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Visualizing red blood cell sickling and the effects of inhibition of
sphingosine kinase 1 using soft X-ray tomography

Michele C. Darrow*, Yujin Zhang?, Bertrand P. Cinquin®#%#, Elizabeth A. Smith34, Rosanne Boudreau3*,
Ryan H. Rochat'$§, Michael F. Schmid’, Yang Xia%>¢, Carolyn A. Larabell>*T and Wah Chiu’-T

ABSTRACT

Sickle cell disease is a destructive genetic disorder characterized by
the formation of fibrils of deoxygenated hemoglobin, leading to the
red blood cell (RBC) morphology changes that underlie the clinical
manifestations of this disease. Using cryogenic soft X-ray
tomography (SXT), we characterized the morphology of sickled
RBCs in terms of volume and the number of protrusions per cell. We
were able to identify statistically a relationship between the number of
protrusions and the volume of the cell, which is known to correlate to
the severity of sickling. This structural polymorphism allows for the
classification of the stages of the sickling process. Recent studies
have shown that elevated sphingosine kinase 1 (Sphk1)-mediated
sphingosine 1-phosphate production contributes to sickling. Here, we
further demonstrate that compound 5C, an inhibitor of Sphk1, has
anti-sickling properties. Additionally, the variation in cellular
morphology upon treatment suggests that this drug acts to delay
the sickling process. SXT is an effective tool that can be used to
identify the morphology of the sickling process and assess the
effectiveness of potential therapeutics.

KEY WORDS: Cryogenic soft X-ray tomography, Red blood cell,
Sickle cell disease, Sphingosine kinase inhibitor, Red cell
morphology

INTRODUCTION

Sickle cell disease (SCD) was first identified in 1910 by James
Herrick (Herrick, 1910). In 1949, SCD was the first disease that
was understood on the molecular level, when Linus Pauling
suggested that the sickling of a red blood cell (RBC) was caused by
a structural difference in the hemoglobin present in RBCs (Pauling
et al.,, 1949). In 1957, this structural difference was explained
genetically by Vernon Ingram as a single amino acid substitution in
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sickle hemoglobin (Ingram, 1957). In 2008, it was estimated that
globally, ~287,500 children are born with SCD (Rees et al., 2010).
The prevalence of SCD in the USA is ~1 in 4000 people (Hassell,
2010) and is much higher in other geographical regions. Even
though we have known about this disease for over a century, there
is still an acute lack of effective preventative approaches or
mechanism-specific treatment options (Rees et al.,, 2010).
Hydroxyurea is currently the only approved treatment for SCD
(Rees et al., 2010). Although the actual mechanism of action is
unknown, it is generally accepted that hydroxyurea increases the
level of fetal hemoglobin (HbF), reducing the rate of sickle
hemoglobin (HbS) fibril formation (Akinsheye et al., 2011;
Noguchi et al., 1988).

The structure and function of hemoglobin were elucidated by
Max Perutz (Perutz et al., 1960) and has since been understood in
more detail with improved structural resolution (Harrington et al.,
1997; Padlan and Love, 1985). SCD is an autosomal recessive
genetic disease caused by a single point mutation in the B-globin
subunit of hemoglobin that changes the negatively charged glutamic
acid residue to a hydrophobic valine residue, resulting in non-
covalent polymerization and double-strand formation under low-
oxygen conditions. Polymerization occurs through hydrophobic
lateral contacts involving the mutant valine residues of one HbS
molecule and axial contacts in the B-globin subunit of an adjacently
located HbS molecule (Rodgers et al., 1987). Studies of HbS fibers
by negative stain electron microscopy have demonstrated that
hemoglobin bundles are composed of at least seven double strands
(Carragher et al., 1988; Dykes et al., 1978, 1979). Formation and
elongation of these bundles occurs through a double nucleation
mechanism and leads to RBC distortion. Upon reoxygenation, the
hemoglobin fibers rapidly dissolve allowing the RBCs to assume
their normal shapes. Repeated sickling episodes causes damage to
the cell membrane, which decreases the elasticity of the cell and its
ability to return to a normal biconcave disc shape when normoxyic
conditions are restored. There are many factors that can influence
the process of sickling, including oxygen saturation, pH,
temperature and HbF levels (Christoph et al., 2005; Noguchi and
Schechter, 1981).

