acres of
floodplains, riparian areas, and freshwater wetlands in the western United States
(Stenquist 2000). Native to Eurasia and Africa, tamarisk was first introduced into North
America in the early 1800s by nurserymen (Di Tomaso 1998). The westward spread of
tamarisk was facilitated by use as windbreaks, shade cover, erosion control or ornamental
plants (Neill 1985). The high intertidal, native pickleweed marsh of the TRNERR now
supports dense stands of these salt-tolerant plants, which convert the salt marsh from a
succulent-dominated canopy of less than 1 meter to a landscape dominated by stands of
woody trees that can grow to over 3 meters tall. This invasion is described in Chapter

I11.
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The effects of tamarisk invasions have been well-documented for stream riparian
areas and include local alterations to the chemical and physical conditions as well as
larger-scale effects of the entire invaded ecosystem (Table 1.4). Previous invasions in
freshwater wetlands and riparian areas demonstrate that tamarisk increases salt deposition
under the plants, decreases water velocity, and increases sedimentation while also
causing declines in the water table due to its extremely high rate of evapotranspiration
(from 0.1 — 0.4 cm per day) (i.e. Davenport et al. 1982) (Table 1.4). As a result of
changes in local water tables, channel width reductions have occurred, causing a
transformation of rivers away from natural desert riparian systems (Lovich et al. 1994,
Lovich and de Gourvenian 1998, Lovich and Meyer 2002). Possibly as an indirect effect
of the abiotic changes, Tamarix-invaded stands also support different plant communities
compared to non-invaded stands (Carmen and Brotherson 1982, Griffen et al. 1989).

Most research indicates that areas invaded by tamarisk are much less valuable to
wildlife, with the exception of honeybees and two species of doves (Brown and Trossett
1989, Frasier and Johnsen 1991); density, diversity and species richness of many
organisms decrease in invaded areas (Kerpez and Smith 1987, Cohan et al. 1978). Yet,
because the TRNERR invasion is the first foray of tamarisk into the marine realm, little is
known about the impacts of tamarisk invasion into salt marshes. We hypothesized that
tamarisk in the salt marsh will affect physical resources which could translate into
community-level effects for marsh biota (Stevens 2000, Crooks 2002). As a short
invasion note, Chapter III documents an extensive incipient invasion and modification
of coastal salt marsh habitats by multiple species of trees and shrubs in the genus

Tamarix. Extending the conclusions of Chapter III, Chapter IV uses a complete
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randomized block design within three habitats to test the influence of tamarisk on abiotic
environmental factors and the biotic community and to predict that this invasion hastens
natural succession processes (“terrestrialization”) along an elevation gradient. Utilizing
litter dynamics techniques and stable isotope enrichment experiments, Chapter V
evaluates the trophic consequences of invasion by tamarisk on detrital food chains in the
TRNERR salt marsh.
Inlet status

The southern California coast is dotted with small coastal lagoons and
embayments. Due to the Mediterranean climate of southern California, these lagoons
have episodic freshwater input linked to rain events and receive significant inputs of
energy, nutrients and organisms from the sea. While large embayments typically remain
permanently open, smaller lagoons experience periodic closures which result from
natural or anthropogenic activities that cause increased sediment deposition from the
upland watershed (Conners et al. 1991, Callaway 2001) or from division of wetland
habitats by roads and railroads (West 2001). Additionally, coastal buildup of sand or
inland erosion of sediments that are transported down river can seal up openings to the
ocean (Conners et al. 1991, West 2001). When lagoons are closed for extended periods,
key species with life cycles dependent on ocean flushing may disappear. Once a lagoon
is breached, the plants that thrived in closed water conditions (higher temperature, lower
salinity) may also disappear. Loss of particular plant species, especially seagrasses, may
cause loss of associated invertebrate communities and change in food web structure as
many of these species structure their environments (Table 1.5).

Ruppia maritima L.. (widgeongrass) is an example of a plant species that thrives
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in the closed lagoon state. It is a ruderal or opportunistic species with a broad
environmental tolerance and a reportedly cosmopolitan distribution (Kantrud 1991,
Johnson et al. 2003). Typically, R. maritima exists in marginal seagrass habitats or as a
secondary species where other seagrasses dominate (Lazar and Dawes 1991, Johnson et
al. 2003). R. maritima L. thrives in warmer temperature (upwards of 25 °C) (Evans et al.,
1986, Johnson et al. 2003) and in lower salinity water (Kantrud 1991, Koch and Dawes
1991). In absence of these warmer, more saline conditions, R. maritima frequently
disappears (Williams et al. 2003).

In 2002, the San Dieguito Lagoon (SDL) inlet closed for 8 months. During this
period of low salinity and increased temperature, Ruppia maritima became abundant, and
large bivalves and gastropods disappeared from the lagoon (Levin et al., unpublished
data). In Oct. 2002-March 2003, the SDL was breached after its extended closure. The
breach initiated tide-induced fluctuations in salinity, temperature and dissolved oxygen.
Tidal flats were dominated by Ruppia maritima in Oct. 2002 but were largely
unvegetated (although covered with Ulva spp.) post-breach in late October and again in
March 2003. Chapter VI explores the hypothesis that changes in the seagrass cover
(Ruppia maritima) will affect the associated algal and infaunal communities and thus
affect pathways of trophic support.

Chapter VII integrates the insights of each of the previous studies and compares
among systems, among different architecture plants, and along a marine to terrestrial
continuum. These comparisons extend the research beyond species-specific conclusions
and thus advance our general understanding of the structural and mechanistic role of

plants in wetland ecosystems.
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CHAPTER II

REGULATION OF BENTHIC ALGAL AND ANIMAL COMMUNITIES BY SALT

MARSH PLANTS: IMPACT OF SHADING

Abstract

Plant cover is a fundamental feature of many coastal marine and terrestrial
systems and controls the structure of associated animal communities. Both natural and
human-mediated changes in plant cover influence abiotic sediment properties and thus
have cascading impacts on the biotic community. Using clipping (structural) and light
(shading) manipulations in two salt marsh vegetation zones (one dominated by Spartina
foliosa and one by Salicornia virginica), we tested whether these plant species exert
influence on abiotic environmental factors and examined the mechanisms by which these
changes regulate the biotic community. In an unshaded (plant and shade removal)
treatment, marsh soils exhibited harsher physical properties, a microalgal community
composition shift towards increased diatom-dominance, and altered macrofaunal
community composition with lower species richness, a larger proportion of insect larvae
and a smaller proportion of annelids, crustaceans, and oligochaetes compared to shaded
(plant removal, shade mimic) and control treatment plots. Overall, the shaded treatment
plots were similar to the controls. Plant cover removal also resulted in parallel shifts in
microalgal and macrofaunal isotopic signatures of the most dynamic species. This

suggests that animal responses are seen mainly among microalgae grazers and may be
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mediated by plant modification of microalgae. Results of these experiments demonstrate
how light reduction by the vascular plant canopy can control salt marsh sediment
communities in an arid climate. This research facilitates understanding of sequential
consequences of changing salt marsh plant cover associated with climate or sea-level
change, habitat degradation, marsh restoration or plant invasion.
Introduction

Vascular plants have major structuring roles in both marine and terrestrial
ecosystems (Clements 1936, Bruno and Bertness 2001). On land, the role of plants in
altering the physical environment is well-understood, and ecologists are working towards
a detailed understanding of how plants affect the complete sediment system (e.g. Swift
and Anderson 1993, Hooper et al. 2000). Although vascular plants are recognized as a
structuring force in coastal benthic communities (Bertness 1991a,b, 1992, Snelgrove et
al. 2000, Smith et al. 2000, Bortolus et al. 2002), a detailed mechanistic understanding of
plant-animal relationships has not been developed, especially for salt marshes. For
coastal wetlands, it is known that the presence of plants affects ecosystem-level processes
such as hydrology, sedimentation rate, and nutrient cycling (Bertness 1988, Leonard and
Luther 1995, Levin and Talley 2000). Plant shoots and detrital material partially fuel the
salt marsh food web (Peterson et al. 1985, Levin and Talley 2000, Levin et al. 2006). In
addition, vascular marsh plants modify the amount and quality of light reaching the
sediment, thus affecting temperature (Gallagher 1971, Bertness and Hacker 1994) and
algal growth (Liining 1980, Seliskar et al. 2002). On a larger scale, critical salt marsh
functions, such as nursery habitat provision, coastal stabilization, runoff filtration, and

trophic support, are directly and indirectly tied to the presence of vascular plants
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(Gleason et al. 1979, Warren and Neiring 1993).

Experimental work has shown that plant community disturbance affects abiotic
sediment properties and positive interactions between different plant species (Bertness
1988, 1991a,b, 1992, Bertness & Callaway 1994). However, few studies have
experimentally studied the responses of benthic algae and below-ground invertebrates to
plant disturbance (Pagliosa and Lana 2005). Comparing a restored and an adjacent
natural wetland system in southern California, Levin and Talley (2002) inferred the
influence of vascular salt marsh vegetation on the rate and trajectory of macrofaunal
recovery. They observed that during early succession when the marsh had little plant
cover, the macrofaunal assemblage had a lower proportion of oligochaetes and a higher
proportion of insect larvae as compared to the assemblage in the neighboring mature
marsh. As the vegetation expanded and the created marsh matured, the percentage of
insect larvae decreased, and the percentage of polychaetes and amphipods increased.
Similar trajectories have been observed in other southern California systems (Talley and
Levin 1999, Moseman et al. 2004). Our study was designed to experimentally identify
the mechanisms behind the observed macrofaunal community changes and to test
whether this trajectory occurs under small-scale disturbance scenarios.

Thus, we designed field manipulations of light levels and structure to explore the
role of above-ground vegetation in determining environmental conditions, and algal and
macrofaunal diversity. These manipulative experiments tested the hypotheses that (1)
modification of plant cover would alter environmental conditions and microalgal
assemblages, (2) these environmental and algal modifications would lead to changes in

the abundance and composition of the macrofaunal community, (3) structure and light
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removal would have differing effects, and (4) plant effects on algal and macrofaunal
communities would be equivalent for the dominant grass (Spartina foliosa) and succulent
(Salicornia virginica) species in southern California. We predicted that plant influence
on benthos should be especially strong in the arid Mediterranean climate regime
characteristic of southern California relative to wetter Atlantic systems, where much
related research has been conducted (i.e. New England & Southeast, USA). Describing
the functional role of plants in salt marsh ecosystems is crucial to ecological
understanding and highly relevant to conservation issues associated with restoration,
invasions, marine reserves and biodiversity maintenance.
Materials and Methods

The Mediterranean climate of southern California with mild, wet winters and
warm, dry summers supports two dominant vascular plant species within the salt marsh
environment; pickleweed (Salicornia virginica) and Pacific cordgrass (Spartina foliosa).
Salicornia virginica dominates in mid-marsh habitat and under conditions of episodic
inlet closure, while Spartina foliosa occupies the low marsh zone and requires regular
flushing; it disappears in the absence of ocean water influx (Zedler et al. 1992). The
research was conducted in the 6.5-ha Kendall Frost Mission Bay Marsh Reserve, an
intertidal salt marsh in the NE corner Mission Bay, San Diego, CA (32°47'35" N, 117°

13' 00" W) where both plant species co-occur.

Experimental Design: To determine mechanisms by which plants influence
sediments, algae and macrofauna, we conducted parallel experiments in adjacent S.
foliosa- and S. virginica-dominated habitats. Within the marsh, eight experimental

blocks were established in patches of S. foliosa (at least 90 percent cover) growing with



47

other mixed vegetation (Salicornia spp., Batis maritima), and eight blocks were
established in existing patches of S. virginica (again at least 90 percent cover). Three
different 1m? treatments were created within each vegetation type: (1) absence of plant
cover and structure (clipped, unshaded), (2) absence of plant structure (clipped, shaded),
and (3) control (unclipped, no shade manipulation). Hereafter, these will be referred to as
unshaded, shaded and control treatment plots, respectively. In the unshaded and shaded
treatment plots, all species present in the plot (S. foliosa, S. virginica etc.) were clipped at
the soil surface, leaving belowground biomass intact. These two treatments were
maintained by weekly clipping for the duration of the study (6 months). The clipped
plant roots continued to resprout and require clipping, indicating that the plants remained
alive belowground and suggesting limited decay of underground plant matter.

S. foliosa plant removal treatments were maintained from May 2002 until May
2003; S. virginica treatments were maintained from May 2004 until May 2005. Weekly
maintenance included removal of detrital material trapped on shade cloth and/or chicken
wire over treatments. Sampling (details discussed below) took place 3 mo. and 6 mo.
after establishment of the treatment plots. Plant habitat elevations, measured for each
plot using an automatic level (CST/Berger SAL series), were on average 0.3 m lower in
the S. foliosa plots (2.00 + 0.03 m below mean low water) than in the S. virginica plots
(2.27 £ 0.15 m below mean low water).

Light measurements, made immediately prior to clipping in May, revealed that
natural plant cover reduced incident light by approximately 94% in S. foliosa patches
(94.1% + 2.1%) and 85% in S. virginica patches (85.7% + 5.0%) (S. foliosa > S.

virginica, y*=17.396, P<0.0001). Shaded treatments, designed to mimic light reduction,
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had a set of four poles suspending a chicken wire frame and a 90% reduction shade cover
(two layers of 70% reduction shade cloth) over the plot. To equalize experimental
artifacts, unshaded and control treatment plots also had a set of four poles suspending
only chicken wire, allowing light to penetrate to the ground. Light measurements were
made on a cloudless day using a QSL — 100 Laboratory Quantum Scalar Irradiance Meter
(4pi sensor, Biospherical Instruments Inc.) in each replicate. Ambient light readings were
taken immediately preceding light measurements under the canopy, and all light readings
were an average of three measurements.

Measurement of abiotic and sediment properties: Within each treatment plot, soil

salinity of the top 0.5 cm (+ 1 psu) was measured weekly by squeezing porewater from
the sediment surface through a Whatman No. 1 qualitative grade filter onto a hand-held
salinity refractometer. Temperature (+ 0.1°C) at 2 cm depth was measured weekly using
a portable Ingold Mettler-Toledo digital thermometer. Water content of the top 0.5 cm
was determined at 3 mo. and 6 mo. by weight loss after drying a known volume of
sediment (Buchanan 1984). Redox potential was measured at 3 mo. and 6 mo. at 1-cm
depth with a portable Mettler Toledo mV-meter. These mV readings were corrected to
the standard hydrogen electrode value by adding 207 mV (Giere et al. 1988). Redox
potential has been used to indicate the degree of oxygenation in wetland soils (Gambrell
and Patrick 1978) and is known to be influenced by wetland plant rhizomes (Lovell
2002). One sediment core (4.8 cm diameter x 6 cm) was collected within each treatment
plot at 3 mo. and 6 mo. for analysis of particle size and organic matter content using
methods of Neira et al. (2005). Belowground plant detrital biomass (dry mass) was

calculated by removing all plant detritus (> 300 pm) from macrofaunal cores (4.8 cm
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diameter x 6 cm), drying the material at 60 °C, and weighing it on an analytical balance.

Algae collection and analysis: In each treatment plot at 3 mo. and 6 mo., separate

cores were taken for chlorophyll a (0.95cm* x 5mm) (a proxy for microalgal biomass)
and for analysis of algal pigments by High-Performance Liquid Chromatography (HPLC)
(0.56cm” x 5mm) to indicate microalgal functional group composition and diversity
(Cariou-LeGall & Blanchard 1995). Once back in the laboratory, chlorophyll a was
extracted with 90% acetone, and the concentration was determined
spectrophotometrically (Plante-Cuny 1973). Pigment separation was conducted
according to Janousek (2005). For HPLC data presented, detector outputs (mV) were
converted to mass (ng, pg) of pigment using pigment-specific calibrations generated

independently with purified pigment material (Janousek 2005).

Macrofauna sampling: At 3 mo. (August) and 6 mo. (November), macrofaunal
cores were taken in each treatment plot using a cylindrical push core (4.8 cm diameter,
18.1 cm?) inserted to a depth of 2 cm. We selected a 4.8-cm diameter core to target
macrofauna typically in the 1-2 mm size range, recognizing that this is likely to exclude
megafauna, such as large clams or crabs. This core size is consistent with published
literature on macrobenthos from this and nearby marshes (Levin et al. 1998, Talley and
Levin 1999, Levin and Talley 2002, Levin and Currin 2005). Most (78 — 89%) of the
macrofauna in southern California S. foliosa marshes is found in the top 2 cm of sediment
(Levin et al. 1998). Cores were preserved (unsieved) in 8% buffered formalin with Rose
Bengal. For macrofaunal quantification, the core sediments were washed through a 0.3
mm mesh. The animals retained were sorted under a dissecting microscope at 12x

magnification, identified to the lowest taxonomic level possible, counted, and stored in
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70% ethanol. Most insects collected were larvae; identifications of these were at the
family level only. For other organisms, identifications were to species level, although
putative names were used in some cases. The biomass of each species was measured on
an analytical balance as wet mass (nearest 0.01 mg) after rehydrating the organisms in
water and then blotting on a Kimwipe for = 30 s. Wet weight was assessed to avoid
variability associated with previous ethanol storage. The error incurred for repeated
measurements of wet mass, assessed for representatives of four phyla, was less than + 4
% (C. Whitcraft, unpublished). Storage in ethanol for 1-2 years will have reduced actual
biomass, but differences among treatments are considered valid.

Stable isotope analysis: Stable isotopic analyses were used to assess (a) whether

signatures of the primary producers change with plant cover, (b) which consumer species
rely on microalgae as a food source (i.e., species whose signatures track changes in
microalgae caused by treatments), and (c) whether microalgae grazers are influenced by
changing plant cover more than other feeding groups (detritivores, predators, or plant
grazers). Samples of sediment organic matter, microalgae, macroalgae and macrofauna
were collected in March 2005 in the S. virginica habitat within each treatment using
collection methods described above and were analyzed for '°C and 8'°N signatures.
8'°N signatures were analyzed statistically for differences among treatments as discussed
below but revealed no significant patterns so results are not included in this paper.
Microalgae were collected using density centrifugation with ludox (colloidal
silica) (Currin et al. 1995), providing a pure algal sample (devoid of sediment).
Macrofaunal invertebrates were sieved on a 0.3 mm mesh, sorted live, and identified to

species. All animals were kept alive in seawater and allowed to evacuate guts for up to 24
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hours. Animal material was washed in Milli-Q® water and frozen in combusted vials
(500 °C for 4 hours) or tin boats until analysis. Larger organisms were removed from the
shell or carapace, dried at 65°C and then ground with a mortar and pestle. All samples
were treated with Pt Cl, to eliminate inorganic C. Isotopic composition of animal and
algal samples was analyzed using a PDZ Europa 20-20 mass spectrometer connected to
an elemental analyzer (PDZ Europa ANCA-GS, Northwich, UK). Stable isotope
abundance is expressed in parts per thousand in a ratio of heavy to light isotope content
(NN or C:'20). Working standards, sucrose and ammonium sulfate, were §1C =
23.83%o vs. Vienna Pee Dee Belemnite Standard or & '°N = +1.33%o vs. air N,. Typical
sample precision is better than 0.1%o.

Statistical Analysis: All univariate tests were conducted with JMP 5.1 statistical

software (SAS Institute, NC, USA). Data were tested for normality, and square root or
log;o transformed as needed prior to analysis. If no transformation yielded normal data,
nonparametric Wilcoxon tests were utilized. Comparisons of abiotic, sediment, and algal
properties, macrofauna percent composition, and macrofauna species-level density and
biomass data among treatments were conducted with one-way ANOV As or
nonparametric Wilcoxon tests followed by a posteriori Student’s t-tests. Whole core
measurements of species richness and diversity (Simpson’s D [D=1/Y Pi]) were
calculated from count data, and comparisons among treatments were conducted using
one-way ANOVAs or nonparametric Wilcoxon tests, again followed by a posteriori
Student’s t-tests. Relationships among abiotic and biotic factors were analyzed for
significance using Spearman’s Rho. Species were used as replicates for analyses of

treatment effects on stable isotope (3'°C) signatures in one-way ANOVAs and Wilcoxon
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nonparametric tests with a posteriori Student’s t-tests. We present as significant the
increase in microalgae 8'°C signatures in plant removal treatments (P=0.082) because
power analysis shows that with 4 additional samples, P would have been 0.05. In figures
and text, one standard error about the mean is presented for all data unless otherwise
noted.

Multivariate analyses were conducted on macrofaunal count and biomass data
(both 4™ root transformed) using Primer 5 (Plymouth Marine Laboratory, Clarke 1993,
Clark and Warwick 1994). Analyses are based on Bray-Curtis similarity indices (Clarke
1993). Pairwise comparisons of overall community similarity were made using Analysis
of Similarity, ANOSIM.

Results

Abiotic sediment properties: Light reduction was significantly greater in the
shaded and control treatments relative to the unshaded treatments (S. foliosa, unshaded
36.8 + 8.0%, shaded 82.9 + 3.0%, control 94.1 + 2.1%; *=12.12, P=0.002) (S. virginica,
unshaded 14.7 +4.5 %; shaded 85.0 +3.9 %, control 85.7 + 5.0 %; X2=13.12, P=0.014).
Prior to experimentation, no differences existed among S. foliosa treatments with respect
to salinity (ANOVA, F,,=0.21, P=0.811), temperature (Wilcoxon, X2=2.61, P=0.272),
nor among S. virginica treatments with respect to salinity (ANOVA, F,,,=0.38,
P=0.687), temperature (ANOVA, F;,5=0.03, P=0.968), or redox potential (Wilcoxon,
v*=1.36, P=0.508). Redox potential in S. foliosa plots was not measured before
establishment of experiment. Following removal of plants, the unshaded treatment plots
in S. foliosa and S. virginica habitats demonstrated consistently higher temperatures and

porewater salinities compared to the shaded or control treatment plots over the duration
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of the experiment (Figure 2.1). The unshaded treatment plots had lower water content
relative to the shaded and control treatment plots in both S. foliosa and S. virginica
habitats (3 months, S. foliosa, F»2,=3.86, P=0.038; 6 months, S. virginica, x2=9.78,
P=0.008).

