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ABSTRACT OF THE DISSERTATION

Dispersion of finite size droplets and solid particles in isotropic turbulence

By

Michele Rosso

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2016

Professor Said Elghobashi, Chair

Turbulent disperse two-phase flows, of either fluid/fluid or fluid/solid type, are common in

natural phenomena and engineering devices. Notable examples are atmospheric clouds, i.e.

dispersed liquid water droplets and ice particles in a complex turbulent flow, and spray of fuel

droplets in the combustion chamber of internal combustion engines. However, the physics of

the interaction between a dispersed phase and turbulence is not yet fully understood. The

objective of this study is to compare the dispersion of deformable finite size droplets with

that of solid particles in a turbulent flow in the absence of gravity, by performing Direct

Numerical Simulation (DNS). The droplets and the particles have the same diameter, of the

order of the Taylor’s microscale of turbulence, and the same density ratio to the carrier flow.

The solid particle-laden turbulence is simulated by coupling a standard projection method

with the Immersed Boundary Method (IBM). The solid particles are fully resolved in space

and time without considering particle/particle collisions (two-way coupling). The liquid

droplet-laden turbulence is simulated by coupling a variable-density projection method with

the Accurate Conservative Level Set Method (ACLSM). The effect of the surface tension

is accounted for by using the Ghost Fluid Method (GFM) in order to avoid any numerical

smearing, while the discontinuities in the viscous term of the Navier-Stokes equation are

smoothed out via the Continuum Surface Force approach. Droplet/droplet interactions are

xix



allowed (four-way coupling). The results presented here show that in isotropic turbulence

the dispersion of liquid droplets in a given direction is larger than that of solid particles due

to the reduced decay rate of turbulence kinetic energy via the four-way coupling effects of

the droplets.
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Chapter 1

Introduction

Turbulent disperse two-phase flows, of either fluid/fluid or fluid/solid type, are ubiquitous

in natural phenomena and engineering devices such as bubble clouds, bubble columns and

reactors in the chemical industry, and spraying of liquid fuel and paint. The study of the

interaction of solid/liquid particles with turbulence is particularly important to understand

the fundamental properties of clouds. Clouds are dispersions of drops and ice particles in

a complex turbulent flow and are characterized by a wide range of spatial and temporal

scales. Their evolution depends on the strong couplings between the dispersed phase and

the dynamics of the turbulent carrier flow [68]. As pointed out by Bodenschatz et al. [9],

many of the questions regarding the physics of clouds, particularly nucleation, growth, and

precipitation of water particles, are yet to be answered. The dispersion of spray droplets

in the combustion chamber of an internal combustion engine is another example of appli-

cation that could benefit from a deeper understanding of the physics involved in liquid/gas

interfaces. In this case, the turbulence in the ambient gas influences the development of the

spray characteristics, i.e. spreading rate, penetration length and cone angle, and is, in turn,

affected by the dispersed phase dynamics. Elghobashi [20] classified the disperse turbulent

flows from the point of view of the type of interaction between the particles and the turbu-
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lence. The level of this interaction is determined by the volume fraction, Φv, occupied by

the dispersed phase. For Φv ≤ 10−6, the dominant effect is that of the turbulent carrier flow

on the dynamics of the dispersed phase, whereas the influence of the particles/droplets on

the turbulence is negligible. This interaction is called one-way coupling. For larger values

of Φv, i.e. 10
−6 ≤ Φv ≤ 10−3, the momentum transfer from the particles cannot be ignored

since it is large enough to alter the structure of the turbulence. This interaction is termed

two-way coupling. Both the regimes discussed above are characterized by the absence of

particle/particle (or droplet/droplet) interaction due to the low volume fraction, and thus

they are sometimes referred to as dilute suspensions. When the volume fraction is increased

further, i.e. Φv ≥ 10−3, the interactions between particles/droplets has to be considered in

addition to the two-way coupling effects between dispersed phase and turbulence. This in-

teraction is named four-way coupling and characterizes the so-called dense suspensions. The

behavior of dispersions in turbulent flows with one-way coupling is reasonably understood,

at least in the limits posed by the incomplete understanding of turbulence itself even in

particle-free flows. On the other hand, the two-way and particularly the four-way coupling

regimes are still in the process of being fully investigated due to the highly nonlinear nature

of the interactions in these flows.

Literature Review

Over the past decades, a large body of research has been devoted to both the theoretical and

the numerical study of turbulent dispersed two-phase flows. In 1922, Taylor [76] derived an

analytic expression for the time evolution of the dispersion of a fluid particle in stationary

isotropic turbulence. The term dispersion, hereinafter indicated by Dxi
, is defined as the

mean square displacement of solid or fluid particles along the direction xi. Taylor’s solution

showed that the relation between Dxi
and the time, t, is quadratic, i.e. Dxi

∼ t2, for short

2



times and linear, i.e. Dxi
∼ t, for long times. Batchelor [8] and ? ] extended Taylor’s theory

to homogeneous turbulence. Tchen [77] linearized the equation of motion for a sphere in sta-

tionary homogeneous turbulence under the assumptions that the sphere diameter is smaller

than the Kolmogorov’s length scale of the turbulence and the relative motion between the

particle and the carrier flow follows Stokes’ law. Tchen’s equation was later improved by

Maxey and Riley [42] in their study of a small rigid sphere in a non-uniform flow. Reeks

[58] and Pismen and Nir [55] analyzed the behavior of heavy particle dispersion in station-

ary, homogeneous, isotropic turbulence and showed that the effect of particle inertia is to

increase the eddy diffusivity over that of the fluid in the absence of particles. Kim et al. [33]

investigated the motion of a freely-moving sphere in an initially stationary or oscillating fluid

and derived an equation for the particle motion that accounts for the effects of large relative

acceleration or deceleration of the particle and the initial relative velocity between the fluid

and the particle. Theoretical studies were also performed in order to model other important

phenomena regarding disperse multi-phase flow, particularly in the context of spray combus-

tion theory. The reader is referred to the comprehensive review by Sirignano [69], and the

book by the same author [70] for an in-depth analysis of these studies. While theoretical ap-

proaches offer invaluable insight into the dynamics of particle dispersions in turbulence, they

often rely on simplifying assumptions that greatly limit their range of applicability. With

the increase in computational power in the last three decades, numerical simulations that do

not rely on turbulence modeling, i.e. Direct Numerical Simulation (DNS), offered a valuable

alternative for the study of dispersed turbulent flows. The early numerical studies accounted

for the one-way coupling effects via either the two-fluid methods or the Lagrangian methods.

In the two-fluid model, the dispersed phase is treated as a continuum described by a set of

conservation laws similar to those of the carrier flow, with the momentum and energy ex-

change between the phases accounted for by adding source and sink terms in the momentum

and energy equations for the particulate phase. This approach was used by Druzhinin and

Elghobashi [19] to study bubble-laden isotropic decaying turbulence via DNS and by Février
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et al. [26] to investigate the velocity distribution of dilute suspensions of heavy particles in

gas-solid turbulent flows. In the Lagrangian approach, the carrier flow equations are solved

throughout the whole computational domain, while the particulate phase is represented

by computational particles whose position, momentum, and energy are tracked by solving

the equations of particle motion [20]. Riley and Patterson [59] were the first to use the

Lagrangian approach in DNS to calculate the autocorrelation and the mean-square displace-

ment of small particles in decaying isotropic turbulence. In their work, the particle diameter

was smaller than the Kolmogorov’s length scale of the carrier flow and only the Stokes’ drag

was included in the equation of particle motion. Their results showed that the velocity au-

tocorrelation was increased for increasing values of particle inertia. McLaughlin [44] used

DNS to examine particle deposition on the wall in a vertical channel flow and computed

the particle trajectories by including only the Stokes’ drag and Saffman’s lift force in the

particle motion equation. Squires and Eaton [73] measured the dispersion of heavy particles

by performing DNS of forced and decaying isotropic turbulence. Their results showed that

the effect of particle inertia is to increase the eddy diffusivity over that of the fluid in the

absence of particle drift, as was demonstrated by the theoretical studies of Reeks [58] and

Pismen and Nir [55]. Elghobashi and Truesdell [21] studied the dispersion of three different

solid particles (corn, copper and glass) in decaying isotropic turbulence by using DNS and

obtained good agreement with the experimental work by Snyder and Lumley [71]. They also

showed that that the dispersion of small solid particles in zero gravity agrees with Taylor’s

theory [76]. Later works extended the Lagrangian approach to include the two-way coupling

effects, see for example the research by Ferrante and Elghobashi [25] and Squires and Eaton

[72]. The effects of the two-way interaction on particle dispersion in decaying isotropic tur-

bulence was also investigated by Elghobashi and Truesdell [22]. They showed that, in zero

gravity, the two-way coupling enhances the alignment of the surrounding fluid velocity vector

with the direction of the solid particle trajectory. This alignment reduces the mean-square

relative velocity and increases the Lagrangian velocity autocorrelation coefficient of the solid
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particle, the fluid point and the surrounding fluid, and thus increases the dispersion of the

solid particles. However, the fluid point dispersion decreases because the larger inertia of the

solid particles increases the decay rate of turbulence kinetic energy. All the numerical studies

presented so far rely on the point particle approximation, i.e. the assumption is made that

the instantaneous particle velocity can be calculated via the equations of particle motion.

This is justified only if the following two conditions hold:

1. the particles/droplets have a diameter, �D, smaller than the Kolmogorov length scale,

η, of the turbulent carrier flow, i.e. �D << η, and

2. the Reynolds number of the particles/droplets, Rep, satisfies Rep < 1.

When the above two conditions are not satisfied, the point particle assumption is no more

valid since it is not possible to derive an analytic solution for the particle motion in a

turbulent flow as proved by Lumley [40]. Consequently, an accurate numerical solution

can be obtained only by fully resolving the flow field around each moving particle. This

approach was used for the DNS of a single particle (Bagchi and Balachandar [2], Bagchi

and Balachandar [3], Burton and Eaton [12]) and a collection of thousands of particles (Cate

et al. [13], Lu and Tryggvason [37], Uhlmann [80]). Lucci et al. [39] pursued this technique to

study the two-way coupling interaction of up to 6400 finite size solid particles and turbulence.

Their results showed that the presence of the solid particles enhances the turbulence kinetic

energy decay rate. The reader is referred to [4] for an exhaustive review of the research on

dispersed turbulent flows.

Objectives

The objective of this study is to compare the dispersion of deformable finite size droplets with

that of solid particles in a turbulent flow by performing DNS. The solid particles and liquid
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droplets have the same diameter and the same density ratio to the carrier flow. Both the

dispersed phase and the carrier flow are fully resolved in 3D-space and time and all the scales

of the turbulent motion are simultaneously resolved down to the smallest relevant length-

and time-scales. In this work, the unsteady three-dimensional Navier-Stokes and continuity

equations are solved throughout the whole computational domain, including the interior of

the liquid droplets/solid particles. In the liquid droplet case, the motion and deformation of

the interface are captured implicitly by using the Accurate Conservative Level Set Method

(ACLSM) [18]. The effect of the surface tension is accounted for accurately via the Ghost

Fluid Method (GFM) [31], while the discontinuities in the viscous term are smoothed out

across the interface by means of the Continuum Surface Force (CSF) approach. Finally,

a variable density projection method is used to impose the incompressibility constrain. In

the solid particle case, the tracking of the interface is performed in a Lagrangian fashion by

using the Immersed Boundary Method (IBM) [52, 79] and the divergence-free constrain on

the velocity field is enforced by using a standard projection method. This thesis is structured

as follows. Chapter 2 details the mathematical formulation of the problem, while Chapter 3

is devoted to the numerical techniques used to discretize the governing equations. Chapter 4

describes the tests that were performed to validate the computational code developed for this

study. The DNS results regarding the dispersion of droplets/particles in decaying isotropic

turbulence are reported in Chapter 5. Finally, Chapter 6 presents a summary of this work

and discusses future research developments.

Technical challanges

The numerical simulation of deformable droplets poses three main challenges:

1. the numerical localization and transport of the interface (also called front) separating

the phases involved,
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2. the numerical treatment of the material properties that discontinuously change by

many order of magnitude between the phases, and

3. the numerical discretization of a singular forcing term, i.e. the surface tension, acting

only on the front.

Among the methods proposed for the numerical transport of the front over the past decades,

the Volume Of Fluid (VOF) method, the Front-Tracking Method (FTM), and the Level

Set Method (LSM) have become standard numerical tools for multi-phase simulations. The

VOF [65] describes the interface through a volume fraction scalar, thus ensuring, at least

theoretically, discrete mass conservation. Nonetheless the scalar function is discontinuous

across the interface and thereby a specific advection scheme is required at the cost of putting

constrains on the time step size and accuracy of the simulation. Moreover, the calculation

of geometric quantities such as interface normals and curvature could be challenging. The

FTM introduced by Unverdi and Tryggvason [81] makes use of an unstructured moving

mesh for the discretization of the interface. The advantage of this method is that the

transport of the mesh is purely Lagrangian; unfortunately any topological change or front-

to-front interaction has to be handled manually by means of re-meshing, thus causing adverse

effects on mass conservation. The LSM, devised by Osher and Sethian [49], represents the

interface as the zero iso-level of a smooth function, typically a signed distance function.

The latter is transported in an Eulerian fashion by solving a standard convection Partial

Differential Equation (PDE) and kept smooth through a re-initialization process. Due to

the smoothness of the level set function, the normals and curvature can be computed easily.

The main drawback of the LSM is its inherent lack of conservation, although many strategies

have been proposed to address the issue. In particular Enright et al. [23] used Lagrangian

marker particles to correct the front position after the Eulerian advection step, while Sussman

and Puckett [74] coupled the LSM with the VOF in order to take advantage of the good

conservation properties of the latter. While these techniques alleviate the issue, they also
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lose the original simplicity of the LSM. A simpler method was proposed by Olsson and

Kreiss [46] in which they replaced the signed distance function of the classical LSM with a

hyperbolic tangent profile that is advected and re-initialialized using conservative equations.

This approach was later improved by Desjardins et al. [18] under the name ACLSM and used

for the simulation of turbulent atomization. In this study, the ACLSM was used to simulate

deformable liquid droplets because of its simplicity, adaptivity, ease of parallelization and

intrinsic ability of handling topological changes naturally.

Computational code

A computation code of more than 30,000 lines was developed for this study. The code

was written in Fortran 2003 and designed according to modern object-oriented program-

ming techniques. Furthermore, it includes distributed-memory parallelism using the MPI

standard. DNS of turbulent flows is very demanding in terms of computational power and

memory requirements, mostly because the computational grids need to be fine enough to

accurately resolve the smallest flow structures. As the Taylor’s scale Reynolds number is

increased, such structures become smaller and smaller and consequently the mesh has to be

refined accordingly. Moreover, an accurate time history of the flow is sought in order to com-

pute time-dependent statistics, thus reducing the time-step interval needed to advance the

solution in time. In response to these requirements, parallel computing became a standard

tool in DNS codes. The code implemented for this research employs a parallel approach

known as 3D domain decomposition: the computational domain is partitioned along the

three spatial dimensions into box-shaped sub-domains and the data associated with each

sub-domain are hosted and operated on by a single CPU. This setup is particularly conve-

nient in that it allows using up to O(N3) CPUs where N is the number of grid points per

direction. Thus the workload per single CPU is limited and it is unlikely that the memory
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saturation mark be reached even for very fine grids. Nevertheless the efficient implemen-

tation of inter-processor communications, especially for data transposition in the context

of the Fast Fourier Transform (FFT), is not trivial and required considerable effort during

the initial development of the code. The demand for computational efficiency is even more

crucial when a two-phase flow is considered since the Pressure Poisson’s Equation (PPE)

is non-separable and therefore cannot be solved via a standard FFT. As a consequence the

PPE has to be solved via an iterative method for sparse liner systems. In this work, the lin-

ear system associated to the PPE is solved by using the multigrid-preconditioned conjugate

gradient provided by the PETSc library [5, 6, 7].
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Chapter 2

Mathematical Model

The first step in a numerical study is the definition of a set of equations that model the

physical phenomena under investigation. A suitable mathematical model for multi-phase

flows is required to describe:

1. the motion of the fluids in the domain of interest, and

2. the motion of the interface between the different phases.

Item 1. in the above list is the topic of Section 2.1, while item 2. is dealt with in Section 2.2.

In the following, all the variables are considered dimensionless unless they are superscripted

with the diacritic symbol ”∼”. It should be noted that the present chapter focuses exclusively

on the mathematical description of the governing equations of multi-phase flows and interface

motion, without considering any model that is specific to a discretization method.
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2.1 Governing Equations for Incompressible Multi-Phase

Flows

Before describing the governing equations for a multi-phase system, it is instructive to review

the governing equation for a single-phase incompressible flow, namely the continuity equation

∂�ui

∂�xi

= 0 (2.1)

and the momentum equations

∂�ui

∂�t
+

∂

∂�xj

(�ui�uj) = −1

�ρ

�
∂�p
∂�xi

+
∂�τij
∂�xj

+ �ρ �gi
�

. (2.2)

In Eq. (2.1) and (2.2), �ui is the component of the velocity vector �u in the i-direction, �ρ

the fluid density, �p the pressure and �gi the gravitation acceleration in the i-direction. The

present study considers only Newtonian fluids, for which the deviatoric stress tensor �τij is

defined as:

�τij = �µ
�
∂�ui

∂�xj

+
∂�uj

∂�xi

�
, (2.3)

where �µ is the dynamic viscosity. It should be noted that both �ρ and �µ are constant for

an incompressible single-phase flow. Consider now a volume Ω filled with two immiscible

incompressible fluids of different phases. The two fluids are separated by an interface Γ that

splits Ω into the sub-regions Ω+, occupied by fluid ”+”, and Ω−, occupied by fluid ”−”.