The loss of membrane elasticity plays a key role in the
pathophysiology of the disease. RBCs must be highly elastic in
order to pass through the smaller capillary blood vessels to deliver
oxygen to tissue. Cells that have undergone multiple episodes of
sickling are more rigid and become trapped in the narrow capillaries,
leading to vascular occlusion and ischemia (Rees et al., 2010;
Sorette et al., 1987). Additionally, rigid cells that are unable to
return to their normal shape are identified and destroyed in a process
called hemolysis (Frenette and Atweh, 2007; Presley et al., 2010;
Rees et al., 2010). Although new RBCs are continuously created,
this happens at a lower rate and cannot compensate for all of the
destroyed cells, leading to anemia.
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Clinically, hallmarks of SCD include changes to RBC
morphology, and RBC density increase (volume decrease) under
low-oxygen conditions. In both cases, the extent of the changes are
associated with the clinical symptomatology, suggesting that both
density and morphology changes might be determinants of disease
severity (Brittenham et al., 1985; Brugnara, 2003; Charache and
Conley, 1964; Kumar et al., 2014). The morphology of sickled RBCs
has been studied extensively using light microscopy (Christoph et al.,
2005; Coletta et al., 1988; Horiuchi et al., 1988; Pierre, 2002; van
Beers et al, 2014; Zhang et al., 2014) and scanning electron
microscopy (SEM; Horiuchi et al., 1988; Kaul and Xue, 1991; Pierre,
2002) to gather information on cell morphology. In fact, preclinical
trials and treatment-testing experiments routinely use light-
microscopy-derived percentages of sickled cells as predictors of
outcome (Abdulmalik et al., 2005; Chang et al., 1983a,b; Ikuta et al.,
2011; Zhang et al., 2014). However, both light microscopy and SEM
provide only two-dimensional data and, in the case of light
microscopy, at relatively low resolution. To address these
shortcomings, here we have used soft X-ray tomography (SXT) to
three-dimensionally characterize RBC morphology throughout the
sickling process, providing new structural insights into the sizes and
shapes of sickled RBCs. Additionally, we have used this new
methodology to structurally characterize the morphological effects of
the anti-sickling drug compound 5C.

RESULTS

SXT of sickled RBCs

SXT at cryo-temperatures bridges the gap between light and electron
microscopy, allowing the imaging of whole cells without sectioning
techniques at a resolution greater than light microscopy (~50 nm).
SXT uses the inherent contrast of fully hydrated specimens by
imaging in the ‘water window’ (2.4 nm wavelength, 517 eV) where
common biological elements such as carbon and nitrogen absorb
X-rays and are therefore visible, whereas water is relatively
transparent (Carzaniga et al., 2014; Larabell and Nugent, 2010;
Le Gros et al., 2005; Patwardhan et al., 2014). Additionally, owing
to the use of a thin-walled glass capillary tube to flash freeze and
image the specimen, there is no visible radiation damage at the
achievable resolution, and it is possible to collect projection image
tilt series of 180° or greater allowing for a three-dimensional
reconstruction with no distortions due to missing wedge artifacts as
in electron microscopy (Larabell and Nugent, 2010; Le Gros et al.,
2005, 2014; Parkinson et al., 2008). Variations of this technique
have been successfully applied towards the understanding of
changes in cellular morphology due to disease and/or treatment
(Chichon et al., 2012; Hanssen et al., 2012; Myllys et al., 2016;
Pérez-Berna et al., 2016).

Mature RBCs from mice expressing the human sequence of the
B-subunit of hemoglobin, both SCD mutant and wild type (WT),
were exposed to either low oxygen (hypoxia) or normal oxygen
(normoxia) conditions for 2 hours. All samples were then lightly
fixed using glutaraldehyde and then imaged.