Prior to treatment establishment, the standing stock of belowground plant detritus
did not differ between S. foliosa (13,800 + 1,400 g/mz) and S. virginica (11,015 + 3,000
g/mz) habitats (Wilcoxon, x2=0.89, P =0.345). Neither the removal of shade nor the
removal of aboveground plant structure was associated with any soil organic matter or
particle size changes during the experiment (Table 2.1a,b). Redox potential
measurements were extremely variable among S. virginica blocks and treatments and did
not demonstrate treatment effects. The redox data (unshaded: mean = -7.5, range= -165
to 116; shaded: mean=-34.4, range= -222 to 111; control: mean= -40.5, range= -262 to
126) indicate that the soils in unshaded and shaded treatments did not become more
reduced than control sediments.

Algal community: Prior to treatment establishment, there were no treatment

differences in sediment chl a concentrations (all values in pg/g sediment) for both S.
foliosa (unshaded = 167.0 + 35.5, shaded = 272.4 + 50.2, control = 266.6 + 91.7) and S.
virginica habitats (unshaded = 53.0 + 11.6, shaded = 54.3 + 12.5, control = 53.72+ 12.5)
(Wilcoxons: S. foliosa, y*=1.40, P=0.498, S. virginica, y’=0.05, P=0.978). After 3 and 6
months, the S. foliosa treatment plots had greater chlorophyll a concentrations than S.
virginica plots (ANOVA, 3 mos., Fj 46 =79.57, P<0.0001) (ANOVA, 6 mos., Fj 45 =
32.93, P<0.0001). The removal of plant cover did not alter chlorophyll a concentrations

in any habitat or season (Table 2.1a,b). All pigments that are indicative of a single
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functional group were tested for significant difference among treatments, but only
significant pigment data is presented. The HPLC pigment data at 3- and 6-months
suggest a shift from a cyanobacteria-dominated to a more diatom-dominated community
in the unshaded treatments. Microalgal communities in the unshaded treatment plots
exhibited increased fucoxanthin pigment concentrations at 3 months in the S. foliosa
habitat and decreased zeaxanthin pigment concentrations at 3 months in the S. virginica
habitat (Figure 2.2), indicating diatom and euglenoid abundance increases and
cyanobacteria abundance decreases relative to shaded and control treatment plots.

Macrofaunal community response: Macrofauna in the upper 0-2 cm exhibited

similar responses across habitats and seasons so all results are summarized together
below with details of season and habitat type given in Tables 2.1a,b & 2a,b, and
Appendix A. Relative to the shaded and control treatment plots, unshaded treatment
plots exhibited a reduction in species richness (Wilcoxon, S. foliosa, unshaded < shaded
and control, P=0.0006 after 3 months), decreased density of organisms (Wilcoxon,
unshaded < shaded and control, P<0.05 at 3 mos., both habitats), reduced biomass
(Wilcoxon, S. foliosa, unshaded < shaded and control, P=0.05 after 3 mos.), and altered
macrofaunal community composition based on count and biomass data (ANOSIM,
unshaded # shaded and control, P<0.05 in all seasons and vegetation zones except S.
virginica after 6 months). Density, biomass, and richness changes in unshaded treatment
plots involved a significant loss of amphipods (Corophium spp., species of Gammaridae),
loss of tubificid oligochaetes, and an increase in insect larvae (Figure 2.3, Tables 2.2a,b,
Appendix 2.1).

We observed relationships between temperature, salinity, water content and
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macrofaunal density and diversity when seasonal data were pooled within vegetation
zone. Increases in temperature and salinity for both vegetation zones and decreases in
water content for S. virginica were correlated with decreased macrofaunal density (Figure
2.4 ab,c,d,f). Although these are significant regressions, the t* values for several of the
relationships are very low with slopes close to zero (Figure 2.4 b,f)h,i) . Increased
temperature in S. virginica habitat and increased salinity for both vegetation zones were
correlated with decreased macrofauna species richness (Figure 2.4 g,h,i,j). A positive
correlation was found between chl a and macrofauna density in the S. virginica habitat
after 3 mo. (’=0.167, P=0.047).

Stable isotope analysis: Among the three primary, non-vascular plant food

sources available to macrofauna (sediment organic matter (SOM), benthic microalgae,
and the macroalgae, Ulva spp.), only benthic microalgae demonstrated significant change
in 5"°C with experimental treatment (Table 2.3). There was a 2-3 %o increase in 8'°C of
microalgae in the unshaded and shaded treatment plots after 11 months (F,2,=2.83,
P=0.082) (Figure 2.5a). Averaged signatures of all macrofauna within shaded and
unshaded treatment plots mimicked the shift in microalgae signatures, with significantly
enriched 8">C values compared to the control treatment plot (F,34=7.79, P=0.0008)
(Figure 2.5b). Among invertebrate groups, 8"°C signatures of oligochaetes and insects in
the shaded and unshaded treatment plots also mimicked this 8'°C enrichment
(oligochaetes: F, 1,=4.02, P=0.049; insects: ¥*=7.79, P=0.012), indicating a probable
reliance on microalgae as a primary food source. Crustaceans and polychaetes exhibited
no shift in 8*C signatures among treatments (crustaceans: F,3=0.15, P=0.869;

polychaetes: F»,=1.48, P=0.403) (Figure 2.5¢c). Most invertebrate species exhibiting
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shifts in 8'"°C signatures were those with significant changes in overall density and
biomass in the unshaded treatment plots, suggesting that microalgae influenced
abundance responses. In the unshaded treatment plots, organisms that increased in
abundance (insects) were more enriched in 8'°C (resembling the microalgal signatures)
compared to organisms that decreased in abundance (crustaceans) or showed no shift
(polychaetes, molluscs) (Figure 2.5d). Oligochaetes were the exception with declines in
density but clear 3'°C enrichment. Finally, comparison of the taxa by feeding group
revealed differentiation of 8'°C signatures in the unshaded treatment plots; microalgal
grazers had more enriched signatures relative to the detritus and plant grazers (F; 3=8.24,
P=0.008) (Figure 2.5¢).

Discussion

Our manipulative experiments provide direct evidence that plant-animal
interactions mediated by soil and algal properties are important structuring forces in
southern California salt marshes. We show that plant cover influences the micro-habitat
of the sediment by controlling the amount of light reaching the sediment surface, and that
these changes in key abiotic environmental factors appear to induce changes in the
sediment biotic community. Such changes can occur as quickly as 3 months after plant
cover loss.

In the absence of shading, removal of plant cover induced higher soil temperature,
increased porewater salinities, and lower water content, most likely due to the increased
sun exposure and subsequent evaporation. These changes are analogous to conditions
seen in unvegetated patches or plant-removal experiments in New England salt marshes

(Bertness 1991b) and to naturally occurring conditions observed in bare patches in
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Mission Bay (Janousek 2005). However, none of the studies mentioned above
considered the effect of these alterations on the associated macrofaunal communities. In
this study, these significant physical alterations were correlated with changes in
macrofaunal density, biomass, and species richness.

Algal mats beneath the marsh plants experienced community composition shifts
(increased diatom abundance or decreased cyanobacteria abundance) in the absence of
shade. While these changes are complex, other experiments in riverine and forested areas
have demonstrated similar shifts away from diatom-dominated communities under low
light intensity, with green algal communities dominating under higher light intensities
(Lamberti et al. 1989, Franken et al. 2005). In addition to the dramatic shifts in the
physical environment, the changes in the microalgae, which are a crucial food source for
marsh consumers (Kwak and Zedler 1997, Moseman et al. 2004), represent a second
important potential mechanism by which plant cover affects macrofaunal community
dynamics.

The plant-induced changes in environmental conditions and in microalgal
communities were correlated with changes in the macrofauna community composition,
richness, and diversity (Figure 2.4). In both seasons, the macrofauna in unshaded
treatments resembled communities seen in newly restored S. virginica (de Szalay et al.
1996) and S. foliosa (Levin and Talley 2002) salt marshes in southern California; as plant
cover increases, oligochaetes, crustaceans, and polychaetes increase, and insects decrease
in representation (Talley and Levin 1999, Levin and Talley 2002, Moseman et al. 2004).
Similar compositional shifts in the macrofaunal community were observed in our

experiments conducted in both grass- and succulent-dominated marsh habitats,
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reinforcing the generic role of plant cover in ameliorating harsh physical conditions in a
manner essential to the development and maintenance of a natural sediment ecosystem
(Bertness and Hacker 1994).

In our experiment, redox, belowground plant structure, and detrital biomass did
not differ among treatments. The fact that redox values did not become more reduced in
the plant removal treatments indicated little degradation of remaining belowground plant
material during the experiment. However, higher photosynthetic oxygen inputs in the
unshaded treatments may have masked some degradation. In restored, invaded or
degraded systems where plant community shifts involve a dramatic canopy loss or
conversion to vegetated area, belowground root biomass and detritus will also change.
Such alterations have the potential to drive large trophic shifts through alterations to the
detritivore food supply (Levin et al. 2006) and space limitation (Brusati and Grozholz
2006).

Our results provide a mechanistic understanding of the plant-induced shifts in
abiotic and biotic factors and also inform us about controlling factors in this particular
marsh environment. Changes in physical properties due to changing light regimes appear
to mediate changes in the sediment biotic community. Several other plant effects that
may be important in structuring the benthic ecosystem were not studied, such as the
effects of plants on detrital food supply, on predators or on flow regime (Leonard and
Luther 1995, Nomann and Pennings 1998, Neira et al. 2006). However, the Mission Bay
marsh system has low hydrodynamic energy, potentially reducing the importance of plant
structure effects on flow and elevating the importance of light and evaporation as

structuring agents.
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Stable isotopic techniques have recently been used to assess trophic succession in
created and invaded salt marshes (Currin et al. 2003, Moseman et al. 2004, Levin et al.
2006). The enriched 8'°C isotope values seen in the unshaded and shaded treatment plots
relative to the control plots have several possible explanations. Typically, heavier 8"°C
values in microalgae are indicative of faster photosynthetic rates (increased light)
accompanied by carbon limitation, increased cyanobacterial content, less utilization of
remineralized plant matter, higher salinity, or less nitrogen fixation (Beardall et al. 1998,
Raven et al. 2002). In this experiment, unshaded treatment plots had increased salinity
and algal community shifts. However, because the '°C enrichment was observed in the
shaded and unshaded treatment plots (Figure 2.5), it is more likely that the enrichment is
due to the influence of above-ground plant structure rather than light.

The isotope data provide two potential explanations for plant-induced shifts in
macrofaunal abundances. In the absence of aboveground plant structure and shade
(unshaded treatments), algal mat samples shifted to more diatom-dominated
communities, and fresh detrital food sources were reduced by removal of aboveground
biomass. Detrital grazers such as amphipods and oligochaetes decreased overall. Insect
larvae, typically microalgal grazers, increased in abundance and exhibited an isotopic
shift similar to that of the microalgae (Figure 2.5). These results support a major role for
microalgae in structuring animal response to changing plant cover. These plant-canopy-
induced changes in microalgae and macrofauna can have effects that extend to higher
trophic levels. For example, structural differences in macrofaunal communities between
natural and created systems have been shown to translate to higher trophic levels by

altering foraging patterns of fish (Moy and Levin 1991).
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Much research has been focused on the role of interspecific interactions,
facilitation, and subsequent zonation among vascular plant species within the salt marsh
environment (Bertness 1991a, 1991b, 1992, Pennings et al. 2005). Equally important to
consider is plant facilitation and zonation of the sediment system for sessile or limited-
mobility invertebrates. Many of the early studies mentioned above that revealed plant
effects on edaphic factors such as substrate redox potential and salinity were conducted
within New England salt marshes. Studies in Brazilian marshes have identified changes
in macrobenthos associated with plant biomass, detrital input, grain size, predation
pressure, sediment organic matter, and freshwater input (Lana and Guiss 1991, Pagliosa
and Lana 2005). In southern California where there are significantly higher salinities and
less predictable redox than in these other systems due to a Mediterranean climate, our
studies emphasized the importance of the light reduction function of plants. Halophytes
generally occur at higher tidal elevations in the southern California marshes compared to
Atlantic marshes. Although the exact mechanisms behind observed macrobenthos
changes may differ, comparison with studies in the high marshes/salt pans of Georgia and
Argentina reveals complementary mechanisms behind changes in plant-animal
interactions. Studies by Nomann and Pennings (1998) and Bortolus et al. (2002)
demonstrated the ability of plants to buffer harsh physical conditions (high temperature,
soil hardness, organism heat stress and dehydration) via shading and provision of
predation refugia. We predict that these salt marsh plant effects on the benthic ecosystem
should be especially strong at lower latitudes, higher-temperatures, and in arid regions,
such as southern California.

Our experiments demonstrate that the light reduction function provided by the
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vascular plant canopy is crucial to maintaining the natural biotic community of southern
California salt marsh sediments. Although the connection has been made between light
intensity and associated consumers (Nomann and Pennings 1998, Franken et al. 2005),
this research isolates the strong relationship between plant-mediated light regime and
sediment-dwelling organisms in coastal wetlands. These results highlight the probability
that any anthropogenic change influencing plant density, cover, height, or growing season
will alter salt marsh algal and animal assemblages via light regulation.
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CHAPTER III

INVASION OF TAMARISK (TAMARIX SPP.) IN A SOUTHERN CALIFORNIA
SALT MARSH

Abstract

Exotic plants have been demonstrated to be one of the greatest threats to wetlands,
as they are capable of altering ecosystem-wide physical and biological properties. One of
the most problematic invaders in the western United States has been salt cedar, Tamarix
spp., and the impacts of this species in riparian and desert ecosystems have been well-
documented. Here we document large populations of tamarisk in the intertidal salt
marshes of Tijuana River National Estuarine Research Reserve, a habitat not often
considered vulnerable to invasion by tamarisk. Initial research demonstrates that there
are multiple species and hybrids of Tamarix invading the estuary and that the potential
impact of tamarisk within this salt marsh is significant. This highlights the need for
managers and scientists to be aware of the problems associated with tamarisk invasion of
coastal marine habitats and to take early and aggressive action to combat any incipient
invasion.

Introduction

Exotic organisms that physically or chemically modify ecosystems are among the

most detrimental of invaders because they can strongly influence community structure and

function (e.g., Vitousek et al. 1996, Mooney and Hobbs 2000, Talley and Levin 2001,
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Crooks 2002). Early detection of incipient invasions and quickly coordinated responses
are essential to effective management and/or eradication of invasive species before they
become widely established (Federal Interagency Committee for the Management of
Noxious and Exotic Weeds 2003). Thus, this letter documents an extensive invasion and
modification of coastal salt marsh habitats by multiple species of trees and shrubs in the
genus Tamarix.

Examples of ecosystem-altering plants can be found in wetlands across the United
States (e.g., Zedler and Kercher 2004 and references therein, Neira et al. 2005). Despite
these numerous wetland invaders in North America, until now most of the coastal salt
marshes of southern California have been relatively free from the invasion of habitat-
altering plants. The invasion of tamarisk or salt cedar (7amarix spp.) into the Tijuana
River National Estuarine Research Reserve (TR NERR) contrasts this trend, as the high
intertidal, native pickleweed, Sarcocornia pacifica (=Salicornia virginica), marsh now
supports dense stands of these salt-tolerant trees. This invasion converts the salt marsh
from a succulent-dominated canopy of less than 1m to a landscape dominated by stands
of woody trees that can grow to over 3 meters tall (Figure 3.1).

The genus, Tamarix, includes approximately 54 species several of which are known
to hybridize. Nominated by The Nature Conservancy as one of America’s twelve worst
invaders (Stein and Flack 1996), tamarisks can be aggressive, woody invasive plants, and
some species have become established over 1.5 million acres of floodplains, riparian
areas, and freshwater wetlands in the western United States (Stenquist 2000). Tamarisks
are native to Eurasia and Africa and are believed to have been first introduced into North

America in the early 1800s by nurserymen (Di Tomaso 1998). Their westward spread
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was facilitated by use as windbreaks, shade cover, erosion control or ornamental plants
(Neill 1985). At least seven species of the genus have become established in the US
(Baum 1978), and in riparian areas of the western United States, tamarisks, as a group,
are the third most frequently occurring woody plant (Friedman et al. 2005).
Study site

The Tijuana River National Estuarine Research Reserve (TR NERR) is situated
near Imperial Beach, in San Diego County, CA, on the US-Mexican border. The estuary
is located at the mouth of the Tijuana River watershed, with over two-thirds of the 4420
km? watershed lying within Mexico (Zedler et al. 1992). Within the TR NERR, tamarisk
is present throughout much of the reserve, including high pickleweed salt marshes,
riparian habitats, and upland transition zones. Although tamarisk is known for its ability
to tolerate relatively saline soils, it has not been typically viewed as an invader in areas of
full marine salinity, such as coastal salt marshes, vegetated areas that are regularly
inundated by at least the highest spring tides of each lunar month (Grossinger et al. 1998,
California Exotic Pest Plant Council 1999).

Methods

Samples were collected from morphologically or geographically distinct plants
and stored in vials with desiccant until analysis, and the fourth PepC intron region of the
genomic DNA was analyzed according to methods outlined in Gaskin and Schaal (2002,
2003). In addition, full cross sections of the trunk from each plant were obtained. Once
back in the laboratory, these cross sections were sanded and polished with 400 grit
sandpaper so that growth rings could be readily distinguished. The precise age of each

plant (and thus the year of its invasion) was determined by cross-dating growth rings in
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the sections using standard dendrochronological techniques (Stokes & Smiley 1996).
Results

Knowing the particular species of tamarisk that invaded Tijuana River NERR was
important to understanding overall invasion dynamics as well as to potentially
understanding tamarisk’s ability to invade coastal salt marsh habitat. Initially, the
tamarisk was identified morphologically as Tamarix ramosissima. However, genetic
analysis revealed that there were, in fact, many species and hybrids within the Tamarix
genus present in our study area. Out of 35 Tamarix spp. samples analyzed from the river
valley, haplotypes from four different species were identified (Table 3.1).

Preliminary tree ring data indicates that 36% of all tamarisk examined (44 of 122
individuals) were established during the period of 1979-1984. Combining age data with
historical data documenting extensive flooding in 1978, 1980 and 1983, we hypothesize
that the tamarisk invasion within Tijuana River NERR most likely began in the early
1980’s, perhaps benefited by flood conditions that decreased salinities and increased
sediment deposition thus creating ideal germination spots along the river channel. Yet
the true extent of the invasion and its potential for dramatic impact was fully appreciated
only within the last five years. Preliminary data on the TR NERR habitat indicate
dramatic structural changes to the salt marsh environment as a result of the presence of
tamarisk. Tamarisk is acting as a physical support, facilitating S. virginica to reach
heights far above its natural height. In addition, tamarisk alters physical conditions (such
as temperature, humidity, and light regimes) under its canopy. Preliminary data about the
sediment environment in tamarisk-invaded areas indicate that the invasion also influences

the invertebrate and microalgal community compositions and biomass (Whitcraft et al.
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unpublished), with additional ramifying effects throughout the food web (Talley et al.
unpublished).
Discussion

Some hybridization and the presence of cryptic species in Tijuana River NERR
would not have been surprising. However, the high number of different genotypes present
within such a small sample set strongly suggests that a hybrid swarm of Tamarix spp.
invaded TR NERR. Levels of introgression are unknowable from the single-locus DNA
marker used initially, thus we are now genotyping samples using multi-locus AFLP
(Amplified Fragment Length Polymorphism) markers and comparing these to the rest of
the invasion. The genetic data are particularly worrisome, as hybrid plant lineages
frequently demonstrate greater ecological amplitude than their parental species, invading
ecological communities or habitat zones that have not been colonized by either parental
species (Stace 1975, Daehler and Strong 1997, Neuffer & Hurka 1999). Hybridization is
particularly common in populations that exist at the edges of their geographical or
ecological range (Rieseberg 1997), as is presumably the case for tamarisk in the TR
NERR.

The effects of tamarisk invasions have been well-documented for stream riparian
areas. These include alterations of the chemical and physical conditions in its immediate
environment as well as larger-scale effects on the entire invaded ecosystem (Ellis 1995,
Di Tomaso 1998, Zavaleta 2000). Despite numerous, uninvestigated anecdotal reports,
the invasion in Tijuana River NERR is the first studied example of a coastal salt marsh
being invaded by tamarisk, and thus very little is known about the potential effects of

tamarisk in this novel and particularly threatened habitat. Based on responses of riparian
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communities, we predict that this invasion will dramatically affect the physical
environment, which could translate into community-level effects for marsh biota (Stevens
2000, Crooks 2002). To combat this invasion in southern California, state- and federally-
funded tamarisk eradication efforts have recently begun, providing a template for
research and adaptive management (California Exotic Pest Plant Council 1999).

The invasion of tamarisk into the Tijuana River National Estuarine Research
Reserve provides a clear indication that already dwindling coastal salt marshes are
vulnerable to invasion by these plants. More broadly, the study of this invasion will
assist us not only to quantify the possible effects of tamarisk invasions in salt marsh
habitats but also help us to more broadly understand the structuring roles of invasive
plants in wetlands. Studying the genetics aspect of this invasion contributes to theories on
rapid evolutionary processes and invasion and paves the way for studies addressing
physical, ecological, and genetic pathways of invasion. Friedman et al. (2005) noted that
the debate regarding appropriate control of tamarisk has been frustrated by limited
knowledge of the distribution and underlying environmental influences. These are
particularly important data to collect regarding the tamarisk invasion into salt marsh
habitats; knowing the consequences of the invasion into this novel system will provide
managers and decision makers with invaluable information about the relative invasion
potential of different species (and hybrids) of tamarisk, thus facilitating more informed
management decisions.
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b)

Figure 3.1: Photographs showing contrast between a) the natural marsh landscape with
short, succulent-dominated canopy (mainly Salicornia virginica) and b) an area invaded
by invasive Tamarix spp., a woody plant that can grow to over 3m tall. Pictures were
taken in Tijuana River National Estuarine Research Reserve, Imperial Beach, CA.
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Table 3.1. Genetic species identification of 37 tamarisk samples collected from Tijuana
River NERRS and associated river valley.