Each phase is characterized by different material properties, i.e. �µ+, �ρ+ in Ω+ and �µ−, �ρ−

in Ω−. A typical configuration for this case is sketched in Figure 2.1. Since we are not

considering reactive interfaces, i.e. the velocity field is continuous at the interface, Eq. (2.1)

still holds in the whole domain Ω. In contrast, Eq. (2.2) can be used to describe the behavior

of each of the two fluids only in their respective domains, but fails to model the physics at
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the interface Γ. As pointed out in the review paper by Scardovelli and Zaleski [65], the

single-phase Navier-Stokes Equations (NSE) can be extended to model multi-phase flows by

either:

1. re-writing Eq. (2.2) in weak form so that it can be used everywhere in the whole

domain, including the interface, or

2. using Eq. (2.2) as is in each bulk-phase domain with proper jump conditions at the

interface.

Approach 1. results in the so-called whole-domain formulation discussed in Subsection 2.1.1,

while approach 2. leads to the jump-conditions formulation presented in Subsection 2.1.2.

Ω+

Ω−
n

Γ

Ω

Figure 2.1 Typical configuration of a two-fluid system.
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2.1.1 Whole-Domain Formulation

The whole-domain formulation of the NSE for multi-phase systems reads:

∂�ui

∂�t
+

∂

∂�xj

(�ui�uj) = −1

�ρ

�
∂�p
∂�xi

+
∂�τij
∂�xj

+ �ρ �gi + �fi + �si
�

, (2.4)

where the additional volumetric forcing terms �fi and �si accounts for the presence of a solid

boundary and the effect of capillary forces, respectively. When only fluid/solid interfaces are

considered, �si is neglected. In contrast, when the only interfaces present are of fluid/fluid

type, �fi is set to zero. Equation (2.4) is essentially a weak form of the classic NSE and

therefore it is valid everywhere in Ω despite the discontinuities at the interface. The forcing

term �si is defined as:

�si = 2 �σ �κm
�δ ni , (2.5)

where �σ is the surface tension coefficient, �κm the interface mean curvature, ni the i-component

of the unit normal to Γ and �δ a one-dimensional Dirac delta function centered at the in-

terface. It should be emphasized that Eq. (2.4) is singular at the interface because of the

jumps in material properties and the singular terms �fi and �si and therefore special numerical

treatment is required for its discretization. The mean curvature �κm is computed from the

interface normal as:

�κm = −1

2

∂ni

∂�xi

. (2.6)

In order to avoid the factor two in Eq. (2.5), it is common to define the variable �κ as twice

the mean curvature, i.e.

�κ = −∂ni

∂�xi

, (2.7)
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and use it to re-write Eq. (2.5) as:

�si = �σ �κ �δ ni . (2.8)

Hereinafter, the term curvature will be used to refer to �κ. More details on the derivation of

this formulation can be found in the work by Tryggvason et al. [78] and Chang et al. [14].

2.1.2 Jump-Conditions Formulation

Instead of modifying the single-phase NSE via an additional term to account for the surface

tension effects, one could directly use Eq. (2.2) in each separate bulk-phase domain together

with proper jump conditions at the interface. In the following, the notation [α]
Γ
indicates

the intensity of the jump of a variable α at the interface Γ:

[α]
Γ
= α+ − α− . (2.9)

The jump conditions at the interface between two immiscible, incompressible, Newtonian

fluids are:

[�µ]
Γ
= �µ+ − �µ− , (2.10)

[�ρ]
Γ
= �ρ+ − �ρ− , (2.11)

[�u]
Γ
= �u+ − �u− = 0 , (2.12)

[�p]
Γ
= �p+ − �p = �σ �κ+ 2 [�µ]

Γ
n · �∇�u · nt . (2.13)

Equation (2.10) and (2.11) account for the jumps of material properties between the two

phases, while Eq. (2.12) enforces the continuity of the velocity field at the interface, as

required for a non-reactive interface.
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The pressure jump in Eq. (2.13) is given by Landau and Lifshitz [34] and Brackbill et al.

[10] and depends on

• the surface tension effects via the term �σ�κ, where the curvature �κ is again defined

according to Eq. (2.7), and

• the shear stresses jump via the term 2 [�µ]
Γ
n · �∇�u · nt.

This form of the NSE for multi-phase flows has been used by Desjardins et al. [18] and Kang

et al. [31].

2.1.3 Normalization of the Governing Equations

In order to minimize the number of parameters involved in the physical models introduced so

far, it is convenient to recast the governing equations in dimensionless form. In this work, the

fluid ”−” is considered the reference fluid, therefore �µ− and �ρ− are taken to be the reference

values for the dynamic viscosity and density respectively. Consequently, the dimensionless

density ρ and viscosity µ are defined as follows:

ρ =





1 in Ω−

ηρ in Ω+

with ηρ =
�ρ+
�ρ− = density ratio , (2.14)

µ =





1 in Ω−

ηµ in Ω+

with ηµ =
�µ+

�µ− = dynamic viscosity ratio . (2.15)

The reference value for the velocity and length scales are �U and �L respectively. Both of them

are chosen according to the specific system being investigated.
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Thus, the Reynolds number Re is defined as:

Re =
�ρ− �U �L
�µ− , (2.16)

the Weber number We as:

We =
�ρ− �U2�L

�σ , (2.17)

and the Froude number as:

Fr =
�U2

�g �L
, (2.18)

where �g is the gravitational constant. Using the above definitions, Eq. (2.4) can be re-cast

in the following dimensionless form:

∂ui

∂t
+

∂

∂xj

(uiuj) = −1

ρ

�
∂p

∂xi

+
1

Re

∂τij
∂xj

+
ρgi
Fr

+ fi + si

�
, (2.19)

where gi is the dimensionless gravitational acceleration in the i-direction, and si the dimen-

sionless surface tension term given by:

si =
1

We

κ δ

ρ
ni . (2.20)

Similarly, the non-dimensional momentum conservation in the jump conditions formulation

can be written as:

∂ui

∂t
+

∂

∂xj

(uiuj) = −1

ρ

�
∂p

∂xi

+
1

Re

∂τij
∂xj

+
ρgi
Fr

�
, (2.21)
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together with the following dimensionless jump conditions:

[µ]
Γ
= ηµ − 1 , (2.22)

[ρ]
Γ
= ηρ − 1 , (2.23)

[u]
Γ
= u+ − u− = 0 , (2.24)

[p]
Γ
= p+ − p− =

κ

We
+

2

Re
[µ]

Γ
n ·∇u · nt . (2.25)

2.2 Mathematical Modeling of Moving Interfaces

One of the main challenges in the study of multi-phase flows is the accurate characterization

of the motion of the interface Γ(t) separating the phases involved. Some key issues that need

to be addressed by a reliable mathematical model are:

• changes of topology, merging and breaking;

• formation of sharp corners, cusps, and singularities;

• dependence of the interface motion on delicate geometric quantities such as curvature

and normal direction;

• coupling between the interface motion and the underlying velocity field moving the

interface.

Among the methods proposed for the numerical transport of moving fronts over the past

decades, the Volume Of Fluid (VOF) method, the Front-Tracking Method (FTM), the Im-

mersed Boundary Method (IBM) and the Level Set Method (LSM) have become standard

numerical tools for multi-phase simulations. The VOF method [65] describes the interface

through a volume fraction scalar, thus ensuring, at least theoretically, discrete mass con-

servation. Nonetheless the scalar function is discontinuous across the interface and thereby
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a specific advection scheme is required at the cost of putting constrains on the time step

size and accuracy of the simulation. Moreover, the calculation of geometric quantities such

as interface normals and curvature could be challenging. The IBM by Peskin [52] and the

FTM by Unverdi and Tryggvason [81] make use of an unstructured moving mesh for the

discretization of the interface. In both methods the transport of the mesh is purely La-

grangian and thus they rely on delta functions to link the Lagrangian variables defined at

the interface with the flow field variables defined on an Eulerian grid. Unfortunately any

topological change or front-to-front interaction has to be handled manually by means of mesh

rearrangements, thus causing adverse effects on mass conservation. The LSM, pioneered by

the work by Osher and Sethian [49], represents the interface as the zero iso-level of a smooth

function, typically a signed distance function. The latter is transported in an Eulerian fash-

ion by solving a standard convection Partial Differential Equation (PDE) and kept smooth

through a re-initialization process. In the present study, the IBM is used to model solid

spherical particles, while the LSM is used to model liquid droplets.

2.2.1 Immersed Boundary Method

The IBM was originally developed by Peskin [52] to study flow patterns around heart valves.

The distinguishing feature of this method was that the entire simulation was carried out

on a Cartesian grid, which did not conform to the geometry of the heart, using a novel

approach to impose the effect of the immersed boundary on the flow. Even though the

original formulation was intended to model elastic membranes, the IBM has been extended

to treat other types of fluid-structure interactions, including the interaction of a fluid with a

solid boundary. This subsection will summarize the key ideas behind the IBM. For a more

in-depth analysis, the reader is referred to the review papers by Peskin [53] and Mittal and

Iaccarino [45]. The starting point of the IBM formulation is a Lagrangian perspective: the

immersed boundary Γ(t) is defined as a parametric surface via a set of curvilinear coordinates
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(q, r). The position at time t in Cartesian coordinates of each material point in Γ is given by

X(q, r, t) and its velocity by U (q, r, t). Since a no-slip condition is required at the boundary,

U needs to satisfy U (q, r, t) = u(X(q, r, t), t). This requirement is imposed by introducing

a boundary force F (q, r, t) acting on each material point in Γ. The effect of F is transferred

to the fluid by defining the forcing term fi in Eq. (2.19) as:

fi = f(x, t) · ei =

��

Γ

F (q, r, t) δ(x−X(q, r, t)) dq dr

�
· ei , (2.26)

where δ is the one dimensional Dirac delta function. Similarly the velocity at each point of

the boundary can be expressed in terms of the Eulerian velocity of the underlying fluid as:

U (q, r, t) = u(X(q, r, t), t) =

�

Ω

u(x, t) δ(x−X(q, r, t)) dx . (2.27)

Equation (2.26) and (2.27) are interaction equations in that they convert from Lagrangian

to Eulerian variables and vice-versa. The flow field is still described by the whole-domain

Eq. (2.19), where the surface tension term si is now neglected. When the IBM is used to

treat solid objects, the only effect of the forcing term fi is the enforcement of the no-slip

condition. Therefore the NSE can be solved throughout the entire computational domain,

including the interior of the solid body. In this case, the IBM would correctly model the

flow inside and outside the immersed boundary. However, an equation of motion has to be

provided for each material point X(q, r, t) so that the interface can be tracked explicitly.

For the specific case of spherical solid particles, this can be done by using the kinematic

equations of rigid body motion

U (X) = up + ωp × (X − xp) , (2.28)

where xp and up are the position and linear velocity of the particle center, and ωp the particle

angular velocity. These three quantities are computed by solving the equations of linear and
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angular motion of a rigid body. It should be emphasized that, by using Eq. (2.28), both

translation and rotation of the particle are accounted for. The equations of conservation

of linear and angular momenta for a solid spherical particle simulated via the IBM are

described in Subsection 3.3.2. The IBM has been used successfully used for the Direct

Numerical Simulation (DNS) of moving solid particles in a turbulent flow, see for example

the work by Uhlmann [79] and Lucci et al. [39].

2.2.2 Standard Level Set Method

The Standard Level Set Method (SLSM) was originally developed by Osher and Sethian [49]

to model fronts propagating with curvature-dependent speed. Over the years since its incep-

tion, it has been refined and applied to a multitude of moving interface problems in a wide

variety of different fields. Examples of applications include semiconductor manufacturing,

combustion and detonation, computer vision, surface-tension-driven flows and seismology.

The SLSM represents Γ(t) implicitly as the zero level set of a smooth function φ(x, t), i.e.

Γ(t) = {x | φ(x, t) = 0}. It should be noted that the interface Γ(t) has codimension 1

in Ω. Embedding the front into a higher dimensional function allows the adoption of an

Eulerian perspective to treat a problem that is Lagrangian in nature. Moreover, due to the

smoothness of φ, the interface unit normal can be computed via simple differentiation:

n =
∇φ

|∇φ| . (2.29)

Similarly, the curvature can be obtained as:

κ = −∇ ·
� ∇φ

|∇φ|

�
. (2.30)
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As shown by Peng et al. [51], the interface Γ(t) is transported by the interface velocity uΓ

via:

∂φ

∂t
+ uΓi

∂φ

∂xi

= 0 . (2.31)

Equation (2.31) is valid only at the interface because uΓ in not defined anywhere but at Γ.

Consider now a velocity field u defined in the whole domain Ω. Also assume that u has

been computed by extending uΓ off the interface and that u = uΓ at the front. Under these

conditions, Eq. (2.31) can be generalized to be valid in the whole domain:

∂φ

∂t
+ ui

∂φ

∂xi

= 0 . (2.32)

Equation (2.32) is a standard transport equation and therefore a large number of well-

established methods are available for its solution. In the case of multi-phase flows with

non-reactive interfaces, u is the flow velocity field that satisfies u = uΓ at the interface,

thus no dedicated algorithm is required to extend the front velocity off Γ. Moreover, since

u = uΓ at each point on the interface, no normal fluid flux crosses Γ. For incompressible

flows, Eq. (2.32) can be written in conservative form by using Eq. (2.1):

∂φ

∂t
+

∂

∂xi

(uiφ) = 0 . (2.33)

Even though a certain degree of arbitrariness is allowed in the choice of φ, it is convenient

to adopt the classic definition:

φ(x, t) =





−d(x) in Ω+

0 at the interface

d(x) in Ω−

, (2.34)
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where d(x) is a distance function given by:

d(x) = min
y ∈Γ

|x− y| (2.35)

and y a generic point on the front. A level set function φ defined via (2.34) is called signed

distance function and offers many desirable properties:

• φ(x, t) is differentiable almost everywhere on Γ;

• |∇φ| = 1 for almost1 every point in the domain;

• n = ∇φ and κ = −∇2φ;

• the closest interface point xΓ to a generic point x is given by xΓ = x− |φ(x, t)|n.

While the solution of Eq. (2.33) correctly transports the level set φ = 0, it does not keep

φ a signed distance function, i.e. |∇φ| �= 1, and may introduce irregularities like steep or

flat gradients in the solution. Maintaining φ as a distance function is essential for providing

the interface with a constant width. Also, the computation of the normal and the curvature

may prove difficult near a steep/flat gradient. In order to keep φ a signed distance function

at all times, the following reinitialization equation is solved to steady state:

∂φ

∂τ
+ S(φ0)(|∇φ|− 1) = 0 , (2.36)

where τ is a fictitious time, S the sign function and φ0 is the initial condition. This reini-

tialization technique was first introduced by Rouy and Tourin [62] and later perfected by

Sussman et al. [75]. The main drawback of the LSM is its inherent lack of conservation

properties. This is mainly due to the reinitialization Eq. (2.36) that tends to displace the

zero level set from its correct location, thus causing the volume enclosed by the interface to

1This property is not satisfied by the set of points that are equidistant from at least 2 points on the
interface. This set is called skeleton and, when it exists, it does not pose any numerical problem.
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shrink. Many strategies have been proposed over the years to address the issue. In particular

Enright et al. [23] used Lagrangian marker particles to correct the front position after the

Eulerian advection step, while Sussman and Puckett [74] coupled the SLSM with the VOF

method in order to take advantage of the good conservation properties of the latter. While

these techniques alleviate the issue, they also lose the original simplicity of the SLSM.

2.2.3 Accurate Conservative Level Set Method

In order to overcome the lack of conservation of the SLSM, Olsson and Kreiss [46] and Olsson

et al. [47] proposed to replace the level set function φ with a phase-field function ψ:

ψ(x, t) =
1

2

�
tanh

�
φ(x, t)

2�

�
+ 1

�
, (2.37)

where � is a smoothing parameter that determines the steepness of the hyperbolic tangent

profile. It should be noted that the front, i.e. the level set φ = 0, is now represented by the

iso-contour ψ = 0.5, that is Γ(t) = {x : ψ(x, t) = 0.5}. The transport of the interface can

still be performed by solving Eq. (2.33) for ψ:

∂ψ

∂t
+

∂

∂xi

(uiψ) = 0 . (2.38)

The solution of Eq. (2.38) together with the definition (2.37) conserves the volume enclosed

by the interface, as proved by Olsson and Kreiss [46] and Desjardins et al. [18]. As in the case

of the SLSM, nothing ensures that solving Eq. (2.38) will preserve the hyperbolic tangent

profile of ψ. Consequently, the following re-initialization equation needs to be solved to

steady state to re-establish the shape of the profile:

∂ψ

∂τ
+

∂

∂xi

[ψ(1− ψ)ni] =
∂

∂xi

�
�

�
∂ψ

∂xi

ni

�
ni

�
, (2.39)

23



where τ is a fictitious time. Equation (2.39) consists of a compression term on the left hand

side that aims at sharpening the profile, and a diffusion term on the right hand size that

guarantees that the interface remains of characteristic thickness �. It should be emphasized

that this form of reinitialization is written in a conservative form and thus, unlike Eq. (2.36),

it conserves ψ, at least theoretically. Equation (2.39) was devised by Olsson et al. [47] in

the context of the Finite Element Method and extended to the Finite Difference case by

Desjardins et al. [18]. One drawback of using a hyperbolic tangent profile in place of a signed

distance function is that calculating the normals and curvature by direct differentiation of

ψ introduces spurious oscillations because of the steep-slope of the phase field function.

