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Abstract 
 

As the clinical focus of cancer therapeutics shift from systemic toxins to targeted 

therapy, the ability to systematically identify promising candidates for multi-targeted 

cancer therapy is an increasing concern. Since screening for epistatic phenotypes offers a 

direct analog to the theoretical regimes used to evaluate synergistic activity of multi-

targeted chemotherapy, high-throughput yeast genetics of the nutrient signaling pathway 

was explored in order to better characterize the signaling network, and discover 

candidates that synergize with the TOR kinase. Epistatic profiling of S. pombe and S. 

cerevisiae showed a high degree of network and functional conservation between the two 

species of yeast and to metazoans which was used to identify members of the TOR 

signaling network in yeast. Further, we developed the first method to selectively inhibit 

TOR complex 2 using pharmacology. We use this tool to profile the signaling network of 

TORC2 and show that this complex plays a regulatory role in the pentose phosphate 

pathway (PPP) that furnishes nucleotides and amino acids that are required for ribosome 

biogenesis. 
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Chapter 1: Introduction 
 

As targeted chemotherapeutics become more widespread in clinical applications, 

the value and need for secondary targets that synergize for greater therapeutic efficacy 

will increase. Interest in the synergistic effect between two or more targets has led many 

clinicians and researchers to pursue polypharmcology—the simultaneous inhibition of 

several targets to achieve greater therapeutic efficacy. Clinical success using this strategy 

was first achieved with the combination of methotrexate and vincristine in the 1960s for 

treatment of childhood acute lymphoblastic leukemia and was subsequently extended to 

include other cancers (Chabner and Roberts, 2005). While many strategies have been 

used in attempts to identify synergistic effects between compounds, currently available 

systematic methods to predict high-value candidates are insufficient. The aim of this 

thesis is to explore the utility of high-throughput chemical genetics in selecting high-

value candidates that could be used to develop combination chemotherapeutics. 

Why targeted therapy 
Molecularly targeted therapy takes advantage of the most recent advances in 

knowledge in cancer signaling and current tools to deliver a treatment that cures cancer 

more effectively with fewer side effects than more general alternatives (de Bono and 

Ashworth, 2010; Yap and Workman, 2012). Until relatively recently, drug treatment of 

cancer mainly involved cytotoxic chemotherapy that kills all rapidly dividing cells 

whether they were tumor or normal cells. The debilitating nature of this type of therapy is 

something researchers, physicians, and patients all have a strong interest in avoiding. As 

the mechanistic drivers of oncogenesis have been identified, it has become increasingly 
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possible to develop molecularly targeted therapies that selectively kill cancer cells over 

normal cells and avoid some of the most onerous side effects of cytotoxic therapy. 

Targeted therapeutics promise results with fewer side effects than cytotoxic alternatives 

and because of this are the primary focus of current and future drug development 

initiatives. Using a targeted approach, the most important challenge is to overcome solve 

the interrelated problems of genetic heterogeneity and drug resistance using intelligent 

drug combinations. 

Why Target Kinases 
Kinase inhibitors comprise one of the largest and fastest growing classes of new 

cancer drugs offering the greatest potential for effective polypharmacology. The focused 

effort on kinase drug development is not surprising considering kinases and their direct 

regulators comprise the most frequently mutated genes in cancer (Parsons et al., 2005; 

Wood et al., 2007). The success of targeting single kinases has been mixed due to rapidly 

emerging drug resistance and significant toxicity that limits the use of several of these 

agents to doses that do not block cancer growth (Boss et al., 2009; Haura et al., 2010). 

However, the majority of clinically successful drugs target multiple kinases (Knight et 

al., 2010; Mestres et al., 2009), suggesting that a multi-targeted approach using kinase 

inhibitors is a verified strategy. 

Why multi-target therapy 
While molecularly targeted therapies limit side effects, it has become apparent 

that a multi-target approach is more effective than selective targeting of a single 

oncogene. Initially, a single target approach was seen as promising due to the 

phenomenon of oncogene addiction wherein tumor cell survival becomes dependent on 



  3 

 

overactive signaling of an oncogene and cells die when this signaling is reduced (Luo et 

al., 2009). However, further studies showed that single targeted therapy were more 

susceptible to common mechanisms of escape that allow the tumor cells to evade or 

evolve resistance to the therapy. These mechanisms include decreased metabolic 

activation or enhanced degradation of the drug, increased expression of the drug target, 

alteration of the target or pathway to reduce sensitivity, and reduced uptake of the drug 

(Brockman, 1963). More recently, deep sequencing has allowed characterization of 

extensive tumor heterogeneity that allows clonal evolution of resistant cells under the 

selective pressure of therapy (Gerlinger et al., 2012; Greaves and Maley, 2012). These 

genetically distinct drivers are able to substitute as the primary drivers of tumor growth 

when a targeted agent blocks growth of a subset of the tumor population. Newer, multi-

targeted approaches take into account oncogene and nononcogene addiction, synthetic 

lethatities, and other pathway dependent vulnerabilities that can result in selective 

therapeutic effect on specific malignancies (de Bono and Ashworth, 2010; Yap and 

Workman, 2012). Multiple targets limit the ability of tumors to evade or evolve 

resistance to a given therapy. 

How do we choose secondary targets 
The full potential of multi-targeted cancer therapy will only be realized through 

identification of the best possible drug combinations. This will demand the use of 

emerging technologies such as next generation sequencing, systems biology, and novel 

computational approaches (Chen et al., 2012). To date the most common method 

employed to discover multi-targeted therapy regimes is by empirical testing of approved 

therapeutics in combination to see if there is some additive efficacy when the drugs are 
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dosed together. While this empirical strategy has led to several effective clinical 

combinations, the lack of a systematic approach makes progress toward future, 

potentially more efficacious combinations slow.  

Sometimes selection is not rational at all, but due to serendipitous ‘off-target’ 

activity of a single chemotherapeutic. However, theses off targets may act as secondary 

targets that contribute to therapeutic efficacy as is the case with Sorafanib (Wilhelm et 

al., 2006). Sorafanib was initially developed as a RAF kinase inhibitor, but its anticancer 

activity was later attributed to its inhibition of VEGFR2 and PDGFR (Ahmad and Eisen, 

2004). 

A new standard practice is needed for systematic identification of combination 

therapeutics that is sufficiently specific as to suggest likely targets for combination 

therapy while sufficiently general as to allow for collection and development of rules 

(selection criteria) for combination therapies. 

Difficulty of Systematic Screening 
Even screening combinations of approved therapies is difficult due to the scale of 

the challenge. To do a systematic screen of the approximately 250 small molecule 

anticancer agents that are currently approved, the total number of unique binary 

combinations (irrespective of dosing) is ~31,000. Systematically screening these binary 

combinations against a pre-defined set of tumor cell lines such as the NCI-60 tumor panel 

(Shoemaker, 2006) would increase the combinatorial complexity to almost 2 million 

distinct observations. For the approximately 1,200 compounds currently in development, 

the complexity rises to 720,000 binary combinations that would generate more than 43 

million observations screened against the NCI-60 panel. Although not all of these 



  5 

 

combinations make mechanistic sense, the complexity is further increased if 

nononcogene addiction, synthetic lethality, and other considerations are included in the 

analysis. 

Another promising approach is in vivo phenotype based screening of whole 

organisms with potential chemotherapeutics. This type of approach for rational drug 

development combines the strengths of target and phenotype-based drug discovery (Dar 

et al., 2012). Dar and coworkers show that by tailoring the inhibition profile of a single 

chemotherapeutic while using a Ret-kinase driven model of multiple endocrine neoplasia 

in Drosophila to test their results, they could optimize the inhibition strategy to rescue 

oncogenic lethality and avoid reduced efficacy and enhanced toxicity of closely related 

Ret inhibitors. This type of in vivo screening could be used to great effect to test 

hypotheses derived from high throughput screening performed in vitro or in more distant 

model organisms. 

A key need, therefore, are systematic methods to evaluate and prioritize the best 

potential combinations for testing using an intelligent combination of computational and 

experimental biology, pharmacology, and high throughput technologies (Hawkins et al., 

2010; Iadevaia et al., 2010). 

Common modes of action for combination Therapeutics 
There are several potential approaches to the rational selection of drug targets 

based on specific mutations, or their roles in the cell as central signal integrators for 

several pathways that promote oncogenic signaling. If a rational selection is made, once a 

target is selected, there are typically only a few structural approaches to maximize the 
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combined therapeutic of the second target. These approaches can be roughly referred to 

as same target inhibition, vertical inhibition, and horizontal inhibition.  

Same target inhibition typically refers to inhibiting the same target with multiple 

drugs. For example, an antibody therapy to a receptor tyrosine kinase (RTK) can be 

combined with a kinase inhibitor to achieve more complete inhibition of the RTK 

signaling. The definition can be broadened to include inhibition of several targets that 

share the same function. A good example of this mode of combination therapy is with 

oncogenic receptor tyrosine kinases (RTKs). Activation of oncogenes and inactivation of 

tumor suppressor genes downstream of RTKs leads to activation of oncogenic signaling. 

Efficacy of targeted therapies can be enhanced, or resistance can be overcome by 

simultaneous targeting of multiple RTKs. 

Combinatorial targeting within a linear oncogenic pathway is called vertical 

inhibition. Vertical inhibition could include the receptor at the start of the pathway and a 

signaling checkpoint downstream of the receptor. Due to the fact that the androgen 

receptor pathway remains the main oncogenic driver in metastatic castrate-resistant 

prostate cancer (de Bono et al., 2011), the successful clinical intervention using the 

CYP17 inhibitor abiraterone and the potent androgen receptor antagonist enzalutamide 

demonstrates the efficacy of vertical inhibition. In addition to the fact that vertical 

inhibition is a verified strategy for cancer treatment, it is also an easily testable phenotype 

in genetic and chemical genetic screening. This screening can be performed in high-

throughput fashion in model organisms and allows the vertical interaction between 

targets (often referred to as a linear, buffering, or positive interaction) to be identified. 
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In constrast, horizontal inhibition entails combinatorial targeting of parallel 

oncogenic singling pathways to affect a synthetic lethal phenotype on inhibited cells. An 

example of clinical pursuit of a horizontal inhibition strategy is based on the observation 

that phosphorylation of AKT increases when inhibitors of a kinase acting in a parallel 

pathway (MEK) is inhibited. Preliminary efficacy of the combination of a MEK inhibitor 

(AZD6244) and an allosteric AKT inhibitor (MK2206) has been shown in NSCLC cancer 

in ongoing clinical trials. Horizontal inhibition also forms the basis for phenotype based 

high-throughput screening. In these screens horizontal interactions are referred to as 

synthetic/sick, parallel, or negative interactions between targets. 

Regardless of the rational logic of multi-targeted inhibition, the most important 

problem to overcome is the additive (or in some cases multiplicative) toxicity of the 

combination that can lead to clinical failure. This increased toxicity led to the notable 

failure of bevacizumab and sunitinib (both VEGF targeting agents), which in 

combination lead to hypertension and hemolytic anemia (Moroney et al., 2010). In 

contrast, the combination of BRAF (GSK2118436) and MEK (GSK1120212) inhibitors 

in a vertical inhibition scheme leads to acceptable levels of toxicity, high clinical 

efficicacy, and avoids a well characterized mechanism of resistance to BRAF inhibition 

resulting in paradoxical activation of CRAF in healthy cells following treatment (Heidorn 

et al., 2010; Poulikakos et al., 2010). 

Importance of unbiased approaches to drug combinations 
The most effective approach toward identification of novel combination therapies 

are unbiased screening strategies. These strategies provide an important complement to 

hypothesis driven and empirical approaches to identify new, potentially effective drug 
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combinations. The two most frequently employed techniques for unbiased target 

screening are multi-drug screens on cultured cells, and genome-wide loss or gain of 

function screens in tumor cells where gain or loss of function can identify genes that 

confer sensitivity or resistance to chemotherapy. 