# of plants
of 39

Species sampled
T. aphylla 1
T. chinensis 1
T. chinensis x T. gallica 4
T. chinensis x T. ramosissima 6
T. gallica 2
T. ramosissima 16
T. ramosissima x T. gallica 5
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CHAPTER 1V

“TERRESTRIALIZATION” OF COASTAL WETLAND ECOSYSTEMS BY A
RIPARIAN INVADER

Abstract

Invasions by introduced plants are currently one of the most serious threats to
biodiversity, and the impacts of various invaders have been documented throughout
multiple ecosystems. In addition to altering ecosystem structure, invasive plant species
may also be capable of changing the pace and/or direction of autogenic succession,
especially within ecotones such as wetlands. One of the most problematic invaders in the
western United States has been salt cedar, Tamarix spp.; the impacts of this species in
riparian and desert ecosystems have been well documented. Large stands of different
invasive genotypes of tamarisk now reside in the salt marshes in Tijuana River National
Estuarine Research Reserve (TRNERR). Salt marshes are a habitat not previously
considered vulnerable to invasion by tamarisk. We hypothesized that the tamarisk
invasion into TRNERR would “terrestrialize” the salt marsh habitat; in other words, the
invasion would speed natural succession towards a more terrestrial environment. Using
mensurative comparisons in a paired block design, we described the impact of tamarisk
invasion on abiotic and biotic properties of the sediment ecosystem in three zones along

an elevation and salinity gradient. In the low marsh, tamarisk-invaded areas exhibited
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similar physical properties and microalgal community to the native succulent-dominated
area with a slightly altered macrofaunal community composition. In the middle marsh
zone, the physical environment was significantly drier, less humid with lower
temperatures and increased light reduction. These physical changes were associated with
increased microalgal biomass and increased abundance of mites and insects and a
decreased density of marine oligochaetes and epifunal gastropods compared to native
treatment plots. Within the high marsh, changes in physical and biological parameters
between tamarisk-invaded and natural plots were again minimal. This research
emphasizes the habitat-altering consequences of tamarisk’s first foray into the marine
realm while also revealing that each marsh habitat subject to tamarisk invasion will have
to be managed with different eradication strategies.
Introduction

Terrestrialization is a common term used by riverine wetland ecologists to
describe the change from a wetland to a terrestrial ecosystem due to the accumulation of
sediment and organic matter or to the lowering of the water level (Henry and Amoros
1995). Often colonization by particular plant species can initiate or accelerate the
terrestrialization process by increasing the production and accumulation of biomass and
by increasing evapotranspiration rates (Tallis 1973, Amoros et al. 1987).

Salt marsh ecologists describe succession within salt marshes as the accumulation
of alluvial sediments from the seaward edge that increases elevation and accelerates a
transition towards a more terrestrial habitat (Adams 1990, 2002, van de Koppel et al.
2005). However, the term terrestrialization has not been applied previously to the salt

marsh system. We argue that as a recognized mechanism of autogenic succession in
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other systems, the concept of terrestrialization applies to the situation in salt marshes
where colonization or invasion by plants modifies the environment and influences the
performance of other species to create a more terrestrial environment (Davy 2000).

Exotic plants are one of the greatest threats to wetlands, as they are capable of
altering ecosystem-wide physical and biological properties (Lonsdale 1999). Because
coastal salt marshes develop at the boundary of the terrestrial, freshwater and marine
habitats, they are susceptible to anthropogenic influences, such as invasion, from multiple
ecosystems (van de Koppel et al. 2005, Levin et al. 2001). In these often low-diversity
systems, shifts in diversity due to invasion are likely to alter ecosystem functioning or
natural processes, such as succession (Levin et al. 2001).

Previous research has shown that invasion into salt marshes by typically terrestrial
or freshwater, non-native plants can alter successional development of salt marshes. A
hybrid form of Sarcocornia was able to colonize lower in elevation than either parent
species and played an important role in structuring its intermediate elevation habitat
(Figueroa et al. 2003). Until recently, Phragmites has been considered a freshwater and
terrestrial invader, prevented from invading salt marshes by high soil salinities
(Chambers et al. 1999, Silliman and Bertness 2004). Through clonal integration,
Phragmites has proven quite able to invade areas of full salinity along east coast of the
United States (Amesberry et al. 2000, Michinton and Bertness 2003). Its successful
invasion in New England marshes was facilitated genetically as well as by increased
nutrient loading and freshwater input (Silliman and Bertness 2004). The expansion of
Phragmites represents a dramatic habitat alteration with severe reductions in insect,

avian, and other animal assemblages (Chambers et al. 1999, Talley and Levin 2001). The
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effect of Phragmites on trophic transfer is related to the amount of hydrologic
disturbance, but in wetlands of restricted flow, alteration of trophic transfer pathways by
Phragmites is linked to decreases in birds and insects (Chambers et al. 1999).

Tamarisk is an aggressive, woody invasive plant from Eurasia that is traditionally
associated with salty, dry, or riparian habitats (Baum 1978, Brotherson 1987) and has
become established on over 1.5 million acres in the western United States (Stenquist
2000). Tamarix spp. (tamarisk or saltcedar) has formed dense stands along brackish
streams, within the high intertidal salt marsh, and within the upland transition zone of
Tijuana River National Estuarine Research Reserve (TR NERR) (Whitcraft et al. in
press). We hypothesize that the flood conditions in the 1980’s that decreased salinities
and increased sediment deposition created ideal germination spots along the river
channel, thus facilitating an invasion of tamarisk within TR NERR (Whitcraft et al. in
press). Extensive work has been conducted documenting the effects of tamarisk in
freshwater riparian ecosystems where tamarisk has caused significant changes in flooding
and erosion patterns, fire frequency, water utilization, and decreased wildlife value (Di
Tomaso 1998, Lovich et al. 1994). The effect has been referred to as “overall drying out
of the habitat” (Di Tomaso 1996). Although the effects of tamarisk invasion are well-
documented in freshwater systems, the tamarisk invasion into marine systems is very
recent, and the impacts of tamarisk invasion on salt marshes are unknown. Given
tamarisk’s known effects in riparian areas, we hypothesized that tamarisk invasion would
affect physical resources and biotic communities, thus accelerating terrestrialization

within the salt marsh.
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The overall objectives of this study were to test how tamarisk introduction to
coastal wetlands can influence the abiotic and sediment properties and the benthic floral
and faunal communities and to test if changes would drive autogenic succession within a
salt marsh system. We hypothesized that, relative to the corresponding natural marsh
environment, the invaded system would resemble a more terrestrial system with drier,
less organic rich sediment, increased temperature, decreased humidity, increased light
reaching sediment surface, decreased algal growth, and altered infauna community
structure (i.e., increased percent composition of insects, decreased percent oligochaetes
and polychaetes). In addition, we evaluated the influence of tamarisk within three natural
plant zones along a marine to terrestrial continuum (low, middle, and high marshes).

Study site

Studies were conducted in the Tijuana River National Estuarine Research Reserve
(TR NERR), which is situated near Imperial Beach, in San Diego County, CA, on the
US-Mexican border. The estuary is located at the mouth of the Tijuana River watershed,
with two-thirds of the 4420 km” watershed lying within Mexico (Zedler et al. 1992).
Within TR NERR, tamarisk is present throughout 60% of the reserve, including middle
and upper pickleweed salt marshes, riparian habitats, and upland transition zones (UTZ)
(Figure 4.1).

Materials and Methods

Paired sampling plots were established using a randomized complete block design
with replicate plots in the salt marsh that included (a) a treatment plot encompassing the
drip line (the imaginary line drawn to the soil from the edge of the tree canopy) of a

single tamarisk tree (referred to as tamarisk plots) and (b) a control plot in native
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vegetation of same area as its paired tamarisk-invaded plot (referred to as native plots)
(Figure 4.2). The average plot area was 9.28 + 1.87 m* with a range from 0.46 m” to
28.14 m*. Sampling occurred in these paired vegetation areas in Fall 2003, Spring 2004,
Fall 2004 and Spring 2005. To determine differences between tamarisk-invaded areas
and native vegetation zones within each habitat, we surveyed abiotic and sediment
properties as well as plant, microalgae, and macroinvertebrate community properties
within each plot.

Blocks were initially classified into three habitat zones (low marsh, middle marsh,
and high marsh) based on elevation and plant species present. An a posteriori analysis
was conducted to reassess the assignment of blocks into the three major habitat types, and
final determination was made using hierarchical divisive clustering analysis of sediment
and physical parameters, percent plant cover, and algal data within the native plots within
a given season (Kaufman and Rousseeuw 1990). Sediment variables used in the cluster
analysis were porewater temperature, water content, and organic matter content. Algal
data used in the cluster analysis included benthic chlorophyll a, while percent cover
variables included total percent cover of each species, greatest plant height, number of
species present, and percent bare area. This yielded 4 paired plots in the low marsh, 10
paired plots in the middle marsh, and 9 paired plots in the high marsh.

Abiotic and sediment properties: Within each treatment plot, temperature (+

0.1°C) and redox potential at 2 cm depth were measured using a portable Ingold Mettler-
Toledo digital thermometer and a portable Mettler Toledo mV-meter, respectively. These
4 mV redox readings were corrected to the standard hydrogen electrode value by adding

207 mV (Giere et al. 1988). Temperature at the sediment surface was also measured
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hourly using StowAway Tidbit Temp Loggers (Onset Computer Corporation, Pocasset,
MA). Water content of the top 0.5 cm was determined by weight loss after drying a
known volume of sediment (Buchanan 1984). Humidity at the sediment surface was
measured using Fisher Scientific digital relative humidity meter. Light intensity readings
were also made hourly using StowAway LI light intensity loggers (Onset Computer
Corporation, Pocasset, MA). One sediment core (4.8 cm diameter x 6 cm) was collected
within each treatment plot for analysis of particle size and organic matter content (Neira
et al. 2005).

Plant and algae parameters: Bare area and plant cover estimates for each species

were made in three permanent randomly placed 0.25m” quadrats within the tamarisk and
native plots, and the height of the tallest marsh (i.e. not tamarisk) species was measured.
Also in each larger vegetation area, one core was taken haphazardly for chlorophyll a
(0.95cm” x 5mm) to provide a proxy for microalgal biomass. Once back in the
laboratory, chlorophyll a was extracted with 90% acetone, and the concentration was
determined spectrophotometrically (Plante-Cuny 1973).

Macrofauna sampling: Macrofaunal cores were taken in each vegetation area

using a cylindrical push core (4.8 cm diameter, 18.1 cm?) inserted to a depth of 2 cm.
Most of the macrofauna (78 — 89%) in southern California marshes is found in the top 2
cm of sediment (Levin et al. 1998). Cores were preserved (unsieved) in 8% buffered
formalin with Rose Bengal. For macrofaunal quantification, the core sediments were
washed through a 0.3 mm mesh. The animals retained were sorted under a dissecting
microscope at 12x magnification, identified to the lowest possible taxonomic level,

counted, and stored in 70% ethanol. In addition, all epifauna within a subsection (0.25
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m?) of each treatment plot were identified visually and enumerated.

Statistical Analysis: All univariate tests were conducted with JMP 5.1 statistical

software (SAS Institute, NC, USA). Data were tested for normality and square root or
logjo-transformed as needed prior to analysis. If no transformation yielded normal data,
nonparametric Wilcoxon tests were utilized. Comparisons of abiotic, sediment, and algal
properties, macrofauna percent composition, and macrofauna species-level density,
abundance, richness, diversity and biomass data among vegetation types (tamarisk versus
native) were conducted with paired t-tests within habitat zone followed by a posteriori
Tukey’s HSD tests. In figures, one standard error about the mean is presented for all data
unless otherwise noted.

Multivariate non-metric multi-dimensional scaling (nMDS) analyses were carried
out on macrofaunal count data (4™ root transformed) using Primer 5 (Plymouth Marine
Laboratory, Clarke 1993, Clark and Warwick 1994). Analyses are based on Bray-Curtis
similarity indices (Clarke 1993). Pairwise comparisons of overall community similarity
were made using Analysis of Similarity (ANOSIM) and SIMPER. Second-stage nMDS
and an additional ANOSIM test were used to determine if invertebrate communities from
tamarisk-invaded plots had a significantly different trajectory of change through time
than those from native vegetation plots (Clarke et al. 2006).

Results

Habitat designations: We have used the terms, low, middle and high marsh, as

relative names to clearly refer to different elevations within the estuary. The low marsh
habitat was inundated daily and dominated by Sarcocornia pacifica (Salicornia virginica

in the literature). The middle marsh habitat was defined to be an area inundated during



99

positive tides of each cycle (usually classified as high marsh habitat), and its plant
community was dominated by S. pacifica and Frankenia grandifolia. The high marsh
could also be termed an upland transition zone (UTZ) and was irregularly inundated at
only the highest tides of each cycle. Its plant community was also dominated by S.
pacifica with significantly higher percentages of Jaumea cornosa than the other habitat
zones (> = 6.78, P = 0.009).

Abiotic and sediment properties: Because patterns seen in the incident light and

sediment surface temperature were consistent throughout all seasons and years (Table
4.1), the data from multiple seasons are discussed together. In the middle marsh,
sediment beneath tamarisk demonstrated consistently lower incident light and lower
porewater temperatures during the day than under native vegetation over the duration of
the experiment as measured both by continuous data loggers (light: t =3.13, P = 0.002, n
=360) (temperature: t =7.62, P <0.0001, n = 109) (Figure 4.3 a,b) and by a hand-held
thermometer (Table 4.1). At night, continuous loggers recorded higher temperature
under the tamarisk plots than under the natural vegetation, suggesting tamarisk might
provide an insulating influence (t = 13.47, P < 0.0001, n = 70). Within the high marsh in
three seasons, tamarisk-invaded plots had a decreased temperature within the sediments
(at a depth of 1cm) than native plots (P < 0.05) (Table 4.1). Redox potential
measurements were extremely variable among blocks, seasons, and plant species and did
not demonstrate any effects related to tamarisk or habitat. Of all the other physical
parameters, only water content showed a pattern among seasons and years with decreased
porewater content in the natural vegetation areas in the middle marsh in Fall 2004

(Wilcoxon, Fall 2003, Spring 2005 > Fall 2003, ng =6.47, P =0.039) (Table 4.1).
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Within the low marsh environment, sediment characteristics (grain size, organic
matter content, temperature, water content) did not differ between tamarisk-invaded and
native areas (Table 4.1). In the middle marsh habitat, significant differences in physical
characteristics existed among the habitats. In most seasons where data were available,
tamarisk-invaded areas had drier conditions with lower percent soil organic matter
content (Fall 2003: native, 17.73 + 4.34 %, tamarisk, 10.50 + 1.36 %, ts = 2.50, P =
0.047), decreased humidity (Spring 2005: native, 33.50 + 9.32 %, tamarisk, 29.6 + 8.37
%, tg = 2.23, P = 0.056), and decreased porewater content (Fall 2003: native, 0.37 + 0.03
g / core, tamarisk, 0.28 + 0.02 g/core, ts=1.53, P =0.051). There was an increased
percent organic matter in the tamarisk-invaded plots relative to the natives in Spring 2005

only (native, 10.94 +2.48 %, tamarisk, 14.32 + 2.22 %, ts = 3.01, P = 0.024) (Table 4.1).

Plant community: The plant community response to tamarisk invasion did not
differ between years and seasons so all results are summarized together (Table 4.1). In
general, species richness and species composition were similar in native versus tamarisk-
invaded plots within each habitat. However, the amount of bare space under tamarisk
trees in all habitats was significantly greater than under native vegetation in all seasons (P
< 0.05, Table 4.1). Because the native plants in tamarisk plots were often supported by
the structure of the tamarisk branches and trunk, the height of the tallest marsh species,
usually S. pacifica or F. grandifolia, was also significantly greater under tamarisk trees
than in native plots in all habitats (P < 0.05, Table 4.1, Figure 4.4).

Microalgal community: Chlorophyll a values varied by block within season but

did not differ among seasons (P > 0.05) (Table 4.1). Tamarisk treatment plots had higher

chlorophyll a concentrations than native vegetation treatment plots in Fall 2003 and
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Spring 2005 in the middle marsh habitat (all units pg/g sediment; Fall: native = 14.87 +
4.93, tamarisk = 28.07 + 6.92, t;p = 2.58, P = 0.027; Spring: native =16.43 + 6.34,
tamarisk = 30.98 + 8.06, t; =9.91, P =0.010) (Table 4.1). In the low and high marshes,
chlorophyll a concentration did not differ between tamarisk-invaded areas and native
areas (Table 4.1).

Macrofauna: The response of the macrofauna in the upper 0-2 cm differed among
habitats and seasons so all results are discussed separately with details of season and
habitat type given in Table 4.2. No significant changes existed among community
parameters within the low marsh (Table 4.2). In Fall 2003, tamarisk-invaded areas in the
middle marsh exhibited a reduction in species richness (t4 = 3.16, P=0.030) and decreased
density of organisms (t; = 2.39, P = 0.050) relative to the native vegetation areas (Table
4.1). Other seasons exhibited a similar pattern, but with lowered densities and increased
variability, many of these differences disappeared. Density and richness changes in
tamarisk-invaded areas involved a significant percentage loss of marine enchytraid
oligochaetes and an increase in terrestrial insect larvae (Figure 4.5, Tables 4.2 a,b). This
percent increase of insect larvae in tamarisk-invaded areas was primarily driven by a
density increase in Coleoptera larvae sp. 1 in two seasons (Fall 2003: native = 4.40 + 2.87
larvae, tam = 13.60 + 4.23 larvae, ts = 3.84, P = 0.019; Spring 2004: native = 0.00 larvae,
tamarisk = 18.80 + 5.86 larvae, t¢ = 3.21, P = 0.033). In Spring 2004 and 2005 in the
high marsh habitat, tamarisk-invaded areas exhibited a significant percentage increase in
crustaceas, primarily Littorophiloscia richardsonae (an oniscid isopod) (Spring 2004:
native = 0.00 isopods, tamarisk = 53.07 + 21.17 isopods, t4 =2.51, P = 0.051; Spring

2005: native = 16.67 + 16.67 isopods, tamarisk = 56.67 + 21.86 isopods, ts = 6.93, P =
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0.020) (Table 4.2).

We observed positive relationships between water content and the density and
species richness of total macrofauna in Fall 2003 as well as between algal biomass
(chlorophyll a) and density of insects in Fall 2003 and Spring 2005 when vegetation areas
and habitats were pooled. Increases in algal biomass were positively correlated with
increased insect density (Figure 4.6).

Univariate statistics often don’t show change on the assemblage level, thus we
have also utilized multivariate statistics that better capture community change (Clarke et
al. 2006). In Fall 2004, the low marsh tamarisk-communities showed no difference than
the native vegetation plots (ANOSIM, P =0.200). In Fall 2003 in the high marsh, the
macrofaunal communities of the tamarisk-invaded plots were significantly different than
the native vegetation plots (high marsh: ANOSIM, P = 0.008) while the middle marsh
communities were similar (middle marsh: ANOSIM, P = 0.865). These differences in the
high marsh environment were driven by a decreased density of Littorophiloscia
richardsonae (an oniscid isopod) and an increased density of Coleoptera larvae sp. 1 in
tamarisk-invaded plots (SIMPER). In the middle marsh in Spring 2004, the macrofaunal
community in the tamarisk-invaded plots was significantly different from the community
in native vegetation plots (middle marsh: ANOSIM, P = 0.002). Although the high
marsh community appeared to follow the trend, it was not significant (high marsh:
ANOSIM, P =0.100). The altered composition in the middle marsh was caused by
similar species as seen in the high marsh in the previous seasons, an increased density of
mites and Coleoptera larvae in the tamarisk-invaded plots (SIMPER) as in more

terrestrial environments. These composition changes were also reflected in species
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density changes as the mite sp. 2 increased in the tamarisk plots (tamarisk: 0, native: 6.00
+3.34, y*1=3.94,P=0.011). In Fall 2004 and Spring 2005, there were no macrofaunal
community differences between tamarisk-invaded plots and native vegetation plots
(ANOSIM, P > 0.05). Using nMDS, the communities do cluster by vegetation type
(tamarisk versus native) in the high marsh in Fall 2003, within middle and high habitats
in Spring 2004, in the low and middle marshes in Fall 2004, and in the high marsh in
Spring 2005 (Figure 4.6).

Overall, the most common epifaunal species was the native, grazing snail,
Melampus olivaceus. In tamarisk-invaded plots in the low and middle marsh, the density
of M. olivaceus was significantly reduced as compared to native plots (low marsh: 11.88
+3.84 M. olivaceus / 0.25 m* vs. 1.88 +0.69 M. olivaceus / 0.25 m’, t = 2.40, P = 0.048;
middle marsh: 2.55 + 1.46 M. olivaceus / 0.25 m?vs. 9.44 +3.54 M. olivaceus / 0.25 mz, t
= 2.85, P =0.008) while in the high marsh, M. olivaceus occurred infrequently in both
tamarisk-invaded and native plots (0 vs. 1.76 + 1.34 M. olivaceus / 0.25 mz, t=131,P=
0.199).