Desjardins et al. [18] suggested to re-construct a level set function φ = d from ψ and compute

normals and curvature from φ via Eq. (2.29) and (2.30). The method presented so far is

called Accurate Conservative Level Set Method (ACLSM) and it is used in the present study

to model deformable liquid droplets.

2.3 Models Used in the Present Study

In the present study, the flow field for the solid particle-laden turbulence case is modeled via

the whole-domain Navier-Stokes Eq. (2.19), where the surface tension term si is set to zero.

The no-slip condition at the solid boundaries is imposed via the IBM, i.e. via the forcing

term fi given by the Eq. (2.26). Consequently, the carrier flow occupies the entire domain,

including the interior of the particles, and ηρ = ηµ = 1, i.e. the discontinuities in the material

properties are eliminated. In contrast, the flow field for the droplet-laden turbulence case is

modeled via the jump condition form of the Navier-Stokes Eq. (2.21). The jump conditions

(2.22), (2.23), (2.24) and (2.25) account explicitly for the multi-phase nature of the flow

and thus the material properties are now discontinuous. Finally, the gas/liquid interface is

modeled via the ACLSM.
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Chapter 3

Numerical Methods

This chapter describes the numerical methods of discretizing the equations used in the math-

ematical models presented in Chapter 2. The details of the computational domain mesh are

given in Section 3.1, while the projection method for the solution of the Navier-Stokes Equa-

tions (NSE) is discussed in Section 3.2. Section 3.3 and 3.4 describe the discretization of the

Immersed Boundary Method (IBM) and Accurate Conservative Level Set Method (ACLSM)

equations respectively. Finally, the solution algorithms are summarized in Section 3.5. In

the rest of the chapter, discrete operators applied to a variable α will be indicated by

δα

δxi

≈ ∂α

∂xi

and
δα

δt
≈ ∂α

∂t
,

where ”≈” stands for ”is a discretization of”. The symbols i, j, k (Serif font) indicate grid

indices and are not to be confused with i, j, k (Roman font) used for tensor indices instead.

The discrete value of a variable α at a grid node (i, j, k) at time step n will be indicated

by either α|ni,j,k or αn
i,j,k. The former is preferred for vector and tensor quantities to avoid

confusion with tensor indices subscripts. The second order interpolation of a quantity α
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along the x direction at (i, j, k) and time level n is defined by

αx|ni,j,k =
α|ni+ 1

2
,j,k + α|ni− 1

2
,j,k

2
.

αy and αz are defined in the same manner. The second order interpolation of a quantity α

in the xy plane at (i, j, k) and time level n is defined by

αxy|ni,j,k =
αy|ni+ 1

2
,j,k + αy|ni− 1

2
,j,k

2
.

αyz and αxz are defined in the same manner. The second order differentiation operator

acting on a variable α along the x direction at (i, j, k) and time level n is expressed by:

δ2α

δ2x

����
n

i,j,k

=
α|ni+ 1

2
,j,k − α|ni− 1

2
,j,k

δx
.

δ2α

δ2y
and

δ2α

δ2z
are defined in the same way. Finally, the components ui of the velocity vector

u will also be indicated by u, v and w so that u = (u1, u2, u3) = (u, v, w).

3.1 Grid Arrangement

All the numerical simulations in the present study were performed in a rectangular domain

of sizes Lx × Ly × Lz, discretized via a Cartesian grid with Nx × Ny × Nz nodes. The

position of each node is given by the triplet of coordinates (xi, yj, zk) defined as:

xi =

�
i+

1

2

�
· δx with δx =

Lx

Nx

∀ i = 0, 1, ..., Nx − 1 ,

yj =

�
j+

1

2

�
· δy with δy =

Ly

Ny

∀ j = 0, 1, ..., Ny − 1 ,

zk =

�
k+

1

2

�
· δz with δz =

Lz

Nz

∀ k = 0, 1, ..., Nz − 1 ,

(3.1)
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where δx, δy and δz are the grid spacings in the x, y and z direction respectively. Nx, Ny

and Nz are chosen in a such a way that the resulting grid is uniform, i.e. δx = δy = δz. The

definition (3.1) provides a unique identification of each node by the triplet of indices (i, j, k).

Each node is the centroid of the cell Isi,j,k defined as follows:

Isi,j,k = [ xi− 1
2
, xi+ 1

2
]× [ yj− 1

2
, yj+ 1

2
]× [ zk− 1

2
, zk+ 1

2
] . (3.2)

A discretization of the computational domain based on the definitions (3.1) and (3.2) is called

cell-centered. The type of discretization determines which kind of restriction/prolongation

operators should be used in the multigrid algorithm for the solution of the Pressure Poisson’s

Equation (PPE) as discussed in Appendix B. All the scalar variables of interest, namely p,

ρ, µ, ψ and φ, are defined at the grid nodes. In contrast, the velocity vector u = (u, v, w) is

defined component by component at staggered locations as described in [29]. For example,

the discrete values of u are stored at the locations given by the triplet (xi+ 1
2
, yj, zk) that

is obtained by shifting the node (xi, yj, zk) in the x-direction by δx/2. Similarly, v and w

are defined at the locations (xi, yj+ 1
2
, zk) and (xi, yj, zk+ 1

2
) respectively. A 2D sketch of the

staggered grid arrangement described above is shown in Figure 3.1.

ii− 1 i+ 1i− 1

2
i+

1

2

j

j− 1

j+ 1

j+
1

2

j− 1

2

p, ρ, µ,φ,ψ,κ

u

v

Figure 3.1 Sketch of a staggered grid in the xy plane. The scalar variables are defined at the grid
nodes (black circles), while u (blue rectangles) and v (red rectangles) at the faces of a
scalar cell.

27



3.2 Projection Method

The numerical solution of the Navier-Stokes Equations (2.19) and (2.21) is performed via

the projection method by Chorin [16, 17]. Both equations can be re-written in the following

compact form:

∂ui

∂t
= Ci + Pi + Vi + Bi , (3.3)

where the convective term Ci, the pressure term Pi, the viscous term Vi and the body forcing

term Bi are:

Ci = − ∂

∂xj

(uiuj) , (3.4)

Pi = −1

ρ

∂p

∂xi

, (3.5)

Vi =
1

ρ Re

∂τij
∂xi

=
1

ρ Re
· ∂

∂xi

�
µ

�
∂ui

∂xj

+
∂uj

∂xi

��
, (3.6)

Bi =
gi
Fr

+
fi
ρ
+

si
ρ

. (3.7)

It should be noted that not all the terms in Bi need to be retained. When solving for

immersed solid boundaries via the IBM and Eq. (2.19), the surface tension term, si, is set

to zero. In contrast, when solving for a two-fluid system via Eq. (2.21) and the ACLSM,

both fi and si are set to zero, and the effect of the surface tension is included via the jump

condition (2.25). Equation (3.3) can be further simplified by defining the fluid acceleration

Rui
= Ci + Vi:

∂ui

∂t
= Rui

+ Pi + Bi . (3.8)

The numerical solution of Eq. (3.8) via the projection method consists of the following steps.
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1. A tentative velocity u∗
i is computed by advancing in time Eq. (3.8) without Pi and Bi.

This is accomplished by using a second order explicit Adam-Bashforth method:

u∗
1

��
i+ 1

2
,j,k

= u1

��n
i+ 1

2
,j,k

+ w1 ·Ru1

��n
i+ 1

2
,j,k

+ w2 ·Ru1

��n−1

i+ 1
2
,j,k

,

u∗
2

��
i,j+ 1

2
,k
= u2

��n
i,j+ 1

2
,k
+ w1 ·Ru2

��n
i,j+ 1

2
,k
+ w2 ·Ru2

��n−1

i,j+ 1
2
,k
,

u∗
3

��
i,j,k+ 1

2

= u3

��n
i,j,k+ 1

2

+ w1 ·Ru3

��n
i,j,k+ 1

2

+ w2 ·Ru3

��n−1

i,j,k+ 1
2

,

(3.9)

where n indicates the time level. The weights w1 and w2 in Eq. (3.9) are computed as:

w1 =
δtn + 2δtn−1

2δtn−1
δtn ,

w2 = − δtn

2δtn−1
δtn ,

(3.10)

where δtn = tn+1 − tn and δtn−1 = tn − tn−1 are time step widths. This formulation

of the second order Adam-Bashforth scheme allows for variable time stepping. The

discretization of Ci and Vi in Rui
is discussed in Subsection 3.2.2 and 3.2.3.

2. A second tentative velocity u∗∗
i is obtained by considering the effect of Bi via a first

order explicit Euler scheme:

u∗∗
1

��
i+ 1

2
,j,k

= u∗
1

��
i+ 1

2
,j,k

+ δtn · B1

��n
i+ 1

2
,j,k

,

u∗∗
2

��
i,j+ 1

2
,k
= u∗

2

��
i,j+ 1

2
,k
+ δtn · B2

��n
i,j+ 1

2
,k
,

u∗∗
3

��
i,j,k+ 1

2

= u∗
3

��
i,j,k+ 1

2

+ δtn · B3

��n
i,j,k+ 1

2

.

(3.11)

3. A PPE is solved to compute the pressure p at time level n+ 1:

−δPi

δxi

����
n+1

i,j,k

=
δ

δxi

�
1

ρ

δp

δxi

�����
n+1

i,j,k

=
1

δtn
δ2u

∗∗
i

δ2xi

����
i,j,k

. (3.12)

The discretization of the PPE is described in Subsection 3.2.4.
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4. Finally, u∗∗
i is corrected by P n+1

i to obtain the divergence-free velocity at the next time

level un+1
i :

u1

��n+1

i+ 1
2
,j,k

= u∗∗
1

��
i+ 1

2
,j,k

+ δtnP1

��n+1

i+ 1
2
,j,k

= u∗∗
1

��
i+ 1

2
,j,k

− δtn
�
1

ρ

δp

δx

�����
n+1

i+ 1
2
,j,k

,

u2

��n+1

i,j+ 1
2
,k
= u∗∗

2

��
i,j+ 1

2
,k
+ δtnP2

��n+1

i,j+ 1
2
,k

= u∗∗
2

��
i,j+ 1

2
,k
− δtn

�
1

ρ

δp

δy

�����
n+1

i,j+ 1
2
,k

,

u3

��n+1

i,j,k+ 1
2

= u∗∗
3

��
i,j,k+ 1

2

+ δtnP3

��n+1

i,j,k+ 1
2

= u∗∗
3

��
i,j,k+ 1

2

− δtn
�
1

ρ

δp

δz

�����
n+1

i,j,k+ 1
2

.

(3.13)

3.2.1 Discretization of the Material Properties

The dimensionless density, ρ, and molecular viscosity, µ, appear in the pressure gradient

term, Pi, in the viscous term, Vi, and in the forcing term, Bi. The discretization of the

material properties depends on the method used to describe the interface. In the IBM

framework, only one fluid exists in the entire domain (cf. Section 2.2.1), i.e. the carrier

fluid. Consequently, the discrete density field, ρ�, and the discrete molecular viscosity field,

µ�, are constant. Moreover, the carrier fluid is taken as reference (cf. Section 2.1.3), and

thus

ρ� = µ� = 1 . (3.14)

The above definition implies that the PPE (3.12) is separable, i.e. it can be re-cast in the

following form:

δ

δxi

�
δp

δxi

�����
n+1

i,j,k

=
1

δtn
δ2u

∗∗
i

δ2xi

����
i,j,k

. (3.15)

The discretization of the material properties for a fluid/fluid interface is more challenging

because both ρ and µ are discontinuous. In the context of the ACLSM framework, the
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discrete material properties ρ� and µ� are defined at the grid nodes via

ρ� = 1 + (ηρ − 1)ψ and µ� = 1 + (ηµ − 1)ψ , (3.16)

where the density ratio, ηρ, and the molecular viscosity ratio, ηµ, are defined in Eq. (2.14)

and (2.15). By using the above definitions, the discontinuities in ρ and µ are smeared out

over a band of size proportional to �, the smoothing parameter that defines the steepness of

the phase field function ψ (cf. Section 3.4). The smooth treatment of the material properties

corresponds to the Continuum Surface Force (CSF) approach developed by Brackbill et al.

[10]. A direct consequence of smearing the jump in the molecular viscosity is that the

pressure jump condition (2.25) reduces to:

[p]
Γ
= p+ − p− =

κ

We
. (3.17)

In this study, the definitions (3.16) are used to discretize the density and viscosity in Vi and

Bi. In contrast, the density jump in Pi, as well as the pressure jump condition (3.17), are

captured via the Ghost Fluid Method (GFM) without introducing any numerical smearing,

as shown in Subsection 3.2.4.

3.2.2 Discretization of the Convective Term

The convective terms Ci are discretized via second order centered finite difference as follows:

C1

���
n

i+ 1
2
,j,k

=−
�
δ2(u

xux)

δ2x
+

δ2(u
yvx)

δ2y
+

δ2(u
zwx)

δ2z

�n

i+ 1
2
,j,k

,

C2

���
n

i,j+ 1
2
,k
=−

�
δ2(v

xuy)

δ2x
+

δ2(v
yvy)

δ2y
+

δ2(v
zwy)

δ2z

�n

i,j+ 1
2
,k

,

C3

���
n

i,j,k+ 1
2

=−
�
δ2(w

xuz)

δ2x
+

δ2(w
yvz)

δ2y
+

δ2(w
zwz)

δ2z

�n

i,j,k+ 1
2

.

(3.18)
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The discretization given by Eq. (3.18) is conservative. It should be noted that C1, C2 and

C3 are defined at the same staggered locations of u, v and w respectively.

3.2.3 Discretization of the Viscous Term

The viscous terms Vi are discretized via second order centered finite difference as follows:

V1

���
n

i+ 1
2
,j,k

=
1

Re

�
δ2(τxx)

δ2x
+

δ2(τxy)

δ2y
+

δ2(τxz)

δ2z

�n

i+ 1
2
,j,k

· 1

ρε

�����

n+1

i+ 1
2
,j,k

,

V2

���
n

i,j+ 1
2
,k
=

1

Re

�
δ2(τyx)

δ2x
+

δ2(τyy)

δ2y
+

δ2(τyz)

δ2z

�n

i,j+ 1
2
,k

· 1

ρε

�����

n+1

i,j+ 1
2
,k

,

V3

���
n

i,j,k+ 1
2

=
1

Re

�
δ2(τzx)

δ2x
+

δ2(τzy)

δ2y
+

δ2(τzz)

δ2z

�n

i,j,k+ 1
2

· 1

ρε

�����

n+1

i,j,k+ 1
2

,

(3.19)

where ρ� is the discrete density field defined in Eq. (3.14) and (3.16). It should be noted that

V1, V2 and V3 are defined at the same staggered locations of u, v and w respectively. The

stress tensor components τxx, τxy and τxz are discretized at staggered locations consistently

with the position of the discrete derivatives in Eq. (3.19):

τxx
��n
i+1,j,k

= 2µ�

��n+1

i+1,j,k
· δ2u
δ2x

����
n

i+1,j,k

,

τxy
��n
i+ 1

2
,j+ 1

2
,k
= µ�

xy
��n+1

i+ 1
2
,j+ 1

2
,k
·
�
δ2u

δ2y
+

δ2v

δ2x

�����
n

i+ 1
2
,j+ 1

2
,k

,

τxz
��n
i+ 1

2
,j,k+ 1

2

= µ�
xz
��n+1

i+ 1
2
,j,k+ 1

2

·
�
δ2u

δ2z
+

δ2w

δ2x

�����
n

i+ 1
2
,j,k+ 1

2

,

(3.20)

where µ� is the discrete dynamic viscosity field defined in Eq. (3.14) and (3.16). The remain-

ing stress tensor components are computed in the same fashion as τxx, τxy and τxz. It should

be emphasized that ρ� and µ� in Eq. (3.19) and (3.20) are computed at time step n+ 1.
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3.2.4 Discretization of the Pressure Poisson’s Equation

The PPE (3.12) is discretized on the grid nodes where the pressure p is defined, by using

second order centered finite differencing. As discussed in Subsection 3.2.1, ρ� = 1 in the

whole domain for the case of solid particles simulated via the IBM. Therefore, Eq. (3.12)

can be re-cast to Eq. (3.15) and discretized with standard finite differencing. Its solution

can then be performed efficiently via the Fast Fourier Transform (FFT) or via an iterative

method for sparse linear system. The case of liquid droplets presents additional difficulties

because of the jump-condition form of the governing equations used in this case. Particularly,

in the pressure gradient term Pi:

1. the density is variable, and

2. both density and pressure are singular at the interface.

Item 1. implies that the PPE (3.12) is non-separable, that is, it cannot be re-cast into the

standard Poisson’s Eq. (3.15). As a result, the FFT cannot be used. Item 2. implies that

standard finite differencing is not a good choice in the neighborhood of the interface where

the jumps in density and pressure have to be accounted for. A suitable discretization for the

Left-Hand Side (LHS) of Eq. (3.12) for this case can be obtained by using the GFM [36, 31].

