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Abstract

Analogical reasoning is the process of retrieving knowledge
of a familiar problem (source analog) similar to the current
problem (target) and transferring that knowledge to solve the
problem. The power of an analogical reasoner thus comes in
part from the ability to retrieve the “right” analog when a target
is specified. Indexing of analogs therefore is an important
issue in analogical reasoning. This issue in fact has three
different aspects: (i) indexing vocabulary, (ii) learning of the
indices to a new analog, and (iii) use of indices for retrieving
stored analogs. We have been exploring the hypothesis that
the reasoner’s mental models of the analogs give rise to the
answers to these issues. We have tested this hypothesis in the
context of analogical design of physical devices. In this paper,
we describe how structure-behavior-function (SBF) models of
devices help in addressing the indexing issues in analogical
design. We also describe how the IDEAL system implements
and evaluates the model-based scheme to indexing and index
learning.

Introduction

Analogical reasoning is the process of retrieving knowledge
of a familiar problem (called source analog) similar to the cur-
rent problem (called targer) and transferring that knowledge
to solve the problem. The power of an analogical reasoner
thus comes in part from the ability to retrieve the “right” ana-
log when a new problem is specified. Indexing of analogs
therefore is an important issue in analogical reasoning.

Actually, the indexing issue has three different aspects:
(1) what might be the indexing vocabulary, (ii) how might
the indices be learned for a new analog when it is stored in
memory, and (iii) how might the learned indices be used for
analog retrieval. We have been exploring the hypothesis that
mental models of analogs giverise to the indexing vocabulary,
enable and constrain the learning of indices for new analogs,
and provide similarity measures for matching a target problem
with the stored analogs and retrieving relevant ones. We have
tested this hypothesis in the context of designing physical
devices.

In earlier work, we showed how structure-behavior-
function (SBF) models of devices provide the indexing vo-
cabulary and enable the retrieval of analogs relevant to the
target problem (Goel, 1992). We also showed how SBF mod-
els enable and constrain the transfer of structural knowledge
from the source analog to the target problem (Goel, 1991a),
and how the concurrent transfer of structural and behavioral
(i.e., causal) knowledge leads to the acquisition of the SBF
models of new analogs (Goel, 1991b). In this paper, we de-
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scribe how SBF models enable and constrain the learning of
indices to new analogs. We also describe how the IDEAL sys-
tem implements and evaluates the model-based scheme for
indexing and index learning in analogical design.

Analogical Design

IDEAL is an operational system that autonomously designs
physical devices such as electrical circuits and heat exchang-
ers. It takes as input a specification of the function of a desired
design and the structural constraints on it. The structural con-
straints may specify, for example, what components cannot
be (or must be) used in the design. The system gives as output
a specification of a structure that realizes the desired function
and satisfices the structural constraints.

A design analog in IDEAL specifies (i) the functions de-
livered by the stored design, (ii) the structure of the design,
and (ii1) a pointer to the causal behaviors of the design (the
SBF model). Since the input to the system is a specification
of the functional and structural constraints on the desired de-
sign, the design analogs are indexed both by the functions that
the stored design can deliver and by the structural constraints
it satisfies, where the delivered functions act as the primary
indices.

Given the specification of a design problem, IDEAL re-
trieves the closest matching analog from the analog memory.
The “closeness” of a match is determined by how many fea-
tures and which features in the problem specification (function
and/or structure) are the same as (or different from) the re-
spective indices of a candidate analog. Then IDEAL uses the
SBF model of the retrieved design to modify and transfer the
design structure to the given problem. It also revises and
transfers the causal behaviors of the old design, and thus it
generates not only a new design but also a SBF model for it.
Then it evaluates the new design by a qualitative simulation
of the new SBF model. Finally, IDEAL learns indices for the
new design analog as described in this paper and stores the
design for potential reuse.

Device Models

IDEAL represents the knowledge of how devices work in the
form of structure-behavior-function (SBF) models. SBF mod-
els are based on a component-substance ontology. In this on-
tology, the structure of a device is viewed as constituted of
components and substances. Components form the structural
topology of the device. Substances flow between compo-
nents with a corresponding rate. Substances have locations
in reference to the components in the device. They also have
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Figure 1: Design of High-Acidity Sulfuric Acid Cooler

behavioral properties, such as acidity of sulfuric acid, and
corresponding values, such as low, high, etc. The constituents
of the SBF model are described below.

Structure: The structure of a design is expressed in terms
of its constituent components and substances and the interac-
tions between them. Figure 1(a) shows a high-acidity
sulfuric acid cooler (SAC). Components and sub-
stances can interact both structurally and behaviorally. For
example, water can flow from H,0O-pipe to heat-exchange
chamber only if they are connected, and sulfuric acid flows
from p1 to p2 due to behavior allow of H,SO4-pipe-1. The
typology of such structural and behavioral interactions is bor-
rowed from (Bylander, 1991).