Discussion

Tamarisk effects on sediment and fauna: Tamarisk influence on abiotic

conditions, algal and infaunal communities varied among marsh zones. Little tamarisk
influence was observed in the low and highest marsh zones. In the middle marsh habitat,
tamarisk-invaded areas had drier, more terrestrial conditions with decreased soil organic
matter content, decreased humidity, decreased porewater content, and increased

chlorophyll a values relative to the native vegetation areas (Figure 4.8).
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Changes in algal biomass in middle marsh tamarisk-invaded areas probably
influenced the community structure of macroinvertebrate consumers (Figure 4.6) because
algae are a high quality food resource with lower CHN ratios than tamarisk litter
(Whitcraft et al. in prep, Kennedy and Hobbie 2004, Anderson and Sedell 1979). The
increased algal biomass in tamarisk-invaded areas in the middle marsh, as indicated by
chlorophyll a concentration, could be caused by several factors: (1) increased shade
causing an increased chlorophyll a to carbon ratio (Wetzel 2001), (2) increased bare area,
removing the competition for open space that occurs under the native vegetation, or (3)
decreased grazing due to a decline in density of microalgal grazers like the gastropod,
Melampus olivaceus.

In the middle marsh environment, the epifaunal community composition was
significantly altered by the loss of marsh species, such as the pulmonate gastropod, M.
olivaceus. These animals potentially contribute to the decomposition and detrital cycling
of the system (Proffitt et al. 1993, Whitcraft et al. in press) and could then be essential to
the maintenance of coastal food webs. Thus, their loss could have cascading impacts on
the food web in tamarisk-invaded areas. Regardless of the causes of the change, an
increased algal mat could translate into community-level effects in the form of an
increased food supply or increase in microalgal grazers, such as seen in Fall 2003 with
increased density of insect larvae in tamarisk-invaded areas. In the low and high
marshes, the fact that no differences existed among tamarisk and native plots again
seemed indicative of inundation regimes. In the high marsh, algal biomass was low due
to dry conditions throughout the zone while in the low marsh, algal biomass was

consistently high.
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The infaunal communities are more variable among seasons and plots than the
physical parameters (Figure 4.5). In Fall 2003 and Spring 2004 in the middle marsh, we
observed significant community composition differences between tamarisk-invaded and
native vegetation plots that involved the loss of burrowing marine oligochaetes and an
increase in surface-dwelling species, such as Coleoptera and mites. The loss of
oligochaetes could be related to grater susceptibility of these species to changes in abiotic
parameters, food supply, flow, or variation in predation pressure (Neira et al. 2005).
Manipulative experiments should be conducted to tease out the mechanisms behind this
faunal loss. Variability among the sampling seasons and years (Tables 4.1 & 4.2) could
be explained by a wetter year preceding Fall 2004 and Spring 2005 than preceding Fall
2003 and Spring 2004 (Figure 4.9). The increased amount of rain would have created
wetter conditions under tamarisk plots, potentially reducing invaded versus native
community differences.

Influence of salinity and tidal height: Differences in physical parameters,

microalgal biomasses, and invertebrate communities among the three habitats indicate
that the effects of tamarisk invasion are very elevation-specific. In the low marsh,
inundated at least once daily, few differences existed between invaded and native plots,
leading us to hypothesize that the effects of tamarisk are ameliorated by constant salt
water inundation. In the middle marsh environment, there are significant changes in
physical parameters that follow our apriori hypotheses that tamarisk-invaded areas would
have more terrestrial environmental and sediment conditions (decreased humidity, lower
sediment porewater content, and decreased sediment organic matter content) (Table 4.1).

Finally, in the high marsh, few differences, with the exception of reduced temperature
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(most likely due to decreased light) existed between tamarisk-invaded and native plots
(Figures 4.3 & 4.8). Impacts of invasive plants have been previously demonstrated to
vary along salinity gradients, especially in the case of Phragmites where the strongest
effects, particularly on invertebrate community composition, were evident in the least
saline settings (Talley and Levin 2001). In addition to tidal elevation, contributing
factors may include variation among microhabitats, time since invasion, and genetic
differences among the trees.

Comparisons with freshwater tamarisk invasions: Research on tamarisk in

freshwater systems has documented more xeric conditions (Lovich et al. 1994, Lovich
and de Gouvenain 1998), lowered water tables due to increased water use (Van
Hylckama, 1970, Everitt, 1980, Sala, Smith & Devitt 1996), increased soil salinities
(Duncan 1994), decreased abundance and health of native vegetation (Everitt, 1980,
Busch & Smith, 1995), increased algal production (Kennedy and Hobbie 2004), altered
plant community composition (Carmen and Brotherson 1982, Griffen et al. 1989),
changes in algal production (Kennie and Hobbie 2004), and lowered density, diversity
and species richness of animal communities (Kerpez and Smith 1987) in tamarisk areas
relative to native vegetation areas. The tamarisk invasion into a marine system appears
to have similar consequences: drier physical conditions similar to those of a decreased
water table area, increased microalgal biomass, and altered infaunal communities.
However, since the soils are already saline in a marine environment, increased salt
deposition is not a significant effect in the salt marsh system. We hypothesize that the
role of salinity is most important as it relates to tidal inundation, affecting the magnitude

of tamarisk effects. In addition, the native plant community associated with tamarisk in a



107

marine environment did not shift in composition (except for addition of tamarisk)
although tamarisk-invaded plots do have increased percent bare space relative to native
plant communities (Table 4.1). Instead of lowered plant fitness as seen in freshwater
systems, there may be some fitness advantage to native plants through pre-emptive access
to light that is conferred to the plants that are able to use structure of tamarisk to grow
taller than those in the native vegetation areas (Figure 4.4 a,b) (Falster and Westoby
2003). Research on tamarisk invasion into the salt marsh environment demonstrates
changes in the same ecosystem parameters as those affected in freshwater systems.
However, perhaps due to a more striking difference between native vegetation (short,
succulent) and tamarisk (woody shrub or tree) in the salt marsh as opposed to riparian
systems where both are shrubs or trees (Figure 4.10), the abiotic parameter alterations as
well as the impacts on the microinvertebrate community appear to be of a greater
magnitude than in freshwater systems.

Patterns among salt marsh invaders: There are few consistent, general trends

evident in comparisons of physical conditions and macrobenthos inhabiting invasive
versus native marsh vegetation, even when considered only one genus (e.g. tamarisk, this
study or Spartina, Neira et al. 2005). Just as the benthic response to tamarisk invasion in
TR NERR varied by marsh zone, the benthic response reported among invaders varies
with location and with the dominant plant in the native habitat (Talley and Levin 2001,
Neira et al. 2005).

However, comparisons with invasions of Spartina and Phragmites into salt marsh
habitats have important parallels to the tamarisk invasion into TR NERR habitats. In a

Salicornia marsh in San Francisco, CA, Neira et al. (2005) observed higher species



108

richness and increased densities of tubificid species, insect larvae, and gastropods within
the Spartina-invaded than native Salicornia habitat. In a tidal flat in the same area, the
same study found lower total density and species richness in the Spartina hybrid invaded
areas than in the tidal flat, due to a loss of surface feeders (Neira et al. 2005, Levin et al.
2006). These habitat-specific effects emphasized that both elevation and the dominant
native species surrounding the invasion influence the magnitude and type of effects that
an invader will have on the benthic communities. The salt marsh areas invaded by
Phragmites had decreased organic matter content, decreased macrofaunal density, and
altered macroinvertebrate community composition with a loss of burrowing oligochaetes
and midges and an increase in poduridae (Talley and Levin 2001). This loss of marine
oligochaetes and increase in more terrestrial fauna like insects parallels the patterns of
loss (decrease in enchytriadae oligochaetes and increase in Coleoptera) seen in the TR
NERR tamarisk invasion. Terrestrialization of the benthic environment by an invasive
plant appears to be a pattern that repeats when plants typically found in higher tidal
elevations (either upland or marine) become capable of colonizing areas lower in
elevation (such as mudflats or salt marshes).

Consequences of tamarisk invasion and management implications: The

conclusion that tamarisk-invaded areas have altered vegetation structure, sediment
properties, and invertebrate communities is not a surprise. In fact, wetlands and the high
marsh have been predicted to be particularly vulnerable to invasions (Posey et al. 1993,
Adam 2002), and invasive wetland plants have repeatedly been demonstrated to
dramatically modify their surroundings (e.g. Posey 1988, Zedler and Kercher 2004 and

references therein, Chambers et al. 1999, Grosholz et al. in press). Our research
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contributes to understanding of tamarisk invasions by describing a community process of
“terrestrialization” that changes depending on tidal elevation (Figure 4.7). In the case of
tamarisk, the most vulnerable zone to tamarisk invasion appears to be the middle marsh,
where conditions are less extreme. In the high and the low marshes, the tamarisk-invaded
areas had more similar physical environment in the native vegetation zone than in the
middle marsh. In the low marsh, frequent tidal inundation appeared to decrease
tamarisk’s ability to cause drier conditions; in the high marsh, where abiotic conditions
are naturally quite dry, tamarisk did not cause drier conditions and might have even
provided less harsh environment for infauna by reducing light intensity (Figure 4.3).

Experiments have demonstrated that the light reduction function provided by the
vascular plant canopy is crucial to maintaining the natural biotic community of southern
California salt marsh sediments in a zone where physical stressors dominate, such as the
middle marsh (Whitcraft and Levin, in press). Our research demonstrates that one of
tamarisk’s greatest abiotic alterations is to reduce the amount of light reaching the
sediment surface, thus we predict that harsher physical properties in the middle marsh are
driving changes in the biotic communities. Further manipulative experiments should be
conducted to determine the exact mechanisms of tamarisk’s ability to alter its
surroundings, particularly in the middle marsh

Within Tijuana Estuary, tamarisk is now identified as an important salt marsh
invader with significant impacts on the ecosystem that are very context-specific with
abiotic setting determining the strength of the interactions. This has important
implications for managers, particularly for focusing effort and selection of eradication

techniques. Based on our results, we predict that if tamarisk trees are removed from low
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and high marshes, physical conditions (water content, temperature, humidity) would
easily return to conditions characteristic of the surrounding natural marsh because the
alterations were not significant. However, eradication in the low and high marsh might
still be advisable due to other potential tamarisk effects not discussed in this study, such
as higher order trophic effects and roosting sites for predatory birds. Post-eradiation areas
in the middle marsh might need additional treatment (i.e. mechanical, chemical) to
promote the return of native fauna and flora. While experimental manipulation is
necessary to understand the exact mechanisms and processes that control marsh
development, our research highlights the roles of tamarisk in altering physical conditions
for associated algae and macroinvertebrates and thus hastening succession to a terrestrial
regime in the middle marsh environment.
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Tamarisk Distribution and Stand Density in the Tijuana Estuary |
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Figure 4.1: Overview of tamarisk invasion into Tijuana River National Estuarine
Research Reserve (TRNERR). Estimated densities of tamarisk are outlined with hatching
over aerial photograph of the reserve. Figure created by J. Boland and K. Cody.
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a) tamarisk treatment plot ~ b) control plot: native vegetation

Figure 4.2: Treatments for mensurative comparison of parameters associated with
tamarisk invasion: (a) tamarisk plot and (b) control plot in native vegetation.
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Figure 4.3: Graphs showing average, minimum and maximum native vegetation plot
values versus tamarisk-invaded plot values for both temperature (°C) and light (log
lumen/ft?) over a 5-6 day period in September 2004 in the middle and high marsh
habitats. The entire x-axis represents a 24-hour period, divided into 4 hour intervals, and
the values graphed on the y-axis are an average of values for the 6 days described.
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Figure 4.4: Graphs showing height of tallest marsh species in native vegetation plots
versus tamarisk-invaded plots in (a) middle marsh and (b) high marsh habitats.
Significant differences (P < 0.05) within season between plots are indicated with an

asterisk.
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Figure 4.5: Macrofaunal community composition (based on counts) in tamarisk-invaded
and native plots in three habitats and four seasons (Fall 2003, Spring 2004, Fall 2004,
Spring 2005)
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marsh habitats in four seasons (a) Fall 2003, (b) Spring 2004, (¢) Fall 2004, and (d)
Spring 2005. Circles are drawn on graphs to illustrate groupings of points and do not
indicate significance.
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Figure 4.7 (continued)
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Figure 4.8: Physical and algal parameters (a-e: sediment organic matter, humidity,
porewater temperature, sediment water content) by habitat, season, and plant type. An
arrow indicates the direction of significant changes (P < 0.05) between native vegetation
and tamarisk-invaded areas, Shifts in the indicated direction are indicative of

“terrestrialization” as defined by our apriori hypotheses (see text).
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Figure 4.10: Photograph showing contrast between a) the natural marsh landscape with
short, succulent-dominated canopy (mainly Salicornia virginica) and the architecture and
height of invasive Tamarix spp., a woody plant that can grow to over 3m tall. Picture
was taken in Tijuana River National Estuarine Research Reserve, Imperial Beach, CA.
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CHAPTER V

UTILIZATION OF INVASIVE TAMARISK BY SALT MARSH CONSUMERS

Abstract

Upland plant invasion of coastal wetlands is increasing over time. Recent
examples include Phragmites australis (Chambers et al. 2003), Arundo donax (Herrera
and Dudley 2003), Limonium sinuatum (Simpson and Rebman 2001) and now Tamarix
spp. (this study). Invasive plant alteration of salt marsh litter dynamics represents one of
the fundamental impacts of a novel species on an ecosystem. Beyond basic ecology,
understanding invader effects on litter cycling can aid management efforts by prioritizing
responses based on invader trophic effects on detritus-based food webs, which are
particularly important in salt marshes. We utilized litter dynamics study techniques and
stable isotope enrichment experiments to evaluate the trophic consequences of invasion
by tamarisk (7amarix spp.) on detrital food chains in the Tijuana River National
Estuarine Research Reserve (TR NERR) salt marsh. Our results demonstrate that
tamarisk is readily available to benthic macroinvertebrates as a labile detrital food source;
numerous macroinvertebrate taxonomic and trophic groups both in and on the sediment
utilized '°N derived from labeled tamarisk detritus. The information generated through
the use of natural abundance and isotopic enrichment stable isotope analyses enables

scientists and managers to trace invader plant detritus input to the food web, an especially
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valuable tool when small organisms are involved. This research contributes to the
general knowledge of how exotics alter ecosystem function and can help direct local
control and large-scale eradication effects.
Introduction

Invasion by vascular plants in coastal wetlands is increasing globally, with
dramatic ecosystem-level consequences that include local extinctions of native species,
genetic modifications, species displacements and habitat degradation (Chapin et al. 1997,
Grosholz 2002). Although slow to be described at first, trophic modifications by invasive
plants in wetlands are often severe and are important mechanisms underlying overall
ecosystem change (Vitousek et al. 1996, Wardle et al. 1994, Neira et al. 2005, Levin et al.
2006). Examples of ecosystem-altering plants can be found in wetlands across the United
States and include Phragmites australis (common reed) on the East Coast (Talley and
Levin 2001, Rooth et al. 2003, Chambers et al. 2003), Spartina spp. (4 species of
cordgrass) in San Francisco Bay (Ayres et al. 2003, Neira et al. 2005, Levin et al. 2006),
and Zostera japonica (Japanese eelgrass) in the Pacific Northwest (Posey 1988).
Knowing the extent and relative scale of trophic effects of an invasion will allow
managers to predict which invaders will be the “worst” for trophic alteration through
detrital pathways, can help to evaluate the efficacy of eradication, and can guide recovery
strategies for restoring trophic webs.

The trophic consequences of plant invasions often occur at the base of the food
web through alteration influencing the abundance, composition, and diversity of sediment
microbial and animal communities (Wardle et al. 2004, Levin and Talley 2000). This

type of plant influence on belowground communities occurs through structural, physical,
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and chemical mechanisms (Neira et al. 2006). Invasive plant species can modify the
quantity and quality of detritus in invaded habitats. Detritus is a dominant feature of
most vegetated ecosystems, and a significant portion of primary production is cycled
through detrital pathways (Moore et al. 2004). Yet, the importance of the detrital
pathways as the driving force behind observed plant influence is often omitted from the
study of plant invasion consequences (Kennedy and Hobbie 2004, Levin et al. 2006).

One example of an ecosystem-altering vascular plant is 7amarix, salt cedar or
tamarisk, a group containing 54 species and several hybrids. Considered by many as one
of the worst invaders in the United States (Morisette et al. 2006, Stein and Flack 1996),
tamarisk trees are aggressive, woody plants that have become established over 1.5 million
acres of floodplains, riparian areas, and freshwater wetlands in the western United States
(Zavaleta 2000). Native to Eurasia, tamarisk was introduced into North America for
horticulture, erosion control and shade in the early 1800s (Di Tomaso 1998). Since its
introduction, at least seven species have become established in the US (Baum 1978). In
riparian areas of the western United States, tamarisk is now the third most frequently
occurring woody plant (Friedman et al. 2005).

Despite widespread invasion of some coastal wetlands by plants, until now most
of the salt marshes of southern California have been relatively free from the invasion by
habitat-altering plants. An important exception is invasion of tamarisk or salt cedar
(Tamarix spp.) into the Tijuana River National Estuarine Research Reserve (TR NERR)
where the intertidal, pickleweed (Sarcocornia pacifica) marsh now supports thick stands
of these salt-tolerant trees (Whitcraft et al., in press). The trees invading the low salt

marsh habitat are primarily a hybrid, 7. ramossisma x T. gallica. This tamarisk invasion
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converts the salt marsh from a succulent-dominated canopy of less than 1m height to a
landscape dominated by stands of woody trees that can grow to over 3 meters tall (C.
Whitcraft, pers. obs.). Information about the effects of tamarisk invasion comes
primarily from low salinity systems. Because animal communities differ and effects in
salt marsh systems could vary, salt marsh-specific studies are crucial to effective
management in these newly invaded systems.

In riparian areas, tamarisk litter decomposes more quickly compared to native
cottonwood litter, an alteration in the litter dynamics associated with a decrease in
macroinvertebrate richness and abundance and an alteration in macroinvertebrate
community structure (Bailey et al. 2001). Eradication of the salt cedar in freshwater
systems resulted in a restoration of native macroinvertebrates due to an increased
availability of algae (Kennedy et al. 2005). In the salt marsh ecosystem, we predict that
the community change from pickleweed (Sarcocornia pacifica) to tamarisk (Tamarix
spp.) will also dramatically affect the litter dynamics of the system, potentially translating
into community-level food web effects through the alteration of detrital pathways
(Stevens 2000, Crooks 2002). Any effects noted from the utilization of tamarisk as fresh
detrital material in the food web should be incorporated into potential eradication plans.

The overall objective of this research is to examine the effect of tamarisk invasion
on the salt marsh detrital pathway. We utilized litter dynamics techniques and stable
isotope natural abundance and enrichment experiments to address several general
questions: a) Is tamarisk available to benthic macroinvertebrates as a detrital food source?
b) Which species and trophic groups consume tamarisk detritus? ¢) Does tamarisk

detritus utilization by infauna differ by depth in the sediment and/or between adjacent
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invaded and native habitats? and d) How does tamarisk alter litter cycling and how might
this influence direct management and eradication plans for tamarisk?
Materials and Methods

Invasion site description: Tijuana River National Estuarine Research Reserve (TR

NERR) is situated near Imperial Beach, in San Diego County, CA, on the US-Mexican
border. The estuary is located at the mouth of the Tijuana River watershed, with two-
thirds of the 4420 km” watershed lying within Mexico (Zedler et al. 1992). This work
was conducted in the intertidal salt marsh, immediately adjacent to the main channel of
the Tijuana River in the USA.

Litter dynamics: To quantify vertically falling tamarisk input to the system, we

secured one basket (0.25m?) under the drip line of 10 tamarisk trees (1 basket per tree)
(Kennedy and Hobbie 2004). To quantify lateral transport of detritus away from the tree,
tubs (26 cm diameter) were buried even with the sediment surface at a distance of 2 m
from the drip line of the same 10 tamarisk trees (1 tub per tree). To quantify standing
stock of ground detritus, all accumulated ground litter was collected from quadrats
(0.25m?) under the same tamarisk tree and in adjacent native habitat (1 quadrat per tree)
once during July 2005. All litter collections were done 4 days later, sorted to species
(where possible), dried overnight at 65 °C and weighed.

To measure tamarisk and native plant decomposition rates, four grams of air-dried
tamarisk or native Sarcocornia pacifica were placed in litterbags (20 x 20 cm, mesh
Imm) constructed of window screening. Five tamarisk litterbags and one S. pacifica
litterbag were placed under 6 of the 10 tamarisk trees mentioned above on July 25, 2005

and fastened to the sediment surface with stakes. After 25, 75, and 107 days for tamarisk
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and 25 days for S. pacifica, litterbags were collected and placed in individual plastic bags
for transport to the laboratory. In the laboratory, the litter from each bag was rinsed with
Milli Q® water, air-dried, weighed, dried overnight at (65 °C) and reweighed. Decay
constants were calculated for each litterbag at each of the plots assuming a simple
negative exponential decay (k) (Olson 1963): In My/M, = -kt where M is the litter mass at
time t and My is the initial litter mass.

Palatability: C:N ratios of plants have been utilized as an important measure of
leaf palatability (Pennings et al. 1998). To measure C and N content, leaf material from
tamarisk and several native plants (S. pacifica, Juncus acutus, Jaumea cornosa) was
collected from the study site, rinsed with Milli-Q® water, placed in pre-combusted vials
or tin boats, dried at 65 °C, and kept in a dessicator until analysis. In addition, particulate
organic matter (POM), sediment organic matter (SOM), and benthic microalgae were
collected and processed as discussed below. A subset of these samples was analyzed for
C:N content by D. Harris (Stable Isotope Facility, UC Davis) using an elemental analyzer
(PDZ Europa ANCA-GS, Northwich, UK).