The GFM assumes that the jumps at the interface are known and can be extended off the

interface by continuity through a Taylor series. More details on the GFM and its derivation

are given in Appendix A. In what follows the focus will solely be on how the method is used

in a 1D domain: the extension to 3D can be obtained by applying the 1D method in the

three directions. In a 1D domain, the PPE given by Eq. (3.12) reads:

δ

δx

�
1

ρ

δp

δx

�����
n+1

i

=
1

δtn
δ2u

∗∗

δ2x

����
i

(3.21)

33



The LHS of Eq. (3.21) is discretized at node i via second order centered finite difference

together with the GFM and reads:

δ

δx

�
1

ρ

δp

δx

�����
n+1

i

=
pi+1 − pi − [p]R

ρR δx2
− pi − pi−1 − [p]L

ρL δx2
, (3.22)

where [p]R and [p]L account for the pressure jump condition (3.17). In particular, the pressure

jump [p]R at the interface located between i and i+ 1 is defined as:

[p]R =





kR/We if φn+1
i+1 > 0, φn+1

i ≤ 0

−kR/We if φn+1
i+1 ≤ 0, φn+1

i > 0

0 otherwise (no interface)

. (3.23)

Linear interpolation is used to evaluate kR, the curvature at the interface located between i

and i+ 1:

kR =
ki+1|φn+1

i |+ ki|φn+1
i+1 |

|φn+1
i |+ |φn+1

i+1 |
, (3.24)

while the effective density ρR is computed as

ρR =
ρi|φn+1

i |+ ρi+1|φn+1
i+1 |

|φn+1
i |+ |φn+1

i+1 |
. (3.25)

The quantities [p]L, kL and ρL associated with the left side of the stencil can be calculated

similarly by applying stencil symmetry. The full discretization of equation Eq. (3.21) is

therefore:

pn+1
i+1 − pn+1

i

ρR δx2
− pn+1

i − pn+1
i−1

ρL δx2
=

u∗∗
i+1/2 − u∗∗

i−1/2

δx δtn
+

[p]R
ρR δx2

+
[p]L

ρL δx2
. (3.26)

It should be noted that the pressure gradient in the correction step (3.13) must be treated

in the same way that is used for the discretization of Eq. (3.12). In a 1D case, the correction

34



step is

un+1
i+1/2 = u∗∗

i+1/2 − δtn
�
pn+1
i+1 − pn+1

i − [p]R
ρR δx

�
. (3.27)

3.2.5 Time Step Restriction

In order to ensure the stability of the simulations, the time step, δt, was computed to satisfy

the Courant-Friedrichs-Lewy (CFL) condition. The projection method coupled with the

IBM proved to be stable for δt ≤ δx/2. In contrast, the projection method coupled with the

ACLSM required adaptive time stepping. For this case, the δt was computed to satisfy:

δt C ≤ 1 , (3.28)

where C is a coefficient that accounts for the stability requirements of the convective, viscous,

gravity term, and surface tension term. Kang et al. [31] derived the following definition of

C:

C =
(Cc + Cv) +

�
(Cc + Cv)2 + 4C2

g + 4C2
s

2
, (3.29)

where the coefficients Cc, Cv, Cg, and Cs are:

Cc =
max(u)

δx
+

max(v)

δy
+

max(w)

δz

Cd =
2

Re
max

�
1,

ηµ
ηρ

��
1

δx2
+

1

δy2
+

1

δz2

�

Cg =
�

1

Fr

Cs =
�

κmax

We min(1, ηρ) min(δx2, δy2, δz2)

(3.30)
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In the above definitions, ηρ and ηµ are the density and molecular viscosity ratio defined in

Subsection 2.1.3, while κmax is the maximum value of the local curvature of the interface.

3.3 Discretization of the IBM Equations

As mentioned in Subsection 2.2.1, the IBM relies on a set of curvilinear coordinates attached

to the interface being tracked. In discrete terms, this means one has to provide a Lagrangian

discretization of the interface in addition to the Eulerian grid used for the discretization of the

computational domain. In this work, the IBM is used to model solid spherical particles. The

surface of each particle is discretized via a uniform distribution of Nl Lagrangian points. The

location X l = (Xl, Yl, Zl) of the l-th Lagrangian point is given as a function of the position

xp = (xp, yp, zp) of the center of the particle by:

Xl = xp +Rp sin(θl) cos(ϕl)

Yl = yp +Rp sin(θl) sin(ϕl)

Zl = zp +Rp cos(θl)

(3.31)

where θl is the polar angle, ϕl the azimuthal angle and Rp the particle radius. It should be

emphasized that Rp is constant since the particles are solid spheres. θl and ϕl are calculated

by using the explicit spiral set proposed by Saff and Kuijlaars [64]:

θl = arccos(cl) , cl = −1 +
2(l − 1)

Nl − 1
, 1 ≤ l ≤ Nl ,

ϕ0 = ϕNl
= 0 ,

ϕl = ϕl−1 +
3.6�

Nl (1− c2l )
, 1 < l < Nl .

(3.32)
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3.3.1 Computation of the Forcing Term

The effect of the solid particles on the flow is accounted for via the forcing term fi at step

2. of the projection algorithm (cf. Section 3.2). In order to compute fi, the intermediate

velocity u∗
i , defined on the Eulerian grid, is mapped to the Lagrangian points via

U∗
i (X

m
l ) =

�

x∈Ω
u∗
i (x) δh(x−Xm

l ) δx
3 ∀ l,m , (3.33)

where m ∈ [1, Np] is an integer indexing a specific particle and Np is the total number of

tracked particles. The above equation is a discretization of Eq. (2.27). In Eq. (3.33), δh

represents the three-dimensional regularized three-point delta function proposed by Roma

et al. [61]:

δh(x−Xm
l ) =

1

δx3
δ(r1)δ(r2)δ(r3) with ri =

xi − (Xm
l )i

δx
, (3.34)

where

δ(r) =





1

3
(1 +

√
1− 3r2), if |r| ≤ 0.5

1

6
(5− 3|r|−

�
1− 3(1− |r|)2), if 0.5 < |r| ≤ 1.5

0, if |r| > 1.5

. (3.35)

A graphical representation of δh is given in Figure 3.2. Once the Lagrangian intermediate

velocity U∗
i is known, the Lagrangian forcing Fi required to impose the no-slip condition at

the interface can be calculated as:

Fi(X
m
l ) =

Ui(X
m
l )|n+1 − U∗

i (X
m
l )

δtn
∀ l,m , (3.36)
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where Ui(X
m
l ) is the velocity at the Lagrangian point Xm

l obtained by applying the rigid-

body motion (2.28):

U (Xm
l )|n+1 = um

p |n+1 + ωm
p |n+1 × (Xm

l − xm
p |n+1) , (3.37)

where up and ωp are the linear and angular velocity of the particle center. Finally the forcing

term fi is obtained by mapping Fi to the Eulerian grid via:

fi(x) =

Np�

m=1

Nl�

l=1

Fi(X
m
l )δh(x−Xm

l )ΔV m
l (3.38)

where ΔV m
l is the volume associated with the l-th force point:

ΔV m
l =

πδx

3Nl

(12R2
p + δx2) . (3.39)

Equation (3.38) is the discrete version of Eq. (2.26).

δ function

Figure 3.2 Eulerian grid points (triangles) influenced by the force at the Lagrangian grid point
(white circle) of the particle spherical surface (black line) (from [39]). Three-
dimensional, three-point δh function by Roma et al. [61].
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3.3.2 Computation of the Particle Motion

The linear and angular velocities up and ωp and the center position xp are computed for each

particle by solving the following Ordinary Differential Equations (ODEs) that were derived

by Lucci et al. [39]:

dxm
p

dt
= um

p ,

dum
p

dt
=

1

(1− ρmp )Ω
m
p

Nl�

l=1

F (Xm
l )ΔV m

l + g +
Fm

R

(ρmp − 1)Ωm
p

,

dωm
p

dt
=

1

Imp

Nl�

l=1

(Xm
l − xm

p )× F (Xm
l )ΔV m

l +
1

Imp

d

dt

���

Ωm

[(x− xm
p )× u]dx ,

(3.40)

where ρmp , Ω
m
p and Imp are the dimensionless density, volume and momentum of inertia of

the m-th particle respectively, and Fm
R is a repulsive force that avoids the overlapping of

particles (or penetration into each other). A detailed discussion on Fm
R is given in [39]. The

above equations are integrated in time via a second-order Adam-Bashforth method.

3.4 Discretization of the ACLSM Equations

The phase-field function ψ defined by Eq. (2.37) is discretized at the grid nodes. As pointed

out by Olsson et al. [47], choosing a small value for the smoothing parameter � is crucial

to achieve conservation of the volume bounded by the ψ = 0.5 iso-surface. On the other

hand, if � is too small compared to the grid size δx, over- or under-shoots may affect the

steady-state solution of Eq. (2.39). � is set to be proportional to the grid size by using the

relation given by Olsson and Kreiss [46]:

� =
(δx)1−d

2
, (3.41)
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where d ≥ 0 is a parameter that influences the steepness of ψ. d > 0 improves the stability

of the method, while d = 0 delivers better conservation properties. All the tests performed

showed that d = 0 was the best choice for the purposes of this study. This correspond to an

interface width of about three to four grid spacings.

3.4.1 Interface Transport Equation

The transport equation (2.38) is advanced in time by using a second order explicit Adam-

Bashforth method:

ψ|n+1
i,j,k = ψ|ni,j,k + w1 · Rψ|ni,j,k + w2 · Rψ|n−1

i,j,k , (3.42)

where the weights w1 and w2 are given by Eq. (3.10). The term Rψ represents a conservative

discretization of the Right-Hand Side (RHS) of Eq. (2.38):

Rψ|ni,j,k = − δ

δxi

(uiψ)

����
n

i,j,k

=−
F |ni+ 1

2
,j,k − F |ni− 1

2
,j,k

δx
−

G|ni,j+ 1
2
,k − G|ni,j− 1

2
,k

δy
+

−
H|ni,j,k+ 1

2
− H|ni,j,k− 1

2

δz
,

(3.43)

where the numerical fluxes F , G and H are approximations of the convective terms uψ, vψ

and wψ respectively. In order to evaluate Rψ at the grid nodes, the numerical fluxes need to

be computed at the velocity locations, i.e. at the faces of the scalar cell Isi,j,k. The procedure

to compute F will now be described; G and H are obtained by applying the same procedure

in the y and z direction respectively. F |ni+ 1
2
,j,k is calculated via the following upwind scheme:

F |ni+ 1
2
,j,k = u+

��n
i+ 1

2
,j,k

ψL
i+ 1

2
,j,k

+ u−��n
i+ 1

2
,j,k

ψR
i+ 1

2
,j,k

, (3.44)
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where the superscripts + and − indicates the positive and negative part1. ψL
i+ 1

2
,j,k

and ψR
i+ 1

2
,j,k

are left and right approximations of the phase field function at the cell face (i+ 1
2
, j, k) where

ψ is not directly available. These approximations are computed via the following linear

reconstruction:

ψL
i+ 1

2
,j,k

= ψ|ni,j,k +
δx

2
si,j,k ,

ψR
i+ 1

2
,j,k

= ψ|ni+1,j,k −
δx

2
si+1,j,k ,

(3.45)

where the slopes si,j,k and si+1,j,k are calculated by using a slope limiter θ(a, b) as follows:

si,j,k = θ

�
ψ|ni+1,j,k − ψ|ni,j,k

δx
,
ψ|ni,j,k − ψ|ni−1,j,k

δx

�
,

si+1,j,k = θ

�
ψ|ni+2,j,k − ψ|ni+1,j,k

δx
,
ψ|ni+1,j,k − ψ|ni,j,k

δx

�
.

(3.46)

The choice was made to use the Superbee slope limiter developed by Roe [60]:

θ(a, b) =





sign(a)max(|a|, |b|) if a · b > 0 ∧ |a|/2 ≤ |b| ≤ 2|a| ,

2 sign(a)min(|a|, |b|) if a · b > 0 ∧ ( |a|/2 ≥ |b| ∨ |b| ≥ 2|a| ) ,

0 if a · b ≤ 0 .

(3.47)

The discretization method presented here was proposed by Olsson and Kreiss [46].

3.4.2 Reconstruction of the Signed Distance Function

Using a phase-field ψ function instead of a signed distance function φ is beneficial to volume

conservation, but reduces the accuracy of the calculation of normals and curvature. Des-

1The positive part a+ of a real variable a is defined as a+ = max(a, 0). Similarly the negative part a− is
a− = min(a, 0).
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jardins et al. [18] pointed out that n and κ are strongly sensitive to spurious oscillations in

ψ if they are obtained by direct differentiation via

n =
∇ψ

|∇ψ| (3.48)

and

κ = ∇ ·
� ∇ψ

|∇ψ|

�
. (3.49)

In fact, an oscillation in ψ will appear as a large change in direction of the normal vector and

therefore normals computed using Eq. (3.48) are not suitable for the solution of Eq. (2.39).

The problem is even more serious for a curvature calculated via Eq. (3.49) since two levels

of differentiations are involved in the process. In order to alleviate this problem, Desjardins

et al. [18] proposed to compute n and κ from the signed distance function φ defined in

Eq. (2.34). Thus, φ has to be reconstructed from the phase-field function ψ. This is ac-

complished by using the Fast Sweeping Method (FSM) described in Appendix C. The initial

condition used to start the fast sweeping algorithm is

di,j,k =





��� 2� atanh( 2ψi,j,k − 1)
��� if

��� 2� atanh( 2ψi,j,k − 1)
��� ≤ δx ,

+∞ otherwise ,

(3.50)

where the time index has been dropped for clarity. Therefore d is initialized with large

positive values everywhere in the domain except in a small band around the interface, where

the exact distance is computed by inverting Eq. (2.37). After the distance function d has been

reconstructed, the signed distance function φ is obtained by applying the definition (2.34).

It should be emphasized that the nodes initially set to the exact solution via Eq. (3.50) are

never updated during the whole reconstruction procedure.
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3.4.3 Calculation of the Normal Vector

The solution of the reinitialization Eq. (2.39) requires the computation of the normal vector

n at the faces of the scalar cell Isi,j,k, as explained in Subsection 3.4.5. n could easily be

computed at the scalar nodes via standard centered finite difference and then interpolated at

the cell faces (cf. Figure 3.3a). However, this approach would introduce spurious oscillations

as shown in [18]. A better alternative is to define face normals directly at the cell face

locations. The x-face normal nx at (i+ 1
2
, j, k) is computed as follows (cf. Figure 3.3b):

nx|i+ 1
2
,j,k =


 (Nx

x , N
x
y , N

x
z )�

(Nx
x )

2 + (Nx
y )

2 + (Nx
z )

2




i+ 1
2
,j,k

, (3.51)

where

Nx
x |i+ 1

2
,j,k =

δ2φ

δ2x

����
i+ 1

2
,j,k

, Nx
y

��
i+ 1

2
,j,k

=
δ2φ

x

δ2y

�����
i+ 1

2
,j,k

, Nx
z |i+ 1

2
,j,k =

δ2φ
x

δ2z

�����
i+ 1

2
,j,k

. (3.52)

The y- and z-face normals ny and nz are computed in the same fashion (cf. Figure 3.3).

This scheme was devised by Desjardins et al. [18].

(a) centered differencing (b) x-face normal (c) y-face normal

Figure 3.3 Stencils for the discretization of the normal vector. The black circles represent grid
nodes, while the red cross symbol shows where the normals are computed. The dashed
lines indicate the stencil used.

43



3.4.4 Calculation of the Curvature

In order to compute the curvature κ at the grid nodes, one could simply discretize Eq. (3.49)

by using the face normals:

κi,j,k =
nx
x

��
i+ 1

2
,j,k

− nx
x

��
i− 1

2
,j,k

δx
+

ny
y

��
i,j+ 1

2
,k
− ny

y

��
i,j,k− 1

2

δy
+

nz
z

��
i,j,k+ 1

2

− nz
z

��
i,j,k− 1

2

δz
. (3.53)

Since φ is recomputed at every time step via the FSM, inaccuracies in the distance field are

to be expected. Therefore Eq. (3.53) cannot produce an accurate curvature because it relies

on two levels of numerical differentiation of φ. In this study κ was computed via a Least

Squares Reconstruction (LSR) as proposed by Marchandise et al. [41]. This approach will

now be described for a 2D domain. Consider a generic variable α, known at each node, that

is polluted by some inaccuracies. The goal is to reconstruct the values of the derivatives of

α so that the effect of these inaccuracies is minimal. In order to do so the data surrounding

each node (i, j) is assumed to behave quadratically via a second order Taylor’s expansion:

αi+p,j+m − αi,j =
δα

δx

����
i,j

· p δx+
δα

δy

����
i,j

·m δy+

+
1

2

δ2α

δx2

����
i,j

· (p δx)2 + 1

2

δ2α

δy2

����
i,j

· (m δy)2 +
δ2α

δxδy

����
i,j

· (p δx) · (m δy) .

(3.54)

The above equation links the value of α at (i, j) with that at a surrounding node (i+p, j+m).

If Eq. (3.54) is applied to each node defined by the pair of integer indeces (p,m) ∈ [−p, p]×

[−q, q] \ (0, 0), one obtains (2p+1)(2q+1)− 1 equations of the form (3.54). The associated
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linear system reads:




−pδx −qδy 1
2
(pδx)2 1

2
(qδy)2 pqδxδy

...
...

...
...

...