Combination screening of licensed drugs using high-throughput methods can be 

used to great effect to identify synergistic interactions with clinically available 

compounds (Keith et al., 2005). Such screening uncovered that the combination of the 

antiparasitic agent pentamidine and the antipsychotic chlorpromazine result in synergistic 

effect in preventing cancer cells from undergoing mitosis. Similarly, an unbiased RNAi 

screen identified feedback activation of EGFR as a cause of resistance of colon cancer 

cells to BRAF inhibition. These data suggest the use of BRAF and EGFR inhibitors in 

BRAF mutant cells that overexpress EGFR may be a good treatment strategy for colon 

cancers (Prahallad et al., 2012). 

The objective of unbiased screens should be to construct a human cellular wiring 

map that can model aberrant signaling phenomenon that result from cancer and suggest 

multitarget intervention strategies based on computational overlay of available 

therapeutics and drugs that are in development. While this goal is years off by any 

measure, a goal that is tractable with current methods and techniques is high throughput 

chemical genetic screens in model organisms and using evolutionary conservation among 

pathways and processes to infer functional connections in higher organisms. Further, 

these methods can offer a first look at synergistic interactions that result from chemical or 

genetic knockdown of cellular components. 



  9 

 

Determining synergy for a chemical genetic phenomenon is complicated since 

historical precedent uses different models to evaluate the null-interaction or non-

interacting genes in a biological context. While genetic interaction models typically rely 

on a multiplicative model to evaluate non-interacting genes (Bliss independence, cite), 

chemical interaction models typically rely on additive models (Lowe additivity, cite), 

which is the dose-additive expectation for a drug added to itself. To account for this 

controversy we have adopted a hybrid theory for chemical-genetic interactions in our 

study that incorporates a multiplicative model following Bliss independence in 

combination with a null-effect reference containing no chemical perturbation. 

We have undertaken several approaches to combination chemical-genetics. A 

forward genetic screen in S. pombe allowed us to characterize the effect of known human 

TOR inhibitors for their conserved behavior. Incorporation of these strains into a 

genetically robust species cross-comparison of double mutants across the genome 

allowed us to map the network connectivity and characterize the functions of previously 

unannotated genotypes that play important roles in TOR signaling. 

Further, we endeavor to create a generalizable platform with which researchers 

may systematically study synergistic interactions in combination with predefined 

therapeutic targets. This platform is sufficiently broad and unbiased and has the 

capability to identify novel targets and novel pathways that work in concert or 

communicate with the predefined therapeutic target. The platform is also sufficiently 

specific that it reports on the catalytic activity of the enzyme involved rather than 

reporting on secondary consequences of the technique such as destruction of a protein 

complex or the loss of a scaffolding interaction. 
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In this dissertation, we have applied the tools of yeast genetics and chemical 

biology to the problem of finding high-value secondary targets to be used in combination 

with TOR inhibitors that are currently in development as therapeutics. Our approach 

simultaneously offers new evidence toward signaling roles that TOR plays in the cell and 

offers interesting targets both in horizontal and vertical inhibition schemes that may have 

high potential as combination therapeutics.  
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Chapter 2: Conservation of Genetic Interactions in Yeast 

Introduction 
The genetic equivalent of synergistic drug interactions is the phenomenon of 

epistasis. Epistasis occurs when the phenotype of one gene is affected by the presence or 

absence of another gene, relationships that are termed genetic (or epistatic) interactions 

(GIs). Unlike protein-protein interactions (PPIs), which are limited to gene products that 

physically interact, GIs report on functional relationships, and reveal how groups of 

proteins work together to carry out high level biological functions and describe the cross-

talk between pathways and processes (Beltrao et al., 2010).  Thus, GI networks are a 

natural complement to PPI maps and integrating these two types of information has 

proven to be extremely powerful in understanding complex biological phenomenon in a 

variety of systems (Bandyopadhyay et al., 2008; Collins et al., 2007; Hannum et al., 

2009; Kelley and Ideker, 2005; Keogh et al., 2005; Wilmes et al., 2008). 

Since genetic interactions serve as a bridge between genotype and phenotype, 

they are instrumental in revealing functional redundancies in biological networks. For 

example, in S. cerevisiae, only ~1100 individual gene deletions are lethal in rich media 

(Giaever et al., 2002) while ~11,000 pairwise deletions have been reported to cause cell 

death (Stark et al., 2011). It has been suggested that genetic interactions are vital to 

understanding the causes of human disease (Lehner, 2007). The combination of these 

tools with targeted chemistry may be even more vital in uncovering secondary targets for 

chemotherapeutic development. 

Genetic interactions can be divided into three broad categories: 1) aggravating 

(negative), where the phenotype is stronger than is expected from the phenotypes 
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associated with the single perturbations; 2) alleviating (positive), where the compounded 

phenotype is weaker than anticipated and 3) neutral, where the measured phenotypic 

consequence is as expected (Figure 1) (Beltrao et al., 2010; Phillips, 2008). Frameworks 

for modeling and scoring genetic interactions are normally centered at zero (i.e. neutral 

interactions) (Baryshnikova et al., 2010; Collins et al., 2010; 2006; Horn et al., 2011; 

Schuldiner et al., 2005) and have been developed to capture a continuous spectrum of 

phenotypic strengths. The bulk of the available data has been generated in the budding 

yeast, S. cerevisiae, where fitness (often derived from colony size) is the most commonly 

used as a phenotypic readout. Several methodologies have been developed to identify and 

quantify these relationships in a variety of other organisms, including E. coli (Butland et 

al., 2008; Typas et al., 2008), S. pombe (Dixon et al., 2008; Roguev et al., 2007), C. 

elegans (Byrne et al., 2007; Lehner et al., 2006) and D. melanogaster (Horn et al., 2011), 

by either deleting, mutating or knocking down expression of genes in a pair-wise fashion.  

 
Figure 1. Theory of Genetic interactions 
Growth phenotypes at left can interact neutrally, positively, or negatively. 

To date, genome-wide epistasis data has only been available for S. cerevisiae 

(Costanzo et al., 2010). In other organisms, the available datasets are either small in scale 

(Tischler et al., 2008) or focused on specific processes or pathways, including an analysis 

of chromatin function in S. pombe (Roguev et al., 2008), cell envelope biogenesis in E. 
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coli (Babu et al., 2011), and signaling networks in D. melanogaster (Horn et al., 2011) 

and C. elegans (Byrne et al., 2007; Lehner et al., 2006). Therefore, the extent to which 

genetic interactions are conserved across species remains an open question. While earlier 

work has reported specific trends relating to the conservation and evolution of GIs (Byrne 

et al., 2007; Dixon et al., 2008; Roguev et al., 2008; Tischler et al., 2008), it is not clear 

how much of the knowledge learned in one species can be applied to others and which 

individual interactions and network features are likely to be conserved. 

In this study, we present a genome-wide, quantitative genetic interaction map (or 

E-MAP) for the fission yeast, S. pombe. It is estimated that S. pombe diverged from S. 

cerevisiae ~400 million years ago (Sipiczki, 2000) and in many ways is more similar to 

metazoans, including with respect to mRNA splicing (due to the extensive presence of 

introns), gene expression controlled in part by the RNAi machinery, metazoan-like 

epigenetic mechanisms, and cell cycle regulation by the G2/M transition control 

(Sunnerhagen and Piskur, 2010). 

 Our data allows for a comprehensive functional interrogation of these (and other) 

biological processes and facilitated the creation of a global S. pombe map of functional 

modules and assignment of specific function to many previously uncharacterized genes. 

Finally, comparing these data to a newly consolidated GI map from S. cerevisiae has 

allowed for an unprecedented comparison of the genetic architecture of two organisms, 

revealing global trends that arguably exist in all eukaryotic species (Ryan et al., 2012). 

These global trends support the generality of potential secondary therapeutic targets for 

higher organisms derived from experimental results from organisms that do not suffer 

from cancer. 
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We give special attention in our analysis of this large dataset to the Target of 

Rapamycin (TOR) since it is an essential control point in cancer that plays a role in 

cancer progression. Discovering epistatic interactions with this complex and proving a 

high degree of network conservation between organisms provides strong evidence that 

could greatly aid the development of synergistic therapeutics. 

Results and Discussion 

A global genetic interaction map in S. pombe 
Krogan and coworkers developed a system, termed PEM (Pombe Epistasis 

Mapper) (Roguev et al., 2007), which allows for the systematic creation of double 

mutants in fission yeast using a high-density, plate based assay. Using the PEM 

technology, we screened 953 alleles (Appendix A, Table S1) of 876 genes against a 

fission yeast mutant library containing more than 2000 deletions (Appendix A, Table S1), 

including tens of queries specifically related to the TOR signaling pathway (Table S4) 

resulting in ~1.6 million pairwise measurements (Appendix A, Datasets S1, S2, S4). The 

majority of the genes screened are broadly conserved across eukaryotes, with subsets that 

are fungi- and fission yeast-specific (Figure 2A; Appendix A, Table S1). Using all of the 

individual genetic interactions for each mutant, we obtained interaction profiles for ~50% 

of the genome, resulting in representation of over half of the non-essential components of 

virtually every major biological process (Figure 2B; Appendix A, Table S2). Both 

internal and external validation showed the data to be of high quality and reproducibility. 

All genetic interaction data is included in a searchable and interactive website 

(http://interactome-cmp.ucsf.edu/pombe2012). 
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Figure 2. Conservation of Functional Genes 
(A) Species distribution of the genes in the fission yeast E-MAP. For a complete list of 
the genes in each category, see Table S1 (B) Coverage of the non-essential genes 
genetically analysed in this study with respect to different biological processes. Shown 
are genes present on the library array from Bioneer (http://pombe.bioneer.co.kr/) only 
(blue), as queries only (red) and present as both arrays and queriess (orange). For each 
process, the total number of non-essential genes present in the E-MAP is given as the 
figure in brackets. For a full assignment of genes to different biological processes, see 
Table S3 
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A global map of functional modules in S. pombe 
Krogan and coworkers previously reported that pairs of genes with similar genetic 

interaction profiles frequently encode proteins that belong to the same protein complex or 

work in the same functional pathway in fission yeast (Roguev et al., 2008), a network 

feature also observed in S. cerevisiae (Beltrao et al., 2010; Collins et al., 2007; 

Schuldiner et al., 2005; Tong et al., 2004). In attempt to represent the entire dataset in an 

intuitive fashion, the profile from each mutant was compared to the profiles of all other 

mutants on the E-MAP and a similarity score was generated for each pair of mutants 

(Appendix A, Dataset S3). These similarity scores were then subjected to hierarchical 

clustering (Appendix A, Dataset S4), grouping genes that have similar genetic interaction 

profiles, suggesting that they are functionally related and/or their protein products are 

physically associated (Figure 3). Many known protein complexes were recapitulated from 

this matrix, including the SWR-C chromatin-remodelling complex (Kobor et al., 2004; 

Krogan et al., 2003; Mizuguchi et al., 2004), CTDK-C (Sterner et al., 1995) and the 

GCN5 module of SAGA (Helmlinger et al., 2008), complexes that regulate transcription 

by RNA polymerase II, the retromer complex (Iwaki et al., 2006; Seaman et al., 1998), as 

well as the large and small components of the ribosome (Figure 3). Protein complexes 

whose subunits are entirely essential in S. cerevisiae, and thus difficult to genetically 

interrogate in that organism, were also identified, including the chromosome segregation 

complex, DASH-C (Figure 3). Interestingly, subunits of DASH-C clustered with the 

kinesins klp5 and klp6, whose protein products form a heterocomplex (Garcia et al., 

2002) which functionally overlaps DASH-C in establishing bipolar chromosome 

attachment during mitosis (Sanchez-Perez et al., 2005). dad1 has a lower similarity score 
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to other members of DASH-C (Figure 3), consistent with its unique role as a constitutive 

component of the kinetochore (Sanchez-Perez et al., 2005).  

As genetic data allows for the grouping together of factors that work together but 

are not necessarily physically associated, we were also able to identify several previously 

characterized functional pathways. These included components of RNAi pathway, the 

AP3 adaptor complex with vam7, components of the DNA damage checkpoint pathway 

and factors involved in protein glycosylation and TOR signaling (Figure 3). The TOR 

pathway in fission yeast, like that in higher eukaryotes, has a tuberous sclerosis complex 

composed of tsc1 and tsc2 that acts as a regulator for TOR signaling. In contrast to its 

regulatory role on TOR Complex 1 where TSC negatively regulates TOR via GTPase 

RHEB, the TSC complex has been shown to be necessary for activation of TOR Complex 

2 in mammalian cells (Huang et al., 2008). Consistent with this role, tsc1 and tsc2 group 

together with members of the TORC2 complex, including tor1 and tsc11 (Figure 3). 