Natural abundance stable isotope analysis: To determine natural abundance

isotopic signatures (8'°C, 8'°N) of food web components, samples of particulate organic
matter (POM), sediment organic matter (SOM), microalgae, macroalgae, plants, and
macrofauna were collected in September 2004 in the tamarisk and S. pacifica habitats.
Collection and processing methods were similar to those described in Moseman et al.
(2004) and Levin et al. (2006). POM was obtained by filtering 2 L of local tidal creek
water onto Whatman GFF filters. SOM was sampled by collecting surface sediment

(upper 2 cm), drying and homogenizing sediments. Microalgae were collected using
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density centrifugation with ludox (colloidal silica), providing a pure algal sample (devoid
of sediment) (Blanchard et al. 1988). Macrofaunal invertebrates were sieved on a 0.3
mm mesh, sorted live, and identified to species. All animals were kept alive in seawater
and allowed to evacuate guts for up to 24 hours. Animal material was then washed in
Milli-Q® water, placed in pre-combusted vials or tin boats, dried at 65 °C, and kept in a
desiccator until analysis. Larger organisms were removed from the shell or carapace,
dried at 65°C and then ground with a mortar and pestle. All samples were treated with Pt
ClI, to remove inorganic carbon.

Isotopic composition of animal and algal samples was also analyzed. Stable
isotope abundance is expressed in parts per thousand in a ratio of heavy to light isotope
content (°N:"*N or *C:'2C). Working standards, sucrose and ammonium sulfate, were
8'°C =-23.83%o vs. Vienna Pee Dee Belemnite Standard or & "N = +1.33%o vs. air N,.
Typical sample precision is better than 0.1%o.

Isotope labeling and enrichment experiments: In order to trace an invasive plant

through the food web using stable isotopes, it is necessary for the invader to have an
isotopic signature distinct from the native food sources. If different potential food
sources have overlapping signatures, alternative approaches must be utilized to
distinguish the invader. One effective alternative is isotopic labeling of the invasive plant
with "°N to track the labeled material into consumer tissues. In this study, we apply the
>N enrichment approach due to the overlap of tamarisk isotope natural abundance values
(8"C, 8"°N) with an important native food (benthic microalgae) (See Results).

Four small Tamarix ramosissima x Tamarix gallica hybrid trees (in TR NERR)

were labeled with "°N by enclosing plants in situ in 4 plastic pots with the bottoms cut out
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during June 2004. Sediments surrounding the tamarisk plants were injected daily with
250 ml of 6 mmol/L ammonium sulfate (98 atom % "NH,) per pot for a 3-day period
(method modified from White and Howes 1994 and Levin et al. 2006). Plants were
harvested 12 weeks after injections (September 2004) and deployed one day later as
detritus. In the field, we established 4 plots in native habitat and 4 plots in tamarisk-
invaded habitat immediately adjacent to the native plots.

The '"N-labeled tamarisk leaves, roots, and stems were chopped into pieces
approximately 5 mm in length. Nylon litter bags (2.6 x 1.2 cm, 5 mm mesh) were filled
with 7g of either leaf, root, or stem material and were deployed at a depth of 1-2 cm
below the sediment surface in each quadrat. We buried 3 replicate bags of detritus (1 bag
of leaves, 1 bag of roots, and 1 bag of stems) in each habitat, holding them in place with
wooden dowels. We collected the bags 14 and 90 days later, washed the bags, sieved the
overlying sediment, and sorted the associated macroinvertebrates under a dissecting
microscope. In addition, to test for N-leaching and uptake by bacteria and algae, ’N-
labeled tamarisk leaves were deployed in Nitex® mesh (61 pm) bags (1 per habitat). We
collected the bags 90 days later, washed the bags, sieved the overlying sediment, and
sorted the associated macroinvertebrates under a dissecting microscope.

"*N-labeled tamarisk leaves were also cut into 5 mm pieces and placed in the field
as loose, surface detritus. This loose plant material was spread uniformly on the surface
in 5 circular 90 cm? plots per quadrat, pressed 1 mm into sediment with forceps, and
marked at the center with red wire so that the exact location could be sampled later (as in

Levin et al. 2006). These surface detritus areas were sampled by scooping the surface
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sediment up from within the marked circular plots at 0, and 1, 4, 14, 90, and 270 days
after deployment.

Immediately after deployment of litter bags and detritus on the sediment surface
(time 0), we collected samples of infauna (> 0.3 mm) , macroalgae, microalgae,
particulate organic material (POM), and sediment organic material (SOM) to determine 0
time point (T0) values for 8°C and 5'°N isotope signatures. This provided background
values and checked for labeling artifacts. Microalgae were subsequently collected 1, 4,
14, 90, and 270 days after deployment for stable isotope analysis. Samples from the
isotope enrichment experiments were treated as described above for the natural
abundance stable isotope samples.

Statistical Analysis: All univariate tests were conducted with JMP 5.1 statistical

software (SAS Institute, NC, USA). Data were tested for normality, and square root or
log;o transformed as needed prior to analysis. If no transformation yielded normal data,
nonparametric Wilcoxon tests were utilized. For stable isotope analyses, species mean
isotopic signatures were used as replicates for tracer uptake comparisons of subsurface
vs. surface, of tamarisk vs. natural habitats, among feeding groups, among food
preference groupss, and among species in one-way ANOVAs and Wilcoxon
nonparametric tests with a posteriori Tukey’s HSD tests. In figures and text, one
standard error about the mean is presented for all data unless otherwise noted.

Mixing models were applied to estimate the fraction of tamarisk and other food
sources in the infaunal diets. We applied a single isotope, two-source mixing model for

5'°N in which labeled tamarisk detritus was treated as one food source and unlabeled
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(background) native food sources (i.e. microalgae, POM and SOM) were treated as a
second food source, using the following formula:

% tamarisk-derived N = [(8" Nisfauna - 8" Nbackeround) / (8" Nibeled tam- -

8" Nbackground)] *100
Using this approach, we calculated the percentage of N in infaunal tissues that was
derived from the labeled tamarisk detritus. A trophic level shift of 1%o for 8'°C (Fry and
Sherr 1984) and 2.2%o for 8'°N was applied (McCutchen et al. 2003).
Results

Litter dynamics and palatability: A significant amount of tamarisk detritus fell

from trees (average =1.09 g [day'1 0.25 m™]) yet the standing stock of tamarisk material
on the sediment surface was low (average = 0.2 g [0.25 m™]), and only a small amount
was exported to surrounding marsh (vertical input greater than standing stock and export,
v =12.59, P =0.002). Decomposition experiments revealed a decomposition rate for
tamarisk of 22% dry weight per month (decay constant of 0.012 + 0.005 from a single-
rate decay model). This is more than 2.5 times higher than the decomposition rate for S.
pacifica of 8% dry weight per month (decay constant of 0.002 + 0.001 from a single-rate
decay model). T. ramosissima x T. gallica detritus had a significantly lower C:N ratio
(13.74 + 1.13) than Juncus acutus (36.86 + 3.42) and equivalent C:N ratios to other
native food sources (Jaumea cornosa: 30.45 + 11.70 and Sarcocornia pacifica: 19.43 +
1.29, SOM: 14.33 + 1.13, POC: 6.79 + 0.24, microalgae: 10.03 + 0.69) (ANOVA, F7 5=
11.53, P <0.001) (Figure 5.1).

Natural abundance stable isotope analysis: 8°C and 5'°N analyses of food sources

and consumers in tamarisk-invaded, mid-marsh habitat demonstrated isotopic differences
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as a function of habitat (natural versus tamarisk). The natural marsh microalgae and
SOM exhibited lighter 8"°C and heavier 8'°N than the microalgae from tamarisk habitat
(Figure 5.2a, Appendix 5.1).

In addition, two of the potential food sources (tamarisk and microalgae) had
overlapping signatures within the tamarisk habitat, leading to our use of an isotopic
enrichment experiment (Figure 5.2b). Salicornia pacifica and Juamea cornosa had
overlapping signatures that were distinct from the Juncus sp. signature; all three were
distinguishable from tamarisk and microalgae (Figure 5.2b).

Isotope enrichment experiment: At the start of the enrichment experiment, labeled

tamarisk detritus had a mean 8'°N signature of 394%o, 225%o, and 234%o. (equivalent to
10,214%, 5790%, and 6025% enrichment compared to ambient levels) for leaves, stems
and roots, respectively. Several macroinvertebrate species acquired substantial
quantities of ’N equally from leaves, stems, and roots; there were no significant
differences in the mean isotopic signatures of species feeding on different plant parts
(animals in leaf treatment = 35.77%o + 9.86, animals in stem treatment = 32.8%o0 + 13.08,
animals in root treatment = 58.25%0 + 21.36, Wilcoxon, X22 =2.34,P=0.333). The
maximum & "°N value (34%o) was observed at 14 days and indicated up to 554%
enrichment from background tamarisk values. This elevated '’N was observed in
microalgae within 24 hours, potentially reflecting leaching from the labeled tamarisk
detritus, but the signals were an order of magnitude lower than that of the labeled
detritus. In addition, a comparison of 8'°N signatures of invertebrates from leaching bag
treatments with 8'°N signatures of invertebrates from normal litter bag treatments

revealed that uptake of '°N by animals exposed to N leached through 61 pm mesh were
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significantly less than uptake of '°N by animals exposed to N in either surface or
subsurface treatments with much lower 8'°N values (Wilcoxon across all species, y% =
17.18, P<0.0001, by species, P <0.05) (Appendix 5.1).

Member species of several major taxa (Acarina, Insecta, Mollusca, Crustacea,
Oligochaeta, Polychaeta, and Turbellaria) in tamarisk-invaded and natural habitats
incorporated significant amounts of 8'°N label after 4 days, such that at least 0.5% of
their N was estimated from a two-source mixing model to have been derived from labeled
tamarisk detritus (Table 5.1). Averaged across species, utilization percentage did not
differ among animals in tamarisk-invaded and natural marsh habitats (ANOVA, F, gy =
1.43, P =0.235). For most taxa, utilization of tamarisk-derived N peaked at 14 days and
declined after 90 and 270 days (ANOVA, T14 different than rest of time periods, F4 77 =
5.07,P=0.0011). Major taxonomic groups did not differ in percent utilization
(ANOVA, Fs75=0.50, P=10.801). Psychodidae insects and Grandidierella japonica
(Crustacea) incorporated the most '°N label after 14 and 90 days, respectively, such that
>50% of their N was estimated to have been derived from labeled tamarisk detritus
(Table 5.1). The majority of other species had intermediate levels of uptake:
Staphylinidae (both adults and larvae) and Stratiomyidae (Insecta), Gammaridae and
Oniscidae (Crustacea), Polydora nuchalis (Polychaeta), Enchytraidae (Oligochaeta),
Assiminea californica and Melampus olivaceus (Gastropoda) had °N values that
indicated that between 5-20 % of their N was derived from labeled tamarisk detritus.
Coleoptera larvae, Chironomidae larvae, Cincinilidae adults, Dolichopodidae larvae sp. 1,
Ephydra sp. 1, and Hydrophyillid sp.1 (all Insecta) derived <5% of their N from labeled

tamarisk detritus. Finally, Cerithidea californica (Gastropoda), Hydrophillidae sp. 1
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(Insecta), Transorchestra traskiana (Crustacea) exhibited minor uptake of "*N-label (0.1
—1%) (Table 5.1).

Uptake in surface versus subsurface animals: Surface utilization of tamarisk-

derived N was greater than sub-surface utilization in both tamarisk and natural habitats at
day 14 (Wilcoxon across all species, 3°1 = 13.37, P =0.003). There was no effect of
utilization depth (Wilcoxon) except in Assiminea californica which had higher sub-
surface utilization than surface utilization at 14 days (x*; = 6.00, P = 0.014). Utilization
of tamarisk-derived N was similar in animals in both natural and tamarisk-invaded
habitats at all time points so data from both habitats were combined for taxonomic,
habitat, and time period comparisons.

Taxonomic comparisons: A comparison of the tamarisk utilization (change in

8N signatures from background signatures) revealed taxon differences at the surface
only after 270 days. After 270 days in the surface treatment, mites had higher uptake
than crustaceans, insects, and gastropods, and insects and crustacean had higher uptake
than gastropods (Figure 5.3). Unlike surface treatments, after 14 days all taxonomic
groups in the subsurface treatment differed in tamarisk utilization with insects being
significantly greater than oligochaetes and gastropods, which utilized more tamarisk-
derived N than crustaceans (Figure 5.3). Use patterns were similar at 90 days in the
subsurface treatment (oligochaetes and insects showed more utilization than crustaceans)

(Figure 5.3).

Feeding groups: Macroinvertebrates were divided into feeding groups based on
natural abundance isotope data generated for this project and on literature designations to

make comparisons of tamarisk utilization among food preference type (detritivores,
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microalgal feeders, and mixed-diet feeders) (Table 5.2). Uptake of tamarisk-derived PN
differed by food preference type with greater uptake in detritivores than in microalgal and
mixed-diet feeders after 4 days and greater uptake by mixed-diet feeders than detritivores
and microalgal feeders after 270 days (Figure 5.4).

Species-level comparisons at each time period indicated several species exhibited
increased N uptake relative to the rest of the species. The greatest tamarisk-derived
ingestion, as indicated by elevation of 8N signatures above background (A8"N) at 14
days (surface and subsurface) and 90 days (surface only) was by species normally
considered to be mixed diet feeders (Psychodidae sp. 1) or detritivores (Grandidierella
Jjaponica) (Figures 5.5 & 5.6). '"N-labeled tamarisk contributed greater than 50% of the
N in these animals at different time points (Table 5.1). Lesser uptake of '°N label was
observed in many other taxa, including microalgal consumers (Figures 5.5 & 5.6, Table
5.1).

Discussion

Is tamarisk available as a food source? Vertically falling tamarisk detritus
reaches the sediment surface in the marsh, yet the low amount of tamarisk on the
sediment and in the export traps indicates that tamarisk is being consumed by
detritivores, decomposed, or carried out of the system. Assuming a positive relationship
between leaf decay rates and invertebrate feeding preferences (Webster and Benfield
1986, Kennedy and Hobbie 2004), we used difference in decay rates among litter types to
make inferences about the relative quality of litter types as a food source for infaunal
consumers. Tamarisk’s significantly higher decomposition rate and equivalent C:N ratio

to native S. pacifica supports our hypothesis that tamarisk is a more labile and readily
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available food than the dominant native plants in the salt marsh and thus has the potential
alter the food web and influence consumers.

Which species consume tamarisk? Does utilization vary with depth or habitat?
Because there were no significant differences in change in 8'°N among species when
offered '*N-enriched different tamarisk parts, only the data from leaf detritus are
discussed below. We hypothesized labeled '°N from tamarisk could end up in consumer
tissue through (a) direct consumption, (b) leaching of N and uptake by algae or (c)
remineralization by bacteria and subsequent ingestion by bacterivores or grazers. But
leaching treatments collected at 90 days after experiment initiation suggest that this
utilization pathway is minor compared to direct detritus consumption. The isotope
enrichment data reflect consumption of tamarisk-derived N by species from many taxa
and feeding groups, equally in both invaded and non-invaded habitat patches (Table 5.1).

Although most species were able to derive N from tamarisk detritus (Figure 5.7),
Psychodidae and Grandidierella japonica incorporated significantly more than did other
species. Grandidierella japonica is an exotic corophiid amphipod first reported in the
United States in San Francisco Bay, CA in 1966 (Chapman and Dorman 1975) and was
first identified in the Tijuana Estuary in 1994 although it may have been present prior to
this date (Williams and Zedler 2001). Rapidly reproducing, opportunistic species, like G.
Japonica, are capable of taking advantage of expanded resources, such as an input of
tamarisk detritus (Zajac and Whitlatch 1982, Greenstein and Tiefenthaler 1997, West et
al. 2003).

Species with greatest tamarisk ingestion were detritivores, while microalgal

feeders (primarily insects) had lower tamarisk consumption (Figure 5.5). In some cases,
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mixed diet feeders, such as Acarina and Pscychodidae sp. 1, also indicated high levels of
tamarisk ingestion, suggesting a possible shift to tamarisk use in higher trophic levels
(Figure 5.6). Some tamarisk N uptake in microalgal feeders, such as insect larvae and
gastropods, may have been due to increased microalgal colonization on the surface of
tamarisk detritus and subsequent grazing (Figure 5.7).

What are the overall food web effects? We have demonstrated that tamarisk is
affecting the sediment food web in multiple ways through alterations of the quantity or
quality of food and through changes to the growth of a food source (benthic microalgal
and SOM changes due to shading). First, measured input of tamarisk litter provides
ample food for mixed diet feeders and detritivores, such as Psychodidae and
Grandidierella japonica, to consume (Figure 5.6), and we predict that long-term tamarisk
presence could shift the infaunal community towards specialized detritivores or towards
opportunistic species, including exotics like G. japonica. The observed isotopic
differences in SOM and microalgae between tamarisk-invaded and natural habitats
(lighter 8'°C and heavier 8'°N in natural habitats) have several possible explanations
(Figure 5.2a). The algal and SOM signatures could reflect the signatures of organic
matter exuded by vascular plants; S. pacifica, more dominant in the natural environment,
has lighter 8"°C than tamarisk, the more dominant plant in tamarisk-invaded environment.
In addition, the isotopic signature differences could be due to C-limitation and
fractionation associated with increased shading in natural areas (Whitcraft et al. in prep),
or to greater contribution of cyanobacteria in natural areas. Because cyanobacteria tend
to be more dominant in shady, wetter environments, this could be an example of how

structural alterations can change the growth of a food source (Whitcraft and Levin in
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press). Although this suggests that some changes in tamarisk-invaded habitats are
bottom-up processes, other factors, including top-down control, grazer access to food
sources, flow regime modifications, and indirect changes in food supply, may also
structure this benthic ecosystem.

How do these results influence direct management and eradication plans for
tamarisk? This research, demonstrating the incorporation of tamarisk into the food web
through input of labile detritus, has important implications for understanding how trophic
shifts can occur as discussed above, for appreciating crucial differences among invaders,
and for increasing our knowledge of how best to manage invasions. The demonstrated
food web effects of tamarisk raise interesting parallels with other invasive plant species
and may help develop additional hypotheses as to why some wetland plants are more
successful or invasive than others. Phragmites australis (reed canary grass) in the
northeast United States, perhaps the best-studied invader in North American coastal
wetland habitats, has multiple effects on higher trophic-levels. For example, fewer
juvenile fish (Fundulus heteroclitus) occurred on the marsh surface in Phragmites-
invaded habitat than in native Spartina-dominated areas (Able et al 2003, Osgood et al.
2003), perhaps driven by altered invertebrate availability (Raichel et al. 2003). Blue
crabs (Callinectes sapidus) preferentially consumed Spartina over Phragmites, and
Currin et al (2003) suggested that mummichogs incorporate Phragmites detritus in
amounts proportional to the abundance of Phragmites in the marsh.

A second example, a hybrid of Spartina alterniflora x foliosa (cordgrass) in San
Francisco Bay, also has dramatic effects on the trophic structure of salt marsh habitats.

This invasion shifted the dominant primary producers from algae (on open mudflats) to
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taller, dense stands of hybrid Spartina (in invaded patches). The increased plant detrital
production led to decreased carbon and nutrient cycling (Grosholz et al. submitted) as
well as an invertebrate community shift to one dominated by detritivores capable of
consuming the detritus (Levin et al. 2006).

Essential to effective management is development of metrics to assess the success
of invasive eradication or removal. Knowledge of which macrofauna species are
consuming tamarisk detritus allows scientists to use macrofauna groups as indicator
species, potentially serving as a metric of recovery after eradication, and understanding
that detritus becomes a portion (sometimes large) of invertebrate diets emphasizes the
point that early eradication is essential for restoring the trophic structure with minimal
disruption, including the possible trophic support of exotic cosumers. Vigilant
monitoring for incipient invasions and rapid, coordinated responses are essential to
effective management and eradication of invasive species.

Our research also demonstrates that isotope enrichment of wetland plants is a
powerful method to track the fate of introduced plants within food webs and thus
potentially assess the impacts of an invader or the recovery of a system. Natural
abundance stable isotope methods have proved valuable for tracking food sources
through food webs provided that the organic matter sources have distinct signatures (Fry
and Sherr 1984, Petersen et al. 1985, Currin et al.1995, Kwak and Zedler 1997, Levin et
al. 2006). However, in situations where important food source signatures overlap as
occurs in the TRNERR mid-marsh, isotopic enrichment experiments allow researchers to
identify key consumers of the enriched species, and to identify trophic succession (shifts

in feeding groups) as a possible cause of potential community changes (Levin et al. 2006,
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this study). This approach can also be used to evaluate trophic recovery following
management action.
Conclusions

Genera such as tamarisk (Tamarix), reed canary grass (Phragmites), and
cordgrass (Spartina) act as ecosystem engineers (Bruno and Bertness 2001), greatly
altering the structure of an invaded site and potentially shifting hydrological conditions
and animal communities. Integrating detrital pathways into the study of these and other
plant invasions may prove to be crucial in predicting and mitigating against the effect of
wetland plant invaders both in the salt marsh and other invaded ecosystems. In the case
of tamarisk, our enrichment experiments demonstrate that several native consumers can
modify their diets to include N derived from invasive tamarisk. As suggested by
Zavaleta et al. (2001), removal of well-established exotic species can result in undesirable
changes to native ecosystem elements, for example loss of taxa, like Psychodidae that are
now dependent on tamarisk-derived nitrogen.