...
...

...
...

...

pδx qδy 1
2
(pδx)2 1

2
(qδy)2 pqδxδy




·




δα

δx

����
i,j

δα

δy

����
i,j

δ2α

δx2

����
i,j

δ2α

δy2

����
i,j

δ2α

δxδy

����
i,j




=




αi−p,j−q − αi,j

...

...

αi+p,j+q − αi,j




(3.55)

If p and q are chosen so that (2p+1)(2q+1)−1 = 5, i.e. equals the number of unknowns, the

system (3.55) is determined and can be solved. This, however, would simply give derivatives

still affected by the inaccuracies in α. If instead, p and q are chosen so that (2p+1)(2q+1)−

1 > 5, the system (3.55) is over-determined but can still be solved in a least square sense2.

A least square solution has the advantage of minimizing the expected deviation between α

and the unpolluted solution that α approximates. In order to compute the curvature at node

(i, j), the system (3.55) is first solved with α = φ and p = q = 2; the normal n at node (i, j)

is then computed as:

n|i,j =
(Nx, Ny)�
N2

x +N2
y

with Nx =
δα

δx

����
i,j

and Ny =
δα

δy

����
i,j

. (3.56)

Next, the system (3.55) is solved again twice, for α = nx and α = ny, and the curvature κ

is finally obtained as:

κ|i,j =
δnx

δx

����
i,j

+
δny

δy

����
i,j

. (3.57)

2Given an over-determined linear system Ax = b, the least square solution is obtained by solving AtAx =
Atb.
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3.4.5 Reinitialization Equation

The reinitialization Eq. (2.39) is a key step in the ACLSM in that it allows maintaining

a fixed interface width at all times. The integration in pseudo-time τ of Eq. (2.39) was

performed via a second order Runge-Kutta scheme that comprised the following steps (the

node indices have been dropped for clarity):

ψn+ 1
2 = ψn +

δτ

2
·R n

ψ ,

ψn+1 = ψn + δτ ·R n+ 1
2

ψ ,

(3.58)

In Eq. (3.58), δτ = δx/2 is the time step and Rψ represents a conservative discretization of

the RHS of Eq. (2.39):

Rψ|ni,j,k = −
F |ni+ 1

2
,j,k − F |ni− 1

2
,j,k

δx
−

G|ni,j+ 1
2
,k − G|ni,j− 1

2
,k

δy
−

H|ni,j,k+ 1
2
− H|ni,j,k− 1

2

δz
, (3.59)

with the numerical fluxes F , G and H defined as:

F =

�
−ψ(1− ψ)

x
+ �

�
δ2ψ

δ2x
nx
x +

δ2ψ
x

δ2y
nx
y +

δ2ψ
x

δ2z
nx
z

��
nx
x ,

G =

�
−ψ(1− ψ)

y
+ �

�
δ2ψ

y

δ2x
ny
x +

δ2ψ

δ2y
ny
y +

δ2ψ
y

δ2z
ny
z

��
ny
y ,

H =

�
−ψ(1− ψ)

z
+ �

�
δ2ψ

z

δ2x
nz
x +

δ2ψ
z

δ2y
nz
z +

δ2ψ

δ2z
nz
z

��
nz
z .

(3.60)

The face normals in Eq. (3.60) are computed as described in Subsection 3.4.3.
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3.5 Full Solution Algorithm

Steps of the projection method coupled with the ACLSM

1. Advance the phase-field function ψ from time level n to n + 1 by using the schemes

outlined in Subsection 3.4.1.

2. Reconstruct the signed distance function φn+1 from ψn+1 by using the FSM as described

in Subsection 3.4.2.

3. Compute the face normals by using the discretization presented in Subsection 3.4.3.

4. Compute the curvature via the LSR outlined in Subsection 3.4.4.

5. Reinitialize the hyperbolic tangent profile of ψn+1 by solving the reinitialization equa-

tion as described in Subsection 3.4.5.

6. Compute a tentative velocity u∗∗
i by performing steps 1. and 2. of the projection

method detailed in Section 3.2. For this case, fi = si = 0.

7. Compute the pressure pn+1 by solving the PPE (3.12). The GFM is used to discretize

the PPE near the interface; the curvature computed at step 4. is used in the jump

condition.

8. Compute the velocity field un+1
i at time level n+ 1 by applying the correction step.

A graphical representation of the above solution algorithm is given in the flowchart in Fig-

ure 3.4.
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START

Interface transport: ψn → ψn+1

Reconstruction step (FSM): ψn+1 → φn+1

Compute n and κ from φn+1

Reinitialize ψn+1

Predictor step: un → u∗ → u∗∗

Solve PPE: pn → pn+1

Correction step: u∗∗, pn+1 → un+1

tn+1 > tend

END

n = n+ 1

YES

NO

Figure 3.4 Flowchart describing the steps of the projection method coupled with the ACLSM.
This algorithm is used for the simulation of liquid droplet-laden turbulence.
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Steps of the projection method coupled with the IBM

1. For each solid particle, solve the ODEs in Eq. (3.40) to compute xp, up and ωp at the

next time level n+ 1.

2. Compute a tentative velocity u∗
i by performing step 1. of the projection method de-

tailed in Section 3.2.

3. Compute the forcing term fi by using the method outlined in Subsection 3.3.1

4. Compute a second tentative velocity u∗∗
i by performing step 2. of the projection method

detailed in Section 3.2. For this case, si = 0.

5. Compute the pressure pn+1 by solving the PPE (3.12). Standard centered finite differ-

encing is used to discretize the PPE. In this case, the PPE is separable.

6. Compute the velocity field un+1
i at time level n+ 1 by applying the correction step.

A graphical representation of the above solution algorithm is given in the flowchart in Fig-

ure 3.5.

49



START

For each particle, compute: xn+1
p ,un+1

p ,ωn+1
p

Predictor step 1: un → u∗

Compute IBM forcing term fi

Predictor step 2: u∗, fi → u∗∗

Solve PPE: pn → pn+1

Correction step: u∗∗, pn+1 → un+1

tn+1 > tend

END

n = n+ 1

YES

NO

Figure 3.5 Flowchart describing the steps of the projection method coupled with the IBM. This
algorithm is used for the simulation of solid particle-laden turbulence.
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Chapter 4

Validation of the Numerical Methods

The numerical methods presented in Chapter 3 were validated by comparing the numerical

with the exact solution for a number of test cases. Each test problem was designed to

assess the behavior and accuracy of the solution algorithm under different conditions. A two

dimensional domain of size L×L was considered in all the tests. In what follows, N indicates

the number of grid nodes in each direction. The relative error of a numerical variable α at

node (i, j) is represented by ξ(α):

ξ(α)|i,j =
����1−

α

α

����
i,j

, ∀α �= 0 , (4.1)

where α is the exact solution. The numerical accuracy of α was measured via the norm 1,

L1(α), and the norm infinity, L∞(α), of the absolute error:

L1(α) =
1

N2
Σ

�

i,j

|α− α|i,j , L∞(α) = max |α− α|i,j , (4.2)

where NΣ is the number of grid points used to compute L1. Both norms are calculated by

considering all the grid nodes in the domain, unless otherwise stated. This chapter focuses
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exclusively on the validation of the numerical methods used to treat fluid/fluid interfaces,

namely the Accurate Conservative Level Set Method (ACLSM), the Ghost Fluid Method

(GFM) and their coupling with the projection method for the solution of the Navier-Stokes

Equations (NSE). The reader is referred to [38] for a detailed analysis of the accuracy and

performance of the Immersed Boundary Method (IBM) used to simulate fluid/solid interfaces.

4.1 Zalesak’s Disk

The algorithm for the transport and reinitialization of the phase field function, ψ, was tested

by simulating the rigid body rotation of a notched circle, also known as Zalesak’s disk [84].

This test checks whether the numerical schemes used to discretize the ACLSM equations is

capable of correctly resolving sharp corners and thin geometric structures. Initially, the disk

is centered at the point (0.5, 0.5) in a square domain of size L = 1, with a notch of height

0.4 and width 0.1. A constant velocity field given by

u(x, y) =
π

2
(y − 0.5) and v(x, y) =

π

2
(0.5− x) (4.3)

is applied to the disk for the entire simulation. Consequently, the disk is expected to rotate

around the point (0.5, 0.5) without changing shape. The test was run until t = 4, that is

until the interface completed a full rotation. The simulation was repeated for four different

meshes of 32, 64, 128, and 256 grid points in order to assess convergence under grid refine-

ment. In all cases, the time step width, δt, was set to δx/4. After each advection step,

the reinitialization Eq. (2.39) was solved for four pseudo-time steps. Figure 4.1 displays the

shape of the disk after one full rotation. The coarsest grid tested (N = 32) does not allow

the accurate resolution of the sharp corners, resulting in large deformations of the interface.

By increasing the grid size (N = 64, 128, 256), the solution becomes satisfactory.
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Figure 4.1 Notched disk after one full rotation. The black line is the exact solution obtained by
a rigid body rotation. The cyan, green, blue and red lines are the numerical solutions
obtained on grids of 32, 64, 128, and 256 mesh points respectively.

Table 4.1 shows the norm 1 of the absolute error of the numerical solution after one full

rotation for increasingly finer meshes. The norm is computed in a band of width 8δx around

the interface. It is seen that the order of convergence is between 1 and 2. This is expected

since Eq. (2.38) for the transport of ψ is discretized via a numerical scheme that is of order

less than two for non-smooth solutions (cf. Subsection 3.4.1). The conservation properties

of the ACLSM were tested also by computing the volume enclosed by the interface, Ω+, at

time step n via

Ω+|n = δxδy
�

i,j

ψ|ni,j . (4.4)

Figure 4.2 shows the temporal development of error of the volume relative to the initial
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volume for different grids. It should be noted that the conservation properties of the ACLSM

are excellent, even when the interface is subjected to strong deformations.

Table 4.1 Norm 1 of the absolute error of the numerical solution in a band of width 8δx.

N L1(ψ) Order

32 2.38 · 10−5 -
64 7.43 · 10−6 1.68
128 1.97 · 10−6 1.92
256 7.80 · 10−7 1.33

0.0

2e−12

0 0.5 1 1.5 2 2.5 3 3.5 4

ξ(Ω+)

t

N = 32

N = 64

N = 128

N = 256

Figure 4.2 Temporal development of the volume error relative to the initial volume (%).
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4.2 Accuracy of the FSM Reconstruction

The accuracy of the Fast Sweeping Method (FSM) was tested by reconstructing a signed

distance function, φ, from a given phase field function, ψ, for the case of a 2D circle of radius

R = 0.25. The circle was centered in a square domain of size L = 1. The exact signed

distance function, φ, and the corresponding phase field function, ψ, for this configuration

are given by

φ(x, y) =
�

(x− 0.5)2 − (y − 0.5)2 −R (4.5)

and

ψ(x, y) =
1

2

�
tanh

�−φ

�

�
+ 1

�
. (4.6)

The initial condition for the FSM is obtained from ψ via Eq. (3.50). Initially, a tentative

signed distance function, φ∗, is computed via the first order FSM. Subsequently, φ∗ is refined

in a small band around the interface by using a third order FSM1. It is seen in Table 4.2 that

the reconstruction method used in this work yields a fourth-order numerical signed distance

function, φ, despite the scheme used in the refinement step being only third order accurate.

Table 4.2 Development of the error of the signed distance function φ for increasingly finer grids.

N L1(φ) Order L∞(φ) Order

32 8.95 · 10−5 - 1.82 · 10−3 -
64 5.23 · 10−6 4.10 4.13 · 10−5 5.46
128 3.10 · 10−7 4.08 1.88 · 10−6 4.46
256 1.98 · 10−8 3.97 1.10 · 10−7 4.10
512 1.22 · 10−9 4.02 5.70 · 10−9 4.27

1The third order accuracy is achieved via a third order WENO scheme (see [85]).
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4.2.1 Accuracy of the Normal Vector Calculation

The exact normal, n, for the signed distance function defined in Eq. (4.5) is given by

n =
∇φ

||∇φ||
=

( x− 0.5 , y − 0.5 )�
(x− 0.5)2 + (y − 0.5)2

. (4.7)

The numerical normal vector, n, was computed from the level set function after the FSM

reconstruction. Two different methods of computing n were tested, namely

1. a standard second order centered Finite Difference (FD) scheme, and

2. a second order Least Squares (LS) scheme.

The FD scheme to compute n at the grid node (i, j) reads:

n|i,j =
(Nx, Ny)�
N2

x +N2
y

with Nx =
φ|i+1,j − φ|i−1,j

2δx
and Ny =

φ|i,j+1 − φ|i,j−1

2δy
, (4.8)

while the LS solution is obtained by solving Eq. (3.55) with α = φ, and then computing n

at the grid nodes via Eq. (3.56). Table 4.3 shows that both methods achieve second order

accuracy, with the FD scheme producing slightly smaller absolute errors. It should be noted

that the normal vector comes into play only in the re-initialization Eq. (2.39). As mentioned

in Subsection 3.4.5, a conservative discretization of Eq. (2.39) requires n to be computed at

the faces of a scalar cell via FD. Therefore the results for the circle test presented here are

not meant to verify the accuracy of the face normals used in the reinitialization equation,

but only to analyze the effect of the high order FSM on the geometric properties of φ.
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Table 4.3 Development of the absolute error of the numerical normal n under grid refinement.
The norms were computed by considering a band of width 8 δx around the interface.

N
FD LS

L1(n) Order L∞(n) Order L1(n) Order L∞(n) Order

32 4.02 · 10−3 - 2.11 · 10−2 - 6.87 · 10−3 - 5.50 · 10−2 -
64 9.87 · 10−4 2.03 2.67 · 10−3 2.98 6.87 · 10−3 2.04 8.87 · 10−2 2.63
128 2.44 · 10−4 2.01 5.93 · 10−4 2.17 4.10 · 10−4 2.03 1.63 · 10−3 2.44
256 6.10 · 10−4 2.00 1.35 · 10−4 2.14 1.01 · 10−4 2.02 3.57 · 10−4 2.19
512 1.53 · 10−5 2.00 3.22 · 10−5 2.07 2.53 · 10−5 2.00 8.40 · 10−5 2.09

4.2.2 Accuracy of the Curvature Calculation

The exact curvature, κ, for the signed distance function defined in Eq. (4.5) is given by

κ = ∇ ·
� ∇φ

||∇φ||

�
=

1�
(x− 0.5)2 + (y − 0.5)2

. (4.9)

Three different methods for computing the numerical curvature, κ, were tested, namely:

1. a second order centered FD scheme applied to φ,

2. a second order centered FD scheme applied to the face normals defined in Subsec-

tion 3.4.3 (FD+FN), and

3. a second order LS scheme.

The FD method relies on the analytical expression for κ, that is

κ =
∇φ

||∇φ|| =
φ2
xφyy − 2φxφyφxy + φ2

yφxx

(φ2
x + φ2

y)
1.5

, (4.10)

where the subscripts indicate partial derivatives. The above equation is discretized at the

grid nodes via centered FD. The methods 2. and 3. are described in Subsection 3.4.4. The

development of the absolute error under grid refinement in a band of width 8δx around the

interface is shown in Table 4.4 for the three methods. Second order accuracy is achieved
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by all the schemes, but the norms of the absolute error are almost an order of magnitude

smaller for the FD-based methods. Figure 4.3, 4.4, and 4.5 display the contours plot of the

absolute error of κ in a band of width 8δx for the three methods. It is seen that the absolute

error produced by methods 1. (cf. Figure 4.4) and 2. (cf. Figure 4.5) is oscillatory. In

contrast, the LS solution exhibits a much smoother behavior, as shown in Figure 4.3. This

is not surprising, since the advantage of method 3. over the methods 1. and 2. is its ability

of minimizing the effect of the noise polluting φ on the curvature. Since oscillations in the

curvature may cause parasitic currents that are detrimental to the stability and accuracy

of the solution algorithm (cf. Section 4.3), the LS scheme was chosen over the FD-based

methods.

Table 4.4 Development of the absolute error of the numerical curvature κ under grid refinement.
The norms were computed by considering a band of width 8δx around the interface.

N
FD FD+FN LS

L1(κ) Order L1(κ) Order L1(κ) Order

32 3.20 · 10−3 - 3.08 · 10−3 - 2.90 · 10−2 -
64 8.31 · 10−4 1.94 7.01 · 10−4 2.14 7.51 · 10−3 1.90
128 1.96 · 10−4 2.08 1.52 · 10−4 2.20 1.88 · 10−3 1.99
256 5.05 · 10−5 1.96 3.99 · 10−5 1.93 4.66 · 10−4 2.01
512 1.27 · 10−5 1.99 1.01 · 10−5 1.99 1.17 · 10−4 2.00

Table 4.5 Development of the absolute error of the numerical curvature κ under grid refinement.
The norms were computed by considering the interpolated values of κ at the interface.

N
FD FD+FN LS

L1(κ) Order L1(κ) Order L1(κ) Order

32 9.78 · 10−4 - 1.47 · 10−3 - 2.74 · 10−2 -
64 4.65 · 10−4 1.07 5.19 · 10−4 1.51 7.43 · 10−3 1.90
128 9.71 · 10−5 2.26 1.07 · 10−4 2.28 1.88 · 10−3 1.96
256 3.18 · 10−5 2.61 3.30 · 10−5 1.70 4.70 · 10−4 2.00
512 7.01 · 10−6 2.18 7.48 · 10−6 2.14 1.18 · 10−4 1.99
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Figure 4.3 Contours of the absolute error of the numerical curvature obtained via the LS method.
Only a band of width 8δx around the interface (black line) is shown.