Within the TORC2 group is the uncharacterized gene SPBC1778.05c, which shows high 

sequence similarity (39%) (Figure 4) with the human gene LAMTOR—a factor known to 

regulate the Tor pathway (Sancak et al., 2010). This high sequence similarity and our 

genetic evidence linking SPBC1778.05c to the TOR pathway, suggests that this gene is 

the S. pombe LAMTOR2 ortholog. 
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Figure 3. Hierarchical clustering of genetic interaction profiles 
Genes are grouped based on the similarity of their genetic interaction profiles. Modules 
discussed in the text are magnified and labeled and uncharacterized genes within these 
modules are highlighted in bold red. Genes are labelled using their S. pombe common 
name, followed by the common names of their S. cerevisiae orthologs if present (with 
paralogs separated by underscores). Only genes with at least one similarity score ≥ 0.1 
are included in this representation, however the similarity scores for all gene pairs are 
provided in Dataset S3 and the Treeview file used to create this figure is in Dataset S4.  
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Figure 4. LAMTOR sequence alignment 
Protein sequence alignment shows high sequence conservation between mammalian 
LAMTOR and S. pombe ortholog, particularly in structured regions of the protein. 

Network Interactions with TOR Pathway Genes 
To analyze the results of the screen, we conducted network analysis to reveal 

genes that behave as signaling hubs in the TOR network (Figure 5). These genes show 

enrichment for significant genetic interactions above and were used to generate 

characteristic networks showing the genes in the interaction hubs  

 The interaction network between gad8, and the tsc complex offers confirmation 

that the technique is reporting interactions in accordance with expectations but also 

facilitates new observations. The nucleus of this network is gad8, a well-characterized 

substrate of TORC1 that is functionally equivalent to SCH9 in S. cerevisiae or S6K in 

mammals (undefined author et al., 2008).  Interestingly, a cluster of genes show strong 

positive interactions with gad8, tsc1, and tsc2, while other genes show strong negative 

interactions with tsc1 and tsc2, but no interaction with gad8. This suggests that among 

genes that function in pathway with the tsc complex are also in pathway with gad8, 

however genes acting in a parallel pathway do not functionally interact with outputs of 

TORC1. 
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Figure 5. Interaction hubs of TORC2.  
Shows functional interactions between the highest coorelation-coefficient hubs in the 
TOR pathway (tsc1, tsc2, gad8, rad24), and those discovered in the genome wide screen. 

 

 
Figure 6. Rad24 network topology 
Rad24 had the most interconnected network topology with TORC1 and TORC2 
components. Positive interactions are in yellow, negative interactions are in blue. 
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Interactions with TOR Pathway Genes 
Strong interactions with previously annotated TOR pathway genes and 

interconnected network topology were the primary criterion used to evaluate hits for 

further follow up. The most interconnected hit among TORC1 and TORC2 genes was 

rad24 (Figure 6). 

 
Figure 7. Model of rad24 interaction 
When TORC1 is active rad24 binds its substrate and represses its activity, when TORC1 
is inactive or inactivated using rapamycin, the TORC1 substrate goes unphosphorylated 
and does not bind rad24. 

 

We hypothesized that rad24 could be used as a proxy for activity by TORC1 

based on the known function of rad24 (and rad25) as 14-3-3 proteins. 14-3-3 proteins are 

regulatory proteins that typically bind phosphorylated substrates in a bidentate fashion. 

We reasoned that if TORC1 was active, rad24 would bind its substrates which could be 

pulled down with an epitope-tagged rad24. However, if TORC1 was inactivated using 
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rapamycin, rad24 would not associate with its substrates and they would not be pulled 

down (Figure 7). 

A pulldown of epitope-tagged rad24 showed the protein was expressed at 

markedly different levels in concentration normalized lysates. The eluent of the pulldown 

was run on a silver stained gel and digests characterized using mass spectrometry showed 

an enrichment of peptides from ribosomal genes and peptides in glycolysis with a higher 

number of binding partners identified in the rapamycin treated compared to the untreated 

samples (Figure 8). Based on the positive genetic interactions observed with members of 

TORC2 and the abundance of evidence for feedback activation of the pathway upon 

rapamycin treatment (Sun et al., 2005) we propose this increase in binding partners of 

rad24 could be due to feedback activation of the pathway and/or compensation by 

TORC2. Results show the greatest changes to rad24 substrate binding induced by 

rapamycin occur in the pentose phosphate pathway (PPP) and in glycolysis (Figure 9). 

The increase in binding partners in the PPP and glycolysis makes sense given the central 

role of TOR as an integrator of nutrient signaling. 

 



  23 

 

 

 

 
Figure 8. Rad24 substrates and functional distribution 
Substrates of rad24 identified in triplicate measurement of untreated, treated, and found 
in both samples. Functional distribution of identified binding partners shown (right). 

 
Figure 9. Enriched pathways in rad24 pulldown 
Glycolysis and gluconeogenesis were the most highly enriched pathways in samples 
treated with rapamycin. 
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Identifiction of evolutionarily conserved functional modules  
To date, large-scale, quantitative genetic interaction data has only been collected 

in S. cerevisiae. However, the S. pombe dataset described in this study is the largest 

genetic interaction map generated in a species other than budding yeast, data that can 

allow, for the first time, an evolutionary analysis of the genetic architecture of two 

eukaryotic species. The utility of cross-species comparison of functional modules extends 

to using functional genetics experiments to predict secondary targets that could be 

interesting targets for cancer therapy. 

To facilitate this extensive cross-species analysis, we use a novel algorithm to 

integrate all existing quantitative genetic interaction data from S. cerevisiae into one 

dataset, including data from a recent genome wide screen (Costanzo et al., 2010) and 10 

smaller scale functionally focused E-MAP screens (Aguilar et al., 2010; Bandyopadhyay 

et al., 2010; Collins et al., 2007; Fiedler et al., 2009; Hoppins et al., 2011; Schuldiner et 

al., 2005; Wilmes et al., 2008; Zheng et al., 2010). The scoring system used to generate 

the genome wide dataset (SGA-score (Baryshnikova et al., 2010)) differs from that used 

to generate the functionally focused E-MAP datasets (S-score (Collins et al., 2010)), 

although both methods attempt to model the same biological phenomena.  

Ryan and coworkers first verified that the genome wide data was of similar 

quality to the functionally focused screens in terms of internal reproducibility, ability to 

predict known genetic interactions and using the similarity of genetic interaction profiles’ 

ability to predict protein-protein interactions. It verified that the genetic interaction scores 

from both methods were highly correlated. Despite this high correlation, the range and 

distribution of interaction scores from both methods was significantly different. In order 
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to overcome these differences, a non-linear scaling method was applied to the SGA data 

and this scaled dataset and the collated E-MAP datasets (Appendix A, Dataset S2) were 

merged into a single dataset (Appendix A, Dataset S4). 

The identification of conserved biological networks is a growing field of research 

(Sharan and Ideker, 2006). For example, methods have been developed to identify 

conserved linear pathways (Kelley et al., 2003) or protein complexes (Sharan et al., 2005) 

from protein interaction networks, or conserved co-regulated modules from gene 

expression (Stuart et al., 2003) or chromatin immunoprecipitation data (Tan et al., 2007). 

However, this work is the first global attempt to use genetic interaction profiles to 

identify conserved modules across species. Using a newly developed clustering 

procedure designed specifically to identify conserved functional modules from genetic 

interaction data, 105 evolutionarily conserved functional modules present in both species 

were identified (Figure 10). Gene Ontology (GO) analysis indicated that 61 of them are 

significantly enriched for known complexes, including the mitotic checkpoint complex 

(mad1, mad2, mad3, bub3) (Fraschini et al., 2001), or pathways, such as the alg genes 

involved in oligosaccharyl synthesis (alg5, alg6, alg8, alg9, alg12, die2) (Jakob, 1998). 

A literature survey of the remaining 44 modules revealed that, although not documented 

in the Gene Ontology, many of them belong to the same pathway or complex, including 

the Tma20/Tma22 translation complex (Fleischer et al., 2006) and Aim13/Fcj1 (Figure 

10), which is part of the recently discovered MitOS complex (Hoppins et al., 2011).  
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Figure 10. Conserved Functional Modules 
Groups of genes with highly correlated genetic interaction profiles in both S. pombe and 
S. cerevisae are shown. S. cerevisiae gene names were used for labeling, as many of the 
S. pombe orthologs lack common name. Modules are manually grouped and colored 
according to the biological process they are involved in. Modules from the insets are 
boxed and correspond to the Set3 complex (i), the Rpd3C(S) (ii) and the DSC complex 
(iii). A full list of the modules identified, and their S. pombe counterparts, is given in 
Table S2. For the immunoprecipitation assay in (iii), Dsc2 binding proteins were 
immunopurified from detergent lysates of wild-type and dsc2∆ cells using anti-Dsc2 
affinity purified polyclonal antibody. Equal amounts of total (lanes 1 and 2) and unbound 
fractions (lanes 3 and 4) along with 10× bound fractions (lanes 5 and 6) were 
immunoblotted using the indicated HRP-conjugated antibodies. Blue edges correspond to 
pairs of genes that have high E-MAP correlations, green edges represent pairs of factors 
that are physically associated from previous studies whereas dashed red edges represent 
paralogs within one species (Ryan et al., 2012). 
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Network feature conservation 
By comparing genetic interaction data derived from S. cerevisiae to other, 

orthogonal datasets, several interesting trends have been previously reported. For 

example, pairs of genes that display strong genetic interactions are significantly more 

likely than random gene pairs to share other biological features, such as similar deletion 

phenotypes (Tong et al., 2004), membership of the same biological process (Wilmes et 

al., 2008), and, particularly in the case of positive interactions, membership of the same 

protein complex (Collins et al., 2007; Schuldiner et al., 2005). This was confirmed by 

Ryan and coworkers (2012), suggesting the complexes would also be present in other 

eukaryotic species. Additionally, genes whose products are members of protein 

complexes display a disproportionally high number of genetic interactions (Michaut et 

al., 2011) and we find this network topology feature conserved in both S. cerevisiae and 

S. pombe. 

We also probed two classes of genes: sequence orphans and ortho-essential genes 

(e.g. genes non-essential in one species and essential in the other). We find that in both 

species, sequence orphans have significantly fewer genetic interactions when compared 

to other genes. These results are consistent with either of the two predominant 

interpretations for the existence of sequence orphans. First, the orphans are rapidly 

evolving, preventing the identification of a sequence ortholog, and the lack of genetic 

interactions represents a lack of functional constraints from other genes. A second 

explanation is that they have arisen de novo from non-coding regions and the lack of 

interactions indicates that they have not yet been fully integrated into the cellular 

network, a theory consistent with observations from protein-protein interaction networks 

(Capra et al., 2010). 
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Finally, in the two yeast species, 83% of the one–to-one orthologs have conserved 

dispensibility – they are essential or viable in both species (Michaut et al., 2011). We find 

that the remaining 17% (ortho-essential genes) have ~2.5 times more than average 

genetic interactions, suggesting that, although they are no longer essential for growth 

under standard laboratory conditions, they still contribute significantly to the robustness 

of the cell. Since we have observed many global genetic trends conserved in these two 

very divergent organisms, we suggest that they ultimately will be present throughout all 

eukaryotic species. 

Hierarchical modularity of genetic interactions 
Previous work has shown that the genetic interactions between components of 

protein complexes, especially positive interactions, are highly conserved between 

budding and fission yeast (Roguev et al., 2008). The data presented here support and 

expand these observations. To make our conservation calculations as accurate as 

possible, they were adjusted to take into account the reproducibility of different 

categories of interactions (Appendix A, Table S3). In addition to high conservation of 

positive genetic interactions within protein complexes (70%) (S-score > 1.8), we find a 

high degree of conservation for negative interactions (68%) (S-score < -2.3). This new 

finding suggests that not just the dependencies, but also the buffering relationships within 

complexes are highly conserved. These findings are consistent with data from other 

experimental methods suggesting that protein complexes are highly conserved across 

species (van Dam and Snel, 2008).   