The spread of tamarisk through the southwestern United States has substantially
altered those freshwater ecosystems, causing significant changes in flooding and erosion
patterns, fire frequency, and both plant and animal diversity (Di Tomaso 1998). Yet,
effects of tamarisk as a detrital food source in these systems have not been thoroughly
evaluated. Results of this salt marsh study, if relevant to freshwater wetlands, imply that
the consequences of tamarisk invasion in these systems could go beyond the observed
declines in wildlife use value and affect the entire food web from the bottom up.
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Figure 5.6. Hypothesized food web based on '°N tamarisk detritus utilization (percent of
tamarisk-derived 15N in individual species).
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Table 5.1: Percent of N in invertebrate diets that was derived from 8'°N labeled-tamarisk
detritus at 1, 4, 14, 90 and 270 days after deployment of surface-deployed labeled
material. Missing values indicate that that species was not collected at that time point.
Percentages are calculated from a single isotope, two-source mixing model for 8'°N in
which labeled tamarisk detritus was treated as one food source and unlabeled
(background) native food sources (i.e. microalgae, POM and SOM) were treated as a

second food source.

| NATURAL MARSH TAMARISK-INVADED MARSH
Species T1 14 114 190 270 Species | | |14 90 1270
Gastropoda Gastropoda
[ Assiminea californica 2.55 218 17.54] 1.39 1.63 [ Assiminea californica 231 23.17 2.39] T.18|
Cerithidea californica 0.42] 0.49] Cerithidea californica 0.85
(Melampus olivaceus 0.76] 1.83 22.82 T.08| (Melampus olivaceus 1.04 0.9 21.03 0.32]
Insecta nsecta
Ceratapogonidae larvae 6.56) 7.08] 1.62 Ceratapogonidae larvae 1.13 1.12] 1.93
(Coleoptera larvae 4.01 2.06 3.45] Coleoptera adult 0.38 |
Chironomidae larvae 2.29 Coleoptera larvae 1.63 222 2.78
Cincinilidae adult 1.99 Dolicopodidae larvae 1.19
Dolicopodidae larvae 3.08] 4.69 Ephydra sp. 1 1.38
Ephydra sp. 1 1.38 Orthoptera
Hydrophilid sp. 1 0.87] Poduridae 12.84
Psychodidae 64.12 0.27] Staphylinidae adult 3.54 6.27 2.17]
Staphylinidae adult 7.84f Staphylinidae larvae 18.81 1.75
Staphylinidae larvae 17.71 Stratiomyidae 8.9 4.94] 2.35 1.57
Crustacea Tapinoma sessile 1.18
Gammaridae | | 20.28] | unk fly adult #1 4.3
Oniscidae | 4.86] | 3.67] 2.49]  [unk. larvae #1 1.14]
Polychaeta Crustacea
[Polydora nuchalis | | 2.98] 9.12] | Gammaridae 11.09) 0.61 3.48
Oligochaeta Grandidierella japonica 50.17
Tubificoides browniae | | | l.35| Oniscidae 3.51 5.8 4.22] 1.77
Enchytraidae | | 7.0§| 17.32] | Transorchestia traskiana 0.05 0.51
Other Other
Acaria sp. 1 | | | | 0.93] 3.29 Turbellarian sp 1 | | | 1.57] |
"Acaria sp. 2 | | .72 | 61| 6.23)|
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Table 5.2: Feeding behavior designations for the macroinvertebrates found in isotope
samples. These designations are based on natural abundance signatures and/or published

literature.
Species Taxonomic Feeding behavior
Grouping
mite sp. 1 Acaria mixed diet'
mite sp. 2 Acaria mixed diet'
mite sp. 3 Acaria mixed diet'
Gammaridae Crustacea detritivore”
Grandidierella japonica Crustacea detritivore”
Oniscidae sp. 1 Crustacea mixed diet’
Transorchestia traskiana Crustacea detritivore”
Assiminea californica Gastropoda microalgal grazer”
Cerithidea californica Gastropoda microalgal grazer”
Melampus olivaceus Gastropoda microalgal grazer”
Ceratapogonidae larvae Insecta mixed diet’
Chironomid larvae Insecta microalgal grazer’
Cincinlidae adult sp. 1 Insecta detritivore’
Coleoptera larvae Insecta detritivore’
Coleoptera sp. 1 Insecta detritivore®
Dolicopodidae larvae Insecta mixed diet’
Ephydra sp. 1 pupae Insecta mixed diet
Hydrophilid sp. 1 Insecta microalgal grazer’
Muscidae larvae Insecta mixed diet’
Poduridae sp. 1 Insecta mixed diet’
Psychodidae larvae Insecta mixed diet’
Staphylinidae adult Insecta mixed diet’
Staphylinidae larvae Insecta microalgal grazer’
Stratiomyidae larvae Insecta detritivore’
Tapinoma sessile Insecta mixed diet®
unk. larvae #1 Insecta microalgal grazer’
unknown adult fly Insecta mixed diet’
Enchytraidae Oligochaeta detritivore’
Tubificoides browniae Oligochaeta detritivore'"
Polydora nuchalis Polychaeta detritivore”
Turbellarian Turbellaria mixed diet
'Di Sabatino et al. 2000 % Schlein and Muller 1995
% Levin and Currin 2005 " D. Holway (pers. com.)

3Carefoot 1973
4 Moseman et al. 2004
5 Bickel and Dyte 1989

8 S. Menke (pers. com.)
° Dash and Cragg 1972
1 Wavre and Brinkhurst 1971
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Appendix 5.1. Mean 5"°N and §"°C signatures of macrofauna (+1 SE) by sampling time
point (days after initiation of experiment). No individuals of that species were collected
when cell is left blank. When no SE is reported, n=1.

Background and T0 N B¢
Species Group Natural Tamarisk ___ Natural subsurface __Tamarisk subsurface | _Natural Tamarisk __ Natural subsurface__Tamarisk subsurface
Oniscidae sp. 1 Crustacca 987 2417
Assimine i G d: 9.68 -22.08
Cerithidea californica Gastropoda | 9.54 (0.24)  10.13 (0.14) 20.64 (027)  -18.58 (0.07)
Cﬁi’;‘;"’c’r":l‘;‘v‘;’c“;s . G*}:S‘gf“;d"‘ 32}‘2 22;8;) ot collected at this time point ;z;g :gfg; not collected at this time point
Dolicopodidae Insccta 15.91 2046
Staphylinidac adult Insecta 9.45 -15.60
Staphylinidac larvae Insccta 565 20,61
‘microalgac Algac 529 (1.09) 24.78 (0.48)
POC Other 668 (0.08)  6.68 (0.08) 2120 (021) -21.23(0.21)
SOM Other 639(0.28)  3.29(0.24) 25.51(045)  -22.51(0.99)
Jaumea cornosa Plantac 2.82 202 (1.58) 2567 27.80(L11)
Juncus sp Plantac 424 52 22,65 2581
Salicornia virginica Plantac | 422(2.58)  3.45(149) 27.66 (0.84)  -27.90 (0.63)
Plantac 3.82(1.03) 2422 (1.15)
T1 N “c
Species Group Natural Tamarisk___ Natural subsurface __Tamarisk subsurface | _ Natural ari Natural subsurface __ Tamarisk subsurface
Oniscidae sp. 1 Crustacca 20.18 (2.22) 7(0.36)
:m;:mm callfornien gaslmpo " 811156("[’)_59” not collected at this time point _20?3];'(817‘1 9 not collected at this time point
Melampus olivaceus Gastropoda | 9.46 (0.49)  9.69 (1.24) 2350 (027)  -22.70 (0.35)
T4 5 e
Species Group Natural Tamarisk __ Natural subsurface __Tamarisk subsurface ___ Natural Tamarisk __ Natural subsurface __Tamarisk subsurface
mite 2 Acaria 13.20 1342
Gammaridac sp. 1 Crustacea 49.72 24.88
Oniscidae sp. | Crustacca 25.43 29.11 (2.36) -24.96 23.94
Assiminea californi G 15.00 15.50 -15.15 9.19
Cerithidea californica Gastropoda | 833 (0.25) 936 (0.87) 23.55(3.01)  -20.66 (1.99)
Melampus olivaceus Gastropoda | 13.74(0.71)  10.70(1.37) 2178 (051)  -21.74 (1.69)
Ant 1 Insccta 11.08 (033) 25,52 (0.03)
Ceratapogonidac larvac Insecta 10.88 -10.86
Coleoptera adult 1 Insecta 7.97 , i time poi -16.78 ected at this ime poi
Colcoptera larvac sp. 1 Insecta 211 1283 not collected at this time point 2466 2144 not collected at this time point
Dolicopodidac Insecta 18.50 20.18
Staphylinidac adult Insecta 20.30 (7.72) 407 (5.12)
Staphylinidac larvac Insccta 75.54 43.24 3.62 -10.16
Stratiomyidac Insecta 41.20 20.85
unk. Larvae #1 Insccta 10.95 26.84
winged ant Insccta 11.67 2420
Enchytraidac Oligochacta| ~ 34.09 2212
Polydora nuchalis Polychacta 18.11
T14 N e
Species Group Natural Tamarisk __ Natural subsurface __Tamarisk subsurface | _Natural Tamarisk __ Natural subsurface __Tamarisk subsurface
‘Gammaridac Crustacca 8555 886 2397 2192
Oniscidae sp. | Crustacca 24.85 (3.85) 18.18 (6.27) -22.89 (0.26) 25.36 (1.15)
Assiminea cali 3049 35.99 (5.09) 97.06 (14.18) 117.10 (13.20) [1742 0 -13.03(2.13) -17.77 (0.46) -16.45 (1.35)
Melampus olivaceus Gastropoda | 33.65 66.21 101.63 (10.57) 90.05 (15.27) -20.83 2140 21,91 (029) 2139 (0.49)
Ceratapogonidac Insecta 32.06 -14.58
Coleoptera larvac sp. 1 Insccta 14.52 15.14 2236 2755
Psychodidac Insccta 352,05 253.58 (52.33) 2420 23.38 (0.18)
Staphylinidac adult Insecta 3094 (15.52) -14.62 (4.77)
Stratiomyidac Insecta 25.74 -14.24
Enchytraidac Oligochacta| ~ 40.81 8230 (2.88) -24.93 23.92(033)
Polydora nuchalis Polychaeta | 42.06 (4.28) -20.39 (0.06)
Turbellaria sp. 1 Turbellaria 12,60 (0.93) 23.48 (0.44)
T90 N e
Species Group Natural Tamarisk __ Natural subsurface __Tamarisk subsurface | _ Natural Tamarisk __ Natural subsurface __Tamarisk subsurface
red mitc Acaria T0.11 12.78 13.02 2433 20.19 2221
Grandifolia japonica Crustacea 202.07 18.50 20.78 2373
Oniscidae sp. | Crustacea 20.81 9.45 (0.34) 10.19 (2.19) 2346 23.67(033) -25.40 (0.82)
Oniscidae sp. 2 Crustacea 685 (1.84) 24.87 (0.80)

Transorchestra traskiana Crustacea 6.71 8.40 (0.12) 11.74 2315 24.34(020) 2378
Assiminea cali 1191 (277)  15.80 (4.44) 14.29 (1.24) 25.91 (4.57) -18.98 (5.17)  -22.03 (1.67) -19.79 (0.38) -19.66 (0.26)
Melampus olivaceus Gastropoda 4247 (11.14) 45.61 (22.76) 21.56 (0.81) 20.57(0.73)

Ceratapogonidac Inseccta | 34.10 (16.74) 1085 (1.49) 24.17 (5.91) 66.26 (45.31) 22.89(0.17)  -22.48 (1.00) 23.75 (034) 22.70 (0.67)
Coleoptera larvac sp. 1 Insecta 19.94 17.35 2393 (13.12) 138.79 24.39 -18.49 27.25 (0.44) 24.97
Dolicopodidae Insccta 2476 1115 9.90 1112 2337 2049 2232 25.07
Hydrophilid Insecta 9.90 9.13 2232 -13.81
Muscidae Insecta 2473 2423
Poduridac Insceta 18.50 56.55 (41.19) 17.85 (2.27) 23.76 (8.16) 2339 (1.63) 24.64(0.29) 24.22(032)
Psychodidac Insecta 7.55 38.16 (9.01) 2331 23.00 (0.34)
Saldidac Insecta 9.16 24.04
Staphylinidac adult Insceta 37.05 14.96 (1.58) 23.25(9.24) 81.05 (48.62) 2681 -23.33(0.79) 24.55 (0.49) 23.55(0.28)
Staphylinidac larvac Insecta 79.85 117 (1.08) 24.30 (2.17)
Stratiomyidac Insecta 15.65 71.46 (54.32) 23.89 2125
Tubificicoides browniae Oligochacta|  11.74 23.56 (3.61) 25.82 (3.60) -23.36 (0.15) -23.80 (0.12)
Tubificidac sp. 1 Oligochacta 3749 (22.70) 48.93 2378 20.12(2.55) 2342
Turbellaria sp. 1 Turbellaria
T270 N e
Species Group Natural Tamarisk __ Natural subsurface __Tamarisk subsurface | _Natural Tamarisk __ Natural subsurface __Tamarisk subsurface
orange mite Acaria 193 30.97 2045 24.99
Gammaridac sp. 1 Crustacea 20.06 23.09
Oniscidae sp. | Crustacea 16.19 13.41 3.35) 13.02 (1.18) 22.66 2427 23.65 (0.23)

Transorchestra traskiana Crustacea 8.49 13.69 22,63 2385
Assiminea californica Gastropoda | 12.86 (0.01)  11.12(0.62) 14.86 (3.84) 17.61 (2.00) -17.81 (1.14)  -19.27 (0.69) -17.60 (0.17) -16.36 (0.39)
Melampus olivaceus Gastropoda 10.73 7.73 (1.09) 2468 20.40(0.62)

Ceratapogonidac Insccta | 12.81(0.08) 1401 (0.43) 40.8 24.00 (0.44)  -22.45 (0.67) 2341
Chironomidac Insecta 15.42 24.12
Cincinilidac Insecta 14.26 26.36
Ephydrasp. 1 Insccta 11.86 11.89 (1.18) I818 -18.88(0.57)
Muscidae Insecta 10.28 2592
Staphylinidac larvac Insecta 13.33 17.14 24.11 2448
Stratiomyidac Insccta 12.63 13.13 2447 26.84
unk fly Insccta 23.25 (8.05) 13.57 37.19 23.19 2367 23.98
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Appendix 5.2. Mean 8'"°N and §"°C signatures of macrofauna in leaching treatments (+1
SE) by sampling time point (days after initiation of experiment). No individuals of that
species were collected when cell is left blank. When no SE is reported, n=1.

T90 - Leaching treatment N B¢
Species Group | Natural Tamarisk Natural subsurface Tamarisk subsurface | Natural Tamarisk Natural subsurface Tamarisk subsurface
red mite Acaria 5.58 -26.00
Oniscidae sp. 1 Crustacea 7.50 (1.90) -23.93 (0.80)
Assiminea californica Gastropoda 10.59 6.80 (0.80) -18.66 -20.20 (0.82)
Melampus olivaceus Gastropoda 10.66 -24.51
Ceratapogonidae Insecta not collected 19.22 not collected -23.04
Poduridae Insecta 10.63 3.94 -25.61 -25.49
Saldidae Insecta 3.53 -21.63
Staphylinidae larvae Insecta 11.61 -23.62
Stratiomyidae Insecta 110.97 -22.37
T270 - Leaching treatment N “c
Species Group | Natural Tamarisk Natural subsurface Tamarisk subsurface | Natural Tamarisk Natural subsurface Tamarisk subsurface
Oniscidae sp. 1 Crustacea 10.23 9.74 (0.22) -23.3731 -24.11(0.20)
Transorchestra traskiana Crustacea 7.55 7.43 (0.05) -20.1269 -20.81(0.35)
Assiminea californica Gastropoda 9.03 -18.5981
Melampus olivaceus Gastropoda 7.53(0.26) -20.62 (0.44)
Ceratapogonidae Insecta 14.21 -23.9593
Cincinlidae Insecta not collected 12.80 not colleeted -23.0061 -23.0061
Coleoptera larvae sp. 1 Insecta 13.88 -22.6133
Dolicopodidae Insecta 22.64 -22.8014
Stratiomyidae Insecta 9.68 -21.9356
Enchytraidae Oligochaeta 21.16 -23.9578
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CHAPTER VI

TROPHIC ROLES OF AN EPHEMERAL SEAGRASS, RUPPIA MARITIMA, IN A
SOUTHERN CALIFORNIA LAGOON
Abstract
When southern California lagoons close for extended periods, the widgeon grass

Ruppia maritima L. thrives in the resulting lower-salinity, higher-temperature water.
Because plant cover is a main source of spatial heterogeneity in Pacific coast wetlands,
such changes in plant communities can influence the abundance, diversity, and food web
structure of benthic invertebrates. Using mensurative comparisons in two vegetation
zones (one dominated by Ruppia maritima and one bare mudflat), we examined R.
maritima effects on abiotic environmental and biotic factors. In the subtidal R. maritima
zone, soils exhibited lower salinities, higher microalgal biomass, and altered macrofaunal
community composition with higher species richness, increased abundance, and a larger
proportion of crustaceans compared to intertidal areas. Differences in macroinvertebrate
communities between the two habitats are interpreted in association with animal feeding
preferences and ability of consumers to utilize R. maritima. Ruppia maritima
consumption by invertebrates was studied using natural abundance isotope signatures and
>N isotope enrichment experiments. Results suggest that R. maritima consumption
occurs mainly among detritivores, such as amphipods, and mixed diet feeders, such as

naidid oligochaetes, and that community structure may be influenced by the availability

of R.
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maritima detritus. Understanding the benthic community alterations due to changes in
plant cover will increase knowledge of complex wetland interactions and aid in
management decisions about southern California lagoon ecosystems.
Introduction

In arid climates, the coastal landscapes are dotted with a series of lagoons. In
southern California (between the US Mexican Border and Point Conception), these
lagoons provide critical support for wetland-dependant species, including several
endangered bird and plant species, as well as birds migrating along the Pacific Flyway
(Thayer et al. 1982, Zedler 1982, 1991). Although most of the lagoons are naturally
occurring features, they have been highly modified in terms of the intensity and
frequency of ocean flushing and with respect to inputs of freshwater, nutrients and
sediments (Zedler 1996a). Due to the Mediterranean climate of southern California,
these lagoons episodically receive freshwater input from rain events. They also receive
significant inputs of energy, nutrients and organisms from the marine environment.
While large embayments typically remain permanently open, smaller lagoons experience
periodic closures. These result from natural or anthropogenic activities that cause
increased sediment deposition from the upland watershed (Conners et al. 1991, Callaway
2001) or from division of wetland habitats by roads and railroads (West et al. 2001).
Some of the lagoon mouths close for extended periods (many months), with ensuing
changes in water level, oxygen, pH, salinity, temperature (West et al. 2001), microbial
populations (Gersberg et al. 1995), and algal growth (Nozais et al. 2001, Froneman
2004). These changes can also be associated with alterations to the animal communities

within the lagoons.
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When lagoons are closed for extended periods or during specific reproductive
seasons, key species with life cycles dependent on a connection with the ocean may
disappear. On the reverse side, some plants rely on the conditions produced when
lagoons close. One such plant species is Ruppia maritima L (widgeon grass), an
opportunistic species that thrives in warm (Johnson et al. 2003) and less saline water
(Kantrud 1991, Koch and Dawes 1991) partially due to its ability to osmoregulate
(Kantrud 1991). Low salinity, warm conditions are typical of a lagoon that has been
closed for extended periods. In open lagoons of southern California with higher salinity
and decreased temperatures, R. maritima frequently disappears (Williams et al. 2003).
Thus, R. maritima exists in marginal seagrass habitats or as a secondary species where
other seagrasses, such as Zostera marina, dominate (Lazar and Dawes 1991, Johnson et
al. 2003). Changes to the status of submerged vegetation, in this case loss of or reduction
in percent cover of widgeon grass, can have major consequences for the entire lagoon
ecosystem (Scheffer et al. 1993, Van Donk and Otte 1996, Perrow et al. 1997).

A significant portion of research on R. maritima species has been conducted in
freshwater lagoons where Ruppia spp. are important in the diet of waterfowl, fish and
invertebrates (Rodriguez-Perez and Green 2005, Garcia et al. 2005, Casagranda et al.
2006). Yet, little effort has been focused on describing the role of R. maritima in
brackish and marine ecosystems, where it is an ephemeral species. One southern
California study indicated that widegeon grass maintained a high biomass in summer and
was a labile food source for the macroinvertebrate community (Johnson 2000).
Literature descriptions from southern California habitats portray R. maritima as a

marginal species that only exists when environmental conditions are unfavorable for
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more dominant species, like Zostera marina (Johnson et al. 2003). However,
temporarily open/closed lagoons offer environments where R. maritima is the dominant
subtidal species and where we predict that, similar to its role in freshwater systems where
it not ephemeral, R. maritima will be a labile food source and have an important
influence on the trophic structure of southern Californian lagoons. We also predict that
the species most able to utilize R. maritima will be species capable of responding to
temporally patchy food inputs.

Using benthic assessment tools, we characterized the plant, algal and invertebrate
communities of two lagoon habitats (intertidal and subtidal R. maritima zones), whose
occurance will shift with lagoon state. We then utilized stable isotope natural abundance
and enrichment experiments to evaluate the importance of Ruppia maritima in structuring
the benthic food web as a detrital food source. Specifically, we hypothesized that the
distribution of macroinvertebrates within the R. maritima habitat is a function of their
nutritional dependence on R. maritima and its associated epiphytes. Understanding the
coupling between R. maritima and the invertebrate trophic structure will help evaluate
potential management options for southern California lagoon ecosystems.

Materials and Methods

Site description: San Dieguito Lagoon (SDL), located in northwest San Diego,

contains approximately 260 acres of wetland habitat that forms the lower part of the San
Dieguito River Valley (http://ceres.ca.gov/wetlands). Historically, the hydrology of this
lagoon has been strongly influenced by several major events, including the construction
of Lake Hodges Dam in 1919 and the filling in of wetlands during construction of Del

Mar Fairgrounds in 1935. As a result of these changes, the lagoon mouth began to close
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more frequently due to a reduction in the tidal prism and less frequent scour during river
flooding (reviewed in SCE 2001). Temporal variability in the condition of the inlet has
resulted in long-term unstable ecological conditions throughout the lagoon. This pattern
continues today as San Dieguito opens and closes regularly based on rainfall amounts and
flood scour (Elwany & Flick 1998).