Function: A function of a device is a desired output behavior
of the device such as cooling of some substance or producing
light of certain color and intensity. A function is represented
as a schema that specifies the behavioral state the device takes
as input, the behavioral state it gives as output, and a pointer
to the internal causal behavior of the design that achieves the
function. Figure 1(b) shows the function “cool acid” of the

high-acidity SAC. Both the input state and the out-
put state are represented as substance schemas. The in-
put state specifies that sulfuric acid at location pl in
the topography of the device (Figure 1(a)) has the proper-
ties temperature, flow, state, and acidity, and
the corresponding values T1, R, liquid, and high. It
also specifies that the sulfuric acid contains another substance
heat whose magnitudeis Q1. Similarly, the output state
specifies the properties and the corresponding values of the
substance at location p4. Note that the values T1 and T2
of temperature of sulfuric acid are used to denote some cor-
responding quantitative/qualitative values (e.g., 100 degrees,
high, low, etc.) and that T2 < T1. In addition, the slot
by-behavior acts as an index into the causal behavior that
achieves the function of cooling sulfuric acid. The resulting
organization of behaviors around the functions they deliver
is based on Sembugamoorthy and Chandrasekaran’s (1986)
functional representation scheme.

Behavior: The internal causal behaviors of a device are
viewed as sequences of state transitions between behavioral
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states. The annotations on the state transitions express dif-
ferent kinds of context (e.g., causal, functional, and structural
contexts) in which the transformation of state variables, such
as substance, location, properties, and values, can occur. The
causal context, for instance, provides causal relations be-
tween the variables in preceding and succeeding states. lig-
ure 1(c) shows a fragment of the causal behavior that explains
how sulfuric acid is cooled from temperature T1 to
T2. State?2 is the preceding state of transition23 and
state3 isits succeeding state. State2 describes the state
of sulfuric acid at location p2 and so does state3 at location
p3. Theannotation USING-FUNCTIONin transition23
indicates that the transition occurs due to the behavior allow
of H,SO4-pipe-2 (i.e., functional context).

Similarly, the UNDER-CONDITION-SUBSTANCE anno-
tation specifies that the behavior allow of H,SO4-pipe-2 can
allow the flow of only some substances—the substances that
are in liquid state and that have high acidity. One of the
annotations UNDER-CONDITION-STRUCTURE specifies
that the heat-exchange chamber INCLUDES H;SO4-pipe-2
(i.e., structural context). Furthermore, the causal behaviors
can be specified at different levels of detail. A single tran-
sition between two states can be described as a sequence of
several states at a different level of detail using the primitive
by-behavior (not shown in the example).

Model-Based Indexing

Since the SBF models explicitly specify the device functions,
the device structure, and the causal principles that underlie
the functioning of the device, a design analog can be indexed
by any and all of these. But IDEAL’s analog memory is
organized functionally, i.e., its indexing scheme reflects the
reasoning tasks it addresses. Since the design task it addresses
is specified by the functional and structural constraints on a
desired design, the design analogs are indexed by the functions
they deliver and the structural constraints they satisfy. The
SBF models provide the vocabulary for this indexing of the
design analogs.

Functional Indexing of Design Analogs

For now, we focus on IDEAL’s use of device functions for in-
dexing the design analogs—we will return to the use of struc-
tural constraints for indexing in the evaluation section. The
design analogs are organized in generalization-specialization
hierarchies. As described earlier, a function is expressed in
terms of substance schemas. Since the substance schema
specifies properties of substances, IDEAL uses them as dimen-
sions along which design analogs are generalized/specialized.
For example, it organizes designs of acid coolers along the
dimension of property acidity, and discriminates on the cor-
responding values 1ow vs high as shown in Figure 2.! The
HNQ; cooler case in Figure 2(a) is a design of low-
acidity nitric acid cooler and hence stored under the category
that refers to low-acidity coolers.

'The figure 2(a) illustrates the analog memory only along the
dimension of acidity for clarity. The property acidity in our example
is important because the choice of pipe in the design depends on
whether it has to allow a low-acidity substance or a high-acidity
substance.
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Figure 2: Snapshots of IDEAL’s functionally organized
analog memory