In all, we imaged and reconstructed over 600 cells using SXT.
Each of these cells was staged based on three-dimensional visual
inspection of the number of protrusions. A total of 105
subtomograms of hypoxia-induced sickle cells from both the
untreated and compound-5C-treated conditions were extracted and
analyzed volumetrically. We did not find a statistical difference in
volume between the untreated and compound-5C-treated groups
(Fig. S1), so they were combined for overall volumetric analysis.
The extracted sickle RBCs were classified by the number of
protrusions (Fig. 1A). A protrusion is defined as an extended
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Fig. 1. The number of cell protrusions is correlated with volume, and
therefore density. (A) Results from sickle RBCs under hypoxia conditions
both with and without treatment with compound 5C were combined after
statistical tests revealed no significant difference between the two populations
(see also Fig. S1). This combined dataset (n=105) represents four individual
SXT experiments. The distribution of cells based on number of protrusions for
the combined dataset is shown. In subsequent presentations all RBCs with
>10 protrusions were combined into a 10+ category. (B) Volumetric analysis of
the combined sickle RBC dataset revealed a correlation between volume and
the number of protrusions (see also Fig. S2). The volume measurement can be
used as an inverse proxy for density, indicating the number of protrusions is
correlated to density, a hallmark of SCD associated with severity of sickling.
Circled data points have been statistically identified as outliers (as described in
the Materials and Methods), but not excluded.

appendage, where the normal biconcave disc shape of a RBC has
been deformed due to changes in the internal structures of the cell.
Examples of protrusions can be seen in Fig. 1 and Fig. S2. The
majority of sickle RBCs had four protrusions, but there were a few
with more than 15 protrusions. Given that protrusions were found to
extend in all directions three-dimensional analysis of cellular
morphology was necessary for accurate protrusion counting
(Fig. S2).

Volumetric and feature analysis of sickled RBCs

Dehydration of RBCs, and therefore higher cellular density, is a
hallmark of SCD (Brugnara, 2003; Fabry et al., 1984; Kumar et al.,
2014). When density is high, volume will be low, assuming a
constant mass. Using these relationships, the 3D volume
measurements from the subtomograms of individual RBCs can be
used to describe the severity of cell sickling. Our measurements
clearly show that lower volume (high density) correlates to lower
protrusion numbers, whereas higher volume (low density) correlates
to higher protrusion numbers (Fig. 1B). Using a linear regression
test, this correlation is highly significant (P<0.01). Sickle RBCs
with zero protrusions were not included in this statistical analysis
because they are expected to, and do, have volumes that are similar
to sickle RBCs in the 10+ protrusions group. Outliers were
calculated on binned data using the interquartile range (IQR)
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method, as described in the Materials and Methods, and are
marked with gray circles, but not removed from analysis.
Importantly, this statistical correlation is present regardless of
treatment (Fig. S1).

Classification of sickle RBCs based on features

Based on the relationship between the number of protrusions
and volume, the data were binned into four categories describing
the severity of sickling on a per cell basis (Fig. 2). Because the
progression of pathological severity of sickled RBCs is related to
the reduction in volume, and a correlation exists between volume
and protrusion numbers, the protrusion numbers can be used to
indicate the severity of sickling or, when considered at a population
level, the progression of the disease. To place our morphological
observations into the context of RBC sickling, we describe them in
four categories. The ‘none’ category contains cells with zero or one
protrusion; the ‘mild’ category contains cells with eight, nine, ten or
more protrusions (because of the small number of cells with more
than ten protrusions, these were condensed into a single 10+
category); the ‘moderate’ category contains cells with five, six or
seven protrusions; and lastly, the ‘severe’ category contains cells
with two, three or four protrusions. It is worth noting that RBCs with
one protrusion are likely due to crowding in the capillary tube, as
one would not expect the hemoglobin fibrils to exert enough force to
deform the membrane without having additional contacts with other
areas of the membrane. For this reason, RBCs with one protrusion
were included in the none category.