Sampling design and dates: Field data for vegetation and sediment samples for

infaunal analyses were collected in San Dieguito Lagoon at 3 locations on four dates
(October 5 and October 21, 2002, March 14 and September 14, 2003). October 5,2002
and September 14, 2003 followed periods of extended inlet closure (241 and 129 days
respectively) while October 21, 2002 and March 14, 2003 followed periods of
intermittent opening and closing with the longest period of closure at 72 days. At each of
the 3 sites, we established a transect running parallel to the channel and sampled 3
replicate plots along that transect for a total of 36 plots sampled. These samples were
used as background to understand the variability of invertebrate communities within the
lagoon and with changing inlet status. In addition, within the eastern end of the lagoon in
April 2005 and 2006, six blocks were established in patches of R. maritima (at least 90
percent cover), and six blocks were established in intertidal unvegetated mudflat areas
immediately adjacent to Sarcocornia pacifica marsh. Hereafter, these will be referred to
as R. maritima and intertidal plots, respectively. Vegetation and infaunal sampling (n=6)
as well as natural abundance isotope sample collection and isotope enrichment
experiments were collected in April 2005 and April 2006 at these locations.

Abiotic and sediment properties: Within each plot at all time points, soil salinity

of the top 0.5 cm (+ 1 psu) was measured weekly by squeezing porewater from the
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sediment surface through a Whatman No. 1 qualitative grade filter onto a hand-held
salinity refractometer. Temperature (+ 0.1°C) at 2 cm depth was measured weekly using
a portable Ingold Mettler-Toledo digital thermometer.

Plant and microalgal sampling: Plant cover estimates for each species were made

within 0.25 m? quadrats on all sampling dates. In April 2006 in each treatment plot,
separate cores (0.95 cm” x 5 mm) were taken for chlorophyll a as a proxy for microalgal
biomass. Back in the laboratory, chlorophyll a was extracted with 90% acetone, and the
concentration was determined spectrophotometrically (Plante-Cuny 1973).

Macrofauna sampling: At all sampling points, macrofaunal cores were taken in

each plot using a cylindrical push core (4.8 cm diameter, 18.1 cm?) inserted to a depth of
2 cm as 78 — 89% of the macrofauna in southern California marshes is found in the top 2
cm of sediment (Levin et al. 1998). We selected a 4.8-cm diameter core to target
macrofauna typically in the 1-2 mm size range (Levin et al. 1998). We recognize that
this is likely to exclude megafauna, such as large clams or crabs. Cores were preserved
(unsieved) in 8% buffered formalin with Rose Bengal. For macrofaunal quantification,
the core sediments were washed through a 0.3 mm mesh. The animals retained were
sorted under a dissecting microscope at 12x magnification, identified to the lowest
possible taxonomic level, counted, and stored in 70% ethanol. Most insects collected
were larvae, and identifications of these were at the family level only. For other
organisms, identifications were to species level, although putative names were used in
some cases.

Natural abundance stable isotope analysis: To determine trophic utilization of R.

maritima by consumers based on stable isotope methods, samples of suspended
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particulate organic matter (POM), sediment organic matter (SOM), microalgae,
macroalgae, plants, and macrofauna were collected in April 2005 in the intertidal and
subtidal R. maritima habitats. Collection and processing methods were similar to those
described in Moseman et al. (2004), Levin et al. (2006), and Whitcraft and Levin (in
press). POM was obtained by filtering 2 L of lagoon water onto Whatman GFF filters.
SOM was sampled by collecting surface sediment (upper 2 cm), drying and
homogenizing sediments. Benthic microalgae were collected using density centrifugation
with ludox (colloidal silica), providing a pure algal sample devoid of sediment
(Blanchard et al. 1988). Macrofaunal invertebrates were sieved on a 0.3 mm mesh,
sorted live, and identified to species. All animals were kept alive in seawater and
allowed to evacuate guts for up to 24 hours. Animal material was then washed in Milli-
Q" water, placed in pre-combusted vials or tin boats, dried at 65 °C, and kept in a
desiccator until analysis. Larger organisms were removed from the shell or carapace,
dried at 65°C and then ground with a mortar and pestle. All samples were treated with Pt
ClI, to remove inorganic carbon.

Isotopic composition of animal and algal samples was analyzed using a PDZ
Europa 20-20 mass spectrometer connected to an elemental analyzer (PDZ Europa
ANCA-GS, Northwich, UK). Stable isotope abundance is expressed in parts per
thousand in a ratio of heavy to light isotope content (*°N:"*N or '*C:'*C). Working
standards, sucrose and ammonium sulfate, were §13C =-23.83%o vs. Vienna Pee Dee
Belemnite Standard or & °N = +1.33%o vs. air N,. Typical sample precision is better

than 0.1%eo.
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Isotope labeling and enrichment experiments: One effective method to identify

plant consumers is isotopic labeling of the plant with °N to track the labeled material
into consumer tissues. In April 2006, R. maritima was labeled by collecting plants with
roots and surrounding sediments from San Dieguito Lagoon and reestablishing them in
the laboratory in aquaria (0.5m x 0.25m x 0.3m). These aquaria were maintained with
physical conditions that mimicked ambient field conditions from the collection day with
salinity of 15, temperature of 20 °C, and light for 12 hours / day. Once in the laboratory,
the sediment porewaters were injected daily with 250 ml of 6 mmol/L ammonium sulfate
(98 atom % '*NH,) for a 3-day period (method modified from White and Howes 1994
and Levin et al. 2006). Plants were harvested 2 weeks after injections (April 2006) and
deployed in the field one day later as detritus. In the field, we established a complete-
random block design, consisting of 4 blocks with paired treatments in adjacent intertidal
and subtidal R. maritima habitats for a total of 8 quadrats. We conducted experiments in
intertidal habitat because although R. maritima was not present as live plants, it was
extremely naturally abundant as detritus.

The "’N-labeled R. maritima plants and roots were cut into pieces approximately
5 mm in length. Nylon litter bags (2.6 x 1.2 cm, 5 mm mesh) were filled with 5g of
detrital material and were deployed on the sediment surface in each quadrat where they
were held in place with metal stakes. We collected one replicate bag 4 and 14 days later,
washed the bags, sieved any accumulated sediment, and sorted the associated
macroinvertebrates under a dissecting microscope. In addition, to test for N-leaching and
uptake by bacteria and algae, °’N-labeled R. maritima was also deployed in Nitex® mesh

(61 um) bags (1 per habitat). We collected the bags 4 days later, washed the bags, sieved
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the accumulated sediment, and sorted the associated macroinvertebrates under a
dissecting microscope.

Immediately after deployment of litter bags (time 0), we collected samples of
infauna (> 0.3 mm), macroalgae, microalgae, particulate organic material (POM), and
sediment organic material (SOM) to determine initial time point (TO) values for 8'"C and
8'°N isotope signatures. This provided background values and checked for labeling
artifacts. Microalgae were subsequently collected 1, 4, and 14 days after deployment for
stable isotope analysis. Samples from the isotope enrichment experiments were treated
as described above for the natural abundance stable isotope samples.

Statistical Analysis: All univariate tests were conducted with JMP 5.1 statistical

software (SAS Institute, NC, USA). Data were tested for normality, and square root or
log;o transformed as needed prior to analysis. If no transformation yielded normal data,
nonparametric Wilcoxon tests were utilized. Relationships among abiotic and biotic
factors were analyzed for significance using Spearman’s Rho. For macrofaunal
community analysis, multivariate analyses were conducted on macrofaunal count data
(square root transformed) using Primer 5 (Plymouth Marine Laboratory, Clarke 1993,
Clark and Warwick 1994). Analyses are based on Bray-Curtis similarity indices (Clarke
1993). Pairwise comparisons of overall community similarity were made using Analysis
of Similarity (ANOSIM).

For stable isotope analyses, species mean isotopic signatures were used as
replicates for tracer uptake comparisons of intertidal verus subtidal R. maritima habitats,
among food preference groups, and among species in Wilcoxon nonparametric tests with

a posteriori Tukey’s HSD tests. In figures and text, one standard error about the mean is
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presented for all data unless otherwise noted. Mixing models were applied to estimate
the fraction of R. maritima and other food sources in the infaunal diets. We applied a
concentration dependent, three-source, two-isotope mixing model to the natural
abundance data (Phillips and Koch 2002). The three food sources were (1) R. maritima,
(2) microalgae, and (3) POC/SOM. Models involving macroalgae (Ulva sp.) did not
resolve and thus are not included. Concentrations of C and N were determined for each
food source by CHN analysis. In addition, for data generated from the isotope
enrichment experiment, we applied a single isotope, two-source mixing model for 8N in
which labeled R. maritima detritus was treated as one food source and unlabeled
(background) native food sources (microalgae, POM and SOM) with similar signatures
were grouped and treated as a second food source, using the following formula:
% R. maritima-derived N = [(8" Nifauna - 8 Niackground) / (8" Niabeled Ruppia- - 0~ Nbackground)]
*100

Using this approach, we calculated the percentage of N in infaunal tissues that was
derived from the labeled R. maritima detritus. A trophic level shift of 1%o for 8'°C (Fry
and Sherr 1984) and 2.2%. for 8"°N was applied in mixing models (McCutchen et al.
2003).

Results

Abiotic and sediment properties: Porewater salinity and porewater temperature

measurements were extremely variable among sampling dates, showing changes related
to both season and inlet status (by season - salinity: y*, = 47.70, P < 0.0001; temperature:
Xz2 =26.87,P <0.0001) (Figure 6.1 a,b). In April 2006, the intertidal had higher

porewater salinity values than the R. maritima habitat while the intertidal and R. maritima
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habitats showed no differences in porewater temperature (salinity: t; = 7.51, P = 0.0001;
temperature: t;=1.36, P =0.217).

Plant community response: Tidal flat transects were dominated by the seagrass R.

maritima maritima on October 5, 2002 after 249 days of closure but were largely covered
by Ulva sp. in October 21, 2003 (open for 17 days), March 14, 2003 (intermittently
open), and September 14, 2003 (closed 129 days) (Figure 6.1c). Comparisons among
seasons revealed significant differences in R. maritima and Ulva cover (P < 0.05) (Figure
6.1c).

Microalgal community response: In April 2006, the intertidal plots had greater

chlorophyll a and phaeopigment concentrations than the subtidal R. maritima plots
(Wilcoxon, R. maritima =2.60 + 0.53 pg/ g sediment, intertidal = 8.55 + 2.81 pg/g
sediment chl a: y’s = 5.80, P = 0.050) (Wilcoxon, phacopigment: R. maritima = 41.25 +
14.65 g / g sediment, intertidal = 454.63 + 123.46 pg/g sediment, y’s= 13.07, P =
0.002).

Macrofaunal community response: Macrofauna in the upper 0-2 cm exhibited

varied responses among sampling dates with details of season given in Tables 6.1 a,b.
The infaunal community in March 2003 exhibited an increased density of organisms
(Wilcoxon, y* =20.82, P < 0.0001) and altered community composition as compared to
the other seasons (ANOSIM, P = 0.001), driven by changes in every major taxonomic
group (Table 6.1a). The infaunal community in September 14, 2003 (closed for 129 days)
had lower species richness than the other seasons (Wilcoxon, y* =15.77, P = 0.001)
(Table 6.1a). We observed no significant relationships between R. maritima cover and

macrofaunal density, or diversity.
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Relative to the intertidal plots, R. maritima plots exhibited increased species
richness (Wilcoxon, intertidal = 3.33 + 1.14 species / 18.1 cmz, R. maritima="7.67 + 0.33
species / 18.1 cm?, ts = 3.88, P=0.012), increased density of organisms (Wilcoxon,
intertidal = 18.00 +9.16 #/ 18.1 cm’, R. maritima =315.00 + 78.52 #/ 18.1 cm’, ts =
3.62, P=0.015), and altered macrofaunal community composition based on count and
biomass data (ANOSIM, intertidal # R. maritima zone, P < 0.002) (Figure 6.2a). Density
and richness changes in R. maritima plots involved a significantly higher number of
naidid oligochaetes (Paranais littoralis), polychaetes (Streblospio benedicti, Polydora
nuchalis), amphipods (Monocorophium insidiosum) and turbellarians compared to
intertidal plots (Figures 6.2 a,b, Table 6.2b, Appendix 6.1).

Macroinvertebrates were divided into feeding groups based on natural abundance
isotope data generated for this project and on literature designations to make comparisons
of R. maritima influence on macroinvertebrate feeding behaviors (detritivore, microalgal
feeder, mixed diet) (Table 6.2). Using these designations, R. maritima habitats had
significantly greater densities of detritivores and mixed diet feeders than intertidal
habitats (Figure 6.2c).

Natural abundance stable isotope analysis: 8°C and 5'°N analyses of food sources

and consumers in intertidal and R. maritima habitats demonstrated few isotopic
differences as a function of habitat, so habitats are combined for analyses and mixing
models. Details of habitat and season are contained in Appendices 2 and 3. Dual isotope
plots illustrated mean natural abundance 5"°C and 8'°N signatures of key primary
producers and consumers in sediments (Figure 6.3). Use of a three-source mixing model

suggests that R. maritima formed > 20% of the diet of the Capitella species complex,
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Polydora nuchalis, Paranais litoralis, and Streblospio benedicti. The predator,
Turbellaria sp. 1, consumes prey species with at least 20% R. maritima in their diet
(Table 6.2). Ruppia maritima formed none of the diet of Stratiomyidae sp. 1 larvae while
microalgae (primarily diatoms) formed 75% of the diet and POC formed 35% (Table
6.2). Ruppia maritima was 9% of the diet of Monocorophium insidiosum and the
remainder of the diet was the combined sources of SOM/POM (or their consumers) form
>75% of their diet (Table 6.2). These analyses suggest but do not reveal definitively,
which taxa consume R. maritima. Thus, an isotopic tracer approach was adopted to
answer these questions.

Isotope enrichment experiment: At the start of the enrichment experiment, '*N-

labeled R. maritima detritus had a mean 8"°N signature of 52,221%o (equivalent > 16%
atom and > 10° % enrichment). The maximum 6 >N value in a consumer (1762%o0) was
observed in Polydora nuchalis 4 days after detritus placement and indicated up to 1500%
enrichment from background values. Species of several major taxa (Acarina, Insecta,
Mollusca, Crustacea, Oligochaeta, Polychaeta, and Turbellaria) in both habitats
incorporated minor amounts of 8'°N label after 4 and 14 days, such that less than 0.5 %
of their N was derived from labeled R. maritima detritus, as estimated from a two-source
mixing model (Table 6.3). Averaged across species, utilization percentage did not differ
among animals in low marsh and R. maritima habitats ("°N - T4: R. maritima habitat =
24.68 + 3.05, intertidal = 24.74 + 4.93, X2 =0.09, P=0.766; T14: R. maritima habitat=
16.12 +1.91, intertidal = 14.03 + 1.79, Xz =0.07, P=0.788). For most taxa, utilization of
R. maritima-derived N was higher at 4 days than at 14 days when the habitats were

pooled (T4 =15.09 +0.92, T14 =29.50 + 2.96, x2 =23.22,P <0.0001). A comparison of
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the R. maritima utilization (change in 8N signatures from background signatures)
among major invertebrate groups revealed taxon differences at both 4 and 14 days
(Figure 6.4a). Species divided into three significant different groups: (1) highest
consumption species: Paranais litoralis, (2) middle consumption species: Enchytraidae
sp. 1, Capitella sp., Polydora nuchalis, Monocorophium insidiosum, and Turbellaria sp.
1, and (3) low consumption species: Coryxidae sp. 1 (Figure 6.4a).

Slightly elevated "°N (change in '°N of 15%o) was observed in microalgae within
4 days, potentially reflecting leaching of '°N from the labeled R. maritima detritus and
heterotrophic organic matter uptake by microalgae, but the signals were several orders of
magnitude lower than that of the labeled detritus. In addition, a comparison of 5'°N
signatures of invertebrates from leaching bag treatments with 8'°N signatures of
invertebrates from normal litter bag treatments revealed that uptake of PN by animals
exposed to N leached through 61 um mesh was significantly less than uptake of °N by
animals exposed to N in either intertidal or R. maritima habitats with much lower §'°N
values (Wilcoxon across all species, 3% = 4.75, P = 0.029). The numerically dominant
species found in the leaching treatments, Paranais littoralis and Monocorophium
insidiosum demonstrated the minor N leaching effect (P. littoralis: consumer access
treatment = 222.18 + 82.31, leaching = 14.91 + 2.21, X22 =642,P=0.011; M.
insidiosum: consumer access treatment = 136.78 + 24.24, leaching = 20.69 + 5.14, X22 =
5.14, P = 0.023) (Appendix 6.2).

Species-level comparisons at each time period revealed that several species
exhibited greater N uptake than the others. The greatest R. maritima-derived ingestion,

as indicated by elevation of 3'"°N signatures above background (A3'°N) at 4 and 14 days



182

was by oligochaete species considered to be detritivores (Enchytraidae) or mixed-diet
feeders (Paranais littoralis) (Figure 6.5). Lesser uptake of >N label was observed in
many other taxa, including microalgal consumers (Figures 6.4 & 6.5). When species
were pooled by feeding groups (Table 6.2), we observed significantly greater uptake in
detritivores than in microalgal and mixed-diet feeders after 4 and 14 days (Figure 6.4b).

Discussion

Benthic community patterns: Ruppia maritima zone communities are
distinguishable from neighboring intertidal areas by having higher density and species
richness (Table 6.1). In addition, the density of detritivores, such as oligochaetes and
crustaceans, and the density of omnivores/carnivores, such as Turbellaria, are much
greater in these systems where live R. maritima is present. As demonstrated by a lack of
relationship between percent cover and macroinvertebrate community parameters (r* <
0.15, P > 0.05 in all cases), abundance of R. maritima does not alone determine the
community structure. The reasons behind these macroinvertebrate community
differences are more complicated than simple presence/absence of R. maritima (Hovel et
al. 2002, Brito et al. 2005). An extensive amount of research documents that submerged
vascular plants, of which widgeon grass is an example, influence nutrient dynamics and
water chemistry, alter water flow and sedimentation (i.e. Fonseca and Bell 1998, Reusch
and Williams 1999), modify the structure and dynamics of food webs (i.e. Heck and Orth
1980, Bell et al. 1994), and increase the physical habitat structure (reviewed in Orth et al.
1984 and Jeppensen et al. 1997). Our research does not isolate the mechanisms by
which the presence of R. maritima structures its associated invertebrate community, but it

does highlight differences between habitats (intertidal and subtial R. maritima zone) at
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different tidal elevations that are consistent with known seagrass effects. The amount of
intertidal versus subtidal habitat will change with inlet status as mudflats are often
intertidal when the San Dieguito Lagoon inlet is open and subtidal when the inlet is
closed. The dynamic R. maritima cover within the lagoon is one aspect that should be
considered as a mechanism to help explain the dramatic biotic changes observed with
different sampling dates and inlet status (Figure 6.1).

Relationship between nutritional dependence and benthic community: Those

invertebrate species able to derive N from R. maritima were also more abundant in R.
maritima habitat. Species with greatest R. maritima ingestion were detritivores, while
microalgal feeders (primarily insects) had lower R. maritima consumption. Some R.
maritima N uptake in microalgal feeders, such as insect larvae and gastropods, may have
been due to increased microalgal colonization on the surface of R. maritima detritus and
subsequent grazing (Figures 6.4 & 6.5). The most abundant species in the R. maritima
habitat, Paranais litoralis, and several other numerically abundant species
Monocorophium insidiosum and Polydora nuchalis were also the largest consumers of
'>N-labeled R. maritima detritus (Figures 6.2 & 6.5, Table 6.1). In a similar "N labeling
experiment using invasive Spartina hybrid, Levin et al. 2006 documented that
oligochaetes and capitellid polychaetes were the primary consumers of hybrid Spartina
detritus while the amphipod Corophium sp., and the polychaetes, Polydora nuchalis, and
Streblospio bendicti ingested little Spartina-derived N (< 1% of tissue N from labeled
detritus). To explain the discrepancy between observed R. maritima and Spartina hybrid
detritus experiments, we hypothesized that R. maritima detritus is more labile than

Spartina detritus.
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Paranais litoralis, in particular, was the greatest consumer of '*N-labeled R.
maritima detritus at T14 (Figure 6.6). Yet, P. litoralis has traditionally been considered a
deposit feeder, eating mainly diatoms (Giere 1975, Nillson et al. 1997). Our research
corroborates more recent research, suggesting that P. litoralis is a mixed diet feeder,
capable of responding individually and at a population level to patchy input of algal and
plant detritus (Kelaher and Levinton 2003, Junkins et al. 2006). This ability of P.
litoralis to utilize patchy and seasonal input of detritus, such as R. maritima, drives its
boom-bust population pattern and its temporally shifting growth rates (Levinton and
Stewart 1982, Talley and Levin 1999, Junkins et al. 2006).

Monocorophium insidiosum, an introduced gammarid amphipod on the Pacific
coast of North America (Bousfield and Hoover 1997), has been observed feeding on
deposited particles including detritus and diatoms (Dahl 1973) and has “shredder”
mouthparts that can transform leaf material into fine particulate organic matter
(Schwoerbel 1993). As in many freshwater ecosystems (i.e. Menendez and Comin 1990,
Casagranda et al. 2006), gammarid amphipods are numerically dominant in the R.
maritima zone (Figure 6.2). This dominant amphipod, M. insidiosum, was able to
assimilate '°N derived from R. maritima detritus (Figure 6.5). Research suggests that
these shredders do not digest the detritus itself but instead assimilate living epiphytes
(Fenchel 1977). As a shredder, this species contributes to macrophyte decomposition and
exists as a link between primary (in this case, R. maritima) and secondary production in
lagoon ecosystems (Casagranda et al. 2006). Our labeling experiments do not separate
the role of R. maritima in the food web as either detritus itself or as a structure and a

source of organic matter for the growth of epiphytes, another crucial food source for the
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system (Harrison 1977, Tomas et al. 2006). Future labeling experiments could be
constructed to distinguish between epiphytes and the actual detritus (i.e. Mutcher et al.
2004). However, our experiments demonstrate that this lagoonal seagrass community
supports a diverse grazing pathway that includes grazing on live seagrass leaves,
consumption of epiphytic algae on seagrass leaves, and consumption of POC from the
water around the seagrass patches (Heck and Valentine 2006).