Learning of Functional Indices

Now consider the task of identifying indices for the design
of high-acidity SAC (Figure 1) when storing it in memory.
Although the analog memory presently has designs of acid
coolers organized only along the dimension of property acid-
ity, perhaps the new analog should be indexed along other
dimensions also so that it is more useful in future design
episodes. There are two different issues concerning the se-
lection of indices for the new design analog. First, if a new
design is stored only along the substance properties speci-
fied in its function, the retriever would not be able to make
use of knowledge of other substance properties relevant to
the design. Second, if the new design is indexed by all the
properties of the substance in its function, then the retriever
may retrieve a design based on a match with an unimportant
property, which can make analog transfer hard or even impos-
sible. So, the issue becomes how to determine the substance
properties that are relevant to the functioning of high-acidity
SAC. In general, the issue is how to learn “new” indexing
vocabulary.2

IDEAL capitalizes on the knowledge of the causal behav-
iors in the SBF model of the new analog. In particular, it
uses the behavioral requirements on the substance expressed
under UNDER-CONDITION-SUBSTANCE to identify the
substance properties relevant to the functioning of the design.
These behavioral requirements of a substance specify that in
order for the transition to take place, the properties of the
specified substance should satisfy certain conditions.

IDEAL’s algorithm for selecting useful indices to a new
analog is shown in Figure 3. Given a new design analog and
the type of indexing (i.e., functions) this method traverses
through the causal behaviors in the SBF model of the new
analog to identify substance properties on which the working
of the design is predicated. Since the SBF model can specify
multiple behaviors, the outer loop (in step 1) in the algorithm
analyzes each causal behavior in the model. The second loop
is for analyzing the transitions within a causal behavior. If a

2By “new” indexing vocabulary, we do not mean that the vo-
cabulary is new to IDEAL but rather it is new for the purpose of
indexing.



Input: e Design analog, C, its Functional or Structural
specification, F/S,
Type of indexing, T, (i.e., functional or structural),
and all Causal behaviors (model), M, including one
for the function.

Output: e Exact vocabulary for indexing C, i.e., the set of

useful features from F/S.
Procedure:

specified-props P = get-all-comp/sub-properties-relations(F/S);

indices = alternative-indices = plausible-sources-of-indices M’ = {};

while true do
1. foreach causal behavior B € M do
foreach transition t € B do

conditions-on-features CF = get-under-conditions(T, t);
indices = indices U {f | feature f € CF A f € P}
alternative-indices = alternative-indices U
{f | feature f € CF A f € P A f € parameter-relations(t)};
if indices = P then exit(indices);
if CF = {} then M’ = M’ U get-detailed-behavior(t);

2. if M’ = {} then
if indices # {} then exit(indices);
if alternative-indices # {} then exit(alternative-indices);

exit(P);
3. M=M";
4 M ={};

end.

Figure 3: The algorithm for obtaining functional indices
to design analogs

substance property is part of the causal context of a transition,
then the algorithm adds it to the set of indices if it is a property
in the functional specification; and, it adds the property to the
set of alternative indices if it is also in the parameter-relations
on the transition. Since the causal behaviors in IDEAL’s SBF
model are specified at different levels of detail, the algorithm
searches the space of behaviors in a breadth-first manner. If a
higher level behavior does not lead to the identification of any
useful substance properties, then the more detailed behavior,
indicated by by-behavior,* is added to the list of plausible
sources of indices.

For example, given the functionof high-acidity SAC
and its causal behavior (Figures 1(b) & (c)), the above method
results in acidity and state as the indexing features for
storing this analog in memory. This is because the anno-
tation on transition23 specifies that the transition can
occur only under certain conditions on properties state and
acidity of the substance flowing through H,SO4-pipe-2.
The initial analog memory (Figure 2(a)) did not have the
property state as part of its indexing vocabulary. The SBF
model however suggests that state is a useful index to the
new design analog, and hence IDEAL indexes the new ana-
log by state also. A snapshot of the analog memory after
storing this design is shown in Figure 2(b).

Once the indices are selected, IDEAL uses similarity-based
learning to generalize them. Under each property, IDEAL
organizes the analogs in a binary tree discriminated on val-

3get-under-conditions in the algorithm gets the annota-
tions such as UNDER-CONDITION-SUBSTANCE and UNDER-
CONDITION-COMPONENT from the given transition correspond-
ing to the type of indexing used.

“obtained by the function get-detailed-behavior in the algorithm.
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ues of the property in the analogs. It uses the differ-
ences in the values of a given property that constitute a
type of functional difference between two designs to de-
termine whether the two designs belong to the same cat-
egory or to different categories. For example, the de-
sign of high-acidity SAC is stored under the category of
Acidity-High-Node8 that is different from that of
Low-Acidity-Coolers (Figure 2(b)) because their val-
ues of acidity differ. The level to which the indices are gen-
eralized depends on how similar are the corresponding val-
ues in the new and old analogs in memory. For instance, a
more general category Acidity-Spec-Root-Node7 is
created that covers both 1ow and high values of acidity.’
Note that H,S04 Cooler Case is stored in multiple levels cor-
responding to the nodes Acidity-Spec-Root-Node7
& Acidity-High-Node8 under the property acid-
ity and at one level corresponding to the node
State-Spec-Root-Node9 under the property state.

