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Abstract 
Two experiments tested the effect of prior knowledge on 
attention allocation in category learning. Using eyetracking, 
we found that (a) knowledge affects dimensional attention 
allocation, with knowledge-relevant features being fixated 
more often than irrelevant ones, (b) this effect was not due to 
initial attention bias to the relevant dimensions but rather 
gradually emerged in response to observing category 
members, and (c) the effect grew even after the last error trial, 
that is, in the absence of error. These results pose challenge to 
current models of knowledge-based category learning.  
 

Because of the importance of categories for human 
cognition, the manner in which people learn categories has 
received intensive study. Among many procedures, 
supervised classification learning has been popular, and a 
number of basic facts have been established.  

One of these concerns the role of selective attention in 
category learning. Selective attention has played a 
prominent role in theories of category learning since the 
finding that learning difficulty correlated with the number of 
diagnostic dimensions needed for classification (Shepard, 
Hovland, & Jenkins, 1961). In both exemplar models and 
prototype models, selective attention is explicitly formalized 
in terms of the weights of dimensions on classification (e.g., 
Kruschke, 1993; Nosofsky, 1992). Rule-based models also 
assume selective attention to the dimensions referred to by 
the current hypothesis (Smith, Patalano, & Jonides, 1998).  

A second finding concerns the role of the prior knowledge. 
Although early research focused on the effect of empirical 
information, subsequent research has shown that theoretical 
knowledge influences every type of category-based 
judgment that has been tested, including learning, induction, 
and categorization (Murphy, 2002). For example, subjects 
usually learn categories far faster when a category's 
diagnostic features can be related to a common theme, and 
also show better learning of those related features versus 
unrelated ones (Murphy & Allopenna, 1994).  

Although attention and knowledge each has been shown 
to be important, little is understood on how knowledge 
affects attention in category learning. This question is 
important because any theory that accounts for knowledge-
based category learning (e.g., Heit & Bott, 2000; Rehder & 
Murphy, 2003) is incomplete in the absence of attention 
mechanism. However, this omission is understandable 
because virtually nothing is known about how knowledge 
affects attention: modeling attentional effects is impossible 
if there is no data to model. 

Knowledge Effect on Selective Attention  
Using eyetracking, we addressed three open questions 
regarding how knowledge affects dimensional attention 
during category learning. The first concerns whether in fact 
prior knowledge affects dimensional attention. If a subset of 
category features is knowledge-related, it is likely that such 
knowledge directs attention to the related features and away 
from unrelated ones (Kaplan & Murphy, 2000). However, 
knowledge might instead change how features are processed 
and encoded without changing what is attended. For 
example, knowledge might allow knowledge-related 
features to be associated more strongly with its underlying 
representation. Thus, our first goal is to determine whether 
knowledge indeed induces any change to what is attended.  

Assuming that it does, the second question concerns the 
time course of that effect. Some theorists have suggested 
that one role of knowledge is to preselect dimensions for 
further testing. For example, Pazzani's (1991) rule-based 
PostHoc model selectively attends to goal-relevant features 
and thus predicts preselection of those dimensions. 
Kruschke (1993) suggested that his associative ALCOVE 
model can account for knowledge by setting initial attention 
weights on the related dimensions higher than on others.  

However, knowledge effect on attention might emerge 
gradually in response to observing category members. 
Because prior knowledge consists of representations in the 
long-term memory, multiple exemplars may need to be 
observed for it to become sufficiently active. Or, a learner 
may only begin to make use of knowledge when a simpler 
strategy yields error signals. Thus, our second goal concerns 
whether preference for attending to related dimensions 
emerges gradually with experience of category members.  

Assuming that it does, the third question concerns 
whether error feedback is required to mediate change in 
attention. One possibility is that (even) greater attention to 
related features occurs in the absence of error, because 
merely observing related features might be sufficient to 
further activate prior knowledge. However, supervised 
learning is often characterized as learners' adapting their 
responses to error feedback so as to minimize error 
(Kruschke, 2001). It is assumed that doing so requires 
adjusting attention to more diagnostic dimensions. This 
error-driven account might be extended for knowledge-
based category learning, for example, error feedback might 
serve as cue indicating to the learner to use prior knowledge 
(and attention might shift as a result). Thus, our third 
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Dimensions

000001K6
000010K5
000100K4
001000K3
010000K2
100000K1
000000K0

Kez
111110D6
111101D5
111011D4
110111D3
101111D2
011111D1
111111D0

Dax
AntennaForearmMouthWingFootTailExemplars

Dimensions

000001K6
000010K5
000100K4
001000K3
010000K2
100000K1
000000K0

Kez
111110D6
111101D5
111011D4
110111D3
101111D2
011111D1
111111D0

Dax
AntennaForearmMouthWingFootTailExemplars

Table 1: Structures of Dax and Kez categories.

question concerns whether such shifts occur only while 
learners are committing errors or even in the absence of 
error, that is, after solving the classification problem.  