Using the categories defined above, RBCs from various control
groups (WT cells, normoxia; WT cells, hypoxia; SCD cells,
normoxia) and the experimental group (SCD cells, hypoxia) were
classified based on protrusion number (Fig. 3). As expected, the
vast majority of all three control populations were staged to the
none category. The few RBCs (n=10; ~4%) in the control groups
that were staged to other categories potentially represent

experimental error or false positives. The experimental group of
SCD cells under hypoxia conditions differed significantly from
these controls. Only 194+8% (mean+s.e.m.) of the population fell
into the none category, with the rest split between the other three
categories. The majority of this remainder (43+6%) fell into the
severe category.

Effects of Sphk1 inhibitor on sickling process

We next used this classification system to determine the
morphological effects of a potential drug treatment. Previous
work has demonstrated that sphingosine kinase 1 (Sphk1) inhibitors
significantly decreased sickling RBCs in mice (Zhang et al., 2014)
and compound 5C has been shown to specifically inhibit Sphk1
(Datta et al., 2014; Tan et al., 2014; Wong et al., 2009). When
comparing the staged sickle RBCs under hypoxia conditions,
without and with treatment (Fig. 4), there was a statistically
significant shift in the population of treated cells. Further statistical
analysis using Tukey’s multiple comparison test indicated that the
shift in protrusion numbers due to treatment is towards the less
severe categories of sickling. This result is affirmed by a significant
pairwise x> test between the moderate and severe categories,
demonstrating the largest shift is from the severe to the moderate
category in the compound-5C-treated population.

Upon assessment with light microscopy, ~60% of sickle RBCs
under hypoxia conditions and without compound 5C treatment,
were categorized as sickled, whereas in the compound-5C-treated
condition, there was a significant decrease in the proportion of
sickled cells to ~25% (Fig. 5). Beneficial effects of treatment with
compound 5C were also observed in multiple biochemical assays,
including erythrocyte survival times, where we found that
compound 5C treatment significantly increased RBC lifespan
(Fig. 6). Taken together, these results indicate that inhibition of
Sphk1 activity can attenuate the severity of sickle RBC morphology
changes.

I um

Stage None Mild Moderate Severe

| )
# of
Protrusions ! 8,9, 10+ 56,7 2,3,4

Fig. 2. Continuum of the stages of sickling. Following volumetric analysis to correlate protrusion number with density, a hallmark of SCD, data were binned into
four categories. The none category is composed of RBCs with zero or one protrusion; the mild category is composed of RBCs with eight, nine, ten or greater
protrusions; the moderate category is composed of RBCs with five, six or seven protrusions; and finally, the severe category is composed of RBCs with two, three
or four protrusions. Multiple examples of RBCs as imaged by SXT that fall into each of these categories are displayed here (see also Fig. S2).
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Fig. 3. Sickle RBCs under hypoxia conditions differ significantly from
controls. Only 19+8% of cells from the experimental condition (SCD cells,
hypoxia) fall into the none category. The rest of these cells was split unevenly
throughout the remaining categories, with the majority falling into the severe
category (43+6%), with 24+5% in the moderate category and 14+6% in the
mild category. Importantly, these data indicate that up to 80% of the RBCs
cultivated under these conditions (4% oxygen, 37°C, 2 h) are sickled to some
degree. Note: data are presented as normalized meanzts.e.m. and represent
four individual experiments.

DISCUSSION

The use of SXT in this study has provided the three-dimensional
resolution necessary to unambiguously classify RBCs beyond the
binary categories of ‘biconcave disc’ and ‘aberrant’ that are
commonly used to describe sickle RBCs in light microscopy.

60
OSCD cells, Hypoxia, No
1] Treatment;, N=227
50
— BSCD cells, Hypoxia, 5C
£ 40 | Treated; N=166 T
@
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£ o
g 30 fl“ L
E % } "l{
& 0 o
20 H o
10 - o o
None Mild Moderate  Severe
Stages of Sickling