Figure 4.4 Contours of the absolute error of the numerical curvature obtained via the FD method.
Only a band of width 8δx around the interface (black line) is shown.
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Figure 4.5 Contours of the absolute error of the numerical curvature obtained via the FD+FN
method. Only a band of width 8δx around the interface (black line) is shown.

4.3 Stationary Interface

Interface simulation methods are known to be affected by the so-called spurious or parasitic

currents. These are non-physical vortices that appear in the numerical solution in close

proximity of the interface, even in the absence of any external forces. The causes of this

phenomenon are:

1. an inconsistent discretization of the surface tension force and the pressure gradient,

and

2. an inaccurate numerical curvature.
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An inconsistent numerical scheme does not enforce the discrete balance between pressure

and surface tension, thus producing spurious local fluid accelerations. Continuum Surface

Force (CSF)-based methods are likely to be affected by this issue unless proper discretization

techniques are used. In contrast, the GFM produces a consistent discretization by design

and therefore automatically guarantees the discrete force balance at the interface. The issue

of inaccurate curvature computations is more serious. First, a discretization of the curvature

that is very sensitive to small changes in the shape of the interface causes large errors in

the value of the capillary forces. Second, oscillations in the curvature field may produce

non-physical local forces that result in spurious currents. Many FD-based schemes for the

computation of the curvature are affected by the inaccuracies in the signed distance function

and show order of convergence less than one under grid refinement. This means that the

magnitude of the parasitic currents cannot be reduced by refining the mesh. In order to test

whether these issues affect the numerical method used in this work, a stationary interface

was considered. The interface was a circle of radius R = 0.25 centered in a 2D domain of size

L = 1. The circle can be thought of as the cross section of a cylinder with infinite length.

The viscosity and density were kept constant in the whole computational domain, including

the interior of the interface. Initially the velocity field was set to zero and no forces except the

surface tension were applied. Since no discontinuities in density and viscosity are present,

and no external forces other than the capillarity force are accounted for, the stationary

interface test is ideal to verify that the pressure gradient/surface tension balance is satisfied

in a discrete sense. Under these conditions, the velocity is expected to be zero at all times

and the interface to remain a circle. The dimensionless parameter that characterizes this

case is the Laplace number

La =
Re2

We
=

�σ�L�ρ−
�µ− , (4.11)

where �ρ− and �µ− are the reference density and molecular viscosity, �σ is the surface tension
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coefficient, and �L is the reference length. The flow field and the interface were evolved in

time from t = 0 to t = 10 with La set to 120 by using the algorithm outlined in Figure 3.4.

In addition, both the FD and LS schemes for the computation of the curvature were tested.

It is seen in the velocity vector plot of Figure 4.6 that, at a very early time (t = 0.36),

both methods for the curvature computation create non-physical vortices surrounding the

interface despite the mesh being quite fine (N = 128). Also, the maximum value of the

velocity obtained by using the FD method (Figure 4.6b) is one order of magnitude smaller.

This is consistent with the results on the accuracy of the two schemes reported in Section 4.2.

By construction, the ACLSM assumes that each point on the interface, is transported by

the underlying velocity field and therefore no normal fluid flux across the interface should

be present (cf. Subsection 2.2.3). However, since the interface simulation methods that

include the effect of surface tension are plagued by parasitic currents as discussed above, a

normal flux is to be expected in the numerical solution. This can be observed in Figure 4.6.

Nevertheless, it should be noted that such flux is only local, i.e. the overall net flux across

the interface is zero. As the simulation progresses, the maximum value of the velocity is

reduced by two orders of magnitude in the LS solution (Figure 4.7a and 4.8a), while it

grows by four orders of magnitude in the FD solution (Figure 4.7b and 4.8b). It should also

be noted that the symmetry of the flow field is lost in the FD case, and consequently the

interface is distorted, as shown in Figure 4.8b. Lastly, Table 4.6 shows that the reduction of

the parasitic currents does not converge under grid refinement for the FD case.

Table 4.6 Maximum value of the velocity magnitude at t = 10 for three different grid sizes.

N
FD LS

L∞(u) Order L∞(u) Order

32 1.70 · 10−6 - 2.00 · 10−5 -
64 2.20 · 10−6 -0.37 5.90 · 10−6 1.76
128 2.93 · 10−2 -13.7 8.80 · 10−8 2.76
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(a) LS scheme

(b) FD scheme

Figure 4.6 Vector plot of the velocity field at t = 0.36 for the stationary interface test. Both the
FD and LS solution are shown for a grid of 128 nodes.
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(a) LS scheme

(b) FD scheme

Figure 4.7 Vector plot of the velocity field at t = 5.05 for the stationary interface test. Both the
FD and LS solution are shown for a grid of 128 nodes.
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(a) LS scheme

(b) FD scheme

Figure 4.8 Vector plot of the velocity field at t = 9.92 for the stationary interface test. Both the
FD and LS solution are shown for a grid of 128 nodes.
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4.4 Standing Wave

In order to test the capability of the algorithm to handle the interplay of viscosity ratio,

density ratio, and surface tension, the interface between two fluids was considered. The level

set at t = 0, φ0, was initialized in a domain of size [0, 2π]× [0, 2π] via:

φ0(x, y) = y − π + a0 cos(x) . (4.12)

Equation (4.12) represents a flat interface slightly perturbed by a cosine wave with initial

amplitude a0 = 0.01λ, where λ = 2π is the wavelength of the perturbation. Periodicity was

enforced in the x direction, while slip conditions were used in the y direction. Initially, the

velocity field was set to zero in both fluids. The goal of this test was to accurately compute

the time evolution of the interface amplitude and compare it with the analytic solution

derived by Prosperetti [57] for the case of two fluids with identical kinematic viscosity. The

analytic solution reads:

a(�t) = 4(1− 4β)�ν2�k4

8(1− 4β)�ν2�k4 + �ω2
0

a0 erfc
��

�ν�k2�t
�
+

+
4�

i=1

zi
Zi

�ω2
0a0

z2i − �ν�k2
exp[(z2i − �ν�k2)�t] erfc

�
zi

�
�t
�
,

(4.13)

where �k = 2π/λ is the wavenumber of the perturbation, zi the complex roots of the quadratic

equation

z4 − 4β
√
k2�νz3 + 2(1− 6β)k2�νz2 + 4(1− 3β)(k2�ν)3/2z + (1− 4β)k4�ν2 + �ω2

0 = 0 , (4.14)

and Zi a coefficient computed via

Zi =
4�

j=1
j �=i

(zj − zi) . (4.15)

66



The frequency �ω0 and the coefficient β in Eq. (4.13) are defined as

�ω0 =

�
�σ�k3

�ρ+ + �ρ− and β =
�ρ+ �ρ−

(�ρ+ + �ρ−)2 (4.16)

By using �k−1 as the reference length, �L, and �ω0/�k as the reference velocity, �U , Eq. (4.13)

can be recast in dimensionless form:

a(t) =
4(1− 4β)ν2

8(1− 4β)ν2 + 1
a0 erfc(

√
νt) +

4�

i=1

yi
Yi

a0
y2i − ν

exp[(y2i − ν)t] erfc(yi
√
t) , (4.17)

where now yi are the complex roots of

y4 − 4β
√
νy3 + 2(1− 6β)νy2 + 4(1− 3β)ν3/2y + (1− 4β)ν2 + 1 = 0 , (4.18)

and

Yi =
4�

j=1
j �=i

(yj − yi) . (4.19)

Given the reference quantities introduced above, the dimensionless viscosity, ν, the Reynolds’

number, Re, and the Weber’s number, We, for this case are:

ν =
�k2�ν
�ω0

, Re =
1

ν
and We =

1

ηρ + 1
, (4.20)

where ηρ = �ρ+/�ρ− is the density ratio. Clearly, in order to have the same kinematic viscosity

in both fluids, ηρ must equal the ratio of the molecular viscosities ηµ = �µ+/�µ− It is seen

from the definitions (4.20) that, once ηρ is set, We becomes a constant. Therefore only two

dimensionless parameter, namely Re and ηρ, are required to completely describe this case2.

2Given than only one other dimensionless parameter is needed in addition to ηρ, some authors prefer to

use the Ohnesorge number Oh =
√
We/Re in lieu of Re and We.

67



A numerical solution was obtained for two sets of parameters:

1. Re = 10 and ηρ = 10

2. Re = 10 and ηρ = 1000

Figure 4.9 and 4.10 show that, in both cases, the temporal development of the numerical

amplitude matches the exact solution for a grid of size N = 256. While other researchers

showed comparable results by using coarser meshes, the accuracy of the method used in this

work is limited by the order of the phase field function transport scheme.
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Figure 4.9 Temporal development of amplitude of the interface oscillation normalized by its initial
value. The numerical solution is compared to the exact solution for Re = 10 and
ηρ = 10.
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Figure 4.10 Temporal development of amplitude of the interface oscillation normalized by its
initial value. The numerical solution is compared to the exact solution for Re = 10
and ηρ = 1000.
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Chapter 5

Results

The objective of this study was to compare the dispersion characteristics of fully resolved

liquid droplets with that of fully resolved solid particles in decaying isotropic turbulence. The

motivation for selecting decaying isotropic turbulence was that it is the simplest turbulent

flow that can be studied both numerically and experimentally (e.g. in a wind tunnel) and

thus the numerical results could be validated or reproduced by other researchers. The

dimensionless dispersion along xi, Dxi
, is defined as the mean square of the displacement of

the droplet/particle center of mass, xc,i, in the xi direction:

Dxi
(t) =

ε20
E3

0

�
(xc,i − x0

c,i)
2
�
. (5.1)

In Eq. (5.1), x0
c,i is the position of the center of mass of a droplet/particle in the i-direction

at the time of releasing it in the flow. The ensemble average
�
(xc,i − x0

c,i)
2
�
is normalized by

ε20/E
3
0 , i.e. by the square of the initial length-scale characterizing the large eddies. All the

results presented in this chapter were obtained by performing Direct Numerical Simulation

(DNS) in a cubical domain of size L= Lx = Ly = Lz that was discretized with N grid nodes

per direction, i.e. N = Nx = Ny = Nz. Periodic boundary conditions were prescribed along
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the three coordinate directions. The effect of gravity was not accounted for, i.e. Fr = ∞.

Section 5.1 presents the details of the turbulent carrier flow. The properties of the dispersed

phase are discussed in Section 5.2. Finally, the analysis and comparison of the dispersion

characteristics of particles and droplets are reported in Section 5.3.

5.1 Turbulence Properties

5.1.1 Turbulence Generation

The initial velocity field was generated for a single phase flow by prescribing:

1. the dimensionless wave number of peak energy, kp, at t = 0,

2. the dimensionless velocity mean correlations, rij, at t = 0, and

3. the Reynolds number Reλ0 based on the Taylor’s micro-scale λ0:

Reλ0 =
U0λ0

ν
, (5.2)

where λ0 is the dimensionless Taylor’s length scale at t = 0, ν the dimensionless

kinematic viscosity and U0 is the value of the dimensionless root-mean-square velocity

Urms at t = 0.

Given rij and kp, the Turbulence Kinetic Energy (TKE) spectrum, E(k, t), and the velocity

field at t = 0 were computed by using the method proposed by Gerz and Schumann [28] that

ensures that the initial random velocity field is isotropic, divergence-free with respect to the

discretized form of the continuity equation, and that the velocity cross-correlation spectra,

Rij(k), satisfy the realizability constraints (Schumann [66]).
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Once E(k, t = 0) is known, the definition

E(k, t = 0) =

�
3U2

0

2

��
k

2πk2
p

�
exp

�
− k

kp

�
(5.3)

can be used to compute U0:

U0 =

�
2

3

� N/2

0

E(k, 0)dk . (5.4)

In Eq. (5.3) and (5.4) k is the dimensionless wave number that ranges from 0 to N/2,

i.e. k ∈ [0, N/2]. Both k and kp are normalized by the smallest non-zero wave number

kmin = 2π/L. Therefore the maximum resolved wavenumber is kmax = πN/L. Finally, the

dimensionless kinematic viscosity ν is obtained from:

ν =

√
15U2

0

Reλ0

�
8π2

� N/2

0

k2E(k, 0)dk

�− 1
2

. (5.5)

The following relation links ν with the dynamic viscosity, �µ−, and density, �ρ−, of the reference

fluid1:

�µ−

�ρ− = ν �U �L , (5.6)

where �L is a chosen reference length and �U the reference velocity obtained from Eq. (5.6)

as:

�U =
�µ−

�ρ−ν�L
, (5.7)

As a consequence, the Reynolds number Re defined in Eq. (2.16) becomes:

Re =
1

ν
. (5.8)

1Clearly, in the case of single-phase flow, �ρ− and �µ− are material properties of the only phase present.
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This ensures that the scaling used in the initialization procedure is consistent with the one use

for the Navier-Stokes Equations (NSE) (cf. Subsection 2.1.3). In this study, the turbulent

velocity field was generated by setting kp = 4, Reλ0 = 75 and

rij =





0 if i �= j

0.0025959 if i = j

. (5.9)

These input values result in ν = 2.39× 10−5. By choosing liquid water at STP as reference

fluid (ν− = 10−6 m2/s) and �L= 0.01 m, Eq. (5.7) gives �U = 4.18 m/s. The computational

domain was given a dimensionless size L= 1 and was discretized by using 512 grid points

per direction, i.e. N = 512. This allows to fully resolve all the turbulence scales down to the

smallest one for the case of interest (Reλ0 = 75), according to the estimate given by Pope

[56]. The parameters of the simulation of decaying isotropic turbulence are summarized in

Table 5.1. The dimensionless turbulence properties at t = 0 are reported in Table 5.2: � and

τ� are the integral length- and time scales; η and τη are the Kolmogorov’s length- and time

scales; Re� is the Reynolds number based on �. Finally, the initial TKE spectrum E(k, 0) is

shown in Figure 5.1.

Table 5.1 Parameters of the simulation of decaying isotropic turbulence.

Parameter Value Unit Description

Reλ0 75 - Reynolds number based on the Taylor’s microscale at t = 0.

N 512 - Number of grid points per directions.

ν 2.39× 10−5 - Dimensionless kinematic viscosity of the carrier flow

�L 0.01 m Reference length

�U 4.18 m/s Reference velocity

kp 4 - Dimensionless wave number of peak energy

rii 2.59× 10−3 - Dimensionless velocity mean correlations
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5.1.2 Turbulence Evolution

DNS of single-phase decaying isotropic turbulence was performed in order to verify the accu-

racy of the computational code as well as to obtain data to compare to the case of two-phase

turbulence. The dimensionless turbulence properties of interest are reported in Table 5.2 for

t = 1, 5, 10 and 15. It should be noted that the turbulence scales are well resolved at all

times since the condition ηkmax > 1 is always satisfied. Figure 5.1 shows the evolution in

time of the TKE spectrum: E(k, t) decays in time as expected for a turbulent flow in the

absence of any forcing. It should be emphasized that forcing isotropic turbulence, whether

spectrally at the small wave numbers or in the physical space, is not appropriate to study

the effect of finite-size particles/droplets on turbulence as discussed in [39], and thus it was

not considered in this work.
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Figure 5.1 Temporal development of the energy spectrum E(k, t) for decaying isotropic turbulence
(Reλ0 = 75, N = 512).
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Table 5.2 Turbulence parameters (dimensionless) at initial time (t = 0), release time (t = 1), and
only for the case of single-phase flow at time t = 5 and 15.

t Urms ε � λ η Re� Reλ �/η τ� τλ τη

0.0 0.0503 7.5× 10−4 0.0681 0.0342 0.00205 142 75 33.2 1.37 0.68 0.178

1.0 0.0436 8.8× 10−4 0.0736 0.0271 0.00195 135 50 37.7 1.67 0.59 0.159

5.0 0.0233 2.0× 10−4 0.0888 0.0321 0.00286 90 33 31.0 3.66 1.31 0.342

15.0 0.0142 2.0× 10−5 0.1234 0.0513 0.00510 63 26 24.2 10.2 4.54 1.089

Figure 5.2 shows the temporal development of the TKE normalized by initial value, E(t)/E(0).

For single-phase turbulence, the decay of TKE is due to the effect of the viscous dissipation:

dE(t)

dt
= −ε(t) , (5.10)

where the viscous dissipation rate of TKE, ε(t), is given by:

ε(t) = 2ν�sijsij� . (5.11)

In Eq. (5.11), �α� denotes the ensemble average of a generic variable α throughout the

computational domain, whereas sij is the strain-rate tensor defined as:

sij =
1

2

�
∂ui

∂xj

+
∂uj

∂xi

�
. (5.12)

The temporal development of the viscous dissipation rate is shown in Figure 5.3: ε(t) peaks at

t = 1 and then decays monotonically. For t < 1, the turbulence develops until an established

nonlinear transfer of turbulence kinetic energy across the spectrum is reached. This can be

seen in Figure 5.4 that shows that the skewness of the velocity derivatives Su, defined as

Su = −
�
∂u3

i

∂xi

���
∂u2

i

∂xi

�1.5

, (5.13)

reaches the value −0.5 at t = 1.
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Figure 5.2 Temporal development of TKE normalized by its initial value for single-phase turbu-
lence (Reλ0 = 75, N = 512).
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Figure 5.3 Temporal development of the viscous dissipation rate of turbulence kinetic energy
normalized by its initial value for single-phase turbulence (Reλ0 = 75, N = 512).
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Figure 5.4 Temporal development of the skewness, Su, of the velocity derivatives in the DNS of
single-phase decaying isotropic turbulence (Reλ0 = 75, N = 512).
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5.2 Dispersed Phase Properties

Two different types of dispersed phase were considered separately :

1. solid spherical particles, modelled via the Immersed Boundary Method (IBM), and

2. liquid droplets, initially spherical, modelled via the Accurate Conservative Level Set

Method (ACLSM).