However, biological systems do not exhibit just one level of modularity, since 

groups of complexes and pathways function together to carry out highly orchestrated and 
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complex cellular processes such as translation or mitosis. Indeed, upon careful scrutiny of 

the data presented in Figure 10, many instances of such hierarchical modularity can be 

found. For example, we identify two distinct clusters corresponding to the large and small 

ribosomal subunits, which are ultimately united in a single ‘ribosomal’ subtree (Appendix 

A, Figure S1). Moving higher up the tree reveals an even larger cluster encompassing 

many genes involved in translation regulation and ribosome biogenesis (Figure S1).  

Interestingly, using S-score cut-offs described above and process definitions 

obtained from the gene ontology (Appendix A, Tables S3), we find that interactions 

between genes belonging to the same biological process are less conserved than 

interactions within complexes (positive interactions: 58%; negative interactions: 38%), 

but significantly more conserved than interactions between genes functioning in separate 

processes (positive interactions: 19%; negative interactions: 15%). Analysis of the 

complete dataset is consistent with these observations: the genetic data between the two 

species becomes less conserved as larger modules are considered (same complex: r=0.46; 

same process: r=0.16; different process: r=0.03). These observations, combined with the 

fact that genes within the same complex or process are significantly more likely to 

interact than random gene pairs, suggests that biological systems exhibit multiple levels 

of modularity and that the rate of rewiring of genetic interactions is dependent on the 

specificity of the module they belong to. 

Global connectivity of biological processes 
Functional connectivity also exists between the different processes in the S. 

pombe and S. cerevisiae. The role of chromatin as a ‘hub process’ has previously been 

identified in a genome wide S. cerevisiae genetic interaction map (Costanzo et al., 2010) 
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and is also supported by smaller scale screens from C. elegans, suggesting that it may be 

a common feature of eukaryotic genetic interaction networks (Lehner et al., 2006). 

Conversely, we see that some processes, such as Amino Acid Metabolism and 

Transmembrane Transport, have very few genetic interactions, suggesting less cellular 

information is being passed through them, at least under the conditions used to collect the 

data. 

Comparison of E-MAPs in S. pombe and S. cerevisiae shows that at a global 

level, both organisms share remarkable similarities and the level of cross-talk between 

distinct biological processes highly conserved (Ryan et al., 2012). Several of the 

processes that show conserved genetic links are expected, including DNA metabolism 

with Mitosis/Chromosome Segragation and Translation with Ribosome 

Biogenesis/ncRNA Processing.  However, more intriguing connections also exist, 

including a link between Mitosis/Chromosome Segregation and mRNA Processing 

(Murakami et al., 2007; Tang et al., 2011). While further work will be required to 

understand the molecular mechanisms that link these different processes, the evolutionary 

conservation between both S. pombe and S. cerevisiae suggests that these links are likely 

to exist in other, potentially higher, eukaryotic organisms. 

Perspective 
By any rational standard, designs in biological systems are very complex and 

incredibly efficient. In the formal engineering and systems design sense, however, 

biological designs are not optimal (Kashtan and Alon, 2005). Indeed, the ability of the 

budding yeast to withstand perturbations to ~80% of its genes under standard laboratory 

conditions suggests that it has an excess of components, and is not optimized for 
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performance, at least under these conditions. However, outside of the laboratory, living 

systems must survive in a wide range of conditions, and be robust to a wide variety of 

mutations. Despite, and perhaps because of that, biological systems can achieve 

optimization or near optimization within defined constraints provided that there are limits 

on range of environmental conditions and possible designs. However, high level of 

optimization for any single task under specific conditions renders a system extremely 

fragile and vulnerable to change (Kitano, 2010). Hence, the designs observed in 

biological systems are merely a generic solution satisfying a subset of constraints and 

extreme degrees of optimization for a particular set of parameters are rarely observed. 

This lack of optimization makes biological systems very flexible, adaptable, robust and 

perhaps most importantly, evolvable. 

Our work and the work of Ryan and coworkers (2012) shows a hierarchical model 

of evolutionary conservation within genetic interactions networks. There appears to exist 

different constraints on the evolvability of different parts of the system. This is 

reminiscent of the concept of ‘coupling’ in software development and systems design, a 

measure of the degree to which different components of the system depend on each other 

to function. System designers often favor loose coupling between components, as it 

allows one component of the system to be changed without adversely affecting other 

components. One can think of a modern desktop computer as a loosely coupled system - 

for example, it is possible to remove a device (e.g. the CD drive) without being 

concerned that other parts of the system (monitor, keyboard etc.) will cease to function. 

At a lower level, each of these components is self-contained or encapsulated and 

integrates in the rest of the system via data channels (buses). It is this encapsulation that 
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poses constraints to only the individual component’s design while allowing high level 

flexibility: changing the motor of a floppy disc or CD drive will likely require other 

changes in the device itself but will not affect the system design as a whole. This makes it 

easy for components to be added and removed while preserving the overall design 

blueprint of the system. 

We see a very similar picture in genetic interactions networks: low-level 

functional modules are very highly conserved (immutable) with significant constraints 

over connections between modules involved in the same task (process). This allows for 

very economical design of different networks re-using the same small set of building 

blocks. Lesser restrictions are apparent over the wiring between different processes 

making this design paradigm very flexible and easy to evolve. And finally, similar to 

what is seen in computers, there appears to be a high level conservation of the flow of 

information through the network since the arrangement and thickness of GI bundles 

connecting different processes appears to be very similar between the two organisms. 

Therefore, our data suggests that information collected from model systems about 

connections between individual genes would not be as useful as inferences derived from 

functional module definitions and cross-talk between different processes. However, it 

appears that general systems-level properties of the networks studied may be conserved 

across species. The knowledge that in two distantly related organisms certain categories 

of genes are genetic interaction hubs, and that certain pairs of processes are densely 

connected by genetic interactions, should facilitate the development of rational 

experimental designs to tackle the difficult problem of searching for epistasis in 

mammalian systems. 
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Methods 

E-MAP data collection 

Strain construction 
Gene deletions were performed by homologous recombination of a linear DNA 

fragments carrying an antibiotic resistance marker (NAT or G418) flanked by long (> 

200 bp) stretches of homology to the targeted region. For mutants available in the 

deletion library (Bioneer) query strains were constructed by marker switching (G418 to 

NAT resistance) and subsequent deletion construct amplification and transformation in 

the acceptor genetic background. 

Raw data collection 
Genetic crosses were performed in high density (1536 format) on a Singer RoToR 

station using the PEM system (Roguev et al., 2007) and applying a previously published 

protocol (Collins et al., 2010). NAT-marked query mutant strains with PEM2 genetic 

background (for full list, see Table S1) were crossed to a library (Bioneer) of G418-

marked gene deletions for full list and library layout see Table S2 and double mutant 

phenotypes were scored using colony size as a readout. Data was collected in batches of 

25-35 queries and digital images were obtained at 24 and 48 hours after the final plating 

step. Colony sizes were measured using the ColonyMeasure Program 

(http://sourceforge.net/projects/ht-col-measurer/).  

Scoring of genetic interactions 
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Raw data was scored using a published MATLAB-based software toolbox 

(Collins et al., 2010). Individual batches were normalized and scored separately before 

merging into the final dataset, thus minimizing systematic experimental biases and batch-

to-batch variation. Wrong strains (e.g. strains with mis-annotated genotype) were 

identified and removed by comparing the expected and observed linkage curves. The 

dataset was further pruned for mutants with very noisy profiles and/or poor 

reproducibility between replicate screens. Data points caused by genetic linkage were 

removed from each profile using an adaptive threshold procedure. Finally, the internal 

consistency of the data was tested by comparing pair-wise genetic interaction scores from 

marked-swap and replicate experiments. 
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Chapter 3: Chemical-Genetics of Rapamycin Insensitive 
TORC2 in S. cerevisiae 

Introduction 
Kinase signaling networks are primary regulators of cell growth and division. 

Improper signaling caused by mutations to kinases is a major driver of cancer progression 

(Greenman et al., 2007; The Cancer Genome Atlas Research Network et al., 2013; Wood 

et al., 2007). The success of targeting single kinases has been mixed due to rapidly 

emerging drug resistance and significant toxicity that limits the use of several of these 

agents to doses that do not block cancer growth (Boss et al., 2009; Haura et al., 2010). In 

contrast, the vast majority of clinically available therapeutics have multiple targets 

(Knight et al., 2010; Mestres et al., 2009). Many of these off-targets contribute to the 

therapeutic efficacy but also increase the toxicity and side effects of these drugs. Many 

preclinical and clinical studies have empirically searched for synergistic activities of 

kinase-targeted therapies but systematic studies are far less common. In this study, we 

endeavor to systematically study synergistic interactions with TOR kinase activity. 

TOR is a primary integrator of proliferative signals and aberrant signaling by this 

kinase contributes to cancer (Casadio et al., 1999; Inoki et al., 2005; Kaeberlein et al., 

2005; Martin and Hall, 2005; Tee and Blenis, 2005; Tischmeyer et al., 2003). As clinical 

use of selective inhibitors of TOR complex 1 (TORC1) (rapamycin and its derivatives, 

rapalogs) become more widespread in cancer treatment and ATP-competitive inhibitors 

of both TORC1 and TORC2 (including BEZ235, INK-128/MLN0128, KU-0063794, and 

WYE-354) reach the clinic, the search for secondary targets to use in combination 

therapy will gain urgency.   
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In addition to the clinical utility of an efficient method to find secondary targets to 

use in combination with TOR inhibitors, we were motivated by the fundamental lack of 

understanding of TORC2 biology resulting from the lack of pharmacology to selectively 

inhibit this complex. While prior studies have identified roles for TORC2 in cytoskeletal 

reorganization, sphingolipid biosynthesis and ribosome biogenesis (Beeler et al., 1998; 

Breslow et al., 2008; Helliwell et al., 1998b; Roelants et al., 2004; Schmidt et al., 1997; 

Zinzalla et al., 2011), it has been impossible to monitor these interactions on a rapid 

timescale made possible by pharmacological inhibition. It has also been impossible to 

specifically trace the function of these interactions to the ‘kinase activity’ of TOR. 

While selective pharmacological inhibition of TORC2 in mammals is not easily 

achieved since both complexes share the same kinase, S. cerevisiae has two distinct 

kinase genes, TOR1 and TOR2 that can be independently inhibited. TORC1 can contain 

TOR1 or TOR2 and is rapamycin sensitive. TORC2 only contains TOR2 and is 

rapamycin insensitive (Loewith et al., 2002). The presence of distinct TOR kinases in 

yeast is a key advantage that enables independent modification of the active site of TOR2 

using chemical genetics to generate a selective inhibitor for a modified allele of TORC2 

(Bishop et al., 2000). 

To study the selective pharmacology of TORC2 inhibition, we engineered an 

allele of TOR2 (as-TOR2) to accept an orthogonal kinase inhibitor that would not inhibit 

TORC1. To generate an unbiased map of the signaling network that TORC2 participates 

in and to furnish a list of interesting secondary targets for combination therapy, we 

determined chemical-genetic interactions between the TORC2 kinase and 1000 non-

essential genes in S. cerevisiae.  For comparison, we generated a chemical genetic 
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interaction dataset using the TORC1 inhibitor rapamycin. This approach enabled 

independent investigation of genetic interactions arising from the catalytic activity of 

either TOR complex. 

Typically, genetic interactions report on how the function of one gene depends on 

the function of another. Negative interactions occur when two mutations cause the 

resulting double mutant to grow worse than expected relative to the growth rate of the 

two single mutants and indicates the two genes function in redundant or compensatory 

pathways. Positive interactions occur when the double mutant grows better than expected 

based on the phenotypes of the two single mutants suggesting the two genes function in 

the same complex or in a linear pathway (Beltrao et al., 2010; Collins et al., 2007; Fiedler 

et al., 2009; Kelley and Ideker, 2005; Roguev et al., 2008; Ryan et al., 2012; Schuldiner 

et al., 2005; Tong et al., 2004). Retaining this framework for interpretation, we developed 

a new tool for analysis of the dose-dependent effect due to drug treatment, termed 

Chemical Epistasis Mini-Array Profile (ChE-MAP). 