A

]
*Significant population shift with 5C treatment

Fig. 4. Compound 5C significantly shifts the population of RBCs toward
the less severe categories of sickling. One-way analysis of variance
indicates that the population shift due to treatment with compound 5C is
significant as compared to the control sickle RBC population (*P<0.05; see
also Table S1). Tukey’s multiple comparison test indicates that this shift is
towards the less severe categories of sickling and a pairwise x2 test indicates
the greatest change is between the moderate and severe categories. Taken
together, these data indicate the treatment is acting to keep sickle RBCs in the
morphological mild and moderate categories. Note: data are presented as
normalized meanzts.e.m. and represent four individual experiments.
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Fig. 5. Effects of compound 5C treatment on sickling RBCs using light
microscopy. Inhibition of Sphk1 reduced sickling of SCD RBCs under hypoxia
conditions. The percentage of sickled cells was significantly reduced in the
RBCs treated with the Sphk1-specific inhibitor compound 5C. *P<0.05
versus saline treatment control (Student’s t-test). Data are presented as
meanzs.d. (n=1000).

Here, when comparing the two methodologies, ~20% of cells with
sickling morphology were missed using light microscopy.
Additionally, with three-dimensional data, we were able to fully
characterize the intermediate state variously referred to as a ‘holly
leaf’, ‘wreath’ or ‘star’ shape (Horiuchi et al., 1988; Kaul and Xue,
1991; Kumar et al., 2014). However, the total number of RBCs in
the SXT analysis is smaller and the technique is more time intensive
and, pending the production of lab-based X-ray microscopes, less
available as compared to light microscopy. Using volume as an
inverse proxy for density, we demonstrate that cell projection
numbers and density are correlated, allowing for the staging of cells
into four categories along the continuum of severity of sickling:
none, mild, moderate and severe.

In vitro growth of microtubules in vesicles can be used as a model
of membrane deformation due to fibril growth. In this model,
deformation of the vesicle membrane occurs simultaneously at
opposing points in the membrane and can lead to very long
protrusions and an overall horseshoe, or sickled shape (Fygenson
et al., 1997). The correlation between sickled RBCs with high
protrusion numbers and high volumes implies there are many
nucleation points for sickle fibril growth in these cells; by contrast,
low sickle RBC volume and cells with a low protrusion number
have undergone fibril growth for some time, causing the membrane
to stretch and the fibrils to collapse down to only a few, in some
cases highly elongated, protrusions. Tearing of the membrane due to

2 1005 -&- SCD Tg+Saline
b - SCD Tg+5C
& 80+
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Fig. 6. Treatment of SCD mice by compound 5C increased the lifespan of
RBCs. Specific inhibition of Sphk1 with 5C in SCD mice significantly increased
RBC lifespan. *P<0.05 versus saline treatment control (Student’s t-test). Data
are presented as meanzts.e.m. (n=6).
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fibril growth was only observed in two cases, both of which would
be classified into the severe category. It is possible that the
difference between the RBCs with a low protrusion number
and high protrusion number is purely the number of cycles of
deoxygenation and reoxygenation they have undergone, potentially
damaging the membrane during each cycle, or not fully breaking
down the fibrils between cycles. Unfortunately, this study is unable
to distinguish between these possibilities.

Volumetric analysis of three-dimensional data requires successful
reconstruction of tilt series and, when the cell is larger than the field
of view of a single tilt series, merging of reconstructed datasets,
followed by manual assignment of density. This is a time-
consuming workflow that requires manual oversight and input at
multiple steps. However, using the relationship between volume and
protrusion number simplifies this process. Protrusion numbers can
be identified using the original tilt series data, even before
reconstruction. Because of this, a larger number of cells can be
included in the protrusion number dataset than were included in the
volumetric analysis. Using these stages to correlate protrusion
numbers to severity of sickling, SXT is a novel and efficient method
for collecting structural information about close-to-native state
sickle RBCs.