The dispersed phase was released into the turbulent flow at t = 1, after the turbulence had

reached a well developed stage, as explained in Section 5.1. At release time, the velocity

inside the droplets/particles was set to a uniform value equal to the interpolated velocity at

the center of mass. Initially, both particles and droplets have the same diameter, �D = 310

µm. The reference length, �L = 0.01 m, was chosen to guarantee a resolution of about 16 grid

points per diameter, while maintaining a dimensionless domain size of 1. The dimensionless

diameter, D = 0.031, is comparable to the initial Taylor’s length-scale and about 16 times

the initial Kolmogorov’s length-scale. The density ratio of the dispersed phase to the carrier

fluid, ηρ, is 10. While the ACLSM can handle much larger density ratio, the IBM cannot and

therefore ηρ = 10 is the only case studied in this work. In addition to the aforementioned

parameters, the simulation of liquid droplets requires the ratio of the molecular viscosity of

the dispersed phase to the carrier flow, ηµ, and the Weber’s number, We. In this study, ηµ

= 0.1 and We = 159.6. Since the goal of this work was to compare the dispersion of solid

particles with that of liquid droplets with the same density ratio to the carrier flow, the

values of ηµ and We were selected to allow for a relatively large time step in order to speed

up the simulations. Therefore the dispersed phase is a fictitious fluid. The physical and

numerical parameters used in the simulation of particle-laden and droplet-laden turbulence

are summarized in Table 5.3.
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Table 5.3 Physical and numerical parameters in the simulation of particle-laden and droplets-
laden turbulence.

Parameter Value Unit Description

�D 310 µm Droplet/particle diameter

D/η0 15.86 - Diameter/initial Kolmogorov’s length scale

D/λ0 1.15 - Diameter/initial Taylor’s length scale

ηρ 10.8 - Density ratio of dispersed phase to carrier fluid

ηµ 0.1 - Molecular viscosity ratio of droplets to carrier fluid

Reλ0 75 - Reynolds number based on the initial Taylor’s length scale

We 159.6 - Weber number of the droplet

5.3 Dispersion Characteristics

Figure 5.5 shows that the dispersion of the solid spherical particles along x is reduced mono-

tonically as the number of particles, Np, increases from 640 to 3200 to 6400. This corresponds

to an increase of volume fraction, Φv, from 0.01 to 0.05 to 0.1. This result was already ob-

served by Lucci et al. [39], who showed that the increase of Φv reduces the TKE, E(t), due to

the two-way coupling effects. In contrast, it is seen in Figure 5.6 that increasing the number

of liquid droplets, Nd, from 100 to 500 to 1000 increases their dispersion. A comparison

between the dispersion of solid particles and liquid droplets in the x direction for a volume

fraction of Φv = 0.016 is shown in Figure 5.7: the liquid droplets disperse more than an equal

number of solid particles. The same effect is observed along y and z, as shown in Figure 5.8.

In order to explain the opposite behavior of the dispersion of droplets, it is necessary to

examine the effects of the liquid droplets on the TKE decay rate of the carrier fluid. For a

two-phase flow, the decay of TKE is due to the combined effects of viscous dissipation and

two/four-way coupling:

dE(t)

dt
= −ε(t) +Ψ . (5.14)
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In the above equation, Ψ is the rate of change of TKE due to the forces acting at the

interface separating the carrier flow and the dispersed phase. Thus, Ψ represents the two-

way coupling effects in the particle-laden turbulence case, the four-way coupling effects in

the droplet-laden turbulence case, and it is zero for single-phase turbulence (cf. Eq. (5.10)).

It should be noted that the definition of ε(t) given by Eq. (5.11) still applies to the two-phase

case, as long as the ensemble average �sijsij� is taken over the sub-domain occupied by the

carrier fluid only. By definition, ε(t) is always a sink of TKE, while Ψ can act as either a

source or a sink of TKE as shown by Ferrante and Elghobashi [25].
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Figure 5.5 Dispersion in the x-direction of solid spherical particles ranging in number from 640
to 6400 in isotropic turbulence.
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Figure 5.6 Dispersion of liquid droplets ranging in number from 100 to 1000 in isotropic turbu-
lence.

82



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Dx

tε0/E0

Nd = Np = 1000, Φv = 0.016

Particles

Droplets

Figure 5.7 Dispersion of liquid droplets and solid particles in the x-direction in isotropic turbu-
lence.
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isotropic turbulence.

5.3.1 Effect on the TKE Decay Rate

Figure 5.9 shows the temporal development of the TKE normalized by its value at t = 0

for Nd ranging from 0 (single-phase) to 1000. The main finding is that finite-size droplets,

under the conditions listed in Table 5.3, reduce the decay rate of TKE compared to that of

the single-phase (no droplets) turbulence. The reduction increases as the volume fraction

of the droplet is increased. This is an unexpected result since the research over the past

two decades on the effects of solid particles on turbulence is that solid particles enhance the

decay rate of TKE of isotropic turbulence [22, 25, 39]. Figure 5.10 compares the temporal

decay of TKE for the three cases of single-phase, particle-laden and droplet-laden flows. A
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direct consequence of the reduced decay rate of TKE is the enhanced dispersion as compared

to the dispersion of solid particles of the same diameter and same density ratio (of solid to

fluid) as shown in Fig 5.8.
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Figure 5.9 Temporal decay of kinetic energy of isotropic turbulence for four cases: no droplets,
100, 500 and 1000 droplets.
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Figure 5.10 Temporal decay of TKE for single-phase, particle-laden, and droplet-laden isotropic
turbulence
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5.3.2 Effect on the TKE Viscous Dissipation Rate

Figure 5.11 compares the temporal distribution of the dissipation rate of TKE for single-

phase, particle-laden and droplet-laden isotropic turbulence. ε(t) immediately peaks higher

than that of single-phase turbulence as soon as the dispersed phase is released into the flow

at t = 1. As noted by Lucci et al. [39], the presence of solid particles in the turbulent flow

increases the velocity gradients close to the particles surface through the no-slip condition.

As a consequence, the local strain rate sij increases in proximity of the particles, resulting

in a larger viscous dissipation rate compared to the single-phase case. For droplet-laden

turbulence, the increase in ε(t) is much larger compared to the particle-laden case. The

liquid droplets do not maintain their initial spherical shape, particularly when they are

in the process of merging/breaking-up and/or wobbling. Consequently, the local strain-

rate around a deformed droplet is much larger than that around a spherical particle. A

typical non-spherical droplet is shown in Figure 5.12 together with the fluid velocity vectors.

Figure 5.13 displays the instantaneous contours of the TKE dissipation rate: ε(t) is largest

(red contours) at the surface of the droplets, especially when the droplet is no longer spherical

and/or is merging with another droplet. The contours of ε(t) around wobbling and merging

droplets are shown in Figure 5.14 and 5.15 respectively.
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Figure 5.11 Temporal distribution of the dissipation rate of TKE for single-phase, particle-laden
and droplet-laden isotropic turbulence.
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Figure 5.12 Velocity vectors outside and inside a single non-vaporizing droplet in isotropic turbu-
lence. The vectors are projected on the middle plane of a three-dimensional domain.
Contours of velocity component perpendicular to the plane are: blue(-), green , yellow
(+).
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Figure 5.13 Contours of the dissipation rate of turbulence kinetic energy around non-vaporizing
droplets in isotropic turbulence at t = 2.59. Red and blue contours indicate maximum
and minimum dissipation rates, respectively.
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(a) t = 3.63

(b) t = 3.69

(c) t = 3.78

(d) t = 3.95

Figure 5.14 Contours of the dissipation rate of turbulence kinetic energy around non-vaporizing
droplets in the process of wobbling at four different times. Red and blue contours
indicate maximum and minimum dissipation rates, respectively.
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(a) t = 2.51

(b) t = 2.55

(c) t = 2.59

(d) t = 2.61

Figure 5.15 Contours of the dissipation rate of turbulence kinetic energy around non-vaporizing
droplets in the process of merging at four different times. Red and blue contours
indicate maximum and minimum dissipation rates, respectively.
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5.3.3 Coupling Effects

Lucci et al. [39] showed that the coupling term Ψ in Eq. (5.14) is always negative for particle-

laden turbulence (two-way coupling). This means that dispersed solid particles enhance

the decay rate of TKE as shown in Figure 5.10. In contrast, Figure 5.10 and 5.11 show

that dispersed liquid droplets reduce the decay rate of TKE despite increasing the viscous

dissipation rate ε(t). Therefore, Ψ in Eq. (5.14) must be positive, i.e. act like a source of

TKE, when four-way coupling effects are in place. In order to explain the positive sign of

Ψ, it is useful to consider Figure 5.13, 5.15, and 5.14 that show that the droplets are no

longer spherical, and thus they rotate more than a spherical object due to the surrounding

velocity gradients. Consequently, the spinning droplets transfer their kinetic energy to the

surrounding fluid. As an indication of the increased rotation of the droplets, Figure 5.16

shows the temporal variation of the probability density function (PDF) of the tangential

velocity magnitude at the surfaces of the 1000 droplets. It is seen that the magnitude of

the tangential velocity varies by two orders of magnitude, with peak velocities about one

order of magnitude larger than the mean. These large tangential velocities correspond to

the merging or the non-spherical droplets.
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in isotropic turbulence at four different times.
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Chapter 6

Conclusions

The dispersion characteristics of deformable liquid droplets and solid particles in decaying

isotropic turbulence and zero gravity were investigated by using Direct Numerical Simulation

(DNS). The liquid droplets were allowed to freely move, deform and interact with each other

(four-way coupling), while the solid particles were not allowed to collide (two-way coupling).

For this study, a computational code for the solution of two-phase flow, either fluid/fluid or

solid/fluid type, was developed. The code uses the Accurate Conservative Level Set Method

(ACLSM) to implicitly track the motion and deformation of the liquid droplets surface and

the Immersed Boundary Method (IBM) to explicitly track the solid particles in a Lagrangian

fashion. The effect of the surface tension and the discontinuous material properties at the

droplets interface were accounted for via the Ghost Fluid Method (GFM) and the Continuum

Surface Force (CSF) approach, respectively. The unsteady three-dimensional Navier-Stokes

and continuity equations were solved throughout the whole computational domain, including

the interior of the dispersed phase, via a projection method. It should be noted that the

liquid droplets and solid particles were fully resolved in 3D-space and time and all the scales

of the turbulent motion were simultaneously resolved down to the smallest relevant length-

and time-scales. The simulations were performed on grid with 512 grid points per direction
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and with an initial Taylor’s microscale Reynolds number Reλ0 = 75. The liquid droplets

and the solid particles had the same diameter that was comparable to the initial Taylor’s

microscale of the turbulence. The density ratio of the dispersed phase to the carrier flow

was set to 10, while the Weber’s number and the ratio of the molecular viscosity for the case

of droplet-laden turbulence were set to 159 and 0.1 respectively. The results presented in

this work show that in isotropic turbulence and zero gravity the dispersion of liquid droplets

in a given direction is larger than that of solid particles. It is seen that the presence of the

solid particles enhances the turbulence kinetic energy decay rate as a result of the two-way

coupling effects. Consequently, the dispersion of solid particles is reduced as their volume

fraction is increased. In contrast, dispersed liquid droplets reduce the turbulence kinetic

energy decay rate due to the four-way coupling effects. In particular, it is shown that the

deformed droplets rotate more than the spherical solid particles, and thus the rotational

kinetic energy is transferred to the surrounding flow. This phenomenon is responsible for

the reduction of the turbulence kinetic energy decay rate for droplet-laden turbulence. Of

course, the results presented in this work were obtained under the set of physical conditions

listed in Chapter 5.

Future developments

The present study is a first step in understanding the interaction of a dispersed liquid phase

with turbulence. Many aspects of this interaction were not investigated in this work and need

to be researched in future studies. First and foremost, it is important to determine the range

of conditions under which the results presented here apply. In particular, a parametric study

by varying the droplets density ratio, viscosity ratio and Weber’s number is recommended.

Also, a deeper analysis on the effect of the droplets deformation on the surrounding flow field

topology would be of great interest. The interactions between two or more droplets need to
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be more thoroughly analyzed. This may prove particularly challenging, since the accurate

resolution of merging and break-ups will likely require the development and implementation

of numerical schemes able to handle such interactions at a sub-grid level. Finally, it would be

of great scientific and practical importance to include the effect of vaporization (fuel spray

in combustion engines) and dispersions of liquid droplets (clouds) .
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Appendix A

Derivation of the GFM for the

discretization of the PPE

The Ghost Fluid Method (GFM) was developed by Fedkiw et al. [24] to capture the boundary

conditions at a contact discontinuity in the inviscid compressible Euler equations. Liu et al.

[36] used related techniques to develop a boundary condition capturing approach for the

variable coefficient Poisson’s equation on domains with an embedded interface. The method

was extended by Kang et al. [31] to treat multi-phase incompressible flow including the

effects of viscosity, surface tension and gravity. The key feature of the GFM is that it

accurately simulates a sharp interface, whereas many previous finite difference methods, like

the Continuum Surface Force (CSF) approach, involve numerical smearing of the equations

near the interface. Consider a 1D domain where the interface Γ is a single point located at

xΓ between the grid nodes xi and xi+1. Without loss of generality, assume that the phase

”−” fills the sub-domain x < xΓ and the phase ”+” occupies the sub-domain x > xΓ. Also,

[p]
Γ
= p+Γ − p−Γ and [ρ]

Γ
= ρ+Γ − ρ−Γ are known. The configuration described is sketched in

Figure A.1.
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p+(x)

p−(x)

Sub-domain ”-” Sub-domain ”+”

i i+ 1i− 1 xΓ

[p]
Γ

[p]i+1

[p]i

Figure A.1 Typical interface configuration in a one dimensional domain. The jump condition [p]
Γ

is known at the interface Γ located at xΓ. p+ and p− represent the variable p in the
sub-domain “+” and “-” respectively. The dashed lines indicate ghost values, while
the continuous lines indicate actual values. The jumps [p]i and [p]i+1 are extentions of
[p]

Γ
at the grid nodes i and i+ 1 surrounding the interface.

The goal here is to find a finite difference discretization of the 1D Pressure Poisson’s Equation

(PPE)

d

dx

�
1

ρ

dp

dx

�
= b , (A.1)

where b is a generic Right-Hand Side (RHS). A standard finite difference discretization of

Eq. (A.1) is not appropriate at the nodes i and i+1 because it would use pressure and density

values from both sides (phases) of the interface, thus creating instabilities in the solution.

Instead, it would be desirable to discretize the Laplacian in Eq. (A.1) by using only values

of p and ρ that come from the same phase of the node being discretized. As a consequence,

a suitable discretization of the Eq. (A.1) at node i is

δ

δx

�
1

ρ

δp

δx

�����
i

=
p−i+1 − p−i
ρ−δx2

− p−i − p−i−1

ρ−δx2
, (A.2)
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where p−i+1 can be thought of as the pressure value at node i + 1 if p− were extended by

continuity in the sub-domain ”+”. Since p−i+1 is fictitious and only p+i+1 is available, the

former is called ghost value. The GFM assumes that the jump [p]
Γ
and its derivatives

[dp/dx]
Γ
, [d2p/dx2]

Γ
, ... are known at the interface and can be extended by continuity

through a Taylor’s series. Under these assumptions, the jump of p at node i+ 1, [p]i+1, can

be computed via

[p]i+1 = p+i+1 − p−i+1 = [p]
Γ
+ (xi+1 − xΓ)

�
dp

dx

�

Γ

+O((xi+1 − xΓ)
2) . (A.3)

Since now [p]i+1 is known, p
−
i+1 can be calculated as p−i+1 = p+i+1− [p]i+1 and used in Eq. (A.2):

δ

δx

�
1

ρ

δp

δx

�����
i

=
p+i+1 − p−i − [p]i+1

ρ−δx2
− p−i − p−i−1

ρ−δx2
(A.4)

It should be noted that Eq. (A.4) does not contain ghost values and thus can be used as is.