ChE-MAP is a pharmacological extension of the powerful E-MAP technology 

that typically relies on the growth phenotype of double deletion mutants (Collins et al., 

2006; 2010; Schuldiner et al., 2006) and enables dose-dependent kinase-gene interactions 

to be identified. The gene interactions are akin to an allelic series from hypomorphic (low 

dose drug treatment) to severe loss of function (high dose drug treatment). This approach 

contrasts with previous E-MAPs that used drugs to either induce or modify the phenotype 

in double-deletion mutants (Bandyopadhyay et al., 2010). Instead, interactions in our 

ChE-MAP result from the combined effects of a single deletion mutant and chemical 
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inhibition of TOR kinase activity. This analysis enables characterization of the TOR 

signaling network due to rapid inactivation of either TORC1 or TORC2. 

We used the ChE-MAP approach to provide an unbiased view of interactions with 

the catalytic function of the two TOR complexes. The results recapitulate known 

regulatory relationships between TORC2 and sphingolipid biosynthesis. Statistical 

analysis revealed enrichment in metabolic processes and analysis of metabolic pathways 

revealed an interaction network signature suggesting involvement of TORC2 in 

regulation the pentose phosphate pathway (PPP).  Further study showed levels of key 

metabolites in the PPP decreased in response to TORC2 inhibition, but not TORC1 

inhibition, suggesting a specific and previously unappreciated role for TORC2 in 

regulating cellular ribosides. 

Results and Discussion 

A chemical-genetic tool for studying TORC2 
Analog-sensitive kinases contain an active site mutation, termed the gatekeeper, 

that allows selective inhibition with a compound that is too bulky to fit into the active site 

of wild-type kinases (Bishop et al., 2000). This residue is typically a branched chain 

amino acid in the hydrophobic affinity pocket within the active site of the kinase (Buzko 

and Shokat, 2002). Mutation to a smaller residue permits binding of the bulky inhibitor. 

 Based on the homology of mTOR to PI3Kγ, we performed a structure-based 

alignment to identify the gatekeeper residue (I2237) of H. sapiens mTOR (Figure 11A). 

Insertion of mTOR inhibitor BEZ235 into the active site guided by the affinity of 

backbone carbonyl of V2227 to the quinoline nitrogen (the most common mode of kinase 

inhibitor binding) shows a steric clash with the hydrophobic pocket that is exacerbated in 
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the presence of other branched chain aliphatic residues such as leucine (shown in grey). 

In contrast, the reported wildtype TOR inhibitor in yeast, QL-IX-55 (Liu et al., 2012), 

containing the 2-aminopyridine in place of the quinoline shows no steric clash. We 

reasoned that we could mutate the gatekeeper to a smaller residue in order to make space 

in the hydrophobic affinity pocket to accommodate a larger inhibitor. We then performed 

a sequence alignment to identify the conserved leucine gatekeeper in yeast TOR (Figure 

11B). The gatekeeper residue of S. cerevisiae TOR2 was identified as L2178, mutated to 

alanine, and genomically integrated into the TOR2 locus yielding cells containing as-

TOR2. 

Since TOR2 kinase activity is essential in S. cerevisiae, replacement of TOR2 

with a mutant that supports viability indicates that the as-TOR2 allele is catalytically 

active. Screening of the mutant kinase against a panel of ~40 ATP-analogs and kinase 

inhibitors (Appendix B, Figure S2) revealed that the as-TOR2 allele was selectively 

inhibited by a single agent, BEZ235, while the growth of wt-TOR2 was affected by this 

compound only at the highest concentrations tested (Figure 11B). Nearly equivalent 

growth rates of wild-type and analog-sensitive (as) alleles on YPD plates (Figure 11C) as 

well as in culture indicate the as-TOR2 is capable of supporting growth. Typical chemical 

scaffolds for inhibition of analog-sensitive kinases based on a pyrazolo-pyrimidine 

scaffold (Bishop et al., 2000), or compounds designed to target the gatekeeper residue of 

lipid kinases (Alaimo et al., 2005) showed no activity toward as-TOR2 (Appendix B, 

Figure S1). While BEZ235 is a potent mTOR inhibitor in mammals, it only has activity 

toward wild-type yeast at high concentrations (Figure 11C, 11D, 11E). 

 



  40 

 

 
Figure 11. Modeling and Characterization of the as-TOR2 allele 
(A) Homology model of mTOR based on the structure of PI3Kγ shown with the 
gatekeeper residue in gray. The known S. cerevisiae TOR1/TOR2 inhibitor QL-IX-55 
(purple) and BEZ235 (magenta) were oriented based on a typical h-bonding interaction 
with the backbone carbonyl of valine in the active site at VanDer Waals distances away 
from other residues that form the ATP-binding pocket. The isoleucine gatekeeper clash 
with BEZ235 is exacerbated by mutation to leucine and alleviated by mutation to alanine. 
The smaller QL-IX-55 does not sense this residue. (B) Sequence alignment shows the 
gatekeeper residue (in purple) is isoleucine in mTOR and leucine in all other cases. The 
active site is highly conserved. (C) as-TOR2 has an identical growth rate to wt-TOR2 
when grown on YPD. At higher doses (1µM BEZ235), growth of as-TOR2 is inhibited 
while wt-TOR2 is unaffected. Growth of wt-TOR2 begins to be affected at 2µM 
BEZ235. (D) EC50 of as-TOR2 and wt-TOR2 growing in culture. as-TOR2 is 
significantly more sensitive to BEZ235 than wt-TOR2. (E) IC50 values show BEZ235 
does not inhibit TORC1, that as-TOR2 does not play a significant role in the catalytic 
function of TORC1, and that the compound selectively inhibits as-TOR2 in TORC2 over 
wt-TOR2. The in vitro values correspond well to in vivo results which are typically less 
sensitive due to high concentrations of ATP and poor cell wall permeability of yeast. 
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To test that the analog-sensitive allele was selectively inhibited by BEZ235, we 

measured the cellular EC50 of the as-TOR2 in liquid culture to be 189nM and wt-TOR2 

to be 1035nM (Figure 11D). Since we planned to do the screen on agar plates, we also 

performed a dose series from 0.1-2.0 µM BEZ235 (Figure 11C). Results show potent 

inhibition of the as-TOR2 strain and only a slight growth defect in wt-TOR2 cells at the 

highest concentration.  

To determine whether this sensitivity was due to the TOR2 kinase, we performed 

in vitro kinase assays using TORC2 purified (with HA-tagged TSC11, a TORC2 specific 

component) from cells containing as-TOR2 or wt-TOR2. The kinase assay shows the 

IC50 of BEZ235 for TORC2 is 50nM while the IC50 for wild-type is 111nM (Figure 

11E, Figure 12). The potency was measured at 100µM ATP. Since the mutation likely 

has the additional effect of increasing the Km for ATP. The probable decrease in 

competition with ATP would further enhance the efficacy of BEZ235 in cells.  
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Figure 12. Characterization of the as-TOR2 mutant 
(A) Growth of wt-TOR2 and as-TOR2 in YPD liquid cultures shown with standard 
deviations based on 3 measurments. (B) Growth of several TOR2 gatekeeper mutants on 
YPD with increasing concentrations of BEZ235 (C) Halo assay of BEZ235 in which 
VPS34 is perturbed at 37ºC with ∆tor1 background. Lack of killing by BEZ235 indicates 
the compound does not hit VPS34 or TOR1. (D) Streak assay of wt-TOR1, wt-TOR2, wt-
SCH9 with BEZ235 at 30ºC and 37ºC shows BEZ235 does not hit TOR1 or VPS34. 
Streak assay of wt-TOR1, wt-TOR2, and wt-SCH9 at 30ºC with rapamycin and BEZ235 
shows that marked alleles do not behave as DAmP strains (perturbed alleles). (E) IP-
kinase assay shows in vitro IC50 of TORC2 is 50nM purified from as-TOR2 cells and to 
111nM purified from wt-TOR2 cells. (F) IP-kinase assay shows in vitro IC50 of TORC1 
is 432nM purified from as-TOR2 cells and 423nM purified from wt-TOR2 cells. (G) In 
vivo phosphorylation of YPK1 shows increased sensitivity of as-TOR2 to BEZ235 
relative to wt-TOR2. (H) Spot test assay shows as-TOR2 is a perturbed allele since it is 
killed at a lower concentration of rapamycin than wt-TOR2. 
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Two potentially complicating factors in our analysis of TORC2 function through 

inhibition of as-TOR2 were first, the presence of TOR2 in TORC1 (Loewith et al., 2002) 

and second, the possibility that BEZ235 might simply inhibit TORC1 in the presence of a 

slightly weaker as-TOR2 allele. To test whether TOR2 was a major contributor to the 

activity of TORC1 and to see if BEZ235 inhibited TORC1, we purified TORC1 from as-

TOR2 cells and wt-TOR2 cells. We found that inhibition of TORC1 by BEZ235 is 

approximately 4-fold less potent than wild-type TORC2 in vitro. The IC50 of BEZ235 

for TORC1 purified from wt cells is 423nM. This IC50 is too weak to account for the 

potent growth inhibition of as-TOR2 since there is at least a 5-fold and sometimes a 100-

fold shift in potency from in vitro IC50 to in vivo EC50 due to cellular competition with 

ATP and the poor permeability of the cell wall in yeast. This indicates BEZ235 does not 

inhibit TORC1, particularly at concentrations used in this study. Furthermore, the IC50 of 

BEZ235 for TORC1 purified from as-TOR2 containing cells (432nM) indicates that there 

is not significant inhibition of any as-TOR2 that may participate in TORC1 (Figure 11E, 

Figure 12E, 12F). 

To verify that as-TOR2 was selectively inhibited in vivo, we compared the 

phosphorylation of the well-characterized TORC2 substrate, YPK1, in vivo. While 

phospho-YPK1 does not show significant inhibition until 1µM BEZ235 in wild-type 

cells, it does show significant inhibition at 0.25µM in as-TOR2 cells (Figure 12G). Since 

phospho-YPK1 in as-TOR2 cells treated with DMSO is lower than wild-type overall, we 

can surmise the as-TOR2 allele is slightly perturbed. However, the results show that the 

kinase is functional and able to phosphorylate its substrates. 



  44 

 

To further characterize the specificity of BEZ235 for as-TOR2, we investigated 

potential off target effects of the compound. We ruled out off-target effects of BEZ235 

on essential kinases in the same family (MSS4 and PIK1) since these would have resulted 

in growth inhibition of wild-type cells. To test if BEZ235 was targeting PI3K ortholog 

VPS34, we made VPS34 conditionally essential in ∆TOR1 background and observed no 

growth inhibition by BEZ235 (Figure 12C). The compound also shows no activity toward 

wt-TOR1 or wt-TOR2 alleles when perturbed at high temperature or pharmacologically 

using rapamycin (Figure 12D). 

To test if BEZ235 was a general chemical scaffold that could be used to 

selectively inhibit analog-sensitive alleles of other family members, we screened as-

MEC1 (Alaimo et al., 2005) against a structurally diverse subset of compounds that were 

previously used to screen as-TOR2. None of the compounds except rapamycin had any 

activity toward wild-type cells. Only BEZ235 inhibited as-MEC1 and showed no activity 

toward wt-MEC1 strains (Appendix B, Figure S1). This suggests this compound may be 

a generalizable scaffold for inhibiting as-kinases in the PIKK family. 

To characterize genetic interactions resulting from selective inhibition of TORC1, 

we performed screens with the wild-type allele in the presence of rapamycin and with the 

as-TOR2 allele in the presence of BEZ235. These datasets shed light on the distinct 

signaling networks of TORC1 and TORC2 and provides the first unbiased and selective 

investigation of genetic interactions with TORC2 kinase activity (Figure 13A).  