To address these questions, we conducted an eyetracking 
study of thematic category learning (e.g., Murphy & 
Allopenna, 1994). In recent years, eyetracking has been 
successfully applied to studying dimensional attention in 
various category learning tasks (Rehder & Hoffman, 
2005ab; Rehder, Colner, & Hoffman, 2009). We now use 
eyetracking to study knowledge effect on attention.  

Overview of the Experiments  
Two categories of ants (i.e., Dax and Kez) were constructed 
from six binary dimensions using one-away structure (Table 
1). Figure 1 illustrates two example prototypes. Four 
dimensions were described as useful in either a cold, tundra-
like environment or a hot, desert-like environment. The 
other two "neutral" dimensions were unrelated to these 
themes. Table 2 presents example feature descriptions for 
the prototypes in Figure 1. To prevent the themes from 
being blatantly obvious, the "tundra" and "desert" themes 
were not mentioned, but only indirectly suggested by the 
feature descriptions.  

In Experiment 1, we conducted a non-eyetracking study 
to establish whether our novel materials would induce 
standard behavioral effects of prior knowledge on category 
learning. In Experiment 2, we conducted an eyetracking 
study to address the three questions we raised above.  

Experiment 1  
Materials. Dax and Kez categories were constructed from 
six binary dimensions. Table 1 presents category structure 
in which the prototypes are 111111 (for Dax) and 000000 
(for Kez). Four feature assignments to Dax/Kez prototypes 
were used to balance features to categories: 111111/000000, 
101010/010101, 010101/101010, and 000000/111111.  

In the related condition, Daxes were related to the tundra 
theme and Kezes to the desert. Of the six dimensions, four 
were related to the themes and the other two were neutral. 
The neutral dimensions were either tail/foot, wing/mouth, or 
forearm/antenna with the remainder being theme-related. In 
the unrelated condition, all features were neutral.  

The two experimental conditions (related vs. unrelated), 
the four feature assignments to categories, and the three 
related/neutral dimension assignments resulted in 24 cells.  

Participants. Thirty NYU students were randomly assigned 
to the 24 cells with a constraint of at least one person in one 
cell (related, n = 14; unrelated, n = 16).  
Procedure. The experiment consisted of three phases: 
knowledge acquisition, category learning, and a single-
feature test. In knowledge acquisition, participants studied a 
total of 12 features, six from each category. Each screen 
displayed an ant with one visible feature and the other five 
features hidden behind gray rectangles. Below the ant were 
descriptions of the visible feature. Subjects studied the 12 
features on their own pace by navigating 12 screens with 
left/right arrows keys.  

To ensure learning, participants were required to take a 
multiple-choice test followed by a recall test. Both tests 
consisted of 12 questions, one for each feature. In the 
multiple-choice test, a question presented an ant with one 
visible feature (as in the learning screens), and participants 
chose one of the four alternatives below the ant. Immediate 
feedback was provided for each question, and after the test, 
total number of errors was also provided. When any error 
occurred, they were returned to the initial learning screens 
for additional study, and then retook the test that presented 
only the questions they missed. This process repeated until 
all questions were correctly answered. In the recall test, 
subjects verbally described the visible feature instead of 
making a choice. Immediate feedback was provided for each 
question, and after the test, total number of errors was 
provided. Any error during the recall test obligated the 
subject to restart the knowledge acquisition all over again.  

The category learning phase began with two practice trials 
followed by training blocks that randomly presented 14 
exemplars, seven from each category (Table 1). subjects 
classified each as either a Dax or Kez by pressing "z" or "/". 
Immediate feedback was provided below the exemplar 
("Correct" or "Wrong") and the exemplar remained visible 
for 3.8 s after the response. The training ended after two 
consecutive errorless blocks or after the 15th block.  

Finally, a single-feature test followed category learning. 
Each trial presented an ant displaying one visible feature (as 
in the learning screens), and subjects classified the visible 
feature (as in training). No feedback was provided. After 
each choice, subjects rated confidence by positioning a 
slider on a scale, which was then converted to [0–100] range.  