For multi-phase flows, the pressure jump [p]
Γ
is a known quantity that depends on the local

surface tension and shear stresses jump1, but the pressure gradient [∂p/∂x]
Γ
in Eq. (A.3)

is not known a priori and has to be derived. For a non-reactive interface, the velocity is

continuous at Γ and so must be the RHS of the Navier-Stokes Equations (NSE). Therefore

the jump of the pressure gradient divided by the density has to be zero as well:

�
1

ρ

∂p

∂x

�

Γ

= 0 =⇒ 1

ρ+
∂p+

∂x

����
Γ

=
1

ρ−
∂p−

∂x

����
Γ

. (A.5)

The equality (A.5) can then be manipulated as follows:

1

ρ+
∂p+

∂x

����
Γ

− 1

ρ+
∂p−

∂x

����
Γ

=
1

ρ−
∂p−

∂x

����
Γ

− 1

ρ+
∂p−

∂x

����
Γ

=⇒ 1

ρ+

�
∂p

∂x

�

Γ

=

�
1

ρ

�

Γ

∂p−

∂x

����
Γ

. (A.6)

1In this study, the viscous term was discretized by using the CSF approach (cf. Subsection 3.2.1). Thus,
the shear stresses jump becomes zero and the pressure jump depends on the surface tension effects only.
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As a result, the pressure gradient jump can be expressed as

�
∂p

∂x

�

Γ

= −ρ+
�
1

ρ

�

Γ

∂p−

∂x

����
Γ

= −ρ−
�
1

ρ

�

Γ

∂p+

∂x

����
Γ

. (A.7)

By using the Taylor’s series expansion, the following equalities hold:

∂p−

∂x

����
Γ

=
∂p−

∂x

����
i+ 1

2

+O(xi+ 1
2
− xΓ) ,

∂p+

∂x

����
Γ

=
∂p+

∂x

����
i+ 1

2

+O(xi+ 1
2
− xΓ) .

(A.8)

Since we are discretizing at node i, i.e. in the ”−” phase, the focus will be on ∂p−/∂x. The

latter can be discretized as follows:

∂p−

∂x

����
Γ

� ∂p−

∂x

����
i+ 1

2

� p−i+1 − p−i
dx

=
p+i+1 − p−i − [p]i+1

dx
. (A.9)

Substituting Eq. (A.9) into Eq. (A.7) gives an expression for the pressure gradient jump at

the interface:

�
∂p

∂x

�

Γ

= −ρ+
�
1

ρ

�

Γ

∂p−

∂x

����
Γ

� −ρ+
�
1

ρ

�

Γ

p+i+1 − p−i − [p]i+1

δx
. (A.10)

By using Eq. (A.10) into Eq. (A.3) one obtains

[p]i+1 � [p]
Γ
− χρ+

�
1

ρ

�

Γ

�
p+i+1 − p−i − [p]i+1

�
, (A.11)

where χ = (xi+1 − xΓ)/δx. Solving the above equation for [p]i+1 gives

[p]i+1 �
ρ−

ρ∗
[p]

Γ
+

�
1− ρ−

ρ∗

��
p+i+1 − p−i

�
, (A.12)

where ρ∗ = ρ+χ+ (1− χ)ρ− is the weighted average of the density between i and i+ 1.
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The RHS of Eq. (A.12) contains known quantities and therefore can be used in Eq. (A.4):

δ

δx

�
1

ρ

δp

δx

�����
i

=
p+i+1 − p−i − [p]

Γ

ρ∗δx2
− p−i − p−i−1

ρ−δx2
. (A.13)

Thus the GFM discretization of Eq. (A.1) at node i reads:

pi+1 − pi
ρ∗δx2

− pi − pi−1

ρ−δx2
= bi +

[p]
Γ

ρ∗δx2
. (A.14)

It can be shown that the above discretization is symmetric, i.e. it results in a symmetric

matrix. The derivation presented here is based on [18].
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Appendix B

Numerical Solution of the Pressure

Poisson Equation

Any projection method for solving the incompressible Navier-Stokes Equations (NSE) relies

on the numerical solution of an elliptic Pressure Poisson’s Equation (PPE) of the form

∂

∂xi

�
β
∂p

∂xi

�
= b , (B.1)

where the coefficient β may be variable in space. The above equation can be discretized on a

Cartesian uniform grid via finite differencing (and the Ghost Fluid Method (GFM) if jumps

are present), resulting in the discrete PPE

δ

δxi

�
β
δp

δxi

�����
i,j,k

= b|i,j,k . (B.2)

Two techniques are typically used to solve Eq. (B.2), namely:

1. Fast Fourier Transform (FFT): the discrete PPE is transformed to spectral form and

solved in Fourier space;
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2. Iterative methods : the sparse linear system associated with Eq. (B.2) is solved itera-

tively.

The FFT approach has the advantages of being very efficient, always delivering a solution

accurate to machine precision and not requiring storage of a sparse matrix. It is also vastly

available through a large number of highly optimized software libraries, particularly FFTW

[27], and works without much tuning. On the other hand, the FFT method is not straight-

forward to apply to problems with Boundary Conditions (BCs) other then periodic and

cannot be used when β is variable. Moreover, distributed FFT does not scale as well as

some iterative methods, most notably Multigrid (MG) methods, because of the large num-

ber of inter-processors communications required. Finally, state of the art software packages

such as 2DECOMP&FFT [35], P3DFFT [50] and PFFT [54] do not implement 3D domain

decomposition1, thus limiting the number of processors one can use given a certain grid.

In contrast, iterative methods offer more flexibility compared to the FFT approach in that

they:

• work for any kind of BCs with little or no modification of the system matrix, and

• can be used for the solution of the system associated with Eq. (B.2) even when β is

strongly anisotropic or even singular.

In addition, most iterative techniques scale well in parallel, are widely available via well

known software packages and can be used in any type of domain decomposition setting. The

main drawback is that they require more tuning than FFT-based approaches for complex

problems and they do not deliver machine accuracy. Also, if not properly tuned, they would

require more computational time than FFT to obtain a solution. In this work, a Conjugate

Gradient (CG) method preconditioned via a MG approach was used for the solution of the

1The author is not aware on any existing parallel implementation of FFT based on a 3D domain decom-
position.
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PPE, since the singular nature of the pressure and density at the interface does not allow

for a spectral approach. Hereinafter a basic description of the MG method is given; the

interested reader is referred to the book by Saad [63] for a more in-depth analysis on the

topic.

B.1 Basic Iterative Methods

The second order finite difference discretization of Eq. (B.1) results in a linear system of the

form

Ap = b , (B.3)

where A is a sparse symmetric (semi-)positive defined system matrix. A is tridiagonal in

the 1D case, pentadiagonal in the 2D case and eptadiagonal in the 3D case. The most

straightforward way of solving Eq. (B.3) is via basic iterative methods such as the Jacobi,

Gauss-Seidel (GS) or Successive Over-Relaxation (SOR) iterations. The error ek and residual

rk at the k-th iteration are defined as:

ek = p− pk and rk = b− Apk , and thus Aek = rk , (B.4)

where pk is the solution at the k-th iteration and Aek = rk is the residual equation. The

definitions (B.4) imply that iterating over the original system Ap = b with initial guess p0

is equivalent to iterating over Ae0 = r0 with r0 = b−Ap0, since p = p0 + e0. Unfortunately,

the aforementioned schemes are plagued by a deterioration of the rate of convergence2 as

the iterative cycle progresses. This effect is more prominent as the grid is refined. The

stall in the error reduction is caused by the so-called smoothing property : the basic iterative

2The rate of convergence is a measure of how much the error is reduced between two successive iterations.
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methods are very effective in eliminating the Fourier modes of the error with a wavelength

comparable to the grid size (oscillatory modes), but damp the other modes (smooth modes)

very slowly [11, 63, 83].

B.2 The Multigrid Method

The MG method takes advantage of the smoothing property described above by defining

a sequence of coarser grids on which the smooth modes are seen as oscillatory ones and

therefore can be damped very quick by using a basic iteration technique. As a result, the

convergence rate becomes independent of grid refinement and does not degrade during the

iterative process. In order to illustrate the concept, consider two grids only: a fine one with

grid spacing of h, and a coarse one, with grid spacing of 2h. The discretization of Eq. (B.2)

is performed on the fine grid and results in the linear system Ahph = bh, where the subscript

h indicates the grid spacing. The application of few sweeps, say α1, of an iterative solver3

on Ahph = bh reduces the high-frequency components of the error and gives the approximate

solution pα1
h . In order to compute the exact solution ph via ph = pα1

h +eα1
h , the error eα1

h needs

to be calculated by solving Ahe
α1
h = rα1

h = bh − Apα1
h . On the fine grid, this is equivalent

to solving the original system and thus it does not offer any advantage over iterating on

Ahph = bh until convergence. On the other hand, solving Ahe
α1
h = rα1

h on a coarser grid is

beneficial because:

• eα1
h and rα1

h , unlike pα1
h , are smooth on the fine grid, and thus appear oscillatory on the

coarse grid where therefore relaxation is more effective, and

• solving a linear system on a coarse grid is computationally cheaper than on a fine grid.

3The application of an iterative method for few iterations with the goal of smoothing the error is also
known as relaxation.
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Relax on Ahph = bh

Restrict: rh → r2h

Solve: A2he2h = b2h

Compute rh = bh −Ahph

Prolongate: e2h → eh

Correct ph with eh

Relax on Ahph = bh

Figure B.1 Schematic of the CGC scheme. The iteration index has been dropped for clarity.

The Coarse Grid Correction (CGC) algorithm that follows is based on the concepts outlined

above (see Figure B.1 for a visual representation of the method).

1. Pre-smoothing : a basic iterative scheme is applied to Ahph = bh for α1 iterations with

arbitrary initial guess p0h. The oscillatory components of the error are removed and eα1
h

appears smooth on the fine grid. The residual is computed as rα1
h = bh − Ahp

α1
h .

2. Restriction: rα1
h is mapped onto the coarse grid to obtain rα1

2h .

3. Coarse-grid solve: the residual equation A2he
α1
2h = rα1

2h is solved. eα1
2h contains the

information necessary to remove the smooth errors on the fine grid.

4. Prolongation: eα1
2h is mapped onto the fine grid to obtain eα1

h .

5. Fine-grid correction: an improved initial guess p∗ is obtained by correcting pα1
h with

eα1
h via p∗ = pα1

h + eα1
h . This amends pα1

h by its smooth error eα1
h .

6. Post-smoothing : a basic iterative scheme is applied to Ahph = bh for α2 iterations

with initial guess p∗ to remove oscillatory components of the error introduced in the

prolongation step.
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The CGC scheme is not very useful as is, since solving A2he
α1
2h = rα1

2h is still very expensive.

However, one could apply it a second time to solve the coarse problem: this would introduce

an even coarser grid where a smaller system of the form Ae = r needs to be solved. The

MG method repeats this process recursively until a coarsest grid is reached where the corre-

sponding residual equation is inexpensive to solve even via a direct method. The MG cycle

can be of different types depending on how the CGC scheme is repeated in the recursion: the

most common cycles are shown in Figure B.2. The MG approach described so far is known

as Geometric Multigrid (GMG) since the construction of the multilevel hierarchy is based on

the knowledge of the partial differential equation to be solved as well as the geometry of the

problem. If instead the hierarchy of operators is computed directly from the system matrix,

the method is called Algebraic Multigrid (AMG). In this case each level is simply a subset of

unknowns without any geometric interpretation. A detailed description of both approaches

can be found in the excellent tutorial by Briggs [11] and the introduction by Wesseling [83].

h

2h

4h

8h

V-cycle W-cycle Full multigrid

Figure B.2 Visual representation of common MG cycles.

B.2.1 Inter-Grid Operators

The transfer operators used for the prolongation (P h
2h) and restriction (R2h

h ) between grids

h and 2h play a key role in the MG method in that they are responsible for the mapping

from coarse to fine grid and vice-versa. The choice of P h
2h and R2h

h depends on the type

of discretization used on the original Partial Differential Equation (PDE) and the features
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of the problem at hand. The discretization of the PPE in a staggered grid system is cell-

centered, i.e. the domain is divided into cells where the center point (node) stores the discrete

values of the pressure (cf. Section 3.1). As a consequence, prolongation and restriction have

to be performed cell-wise rather than node-wise. In this work the prolongation is based on a

piece-wise constant interpolation that results in the following mapping for the 2D case (see

Figure B.3):

(vh)a = (P h
2hv2h)a = vA , (vh)b = (P h

2hv2h)b = vB ,

(vh)c = (P h
2hv2h)c = vC , (vh)d = (P h

2hv2h)d = vD ,

(B.5)

where v is the variable being prolongated. R2h
h is constructed as the adjoint of P h

2h multiplied

by a suitable scaling factor. While the definitions (B.5) give first order polynomial accuracy

only, they performed well for all the cases of interest in this research. Higher order inter-

grid operators may speed up convergence and increase the robustness of the algorithm,

particularly for cell-centered discretizations and discontinuous coefficients, see for example

the works by Wesseling [82], Khalil and Wesseling [32] and Herbert [30]. Nevertheless they

are more difficult to set up and are rarely included in software packages, thus they were not

pursed in this work.

A B

CD

a b

cd

Figure B.3 Cell-centered grid point configuration in two dimensions. Coarse cell centers = A, B,
C, D. Fine cell centers = a, b, c, d.
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B.2.2 Coarse Grid Operators

Besides prolongation and restriction operators, the other main component of a MG algorithm

is the coarse grid operator A2h. The latter can be defined via two different approaches:

1. Discretization Coarse-grid Approximation (DCA): A2h is obtained by directly discretiz-

ing Eq. (B.1) on the coarse grid;

2. Galerkin Coarse-grid Approximation (GCA): the coarse grid operator is obtained via

A2h = P 2h
h AhP

h
2h.

The comparison between the two approaches is discussed by Wesseling [83] and will not be

repeated here. In this work, the coarse grid operators were computed by using the GCA.

B.3 Solution Method Used in This Work

The solution of the PPE has been performed via the CG method with a V-cycle GMG as

a preconditioner [48], that is GMG is used as a linear solver inside the CG scheme. This

approach combines the well-known robustness of Krylov-subspace methods with the optimal

convergence rate of MG. While many researchers use an AMG preconditioner, all the tests

performed in this work showed that GMG outperforms AMG. The GS iteration was used

for pre- and post-smoothing: one sweep proved to be enough on the finer grids, while 2 to

4 sweeps were used on the coarser grids to improve convergence speed. Finally the residual

equation on the coarsest grid was solved directly via the LU decomposition.

The Krylov solver as well the preconditioner were provided by the PETSc library [5, 6,

7]. In order to achieve good parallel scalability on a large number of processor, the GMG

preconditioner was coupled with PETSc’s PCTELESCOPE preconditioner by May et al.

[43] that we helped testing.
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Appendix C

The Fast Sweeping Method

The reconstruction of a distance function d requires solving the following boundary value

problem:





|∇d(x)| = 1, x ∈ Ω \ Γ ,

d(x) = 0, x ∈ Γ .

(C.1)

The two most efficient methods for the task are the Fast Marching Method (FMM) and the

Fast Sweeping Method (FSM). The FMM, developed by Sethian [67] and later improved by

Chopp [15] and Adalsteinsson and Sethian [1], was the first optimally efficient algorithm

for solving Eq. (C.1). Its efficiency stems from the fact that the solution is updated by

following an ordering that is consistent with the causality relation implicit to the Eikonal

equation |∇d| = 1. This means that the distance function is obtained in a sequential fashion

by updating one grid point at a time so that the solution is strictly increasing (decreasing).

Hence an upwind difference scheme, a heapsort algorithm and possibly a heap data structure

are needed, resulting in an algorithmic complexity of order O(N logN), where N is the

size of the problem. While optimal, the FMM has some limitations: its sequential nature
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makes it difficult to parallelize, the data structures involved are complex and higher order

extensions of the method are not straightforward. The FSM was developed by Zhao et al.

[88] and Zhao [86] as a simpler alternative to the FMM. A parallel implementation was

given by Zhao [87] and higher order versions were derived by Zhang et al. [85]. The main

idea of the FSM is to use nonlinear upwind differencing and Gauss-Seidel (GS) iterations

with alternating sweeping ordering to update the solution consistently with the causality

expressed by |∇d| = 1. This approach has a complexity of O(N). After extensive testing

of both methods, the FSM proved to be a better and simpler choice for the purpose of

this work. In what follows, the first order serial FSM is presented for the case of a two-

dimensional domain: the extension to the 3D case is straightforward. The first order FSM

discretizes the Eikonal equation |∇d| = 1 via the following Godunov’s upwind scheme [62]:

[ max( di,j − a , 0) ]2 + [max( di,j − b , 0) ]2 = δx2 , (C.2)

where a and b are given by:

a = min( di+1,j , di−1,j ) ,

b = min( di,j+1 , di,j−1 ) .

(C.3)

Eq. (C.2) is a quadratic equation and can be solved for di,j. Its solution is given by:

di,j =





min(a, b) + δx2, if |a− b| ≥ δx ,

1

2

�
a+ b+

�
2δx2 − (a− b)2

�
, if |a− b| < δx .

(C.4)

The upwind scheme (C.2) is valid at the interior points of the domain, i.e. for i = 1, ..., Nx−

2 and j = 1, ..., Ny − 2, while one sided differencing is used at the boundaries. Given

the discretization presented above, the fast sweeping algorithm solves the boundary value

problem (C.1) via the following steps.
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1. Initialization. All the nodes in the domain are initialized with large positive values

except in a small band near the interface, where the correct solution is used instead.

The nodes inside the small band are never updated during the whole process.

2. Update. The whole domain is swept with four alternating orderings, i.e.:

• i = 0 → (Nx − 1) j = 0 → (Ny − 1)

• i = (Nx − 1) → 0 j = 0 → (Ny − 1)

• i = 0 → (Nx − 1) j = (Ny − 1) → 0

• i = (Nx − 1) → 0 j = (Ny − 1) → 0

During each sweep, for each node not included in the small band a value dnewi,j is

computed by using the current values of its neighbors via Eq. (C.4). The value at the

node is updated by taking the minimum between dnewi,j and its current value.

3. Convergence check. The difference between the solution before and after the update

step is computed in some norm. If it is larger than a chosen tolerance, the process is

repeated from 2. Otherwise, the process is stopped.
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