A global map of genetic interactions with the TOR2 kinase 
To systematically investigate synergistic interactions with TORC2, we combined 

our chemical-genetic tool with high-throughput yeast genetics to quantitatively assess the 
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strength of synergistic interactions against a broad set of deleted genes. We 

systematically crossed either wt-TOR2 or the as-TOR2 allele with a library of ~1000 

non-essential deletion mutants and selected for the haploid double mutant strains (Figure 

13B). By growing strains on synthetic complete media containing either DMSO or 

increasing concentrations of rapamycin or BEZ235, we were able to measure dose-

dependent growth phenotypes of mutant yeast colonies and use these phenotypes to 

compute individual genetic interaction scores. These screens were done in the presence of 

several other unrelated queries (Appendix B, Table S4) to ensure robust statistics 

required for accurate calculation of S-scores (Collins et al., 2006; 2010; Schuldiner et al., 

2006). 

To evaluate the strength of the chemical-genetic interaction with either TOR 

complex, we computed S-scores for all observed strains. An S-score is a quantitative 

assessment of the strength and reproducibility of the interaction between two alleles 

(Collins et al., 2006; 2010). For interactions that showed a consistent and directional 

trend in correlating with drug dose, we calculated a difference score ∆S (∆S = High Drug 

– DMSO). Since ∆S is a close analog to S-score, and S = 2.6 has been used previously as 

a cutoff for significance in published literature (Fiedler et al., 2009), we chose ∆S ≥ |2.6| 

as a cutoff for significance in our analysis. 
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Figure 13. Chemical Epistasis Mapping of TORC1 and TORC2 
(A) TOR1 exists only as a member of TORC1. TOR2 may exist as a member of either 
TORC1 or TORC2. Rapamycin selectively inhibits TORC1. BEZ235 is selective for the 
as-TOR2 allele. Chemical-genetic interactions behave as traditional double deletion 
mutants. For interacting genes, a directional shift between the DMSO control and the 
[high] drug screen should occur. Dose-dependent positive interactions occur between 
genes in linear pathways, dose-dependent negative interactions occur between genes in 
parallel pathways. (B) TOR mutant strains were mated to a library of ~1000 non-essential 
single deletion mutants. The resulting double mutants were grown on plates containing 
DMSO or increasing concentrations of rapamycin or BEZ235. 
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(C) ChE-MAP for rapamycin treated and BEZ235 treated datasets sorted according to 
∆S-score. The strength of positive and negative chemical-genetic interactions (S-scores) 
are reported by yellow or blue squares respectively. Inset are top hits from each set. The 
as-TOR2 dataset is significantly smaller since many strains were very sick at the highest 
concentration of BEZ235 and were removed during quality filtering. (D) Experimental 
datasets (wt-TOR2+rapa, as-TOR2+BEZ) and control datasets (rr-TOR1+rapa, rr-
TOR2+rapa, wt-TOR2+BEZ) are shown by percent of total interactions in the dataset 
above ∆S ≥ |2.6|. Positive interactions are in yellow, negative interactions are blue. 
Rapamycin and BEZ235 are selective for their intended targets and generate few off 
target interactions.(E) Scatterplot of ∆S-score vs S-score illustrates the specific effect of 
BEZ235 on as-TOR2. wt-TOR2 (red) is unaffected by the compound and cluster around 
0. as-TOR2 (blue) is strongly affected and shows a direct relationship between ∆S-score 
and S-score at 1µM BEZ235. (F) Number of dose-dependent genetic interactions above a 
∆S ≥ |2.6| in each set. 104 interactions recorded for rapamycin, 134 recorded for BEZ 
with overlap of 10. (G) Network illustrating genes that hit both TORC1 and as-TOR2 
above specified threshold. Nodes and edges are colored yellow for positive or blue for 
negative interactions with the indicated complex. 
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Three of these datasets are experimental controls for off-target effects of the 

compounds (Figure S4). wt-TOR2 cells were treated with the same concentrations of 

BEZ235 as as-TOR2, and rapamycin resistant (rr) alleles (Cafferkey et al., 1993; 

Heitman et al., 1991; Helliwell et al., 1994) of TOR1 and of TOR2 (S1972I-TOR1 and 

S1975I-TOR2) were treated with rapamycin. The limited number of genes that showed 

dose-dependent interactions with the drug-resistant alleles were filtered from the 

experimental datasets. The two experimental datasets reveal dose-dependent genetic 

interactions between specific yeast genes and rapamycin or BEZ235 (Figure 13A; 

Appendix B, Table S1). The examined library of yeast genes includes genes from all 

functional categories, including regulatory proteins, signaling machinery, cell cycle 

regulators, and metabolic enzymes (Appendix B, Table S2). 

Characteristic dose dependent ChE-MAP interactions 
Analysis of ChE-MAPs generated with wild-type cells mated to deletion mutants 

and grown on 0, 0.25 µM, and 1 µM of BEZ235 show the compound is selective for the 

analog-sensitive allele with few off-target effects (Figure 13D). Only three dose-

dependent genetic interactions are seen above ∆S ≥ |2.6| in the wild-type dataset 

suggesting that our method identifies few false positives. We analyzed the distribution of 

S-scores for wt-TOR2 and as-TOR2 at 1µM BEZ235 (Figure 13C). Based on previous E-

MAP datasets, our expectation was that wt-TOR2 would show characteristic single 

mutant phenotypes with S-scores at or near zero. This phenotype should persist at all 

drug doses if BEZ235 is selective for as-TOR2. At the highest dose of BEZ235, we 

observe a clear direct relationship between S-score and ∆S in cells containing as-TOR2. 

In contrast, there is no relationship between S-score and ∆S when 1µM BEZ235 is 
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applied to the wt-TOR2 cross.  While the S-score is a useful reference for quantification, 

it does not account for allelic effects of our point-mutants or genetic markers, which are 

not always silent in genetic analysis. By relying on ∆S, we are able to filter out allelic 

interactions that show strong phenotypes on DMSO and consequently do not fall along 

the diagonal in Figure 13C.  

Drug resistant alleles showed very few dose-dependent interactions and the 

interactions observed were most likely due to allelic effects from the resistance marker. 

The rr-TOR1 showed no dose-dependent genetic interactions upon drug treatment. With 

the rr-TOR2 allele, 7 genes showed chemical-genetic interactions above threshold 

(YPL150W, CKA2, BRE1, YPT7, IPK1, OPI11, THP3). Dose-dependent interactions with 

the rr-TOR2 allele can arise from wt-TOR1 in TORC1, which can be inhibited by 

rapamycin in the rr-TOR2 strain background. These results are consistent with the fact 

that TOR1 is the primary kinase responsible for the outputs of TORC1 and supports our 

contention that rapamycin is highly specific for the complex. 

Two hundred twenty-six dose-dependent ChE-MAP interactions were identified 

for rapamycin and BEZ235 at our cutoff of ∆S ≥ |2.6|. We observed 103 rapamycin-

specific dose-dependent interactions and 123 BEZ235/as-TOR2-specific interactions with 

an overlap of 10 genes that show a dose-dependent effect with both (Figure 13D). Eight 

of these shared interactions show a dose-dependent effect that is the same whether 

TORC1 or as-TOR2 is inhibited (Figure 13E). We infer the positive interactions that arise 

are due either to a shared function of both complexes or to TOR2 participating in 

TORC1. The four negative interactions are compensatory with both TOR2 and TORC1. 
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Two genes (RAV1, TMA23) show positive interactions ∆S > 2.6 with as-TOR2 and 

negative interactions ∆S < -2.6 with TORC1.   

Relaxing our cutoff to ∆S ≥ |2.0|, eight additional dose-dependent interactions 

were identified common to both the rapamycin and BEZ235 datasets (Fig. 13E; 

Appendix B, Figure S3).  Six genes (MED1, BMH2, RPL37A, JJJ1, SPC2, YLR184W) 

show positive interactions with TORC2 and negative interactions with TORC1. Two 

genes (MKK2 and YNL217W) are negative with TORC2 and positive with TORC1. The 

network view provides a full account of dose-dependent interactions observed with each 

TOR complex. 

Several genes that interact with both TORC1 and TORC2 play important roles in 

ribosomal maturation. Our results show strong positive interactions with KNS1, LHP1 

and SRP40 all of which participate in tRNA processing and ribosome maturation (Figure 

13E) suggesting an important role for both TORC1 and TOR2 in these processes. While 

the role of TORC1 in phosphorylation of ribosomal protein S6 (RPS6) via S6-kinase 

(S6K) is known (Chung et al., 1992; Feldman et al., 2009; Price et al., 1992; Richardson 

et al., 2004; Urban et al., 2007), the involvement of TORC2 was not appreciated until 

recently (Zinzalla et al., 2011). Our data supports a role of TORC2 in ribosome 

biogenesis since two genes (TMA23, JJJ1) involved in ribosome biogenesis (Fleischer et 

al., 2006; Meyer et al., 2007) and a ribosomal protein (RPL37A) show strong positive 

interactions with TORC2 while simultaneously showing strong negative interactions with 

TORC1 (Figure 13E) indicating these genes are in a pathway with TORC2 and offering 

additional evidence that ribosomal biogenesis plays a role in regulating TORC2 (Zinzalla 

et al., 2011). 
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Enrichment of Sphingolipid Biosynthesis in TORC2 ChE-MAP hits 
Next we looked in our datasets for well-characterized signaling pathways 

downstream of TORC2. Specifically, the sphingolipid biosynthesis pathway is the best 

characterized pathway under the control of TORC2 (Aronova et al., 2008; Beeler et al., 

1998; Tabuchi et al., 2006). TORC2 is known to directly phosphorylate and regulate 

Ypk1/2 (Aronova et al., 2008; Kamada et al., 2005; Niles et al., 2012) and Ypk1/2 in turn 

phosphorylates and inactivates Orm1 and Orm2, which negatively regulate sphingolipid 

biosynthesis in the unphosphorylated state (Breslow et al., 2010; Niles et al., 2012; 

Roelants et al., 2011; Sun et al., 2012). We found extensive evidence for sphingolipid 

biosynthesis positively interacting with the kinase activity of TORC2 (Figure 14A). 

The dose-dependent chemical genetic interactions between TORC2 and 

sphingolipid biosynthesis serve as a biological benchmark for the technique.  We observe 

strong dose dependent chemical genetic interactions between TORC2 and ORM2 (+3.4), 

DPL1 (+3.9), LCB4 (+4.2), and ISC1 (+4.4), all of which play integral roles in the 

pathway (Figure 14A). No interaction is observed with TORC1, in good agreement with 

prior findings. 
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Figure 14. Enrichment in Biological Processes 
(A) Bar graph shows fraction of each functional biological category that was included in 
the E-MAP. (B) Enrichment in either of the two datasets above or below ∆S = 2.0 were 
caluculated using a Fisher's exact test to identify terms in the cellular process GO Slim 
that were significantly enriched. Significant p-values are highlighted in yellow. (C) The 
sphingolipid biosynthesis pathway shows consistent dose-dependent behavior across all 
members of the pathway that were included in the screen in good agreement with 
theoretical prediction. S-score is indicated on a color metric scale with blue as strongly 
negative and yellow as a strong positive interaction. (D) Genotyped and sequenced 
members of pulled tetrads grown on plates containing increasing concentrations of 
rapamycin or BEZ235 confirm phenotypes tested using the ChE-MAP.  
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To confirm this phenotype, we performed tetrad analysis with these mutants and 

subjected the appropriate crosses matching the ChE-MAP results to increasing 

concentrations of rapamycin and BEZ in a spot dilution assay (Figure 14B). The results 

show that Orm2 shows a positive phenotype upon as-TOR2 inhibition. The positive 

genetic interactions with several members of the sphingolipid biosynthesis pathway 

validate the ChE-MAP as a viable strategy for identification of downstream signaling 

pathways. 

Cellular Compartment and Process Enrichment of TORC2 Interactions 
Using the ChE-MAP interaction data, we asked whether there was functional 

enrichment for genes annotated in a particular cellular compartment or biological process. 

Our results were not biased since we included a diverse and balanced collection of 

queries in the ChE-MAP (Figure 14C). 