Results  
Subjects were very accurate in the test during knowledge 

acquisition. 22 subjects committed zero errors. Related (.97) 
and unrelated (.98) subjects were equally accurate, t < 1.  

A. Dax: Prototype (111111)           B. Kez: Prototype (000000)  

 
Figure 1: Two categories' example prototypes.  

231



Table 3:Single -feature test results .  
 Related   Unrelated   

 Related 
Dimensions  

Neutral 
Dimensions   Neutral 

Dimensions  
Experiment 1      

Accuracy .89 .71  .76 
Signed rating   67.1 37.0  43.8 

Experiment 2      
Accuracy .91 .70   
Signed rating   73.6 29.1   

During training, 12 related and 14 unrelated subjects 
reached the learning criterion of two errorless blocks. The 
related learners did so in fewer blocks (5.50) than the 
unrelated learners (8.57), t(24) = 2.85, p < .01, while 
committing fewer total errors (8.67 vs. 19.07), t(24) = 3.29, 
p < .01. These results replicate standard behavioral effect of 
faster learning in thematic categories.  

Single-feature test (Table 3) also replicated greater 
accuracy on related dimensions (.89) than on the neutral 
ones (.71), t(11) = 1.79, p = .05 (one-tailed) and than on the 
neutral dimensions in the unrelated condition (.76), t(24) = 
1.85, p = .07. The more sensitive signed confidence ratings 
were computed by negating the ratings in the incorrect trials 
(Table 3). Related learners' signed ratings were greater than 
0 for both dimension types,  p's < .01. More importantly and 
consistent with the accuracy, the ratings were greater for the 
related dimensions (67.1) than for the neutral ones (37.0), 
t(11) = 1.82, p < .05, and for the neutral dimensions in the 
unrelated  condition (43.8), t(24) = 2.32, p < .05.  

Discussion  
Experiment 1 confirmed the standard learning advantage of 
thematic categories with our novel materials. Related 
learners learned to distinguish the categories faster with 
fewer number of errors, and showed better single-feature 
test performance on the related features than on the neutral 
ones. The 5.5 blocks of learning speed suggests that the 
categories were not pre-learned in the knowledge 
acquisition phase.  

Experiment 2  
To address the main questions, we set out to measure eye 
movements during training. Because unrelated condition 

was included as a control for learning performance, we only 
tested the related condition in Experiment 2.  
Materials. The materials were the same as in Experiment 1.  
Participants. Twenty-four NYU students were randomly 
assigned in equal numbers to one of the four assignments of 
features to categories and to one of the three assignments of 
related/neutral dimensions.  
Procedure. The procedure was the same as in Experiment 1, 
with a few additional steps for eyetracking during training. 
Participants were first fitted and calibrated to the eyetracker. 
Each trial began with a drift correction that compensated 
small movements of the eyetracker on the head. We used a 
gaze-contingent display such that a feature was fully visible 
when it was fixated but blurred when it was not, to 
minimize use of peripheral vision. After each classification, 
auditory feedback indicated whether the response was 
correct (chime) or incorrect (ding).  
Eyetracking measures. The eyetracker yields a stream of 
fixations and their corresponding x-y screen locations and 
durations. We defined six circular areas of interest (AOIs) 
that encompass the features on the monitor. All fixations 
outside of the AOIs were discarded, as were those that 
occurred after classification response. Using the remaining 
fixations, we computed four measures on each trial.   

The first is the number of dimensions observed in each 
trial. We counted a dimension "observed" if that dimension 
is fixated at least once, and thus, it ranges [0–4] for the 
related dimensions and [0–2] for the neutral ones. The 
second, fixation probability, is obtained by dividing the 
number of dimensions observed by 4 and 2 for the related 
and neutral dimensions, respectively. The third, proportion 
fixation number, is computed by taking the number fixations 
to the related dimensions and dividing it by the total number 
of fixations. The fourth, proportion fixation time, is the 
result of taking the time fixating the related dimensions and 
dividing it by the total fixation time in each trial.  

Results 
Basic learning results. Once again, participants were very 
accurate in the multiple-choice and recall tests in knowledge 
acquisition (avg. accuracy = .97). During training, 20 of 24 
participants reached the learning criterion of two errorless 

Table 2: Example feature descriptions.
Dimension Dax [Tundra Theme] Kez [Desert Theme] 
Related   
   Antenna Because the temperature i s very low, parts of ants ' eyes (e.g., 

cornea, iris , pupil) often freeze and the ants become blind. When 
that happens, this thread type of flexible antennae is used to detect 
close objects. 