The observed differences in macroinvertebrate communities between the two
habitats (Figure 6.2) mirror the abilities of consumers to utilize R. maritima, as evidenced
by increased N in the diets of detritivore and predatory feeding groups (Figure 6.4).
These plant-induced changes in microalgae and macrofauna can have effects that extend
to higher trophic levels. For example, structural differences in macrofaunal communities
between different seagrass systems have been shown to translate to higher trophic levels
by altering foraging patterns of fish (i.e. Heck and Orth 1980, Bell et al. 1994).
Although this suggests bottom-up regulation of the community, other factors, including
top-down control, grazer access to food sources, predator refugia formed by seagrass,
flow regime modifications, and indirect changes in food supply, may also structure this
benthic ecosystem.

The lower abundance of R. maritima consumers in unvegetated intertidal habitats
relative to the R. maritima zone follows patterns similar to those observed in freshwater
systems (Casagranda et al. 2006) and describes an important role for R. maritima in
southern California lagoon ecosystems. Despite its being an ephemeral species, R.

maritima supports macroinvertebrates, such as Monocorophium insidiosum, that have key
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functions in making macrophyte matter available to different trophic levels through
fragmentation and accelerated decomposition (Giere 1975, Casagranda et al. 2006).

Management implications for San Dieguito and other southern California lagoon

ecosystems: Within southern California lagoons, the widgeongrass, Ruppia maritima, is
dynamic and locally abundant (Johnson et al. 2003). Our research suggests that R.
maritima s important in structuring the associated macroinvertebrate community as a
food source (Figure 6.2, Table 6.2 b) and perhaps indirectly important to sustaining
ecosystem functions, especially in providing trophic support for larger invertebrates,
resident fishes, and migratory and resident birds through consumption of invertebrate
community (Zedler 1996b).

Permanent opening of inlets through the construction of jetties has been a
common management strategy to avoid nuisances associated with long periods of closure
(Arundel 2003). However, our results suggest that in southern California, lagoons with
permanently open inlets may lose important plant species such as Ruppia maritima. 1t is
possible that the structural loss of R. maritima could be replaced by Zostera marina, and
research comparing the two species would be valuable in ascertaining the functions of
and value of each seagrass habitat. The coupling of community structure and trophic
structure in seagrass systems has been demonstrated with other species (nematodes —
Danovaro and Gambi 2002) and offers an explanation as to why invertebrate
communities would vary with temporally and with lagoon state. While our study does
not predict what will occur if permanent connection to the ocean is created, it does
suggest one potential scenario of ecosystem change involving the loss of a trophically

important plant, Ruppia maritima, within the lagoon ecosystem. These shallow lagoons
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are particularly susceptible to stressors such as long-term temperature increases
associated with climate change (Short and Neckles 1999, Koch et al. 2007). Sequential
consequences of changing seagrass cover are likely. Knowledge of these trophic
pathways involving R. maritima can increase our ability to predict consequences of
climate change for southern California lagoons systems.
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Table 6.2: Feeding behavior for the macroinvertebrates found in isotope samples and
percent carbon of varied food sources as estimated from natural abundance three-source
mixing model. Feeding designations are based on natural abundance signatures and/or
published literature. Blanks indicate species not present or unresolved model data.

Species Taxonomic Feeding % of C % of C % of
Grouping behavior from R. from C
maritima | microalgae | from
POC
mite sp. 1 Acaria mixed diet'
Monocorophium insidiosum | Crustacea | detritivore” 9.1 9.5 82.4
Grandidierella japonica Crustacea | detritivore”
Acteocina inculta Gastropoda | microalgal
grazer’
Acteocina carcinata Gastropoda | microalgal
grazer’
Barleeia sp. Gastropoda | microalgal
grazer’
Cerithidea californica Gastropoda | microalgal
grazer’
Ceratapogonidae larvae Insecta mixed diet’
Chironomid larvae Insecta microalgal 0 39.5 79.5
grazer’
Coleoptera sp. 1 Insecta detritivore’
Coryxidae sp. 1 Insecta mixed diet’
Dolicopodidae larvae Insecta mixed diet’
Ephydra sp. 1 pupae Insecta mixed diet
Muscidae larvae Insecta mixed diet’
Poduridae sp. 1 Insecta mixed diet’
Psychodidae larvae Insecta mixed diet’
Staphylinidae adult Insecta mixed diet®
Staphylinidae larvae Insecta microalgal
grazer’
Stratiomyidae larvae Insecta detritivore’ 0 75.4 40.1
Enchytraidae Oligochaeta | detritivore’
Paranais littoralis Oligochaeta | mixed diet™" 21.2 72.1 7.2
Capitella sp. Polychaeta | detritivore” 28.8 31.6 39.6
Polydora nuchalis Polychaeta | detritivore” 20.9 12.9 66.2
Streblospio benedicti Polychaeta | detritivore” 23.9 0 76
Turbellarian sp. 1 Turbellaria | mixed diet 27.4 5.1 67.5

'Dj Sabatino et al. 2000

2 Levin and Currin 2005, Dahl 1973

3 Moseman et al. 2004
4Kelts, L.J. 1979
3 Bickel and Dyte 1989

® Hopkin 1997
7 Schlein and Muller 1995

 D. Holway (pers. com.)
? Dash and Cragg 1972

19 Wavre and Brinkhurst 1971
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Table 6.3: Percent of N in invertebrate diets that was derived from 8'°N labeled-R.
maritima detritus at 1, 4, and 14 days after deployment of labeled material. Missing
values indicate that that species was not collected at that time point. Percentages are

calculated from a single isotope, two-source mixing model for 8'°N in which labeled R.
maritima detritus was treated as one food source and unlabeled (background) native food
sources (i.e. microalgae, POM and SOM) were treated as a second food source

Intertidal and R. maritima habitats

Species T1 T4 T14
Acteocina inculta 0.003 0.0005
Diptera sp. 1 0.0002
Barleeia sp. 0.024 | 0.037
Capitella sp. complex 0.030 | 0.012
Cincinalidae sp. 1 0.012
Monocorophium insidiosum 0.013 | 0.053 | 0.012
Grandiderella japonica 0.0007
Coryxidae sp. 1 0.011 | 0.0008
Enchytraidae sp. 1 0.005 | 0.008
Paranais litoralis 0.067 | 0.032
Polydora nuchalis 0.044 | 0.021
Streblospio benedicti 0.007
Turbellaria sp. 1 0.012 | 0.007
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Appendix 6.1. Comparison the macrofaunal community (density) in R. maritima and
intertidal habitats in April 2006. Mean density of organisms per core (18.1 sz) (+1SE)
are reported. Superscripted letters indicate t-test differences among treatments (P < 0.05).

April 2006
Species Group Ruppia Intertidal ts P

Monocorophium insidiosum Crustacea | 54.17 (21.22)" 0.17 (0.17)b 2.56 0.051
Acteocina inculta Gastropoda 0.50 (0.34) 0.00 (-) 1.46 0.203
Acteocina carcinata Gastropoda 0.33 (0.33) 0.00 (-) 1.00 0.363
Barleeia subtenuis Gastropoda 1.17 (0.60) 0.17 (0.17) 1.58 0.174
Chironimidae larvae sp. 1 Insecta 0.67 (0.42) 0.00 (-) 1.58 0.175
Ceratapogonidae larvae sp. 1 Insecta 0.00 (-) 0.33 (0.21) 1.58 0.175
Dolicohopodidae larvae sp. 1 Insecta 0.00 (-) 0.33 (0.21) 1.58 0.175
Muscidae sp. 1 Insecta 0.00 (-) 0.33 (0.33) 1.00 0.363
Poduridae sp. 1 Insecta 0.33 (0.33) 0.17 (0.17) 0.42 0.700
Psychodidae larvae sp. 1 Insecta 0.00 (-) 0.33 (0.33) 1.00 0.363
Enchytraeidae sp. 1 Oligochaeta 0.00 (-) 3.17 (2.04) 1.55 0.181
Paranais litoralis Oligochaeta | 192.67 (46.06 )* 9.00 (5.13)"  3.88 0.012
Capitella sp.complex Polychaeta | 35.67 (14.09) 3.17 (2.61) 2.33 0.067
Polydora nuchalis Polychaeta | 13.33 (4.13 ) 033 (0.33)b 3.10 0.027
Spionidae Polychaeta 0.00 (-) 0.00 (-) 2.00 -

Streblospio benedicti Polychaeta | 6.67 (2.01)" 0.00 (0" 3.31 0.021
Turbellaria sp. 1 Turbellaria 9.33(1.89)" 0.50 (0.50)b 4.37 0.007
mite sp. 1 Acarina 0.17 (0.17) 0.00 (-) 1.00 0.363
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Appendix 6.2. Mean 8'"°N and §"°C signatures of macrofauna (+1 SE) by sampling time
point (days after initiation of experiment) and by habitat (intertidal, R. maritima zone).
When no SE is reported, n=1.

Background and TO

R. maritima zone intertidal zone
Species T ic Group 5N 5°c 5N 5°c
POM Food source 6.87 -21.58
SOM Food source 5.94(0.43) -16.41(2.15)| 7.19(0.50) -20.27 (2.79)
microalgae Algae 8.19(1.27) -23.11(0.65)| 14.88 (2.68) -23.27 (1.47)
Ulva sp. Algae 7.93(0.63) -15.12(0.38)
Monocorophium insidiosum Crustacea 10.16 (0.30) -19.95(0.21)] 10.42(0.26) -19.68 (0.31)
Acteocina inculta Gastropoda 7.49 (1.28) -18.14 (1.00)
Barleeia sp Gastropoda 7.59(1.70) -17.07 (1.37)
Chironomidae larvae sp. 1 Insecta 8.88(4.20) -19.07 (3.52)
Coryxidae sp. 1 Insecta 13.44 (0.45) -18.13 (0.81)
Dolicopodidae larvae sp. 1 Insecta 10.25 -18.42
Fly sp. 1 Insecta 14.48 -16.98
Stratiomyidae sp. 1 Insecta 9.47(0.91) -17.20(0.31)
Paranais littoralis Oligochaeta 5.39 -20.82 4.44 (0.70) -20.34(0.42)
Ruppia ( detritus) Plantae 8.29(0.10) -14.04 (1.56)
Ruppia (live plant) Plantae 2.82(0.04) -13.23(1.29)
Ruppia (without epiphytes) Plantae 1.85 -12.38
Capitella sp. Complex Polychaeta 12.01 (1.68) -18.35(0.23) 12.14 -19.65
Polydora nuchalis Polychaeta 11.33(0.42) -19.46 (0.23)
Streblospio benedicti Polychaeta 11.59 -20.03
Turbellaria sp. 1 Turbellaria 11.93 (0.12) -19.70 (0.27)
T1
R. maritima zone intertidal zone
Species T ic Group, 5N 5°c 5N 5°c
microalgae Algae 12.74 (0.83) -22.90 (0.15)]12.62 (3.31)  -20.30 (1.82)
Monocorophium insidiosum Crustacea 1.47 -10.43
Acteocina inculta Gastropoda 7.83 -21.07
Capitella sp. Complex Polychaeta 5.11 -25.98
T4
R. maritima zone intertidal zone
Species T ic Group| 5°N 5°c 5°N 5"c
POC Food source 10.80 (5.64) -16.78 (1.44)] 10.80 (5.64) -16.78 (1.44)
SOM Food source 8.24(0.72) -19.80(0.75)
microalgae Algae 21.36 (2.61) -24.27(0.84)] 13.57 (2.22) -23.20(1.08)
Monocorophium insidiosum Crustacea 37.28 (5.91) -18.72(0.33)]35.90 (11.10) -18.96 (0.53)
Barleeia sp Gastropoda 21.80(2.89) -16.95(1.15)
Cincinalidae adult sp. 1 Insecta 15.7 -20.44
Coryxidae sp. 1 Insecta 15.05(0.84) -18.67 (0.73)
Fly sp. 1 Insecta 9.41 -2491
Enchytraidae Oligochaeta 11.96 -19.67
Paranais littoralis Oligochaeta 23.89 -20.01 48.57 (12.39) -15.81(1.81)
Pollen Plantae 10.69 -13.18 10.69 -13.18
Capitella sp. Complex Polychaeta 27.70 (9.97) -16.75 (1.84) 14.05 -18.48
Polydora nuchalis Polychaeta 24.13(3.75) -19.42(0.38) 56.59 -8.58
Turbellaria sp. 1 Turbellaria 21.52(3.93) -18.60 (0.28)
T4 Leaching
R. maritima zone intertidal zone
Species T ic Group, 5N 5°c 5N 5°c
microalgae Algae 14.36 (1.94) -23.08 (0.45)] 14.36 (1.94) -23.08 (0.45)
Monocorophium insidiosum Crustacea 30.95 -19.18 10.58 -21.10
Paranais littoralis Oligochaeta 16.29 -21.76 15.6 (0.61) -20.07 (0.40)
Polydora nuchalis Polychaeta 35.72 -20.39
T14
R. maritima zone intertidal zone
Species T ic Group| 5°N 5°c 5°N 5"c
POC Food source 5.73(0.39) -19.88 (0.02)
SOM Food source 746 (1.21) -15.60 (2.94)] 5.17(0.21) -14.79
microalgae Algae 13.95(5.71) -23.99 (0.57)] 12.43 (2.81) -22.63 (0.84)
Grandiderella japonica Crustacea 8.45 -17.11
Monocorophium insidiosum Crustacea 15.98 (1.96) -18.32(0.25)] 14.98 (1.13) -19.51(0.37)
Acteocina inculta Gastropoda 9.54 (1.04) -20.82(0.48)
Barleeia sp Gastropoda 28.42(16.91) -17.03 (0.62)
Coryxidae sp. 1 Insecta 9.72 (0.03) -22.68 (2.80)
Enchytraidae Oligochaeta 13.64 -16.80
Paranais littoralis Oligochaeta 25.77 (3.49) -18.23 (1.68)
Capitella sp. Complex Polychaeta 14.65 (2.82) -18.09 (0.38)] 16.83 (1.33) -18.41 (1.21)
Polydora nuchalis Polychaeta 20.49 (3.55) -18.00 (0.49)
Streblospio benedicti Polychaeta 12.71 -20.13
Turbellaria sp. 1 Turbellaria 14.15 (0.63) -18.81(0.30) 6.91 -17.08
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CHAPTER VII
CONCLUSIONS

In this dissertation, I tested the hypotheses that changes in plant communities
(species, height, density, cover) would have direct and indirect effects on the sediment
ecosystem. I developed apriori hypotheses, as shown in Figure 1a, predicting that loss of
the plant canopy would directly alter abiotic and sediment properties, benthic microalgal
community composition, and invertebrate community structure (Figure 7.1 a). In
addition, initial hypotheses predicted that changes to food sources (microalgae or
detritus) or to the abiotic parameters would have cascading effects on the invertebrate
community. Studies of three systems and four plant species demonstrated that changing
plant cover in different wetlands structures infaunal communities by distinct mechanisms
(Figure 7.1 b-d).

Edaphic characteristics of coastal wetlands exhibit gradients from sudtidal to
upland transition zones that correspond with elevation and frequency of tidal inundation
(Ellison et al. 1986, Bertness and Ellison 1987). Superimposed along these gradients,
marsh plants form distinct zones with physical tolerances, competition and positive
interactions affecting zonation (Chapman 1974, Pennings and Callaway 1992). Because
physical stresses in marshes are potentially limiting, modification of the habitat by
resident marsh plants is a pervasive and critical process mediating the structure and
organization of salt marsh communities. Wetlands would not exist without the
halophytic plants capable of thriving in the harsh edaphic conditions along the coast.

Thus, I hypothesized that the combination of physical and biological stresses along the
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marine to terrestrial continuum determine how the plants studied in my dissertation
structure their environments and which mechanisms are particularly important (Figure
7.2).

Subtidally, many seagrass species structure their physical environments through
general habitat creation and influence their biological associates by providing refuge
from predation, enhancing larval retention, and increasing food supply (Bruno and
Bertness 2001). Relative to other environments along the marine to terrestrial continuum,
subtidal habitats seem to be dominated by biological stressors (predation, food
availability, etc.) with fewer physical stressors because the benthic community is
continually submerged. While our research did not elucidate exact mechanisms (light
reduction and structure), it is clear that widgeongrass (Ruppia maritima) structures its
immediate environment, such as sediment properties, and the associated benthic
invertebrate community (Chapter VI) (Figure 7.1d). Our labeling experiments
demonstrate that Ruppia might be important as a detrital food source and as a structure
for the growth of epiphytes (Figure 7.1d).

In the high and mid salt marsh vegetation zones, two dominant plants (Spartina

foliosa and Sarcocornia pacifica (Salicornia virginica)) exert influence on abiotic
environmental factors and thus regulate the biotic community (Chapter II). When both
plant structure and light reduction capabilities were removed, marsh soils exhibited
harsher physical properties, a microalgal community composition shift towards increased
diatom dominance, and altered macrofaunal community composition. Plant removal
lowered species richness and produced a larger proportion of insect larvae and a smaller

proportion of annelids, crustaceans, and oligochaetes compared to shaded (plant removal,
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shade mimic) and control treatment plots. Plant cover removal also resulted in parallel
shifts in microalgal and macrofaunal isotopic signatures of the most dynamic species.
Our experiments demonstrate that the light reduction function provided by the vascular
plant canopy is crucial to maintaining the natural biotic community of southern California
salt marsh sediments in a zone where physical stressors dominate (Figure 7.1b).
Understanding these interactions is important because plant presence, density and height
are dynamic, altered by seasonality, climate or sea-level change, habitat degradation,
marsh restoration or plant invasion.

In much of western North America, riparian environments or upland transition
zones (UTZs) are the only part of the landscape moist enough to allow survival of trees.
UTZ landscapes are usually defined as ecotones or corridors between terrestrial and
marine realms (Malanson 1993). However, at this interface between marine and
terrestrial, these areas are very susceptible to disturbance from both aquatic and terrestrial
stressors, including upland plant invasion. One of the most problematic invaders in the
western United States has been salt cedar, Tamarix spp.. Large stands of different
invasive genotypes of tamarisk now reside in the salt marshes and upland transition zones
(UTZ) of Tijuana River National Estuarine Research Reserve (TRNERR). Similar to its
impacts in freshwater environments, tamarisk invasion into the salt marshes of TRNERR
altered physical conditions and invertebrate community assemblages in the middle marsh
zones where physical stressors are most significant regulators of invertebrate
communities. The mechanisms behind these alterations were not tested explicitly, but
tamarisk-invaded areas in all habitats did have reduced light energy reaching the

sediment as well as changes in sediment properties, indication both light reduction and
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structure as driving mechanisms of change for tamarisk (Figure 7.1c). Overall, these
changes in the middle marsh zone increase the speed of the marsh succession towards a
more terrestrial environment (Chapter V) (Figure 7.1¢). In the low marsh, inundated at
least once daily, few differences existed between invaded and native plots, leading us to
hypothesize that the effects of tamarisk are ameliorated by constant salt water inundation.
Within the upland transition zone, changes in physical and biological parameters between
tamarisk-invaded and natural plots were minimal, perhaps indicative of infrequent
complete inundation in this zone. Isotope enrichment experiments demonstrate that diets
of several native consumers now include N derived from invasive tamarisk, increasing
the chances that tamarisk can alter ecosystem functioning in terms of trophic transfer
(Chapter 1V) (Figure 7.1c).
General Implications of Research

Results of this dissertation contribute to both theoretical and applied ecology and
conservation science. It is well known that plants in marine ecosystems are habitat
modifiers, and this dissertation research has furthered defined the mechanisms driving
these modifications. I have focused on how the structuring ability of plants varies along
an elevation and salinity gradient. In addition, the results suggest adaptive management
solutions for southern California wetlands that are affected by varied anthropogenic
influences (invasion by non-native plants, altered lagoon inlet status).

This research illustrates the use of stable isotope enrichment experiments for
several purposes: (1) to describe alterations to a food web under different plant
conditions, (2) to trace the fate of a plant invader as it moves through the food web

system, and (3) to describe the trophic importance of a native, ephemeral seagrass. This
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technique has great potential for use in experiments throughout marine ecology,
especially to study food webs in systems where natural isotope signatures overlap or
where organisms of concern are too small for gut content analysis. While exact methods
will depend on the local environmental conditions as well as health of the ecosystem and
the type of plant in question, using stable isotope techniques to understand detrital input
at the base of the food web will further our knowledge of how trophic shifts can occur
and of how best to manage wetland ecosystems.

In addition to methodological and theoretical advances, our research can be
applied to adaptive management strategies, particularly for predicting ecosystem response
to large-scale perturbations, such as plant species switching, invasion, or flushing regime
shifts. We have increased understanding of sequential consequences of changing salt
marsh plant cover. Such changes occur with climate change, sea-level rise, coastal
development, habitat restoration or plant invasion. In addition, we can predict that
intertidal salt marshes of arid climates are a habitat vulnerable to invasion by tamarisk
and that the potential impact of tamarisk within this environment is significant. This
highlights the need for managers and scientists to be aware of the problems associated
with tamarisk invasion of coastal marine habitats and to take early and aggressive action
to combat any incipient invasion. Finally, it should be recognized that manipulation of
inlet status in southern Californian lagoon systems can drive ecosystem change, involving
the loss of an important ecosystem-structuring plant, Ruppia maritima, within the lagoon
ecosystem.

This research develops several experimental methods which isolate mechanisms

of wetland plant influence and allow us to make generalizations across important
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structuring gradients in salt marsh ecosystems. As wetland ecology progresses as a
discipline, our hypotheses about the mechanisms by which marine vascular plants
structure the environments will continue to be tested and refined through both

comparative and manipulative research.
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Conclusions
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