TORC2 interacting genes were analyzed for gene ontology (GO) terms for 

cellular compartment showed a two-fold enrichment for proteins that localize to the 

endoplasmic reticulum (p < 0.05), controlling for sampling bias in the gene deletion 

library used for this study. This result is consistent with recent work showing mammalian 

TORC2 co-fractionates with the ER (Boulbés et al., 2011), suggesting the localization of 

TORC2 is conserved and expands our understanding of previous work showing TORC2 

in S. cerevisiae localizes to the plasma membrane and regulates sphingolipid biosynthesis 

(Berchtold and Walther, 2009; Berchtold et al., 2012). TORC1, by contrast, localizes in 

the vacuole of S. cerevisiae and to the lysosome surface in mammalian cells (Berchtold 

and Walther, 2009; Loewith et al., 2002; Zoncu et al., 2011).  
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Next, we analyzed the TORC1 and TORC2 datasets for enrichment of hits 

mapping to specific biological processes. While no significant enrichment was observed 

with hits greater than abs(2.0) or less than 2.0, enrichment was observed for positive hits 

(genes predicted to be in pathway with TORC1 or TORC2). Although not significant (p = 

8.7 x 10-2), the enrichment of TORC1 hits for ‘vesicle-mediated transport’ is consistent 

with published reports that show rapamycin treatment decreases phosphorylation of 

proteins involved in vesicle mediated transport (p = 6.0 x 10-4) (Yu et al., 2011). 

While TOR has been loosely associated with energy homeostasis for many years 

due to the obvious energetic demands of protein synthesis and ribosome biogenesis, a 

link with metabolite synthesis was not previously shown. Our ChE-MAP revealed 

significant enrichment (p < 0.05) for ‘generation of precursor metabolites and energy’ for 

positively interacting TORC2 hits (Figure 14D). To investigate this further, we sought to 

integrate published physical interaction data with our chemical genetic results to see if 

there were specific metabolic processes with predominantly positive interactions with 

TORC2. 

Integrated functional network of TOR signaling 
To look for proteins involved in metabolite synthesis that physically interact with 

TOR, we searched for genes in metabolic GO terms that had large numbers literature 

reported (Stark et al., 2006) physical interactions with members of the TOR signaling 

pathway. We found that many proteins in the pentose phosphate pathway (PPP) have 

physical interactions with proteins in the TOR signaling pathway compelling us to 

construct a comprehensive network of PPP proteins that physically interact with each of 

the TOR complexes. 
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The network of genes that are annotated (by GO terms) to the PPP shows a 

distinct signature with TORC1 genes compared with TORC2 genes (Figure 18a). The 

figure shows that many enzymes that catalyze steps in the PPP physically interact with 

proteins that positively interact with as-TOR2 (BDF2, GAC1, URN1, YPL150W). In 

contrast, enzymes in the PPP generally show physical interactions with proteins that 

negatively interact with TORC1 (TPM1, SET2, HAT2). The network shows exclusively 

positive interactions with TORC2 and predominantly negative interactions with TORC1, 

suggesting the PPP is in a linear pathway with TORC2, and a parallel pathway to 

TORC1. This phenotype is the hallmark of a TORC2 regulated pathway and motivated us 

to investigate whether metabolite levels and particularly the PPP was regulated by 

TORC2. 

Metabolomic analysis of TORC1 and as-TOR2 
To test the role of TORC2 in the PPP, we used reverse-phase ion-paired LC/MS 

to monitor drug dependent changes to over ~130 cellular metabolites including 

constituents of the PPP pathway (Figure S5). Rapid metabolic changes that take place 

soon after drug treatment suggest direct regulation of metabolic enzymes while changes 

that occur on the timescale of yeast cell replication/division are more likely to indicate 

transcriptional changes to metabolic enzymes. 

As an internal quantitative and qualitative reference for the magnitude of the 

metabolic changes and a point of comparison for our drug treatment, we also assessed 

metabolic changes due to nitrogen starvation. Nitrogen-starvation is akin to rapamycin in 

that it disrupts phosphorylation of TORC1 substrates (Urban et al., 2007). To identify 

changes to metabolite levels in response to inhibition of TOR components, cells were 
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treated with inhibitors or switched to low-nitrogen media and metabolic changes were 

quantified over time by LC/MS to look for inhibitor dependent changes in soluble 

metabolite levels. 
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Figure 15. Effect of rapamycin and BEZ235 on metabolites in the PPP 
(A) Network of ChE-MAP hits that have physical interactions with genes within the PPP 
gene ontology term. Rounded rectangles and blue edges indicate chemical-genetic 
interactions and are colored according to the ∆S-score for the indicated gene. Black nodes 
indicate genes not found in our dataset (www.thebiogrid.org) or in the following 
citations: (Fan et al., 2008; Fasolo et al., 2011; Graille et al., 2005; Hesselberth et al., 
2006; Krogan et al., 2006; Ptacek et al., 2005; Yu et al., 2008). Black edges indicate a 
physical interaction. (B) 6-phospho-D-gluconate levels quantified by LC/MS over a 60 
minute time-course where cells are perturbed by nitrogen starvation, inhibited with 
rapamycin (wild-type), or inhibited with BEZ235 (as-TOR2). (C) Ribose-5-phosphate 
levels quantified by LC/MS over a 60 minute time-course where cells are perturbed by 
nitrogen starvation, inhibited with rapamycin (wild-type), or inhibited with BEZ235 (as-
TOR2). (D) Isotope labeled 6-phospho-D-gluconate allows direct measurement of newly 
synthesized metabolite in as-TOR2 and wt-TOR2 cells and allows quantification of 
oxidative pentose phosphate pathway flux. Treatment with BEZ235 shows a significant 
change (**) after the short 30 minute timepoint. 
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Inhibition of TORC1 or as-TOR2 leads to broad changes across all aspects of 

metabolism. It is clear from the results that some changes result from the introduction of 

the as-allele alone since several of the metabolites measured show some change at time 

zero of the experiment. To correct for this, we filtered the metabolic results to capture the 

change in response upon drug inhibition over the 60 minute time-course [∆M = log(as-

TOR2/wt-TOR2)t=0min – log(as-TOR2/wt-TOR2)t=60min]. After 1 hour of drug treatment, 

above a threshold of log(metabolite) ≥ |1.5|, nitrogen-starvation shows changes in 18 

metabolites out of 123 measured, rapamycin shows changes in 23 metabolites out of 123 

measured, while BEZ235/ as-TOR2 treatment affects 56 out of 120 metabolites 

measured. Inhibition of TOR2 affects more metabolites suggesting that TORC2 has a 

greater regulatory role in metabolism than TORC1. 

We observed that metabolic intermediates involved in the PPP are strongly 

downregulated in response to as-TOR2 inhibition. In our experiments 6-phospho-D-

gluconate (6PG) and ribose-5-phosphate (R5P), two intermediates that are specific to the 

PPP, show a rapid time-dependent response to treatment with BEZ235 (Figure 15B, 

15C). R5P is the product of the oxidative pentose phosphate pathway and was recently 

shown to be produced by riboneogenesis (Clasquin et al., 2011). While this metabolite is 

perturbed due to the as-TOR2 allele, the metabolite shows and additional time-dependent 

decrease in levels after 7 minutes of treatment with BEZ235. These changes may suggest 

a role for TORC2 in regulating both the oxidative and non-oxidative branches of the PPP. 

In contrast, the delayed down-regulation in response to TORC1 inhibition is 

consistent with previously proposed models that put enzymes in the PPP under the 
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control of transcription factors downstream of TORC1 (Düvel et al., 2010; Robitaille et 

al., 2013). The rapid response upon BEZ235 treatment indicates that TORC2 may have 

more direct control over the PPP through kinase signaling. This hypothesis is supported 

by GO analysis of the ChE-MAP (Figure 15A) that shows seven proteins with chemical-

genetic interactions with TORC2 are also annotated to physically interact with metabolic 

enzymes of the PPP. All of these are positive interactions indicating they are in a linear 

pathway with TORC2. Strong positive interactors with TORC2 include BDF2 and GAC1, 

which both physically interact with tRNA export protein Sol1, a close homolog of 

Sol3/Sol4 that catalyze the second step of the PPP leading to the generation of 6PG. 

Strong interactions are also observed between TORC2 and RBL2 which physically 

interacts with Rki1. Rki1 regulates the third step in the PPP leading to the production 

R5P. 

 
Figure 16. Flux through the oxidative PPP 
Flux through the oxidative PPP does not change with BEZ235 treatment in as-TOR2 cells 

 

To test whether TORC2 was influencing metabolite levels in the PPP by direct 

regulation of metabolic flux, we undertook analysis of using the tracer 1,2-13C-glucose to 

quantify levels of 6PG and R5P and to measure the relative ratio of oxidative PPP and 
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non-oxidative PPP transketolase reaction. The rapid decrease of 6PG in the as-TOR2 

strain upon BEZ235 addition (Figure 15D) confirms TORC2’s posttranslational 

regulation of the oxidative PPP since the change in metabolite levels occurs on a rapid 

timescale (< 30 minutes) as previously observed. The lack of substantial change of 

oxidative PPP flux (Figure 16) in the as-TOR2 strain relative to wild-type upon BEZ235 

treatment suggests TORC2 does not differentially regulate the oxidative and non-

oxidative PPP, and may regulate the PPP upstream of the split between the oxPPP and 

non-oxPPP, likely through differential regulation of glucose-6-phosphate dehydrogenase 

(the reaction upstream of 6-phosphogluconate) and 6-phosphogluconate dehydrogenase. 

Conclusions 
Yeast screens remain the most versatile tool for assessing functional genomic 

interactions at the organismal level. Genetic knockouts are facile for non-essential genes, 

but other methods are required for queries of essential genes such as the TOR2 kinase. 

Among these, decreased abundance by mRNA perturbation (DAmP), temperature-

sensitive degrons designed to rapidly degrade proteins at the restrictive temperature, or 

chemical inhibitors for a specific target are the most commonly employed techniques. 

Use of DAmP alleles can be unreliable due to variable levels of knockdown. 

Temperature-sensitive (ts) strategies are effective but can suffer from pleiotropy. In 

particular, several different TOR2-ts isolates have been reported to have widely varying 

effects on cell cycle, budding, and actin structures at the restrictive temperature 

(Helliwell et al., 1998a). Chemical inhibitors are fast-acting, but the number of interesting 

essential targets far exceeds existing chemical tools to inhibit them. 
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In this study, we created a chemical-genetic tool that is highly specific and allows 

rapid inactivation of the TOR2 kinase. We used this tool to systematically and 

quantitatively probe the genetic interaction landscape of TORC2 kinase activity in vivo. 

We confirmed the robustness of our technique through its positive identification of 

sphingolipid biosynthesis downstream of TORC2 and show a significant enrichment in 

functional connections with proteins localized to the endoplasmic reticulum. Chemical-

genetic interaction data show enrichment for ‘generation of metabolites and energy’ 

which directed us to investigate the PPP with physical interaction networks that showed a 

pattern of interactions that is consistent with the PPP existing in a linear pathway with 

TORC2.  By performing by studying metabolite levels with as-TOR2 in the presence of 

BEZ, we were able to observe large and rapid (< 30 min) changes in metabolites that are 

created in the PPP and further showed these changes necessarily occur upstream of the 

transketolase reaction since data does not suggest a differential flux through the non-

oxidative and oxidative PPP. This indicates that TORC2 may have a role in post-

translational (by phosphorylation rather than transcriptional or translational) regulation of 

nucleotides required for protein synthesis. 

The suggestion of a role for TORC2 in ribosomal biogenesis has interesting 

implications for how the cell balances energy demands to meet these needs. Emerging 

evidence indicates TORC2 is an important node in ribosome biogenesis (Zinzalla et al., 

2011). The high energy requirements of ribosome biogenesis creates high demand for 

ribose relative to NADPH leading to activation of the PPP and production of R5P 

(Clasquin et al., 2011). Our evidence shows that TORC2 positively regulates metabolite 

synthesis in the PPP (Figure 15D), and may act as a critical relay between ribosome 
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biogenesis and the PPP. This is particularly compelling in conjunction with evidence 

showing that upregulation of the non-oxidative PPP is required for tumor survival 

(Deberardinis et al., 2008). 

Our approach represents a unique union of genetics and pharmacology that 

facilitates rapid assessment of gene selective effects that could act as a first line of 

evidence in the search for synergistic therapeutics. It allows for a more granular analysis 

of functional genetic interactions that refer specifically to the catalytic activity of the 

kinase rather than scaffolding roles that the Tor protein certainly plays. These findings 

will be valuable for deciphering the different physiological roles of TORC1 and TORC2 

in yeast. Such understanding in turn may help understand the roles of these complexes in 

mammals, where this approach cannot be directly applied, and thereby aid in the design 

of combination therapy regimens involving TOR inhibitors. 