Bec ause the air is hot  and dry, the ants are vulnerable to dehydration. 
To maintain hydration, the ants use thi s fan type of a ntennae to absorb 
wa ter vapor from the a ir. 

   Mouth Because the ground is frozen, the ants need to cut  and break 
tough soil in search of their food. This type of mouth wi th sharp 
incisors serves this  funct ion. 

Bec ause sources of food are c overed with sand, they need to be 
cleared before swallowing. The inner surfac e of the ants' mouth has 
short but  s tiff hairs that filter out these impurities. 

   F orearm Because of frequent bl izzards , the ants  need to a nchor 
themselves during high winds . This type of forearm allows the ant 
to hold its position. 

Bec ause the ants' prey (e.g., fleas) hide in sand, the ants  use this  type 
of forearm to sweep the sand and detect the prey. 

   F oot Because the ground surface is  s lippery, the ants need to have 
wide feet to maintain their footing. 

Bec ause the ground surface is  extremely hot, the ants  switch the toe 
that  comes into contact with the ground in each step to avoid burning. 

Neutral   
   Tai l The ants feed proteins  stored in the humps to thei r larvae using 

the sharp nozzle in the end of tail. 
The ants la y a large number of eggs at a time. This  trumpet-shaped 

tail allows the ants to deliver a  large number of eggs. 
   W ings While flying, the ants control their rapid changes in direction by 

adjusting the fore- and rear-flaps in each wing. 
The ants have red spots in the wing ends. The color becomes brighter 

in the mating season by the hormones produced in the gra y area. 
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blocks (M = 6.5 blocks; cf., 5.5 in Expt. 1) while 
committing 10.60 total errors (cf., 8.67 in Expt. 1).  
Single-feature test. As in Experiment 1 (Table 3), learners 
exhibited greater accuracy on the related dimensions (.91) 
than on the neutral ones (.70), t(19) = 3.31, p < .01. Once 
again, the signed confidence ratings were greater than 0 for 
both dimension types, p's < .01, and greater for the related 
dimensions (73.6) than for the neutral ones (29.1), t(19) = 
5.75, p < .001.   

Eye fixations. Figure 2 reports learners' eye fixations 
averaged in each block. In construction of this figure, we 
assumed that the learners' eye movements in the remaining 
blocks after reaching criterion would have been identical to 
those in their last block.  

Figure 2A shows that learners initially observed 3 of the 4 
related dimensions and 1.25 of the 2 neutral dimensions. 
Figure 2B equates different number of dimension types. The 
figure indicates that learners fixated the two types of 
dimensions with about equal probability but become more 
(less) likely to fixate related (neutral) dimensions.  

A 2 x 2 within-subjects ANOVA was conducted on 
fixation probabilities in Figure 2B with dimension type 
(related vs. neutral) and block (first vs. last) as factors. 
There was a main effect of dimension, F(1, 19) = 20.294, p 
< .001, indicating overall greater chance of fixating related 
dimensions. There was no main effect of block (p > .10), but 
a significant interaction between dimension type and block, 
F(1, 19) = 25.904, p < .001, suggested the increase 
(decrease) in fixating the related (neutral) dimensions. T-
tests revealed that learners were more likely to fixate the 
related dimensions than the neutral ones in all blocks, p's 
< .03, except block 1, p > .09. The small (nonsignificant) 
difference in block 1 might have resulted from fixations in 
the later trials of the block. The nearly identical probabilities 
for the related (.73) and neutral (.75) dimensions on the first 
trial suggest absence of strong initial preference.  

These results are further supported by more sensitive 
proportion measures in Figures 2C. Because there were four 

related and two neutral dimensions, a value of .67 (= 4/6) 
reflects bias toward neither dimensions. Both proportions 
start off slightly greater than .67 and then shift in favor of 
the related dimensions. T-tests comparing the first and last 
blocks confirmed increase in both proportions, p's < .001. In 
addition, both proportions were greater than .67 in all blocks 
except blocks 1 and 2, p's < .02. This result is consistent 
with the fixation probabilities in Figure 2B indicating no 
attentional preselection of the related dimensions (although 
very weak but nonsignificant initial preference is obtained).   