The stages of sickling identified by the volumetric analysis allow
us to characterize the percentage of cells at each stage both without
and with a treatment. It is important to clarify that the category titles
refer to the severity of sickling on a per cell basis, whereas the
clinical progression of the disease would require assessment at the
population level. The effects of compound 5C treatment are subtle,
not changing the overall percentage of RBCs that are sickled (~80%
with or without treatment) but instead shifting the population into
different categories. The largest shift in the treated population is
seen as a decrease in sickle RBCs in the severe category and an
increase in sickle RBCs in the moderate and mild categories. The
shift is not due to an increase in volume in the compound-5C-treated
group, as statistical analysis showed no difference in volume by
treatment (Fig. S1). These subtle changes in morphology would
likely be missed using light microscopy or SEM due to the lower
resolution of light microscopy and/or the two-dimensional nature of
both of these imaging modalities. Indeed, as assessed by light
microscopy, sickling morphology in compound-5C-treated cells is
significantly decreased in treated compared to non-treated cells
(Fig. 5), suggesting light microscopy is less effective at
identification of the mild category or early stage sickling events,
instead considering them non-sickled.

Sphingosine 1-phosphate (S1P) acts as a signaling molecule to
regulate multiple distinct biological processes through interaction
with cell surface S1P receptors and/or interactions with regulatory
proteins (Spiegel and Milstien, 2003). For example, S1P has been
shown to regulate progenitor cell egress from bone marrow
(Ratajczak et al., 2010), lymphocyte egress from the thymus,
spleen and lymph nodes (Pappu et al., 2007), to activate NF-kB, an
inflammation control transcription factor (Alvarez et al., 2010), and
to promote cell proliferation and angiogenesis (English et al., 2002).
RBC:s are the largest cellular reserve of S1P, partly due to the lack of
enzymes that degrade S1P (Hénel et al., 2007; Ito et al., 2007).
Recent research has shown that elevated Sphkl-mediated
production of SI1P contributes to sickling and disease progression
(Zhang et al., 2014), indicating that S1P is acting intracellularly,
independently of its receptors (Zhang et al., 2014). This makes
Sphk1 an attractive target for mediation of S1P levels and therefore
of SCD phenotypes. Here, we show the compound 5C is an effective
potential modulator of sickled RBC morphology. Additionally, we

show that the effect of inhibition of S1P accumulation is not volume
related, but instead related to the slowing of the sickling process.
This suggests that SIP interacts with hemoglobin, directly or
indirectly, to stabilize the sickle hemoglobin fibrils, and when
inhibited, leads to less fibril polymerization.

MATERIALS AND METHODS

Mice, treatment conditions and specimen collection

SCD Berkeley transgenic (Tg) mice, exclusively expressing human sickle
hemoglobin (HbS), were purchased from The Jackson Laboratory, Inc. The
SCD Tg mice were produced by breeding homozygous male with
heterozygous female mice. Newborn mice were genotyped by PCR.
Animal care was in accordance with institutional and NIH guidelines.
Research protocols were reviewed and approved by the University of Texas
Health Science Center at Houston Animal Welfare Committee.

SCD Tg mice, at 8 weeks of age, were divided into two groups. Mice were
anesthetized by inhaling isoflurane. Osmotic minipumps (Alza) were
implanted subcutaneously in the nape of the neck. Compound 5C was
delivered at a rate of 2 mg/kg body weight per day for 28 days. Control mice
received saline. 0.6—1 ml of the blood was withdrawn from anesthetized
mouse heart. The blood was anticoagulated with heparin. Heparin-treated
blood was used for in vitro treatment.

In vitro compound 5C treatment and hypoxia-induced sickling
Heparin-treated blood was centrifuged at 2400 g for 5 min at room
temperature, followed by aspiration of the interface between the plasma and
white blood cells. Cells were washed three times and resuspended in culture
medium (F-10 Hams with 1% penicillin-streptomycin) to 4% hematocrit
(HCT) and 1 ml of cells was placed into each well of a 12-well plate. The
cells were treated with compound 5C (2 pg/ml, graciously provided by
colleagues at the National University of Singapore) or saline and exposed to
4% oxygen, 96% nitrogen for 2 hours with shaking at 37°C. After treatment,
the cells were fixed by placing in 0.3% glutaraldehyde in PBS that had 4%
oxygen bubbled through. The fixed cells were used for light microscopy or
SXT study. Prior to treatment, basic hematological parameters of blood from
mice treated with saline and compound 5C were taken (Table S1).