Experimental Procedures 

Generation of point mutants  
The C-terminal region TOR1 or TOR2 (including the FAT, FRB, kinase domain, 

and 160 bp of 3’UTR) was cloned onto plasmid pFA6-NAT-MX6, into the multiple 

cloning site immediately preceding the NAT gene (which confers resistance to 

Nourseothricin, Werner Bioagents). as-TOR2 (L2178A), rr-TOR2 (S1975I), and rr-TOR1 

(S1972I) mutants were generated using site directed mutagenesis. These mutants were 

amplified using PCR and transformed into the BY4742 strain, in which the C-terminal 

region of either TOR1 or TOR2 had been displaced by k.l URA3. Following selection on 

NAT and 5-FOA, the mutants were sequenced to confirm insertion of the desired 

mutations. Subsequently, the diploid mutant strains were sporulated and the mat alpha 
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haploid strains were selected for as described previously, and presence of the mutation 

was again confirmed by sequencing.  

E-MAP experiments 
Strain construction, plating of mutants, mutant selection, and scoring of genetic 

interactions (S-scores) were performed as previously described (Collins et al., 2006; 

Schuldiner et al., 2005). Using a Singer Instruments pinning robot, haploid double 

mutants were simultaneously grown in 1536-well format at 30 degrees Celsius on agar 

plates containing DMSO or containing a selective TOR inhibitor. Mutants in this study 

were screened in tandem with a large number of queries to ensure robust statistics for 

averaging (n > 30). Several unrelated queries, strains containing point mutants to SCH9, 

wild-type strains containing a TOR1 marker, a ts-TOR2 allele were used as query strains. 

For the plates containing inhibitor, 0.25µM BEZ235, 1.00µM BEZ235, 10nM rapamycin, 

or 100nM rapamycin were added to the plates containing selective media. Plates were 

photographed and the area of each colony was converted into pixels to quantitatively 

assess colony size. In untreated or treated conditions, colony sizes were based on 3 

replicate measurements. For a given double mutant, the experimental data was used to 

assign a quantitative S-score based on a modified T-test that compares the observed 

double mutant growth rate to an expected growth rate based on the average colony size 

across an entire plate. 

Dose-dependent interaction scoring system 
Dose-dependent genetic interactions were identified for a given gene by searching 

for a series of S-scores for that gene that show a directional shift that correlates with drug 
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concentration. The magnitude of the interaction was evaluated as the difference between 

the high-dose and the control strain (∆S = S-scorehighdrug – S-scoreDMSO). ∆S-scores ≥ |2.6|. 

Enrichment of TORC2 dose-dependent interactions 
Genes with a dose-dependent interaction ∆S ≥ |2.0| were tested for enrichment in 

a specific cellular compartment. A Fisher's exact test was used to identify terms in the 

cellular compartment GO Slim that were significantly enriched in dose-dependent hits, 

resulting in the observation that dose-dependent hits are ~1.6 times more likely to be 

localized to the endoplasmic reticulum than expected (p < 0.05 after correcting for 

multiple testing). The background for this calculation was all mutants with measured 

scores from the as-TOR2 + BEZ235 screen, and consequently the observed enrichment is 

not due to the bias on the array, or due to data quality filtering.  

The same approach was used to identify terms in the Biological Process Ontology 

showing significant enrichment for dose-dependent. All process terms having 1.5-fold or 

better enrichment are shown in Figure 3. 

Tetrad Analysis 
wt-TOR2 and as-TOR2 were mated to a single delete (SD) strain of interest for 48 

hours prior to sporulation at room temp for 3-5 days. Digested ascus with zymolyase for 

20min prior to tetrad dissection. Replica plated tetrads on selective media for genotyping 

and verified all strains using check PCR and sequencing of the TOR kinase domain locus. 

Spot Test Assay 
Overnight cultures were grown to saturation, diluted to OD600= 0.2 and grew until 

all four strains were OD600= 0.8. 2-fold serial dilutions of cells were plated on DMSO, 
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0.1µM, 0.25µM, and 1µM BEZ235 or on 10nM 50nM, 100nM rapamycin. Plates were 

grown at 30ºC and imaged after 24h. 

Gene Ontology Network Analysis 
Circular nodes were created for all genes within a given GO term. Then, 

rectangular nodes were generated for hits in either the rapamycin or BEZ235 datasets and 

were linked to the circular nodes based literature reported physical interactions (Stark et 

al., 2006). Genetic interactions between TORC1 or as-TOR2 computed and illustrated 

using blue edges. 

Metabolite Measurement 
The metabolome of Saccharomyces cerevisiae was characterized as described 

previously (Xu et al., 2012). Saturated overnight cultures were diluted 1:30 and grown in 

liquid media in a shaking flask to A600 of ~ 0.6. A portion of the cells (3 mL) were 

filtered onto a 50 mm nylon membrane filter, which was immediately transferred into  – 

20°C extraction solvent (40:40:20 acetonitrile/methanol/water). Serial extraction was 

then carried out at indicated time points after drug treatment. Cell extracts were analyzed 

by reversed phase ion-pairing liquid chromatography (LC) coupled by negative-mode 

electrospray ionization (ESI) to a high-resolution, high-accuracy mass spectrometer 

(Exactive; Thermo Fisher Scientific) operated in full scan mode at 1 s scan time, 105 

resolution, with compound identities verified by exact mass and retention time match to 

authenticated standard (Rabinowitz et al., 2010). Isomers are reported separately only 

where they fully chromatographically resolved. 

Metabolic Flux Measurement 



  66 

 

Yeast cells were grown in 1,2-13C2-glucose in the presence of 1 nM or 5 nM estradiol. 

The use of 1,2-13C-glucose allows measurement of oxidative pentose phosphate pathway 

flux. All the isotope-labeled forms of ribose phosphate are quantitated. The flux is 

calculated as following: Oxidative pentose phosphate pathway flux = (f1 + f2)/(f3 + f4 – 

f0) in which fn is the labeling fraction of the n-labeled ribose phosphate. The oxidative 

branch of the pentose phosphate pathway yields 1- and 3-labeled pentose phosphate. The 

non-oxidative branch of the pentose phosphate pathway yields 2- and 4-labeled pentose 

phosphate. One molecule of 0-labeled pentose phosphate is generated for every 2- or 4-

labeled pentose phosphate produced through erythrose phosphate. Therefore 0-labeled 

pentose phosphate is subtracted to reflect the true flux of non-oxidative pentose 

phosphate pathway. 
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Appendix A: Chapter 2 Supplemental 

Supplemental Tables 
Available online (http://www.cell.com/molecular-cell/; Ryan et al. (2012) 

supplemental information) 

Table S1. Gene Annotations 

Table S2. Functional Module Definitions 

Table S3. Between-Process Enrichments and P Values 

Data Set S1. The Unaveraged S. pombe E-MAP in Tab-Delimited Format 

Data Set S2. The Averaged S. pombe E-MAP in Tab-Delimited Text Format 

Data Set S3. The Similarity Scores for Every Gene Pair in the S. pombe E-MAP 

Data Set S4. The Scaled and Merged E-Map AND SGA S. cerevisiae Data 
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Table S4. Query genes relevant to TOR biology in S. pombe screen 

Gene Function 

tor2-DAmP ser/thr kinase, TORC1 

tor1 ser/thr kinase, TORC2 

wat1 LST8; WD repeat, polarized cell growth, TORC1, TORC2 

mip1 Raptor; guanine binding protein, mei2 driven meiosis, TORC1 

toc1 PRAS40; unknown function, TORC1 

rhb1 Rheb; GTPase binds TORC1 

tco89 TORC1 component 

fkh1 FKBP12; required for efficient mating, binds FK506 and rapamycin, TORC1 

tel2 DNA replication checkpoint, TORC1, TORC2 (aka rad5) 

cka1 casein kinase II, component of TORC1, TORC2 

Sin1 interacts with stress-activated MAP kinase sty1, stress response, TORC2 

bit61 unknown function, TORC2 

tsc1 amino acid uptake, represses TORC1 

tsc2 amino acid uptake, represses TORC1 

gad8 AKT; ser/thr kinase, AGC kinase, nitrogen sensitive, activates TORC1 

ppk21 protein kinase (PDK1 homolog) 

ksg1 kinase for sporulation and growth, phosphorylates pka1 T356 (PDK1 homolog) 

sck2 S6K; serine/threonine kinase 

its3 PI 4-phosphate 5-kinase, regulates cytokinesis 

mei4 meiosis transcription factor interacts with fkh1 

byr1 MAPKK upstream of Spk1 

rad24 14-3-3 protein interacts with byr and mei proteins 

vps34/pi3k PI3K kinase, stress tolerance 

ptn1 PTEN; phosphatase 

cdr2 ser/thr kinase, cell cycle progression, nitrogen sensitive 

sty1 MAPK stress signals, nitrogen starvation response 

SPAC513.07 unknown function; annotated TOR interacting from 2hybrid screen 

tol1 torc1 (target of lithium), monophosphatase, salt stress 

upf2 regulates nonsense mediated decay, oxidative stress 

SPAC607.04 inositol polyphosphate kinase family (ipk2) 

fab1 PI-3-P 5-kinase 

SPAC824.01  PI 3-,4-kinase, actin organization 

pik1 PI 4-kinase, cytokinesis 

SPBC577.06c  PIK 

gsk3 ser/thr kinase gsk3 

fhl1 forkhead transcription protein 

efc25 GEF regulates cell morphology 

tip41 nitrogen response via type 2A phosphatase 

isp6 serine protease; protein degradation during nitrogen starvation 
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Supplemental Figures 

 
Figure S1. Hierarchical modularity of ribosomal biogenesis 
The tree is cut at a threshold (red line) to identify disjoint modules (labeled along the 
right hand side of the figure). This figure also serves as an example of hierarchical 
modularity – modules 236 and 260 contain members of the large and small ribosomal 
subunits. However, cutting the tree at a lower similarity score results in the these two 
modules being merged into a single ‘ribosomal module’. Indeed the whole section of the 
tree can be considered a module, containing genes involved in translation and ribosome 
biogenesis. 
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Appendix B: Chapter 3 Supplemental 

Supplemental Tables 
Available online (http://cellreports.cell.com/; Kliegman et al. (2013) supplemental 

information) 

Table S1. Dose-dependent changes in response to RAPA or BEZ 

Table S2. Genes with measurements at all drug concentrations 

Table S3. Metabolite levels over time course drug treatment 

Table S4. Queries used for statistical averagin 

Table S5. Strains used in this Study 
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Supplemental Figures 

 
Figure S2.  Compounds screened against as-alleles 
The wt-TOR2, as-TOR2, wt-MEC1, and as-MEC1 for selectivity against the analog-
sensitive allele. (+) indicates sensitivity, (-) indicates insensitivity. (n/a) indicates the 
compound was not screened. The images show an example of screened plates. 
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Figure S3. Total Dose-Dependent ChE-MAP 
Shown with corresponding ∆S-scores (related to Figure 2). All dose-dependent genetic 
interactions (including controls) collected and used for analysis including ∆S-scores. 
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Figure S4. ChEMAP parameters, plate pictures, and quantification 
(A) Fraction of ChE-MAP genes in each category by percent of total genes on array. (B) 
Representative plate pictures of double mutant colonies at different doses of BEZ235 
after 24 hours growth at 30ºC. (C) Positive and negative hits for resistant and sensitive 
datasets using a threshold of ∆S-score ≥ abs(2.0). (D) Positive and negative hits for 
resistant and sensitive datasets using a threshold of ∆S-score ≥ abs(2.6). (E) Number of 
positive and negative hits at specified threshold for resistant and sensitive datasets 
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Figure S5. Regulation of metabolites 
Heatmap showing downregulation (green) and upregulation (red) of metabolites upon 
nitrogen-starvation (wt-TOR2), treatment with rapamycin (wt-TOR2), or BEZ235 (as-
TOR2). Metabolite levels for as-TOR2 is normalized vs. wild-type treated with drug at 
every time point during the experiment. 
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