Backward learning curves. Figure 2 indicated learners' 
gradual shift in attention during training. We also asked how 
that shift relates to reduction in error. To address this 
question, we created backward learning curves (Figure 3) by 
translating each subjects' trial numbers so that their last 
error occurred on trial 0. Because the primary interest was 
knowledge use and its relation to error reduction, we 
included only 14 of the 20 learners (i.e., knowledge users) 
whose eye movements and single-feature test results both  
showed obvious bias for the related dimensions. In Figure 3, 
we included 60 trials (about 4 blocks) before the last error 
and 28 trials (the 2 blocks of learning criterion) after the last 
error. We averaged every 4 trials to obtain one data point.  

Figure 3A presents the probability of error that indicates 
nonzero but small number of errors until the last error. Of 
greater interest are Figures 3B (number of dimensions 
fixated) and 3C (fixation probabilities). First, consider the 
eye fixations before the last error. Both figures indicate that 
shift in attention begins from about three blocks before the 
last error. T-tests confirmed that the related dimension were 
fixated with greater probability than the neutral ones starting 
from the data point indicated by an arrow (Figure 3C), p's 
< .05. The proportion measures (Figure 3D) were also 
reliably greater than .67 from the same data point, p's < .01. 
These results establish that the knowledge users began shift 
in attention well before solving the classification problem.  

Next consider the eye fixations after the last error. Figures 
3B, 3C, and 3D all indicate continued shift in attention after 

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

-4 -3 -2 -1 0 1 2

Pr
ob

ab
ili

ty

A. Probability of Error

0

1

2

3

4

-4 -3 -2 -1 0 1 2

Related

Neutral

N
u

m
be

r 
of

 D
im

en
si

on
s

B. Number of Dimensions F ixated

0.5

0.6

0.7

0.8

0.9

1.0

-4 -3 -2 -1 0 1 2

Fixation
number
Fixation
time

Pr
op

o
rt

io
n

D. Proportion F ixation Number/Time

Block

0.0
0.1

0.2
0.3
0.4

0.5
0.6
0.7

0.8

0.9
1.0

-4 -3 -2 -1 0 1 2

Related
Neutral

Pr
ob

ab
ili

ty
C. Probability of Fixation

Block

Figure 3: Backward learning curves from Experiment 2. 
Figure 2: Eye fixation results from Experiment 2. 
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the last error, that is, despite in the absence of error 
feedback. A 2 x 7 within-subjects ANOVA was conducted 
on the fixation probabilities (Figure 3C) with dimension 
type (related vs. neutral) and data point (1 to 7) as factors. 
There was a main effect of dimension type, F(1, 13) = 
40.617, p < .001, confirming grater chance of fixating 
related dimensions. There was no main effect of data point 
(F < 1), but significant interaction, F(6, 78) = 5.796, p 
< .001, confirmed the increase (decrease) in fixating the 
related (neutral) dimensions. Considering the two dimension 
types separately, fixation probabilities (Figure 3C) increased 
from the first two data points to the last two (p = .10) for the 
related dimensions and decreased for the neutral dimensions 
(p = .09). Finally, the two proportions (Figure 3D) also 
showed reliable increase for the same data points, p's < .05.  

Discussion 
Experiment 2 addressed our three main questions. First, eye 
fixations showed that prior knowledge indeed affects 
dimensional attention allocation, as learners devoted more 
attention to related dimensions. Second, learners showed 
only a weak or no initial attentional preference but then 
gradually shifted attention to related dimensions. Third, this 
shift in attention continued after the classification problem 
was solved, that is, in the absence of error feedback.  

General Discussion  
Previous research has documented large knowledge effects 
on category learning, and many investigators considered the 
possibility that these effects are mediated by attention. We 
discuss our findings regarding the questions we raised and 
the implications they have on models of knowledge-based 
category learning.  
An effect of prior knowledge on attention. Using 
eyetracking, we answered the most basic question that 
knowledge indeed affects dimensional attention. Contra the 
encoding account in the basic memory literature, we found a 
robust effect of knowledge on dimensional attention. To our 
knowledge, this is the first direct confirmation of the 
frequent proposals that knowledge directs attention to 
knowledge-relevant information (e.g., Heit & Bott, 2000; 
Kruschke, 1993; Murphy & Medin, 1985; Pazzani, 1991).  

Regarding feature learning, both Baywatch (Heit & Bott, 
2000) and KRES (Rehder & Murphy, 2003) correctly 
predicted better learning of related features (Experiments 1 
& 2). However, in these models, this result has been 
accounted for not by attention allocation but solely by 
various forms of cue competition that arise from error-
driven learning. For example, in Baywatch, related features 
are learned faster because they are additionally connected to 
the category label via common prior concept units that 
accelerate their learning at the cost of the neutral features.  