Soft X-ray tomography

Samples were concentrated, transferred to thin-walled glass capillaries and
plunge frozen in liquid propane (Le Gros et al., 2005). Imaging was
performed at the National Center for X-ray Tomography at the Advanced
Light Source of Lawrence Berkeley National Laboratory (LBNL) on the XM-
2 soft X-ray microscope, which is equipped with a Fresnel zone-plate-based
condenser and objective lenses (made by the Center for X-ray Optics, LBNL;
Le Gros et al., 2014). The specimens were kept in an atmosphere of liquid
nitrogen cooled helium gas at all times during imaging. For each dataset, two-
dimensional projection images were collected in 2° steps through a total
rotational range of greater than 180°. Exposure times between 150 and
300 ms were used (depending on synchrotron ring current). If changes due to
radiation damage were seen during the tilt series or the presence of non-
vitreous ice was detected, the data was excluded from assessment. During
data collection, the microscope was equipped with a resolution-defining 50-
nm objective lens. Reconstruction of tilt series into three-dimensional
volumes was completed with the IMOD package (Kremer et al., 1996) based
on manual alignment of images using fiducial markers. IMOD was also used
for visual inspection to assess protrusion numbers. Avizo (http:/fei.com) was
used for manual segmentation and the measurement of voxel counts giving
rise to the volume measurement for each cell, Amira (Pruggnaller et al., 2008)
was used for merging datasets where necessary, EMAN2 (Tang et al., 2007)
was used for basic imaging processing tools, and Chimera (Goddard et al.,
2007) was used for visualization purposes.

Light microscopy

Blood smears were stained with the WG16-500 ml kit for sickle cell
assessment. Blood smears were observed using a 100x oil immersion
objective on an Olympus BX60 microscope. Areas where RBCs did not
overlap were randomly picked, and at least 10 fields were observed and 1000
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RBCs, including sickle cells, were counted. Besides the obvious sickle-
shaped cells, we considered the reversible sickle cells with sharp and
pointed protrusions and deformed cells with aberrant morphologies as sickle
cells. The percentage of sickle cells of the total RBCs was calculated (Zhang
etal., 2011).

Measurement of lifespan of RBCs in SCD Tg mice

SCD Tg mice were treated with or without compound 5C for 28 days.
At 21 days treatment, RBCs were labeled in vivo by using N-
hydroxysuccinimide (NHS)-biotin and the lifespan of circulating RBCs
was measured. Specifically, 50 mg/kg of body weight NHS-biotin was
injected into the retro-orbital plexus of SCD mice. Blood samples (5 ul)
were collected the first day after biotin injection, from the tail vein by
venipuncture, to determine the percentage of RBCs labeled with biotin.
Subsequently, 5 ul of blood was obtained by tail vein venipuncture every
3 days for measurement of biotinylated RBCs until the eighth day. The
percentage of biotinylated RBCs was calculated by determining the fraction
of peripheral blood cells labeled with a streptavidin-conjugated
fluorochrome by flow cytometry (Zhang et al., 2011).

Statistical analysis

Data were analyzed for statistical significance using SAS software Version
9.2 (SAS Institute Inc., Cary, NC). The protrusion number data, presented in
Figs 3 and 4, was first analyzed without binning and showed statistical
significance between groups (data not shown). However, due to the noisy
nature of this data, binning into categories was necessary for display.
Multiple arbitrary binning strategies were explored, including changing the
total number of bins, and shifting the data included in each bin. In all cases,
the statistical significance between groups was maintained. Therefore, the
presented categorization of protrusion numbers is arbitrary, but robust, and
represents a statistically significant phenomenon. Outliers were calculated
by first binning the data as described in Fig. 2, followed by identifying the
median, and the value corresponding to the 25th and 75th percentile (i.e. Q1
and Q3 boundary) of each bin. The IQR was calculated and outliers were
identified as outside the bounds of one IQR amount from either the Q1 or Q3
boundary. Data identified as outliers was not removed from the dataset. One-
way analysis of variance and Tukey’s multiple comparison test were used to
identify differences between the means of multiple groups. Pairwise y? tests
were used to further localize the differences between populations. P<0.05
was considered significant. Group comparison data is normalized to 100%
and presented with the s.e.m.
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