However, it is well-known that many standard effect of 
cue competition can arise not only from dynamics of error-
driven processes but also by attentional mechanisms (e.g., 
Kruschke, 2001). The present results suggest that such 
attentional effect on cue competition on feature learning 

also hold in knowledge-based category learning: Because 
learners attend the neutral features less often, they will be 
learned less well. Thus, neutral features were at a double 
disadvantage in learning, suffering from not only the effects 
of cue competition but also fewer attentional resources.  

Regarding features' contribution to final classification 
decisions, the neutral features were learned less well means 
that they are contributing less to final classification 
decisions. Also, at the end of training, they were fixated less 
often. In other words, the neutral dimensions were at a 
double disadvantage in classification as well—they 
provided a only weak source of evidence which was largely 
ignored anyway. Models, like Baywatch and KRES, assume 
that information about features equally enter the network on 
every trial throughout training. But, the current eye fixations 
results indicate that these models are likely to overestimate 
the influence of neutral dimensions on final classification 
decisions because of continued input from those dimensions.  
Knowledge selection in response to observed exemplars. 
The second question was the time course of knowledge 
effect on attention. It is appealing that the impact of 
knowledge will be greatest initially and then decrease with 
experience of category members, because prior knowledge 
is what learners bring to the learning task as compared to 
empirical observations that come later (e.g., Heit, 1995; 
Pazzani, 1991). However, the eye fixations results showed 
that subjects gradually allocated more eye fixations to the 
related dimensions with more experience with exemplars.  

We interpret this result as arising from accumulation of 
semantic activations associated with the related features. 
That is, the knowledge associated with related features were 
not initially comprehensible, but repeated observation of 
sets of related features might have lead subjects to make 
sense of them via common theme (or via coherent relations 
among the related features). This process does not have to 
occur in a manner of "aha" experience because relations 
between related features could have been noticed in a 
piecemeal manner. Heit and Bott (2000) have labeled this 
"knowledge selection," and like us, showed gradual effect of 
knowledge on feature learning (but not on attention).  

Baywatch and KRES assume that knowledge is in place 
from the start of training, rather than being constructed 
dynamically in response to observed category members. 
However, if knowledge were active from the start, these 
models predict initial attention preference for the related 
dimensions, a prediction we failed to confirm. Thus, 
because of the built-in knowledge representation, these 
models oversimplify the process by which knowledge is 
gradually activated in response to exemplar observations.  
The (non)necessary role of error in attentional shift. The 
third question we asked is whether error is required to 
mediate attentional shift. Note that all current accounts of 
attention change during learning are based on error. For 
example, ALCOVE predicts gradual attention shift to 
dimensions that reduce error (Kruschke, 1992). But, contra 
this account, eye fixations continued to shift to related 
dimensions even after subjects learned to classify all items. 
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Thus, we conclude that error is not a necessary condition for 
attention shift in knowledge-based category learning.  

We propose two explanations for this result. The first is 
what we have already mentioned, that is, the activation of 
semantic representations. In our experiment, merely 
observing exemplars that consist of related features might 
have been sufficient to further activate associated 
representations, that is, the tundra and desert themes. This 
theme discovery in the absence of error is consistent with 
the extensive literature documenting knowledge effect in 
unsupervised category learning. When prior knowledge is 
available, subjects can come up with theme-based (family 
resemblance) category construction.  

The second reason that attention might shift without error 
is the desire for speed that our cognitive systems are trying 
to achieve—all else being equal, a faster response is more 
adaptive than a slower one. One way that latency can be 
decreased is by gathering less information in preparation of 
a decision, and of course, to maintain accuracy, less learned 
neutral dimensions were the first to go.  

In supervised learning not involving prior knowledge, 
Rehder and Hoffman (2005a) also found that learners first 
discovered a one-dimensional rule and then, after a few 
errorless trials, they discontinued attending to other 
redundant dimensions. Moreover, Blair, Watson, & Meier 
(2009) found that learners continued to optimize attention in 
the absence of any feedback whatsoever. These results, 
along with the current one,  altogether pose problems for all 
category learning models that tie attention to error-driven 
mechanisms (e.g., Kruschke, 1992).  

Summary  
Using eyetracking, we found that (a) knowledge directs 
attention to related dimensions and away from unrelated 
ones, (b) this effect did not emerge immediately but 
gradually emerged in response to observing category 
members, and (c) this effect grew even after the last error, 
that is, in the absence of error. Models of knowledge-based 
category learning will remain incomplete until they include 
attention mechanisms that explain these empirical results.   
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