Evaluation

We have evaluated IDEAL’s model-based indexing and index
learning along a number of different dimensions—we will
discuss only one of these dimensions in detail, and briefly
mention the others.

Learning multiple types of indices: In IDEAL, the same
representations of SBF models that provide functional indices
also provide structural indices. We have tested and found that
the same index learning method described in this paper also
works for learning structural indices to design analogs. (See
(Bhatta & Goel, 1993).)

Learning in multiple domains: In addition to the domains
of electric circuits and heat exchangers, we have tested and
found that the same method of model-based index learning
applies to learning indices to analogs from other domains such
as reaction wheel assemblies, controllers, electronic circuits,
and electromagnetic devices.

Effect on the Performance Task of Analog Retrieval: We
used 20 different designs from two different domains (electric
circuits and heat exchangers) to test the effect of model-based
index learning on retrieval. The independent variable is the
number of analogs added to memory and the dependent vari-
able is the normalized average time for retrieving any of the
analogs in memory. The retrieval time is measured in terms
of the number of comparisons needed between a specified
problem and the stored analogs along each dimension (i.e.,
property of substance in functional specification) common to
the problem and stored analogs. The retrieval time is nor-
malized with respect to the time it takes to retrieve an analog
when only that analog is in memory.

As analogs are added to any memory, the subsequent re-
trieval time increases. In the first set of experiments, the
question is whether model-based index learning has any use-
ful effect on the growth of the retrieval time. Within each
domain, we compared the retrieval times on 10 problems as

5The general value of acidity at this higher-level node comes from
IDEAL'’s knowledge of qualitative values and quantitative values. If
the values are qualitative, it is determined by climbing up a known
value hierarchy. And, if the values are quantitative, a new value
range is created that spans from the lowest of the two child nodes in
the discrimination tree to the highest of the two.
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Figure 4: Performance measures on analog retrieval task

the 10 analogs are added to memory under three different
conditions: (1) analogs are stored using model-based index
learning, (2) analogs are stored along all possible features
in the respective problems (i.e., models are not used to se-
lect the relevant indices), and (3) analogs are stored without
any organization in memory (i.e., the bottom-line condition
in which the retrieval requires an exhaustive search through a
list). The results are shown in Figure 4(a). It is evident from
the graph in Figure 4(a) that the rate of growth of retrieval time
in model-based index learning condition is the slowest. The
next best is the condition (2), with the condition (3) being the
worst. The reason condition (1) is better than condition (2) is
precisely because the SBF models help store the analogs in a
relevant, smaller number of features in the problems. In this
first experiment, new indices are added to memory when the
first analog is stored. The difference in the number of features
selected under conditions (1) and (2) is just 1. The difference
in the retrieval times in these two conditions when only one
analog is stored hence indicates the advantage due to pruning
out merely one feature. In condition (2), the retrieval time
grows faster as analogs are added because of the addition of
analogs along the irrelevant feature(s) which in turn increases
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the retrieval cost due to matching on those features also. This
experiment is controlled such that there is no confounding ef-
fect due to retrieval on partial match (because a partial match
requires less number of comparisons in a hierarchy, as the
search would stop at a higher level, than a perfect match re-
quires). That is, for each of the problems used to measure the
retrieval time, there is a perfect match in the stored analogs,
and the retrieval under all 3 conditions results in the retrieval
of the same analogs.

We have also tested another effect of model-based indexing
on analog retrieval. The question here is how the addition of
analogs to memory under this indexing scheme in one domain
affects the retrieval of analogs in another domain.® We first
stored the 10 analogs in the domain of electric circuits. There
are two features under which IDEAL stored these analogs hier-
archically based on the feature values. Then, we measured the
normalized average retrieval time on the retrieval of these 10
analogs as 10 more analogs from the domain of heat exchang-
ers are stored. IDEAL stores the second set of 10 analogs under
different features than those for the first 10 (as the different
sets of features in the problems characterize the domains to
be different). The results are shown in Figure 4(b). As evi-
dent from the graph in Figure 4(b), the retrieval of analogs in
the domain of electric circuits is unaffected with the addition
of analogs in the domain of heat exchangers except for the
spike in the retrieval time once when a new feature is added to
memory as an index. The spike in the retrieval time is due to
the comparisons required at the root node in analog memory
to discriminate between the features (that is, for instance, to
select the hierarchy under voltage and weed out the hierar-
chies under acidity and state). Thus model-based indexing is
effective in grouping analogs based on their content, and this
in turn enables retrieval of only semantically relevant analogs
for given problems. Although this suggests a useful effect of
model-based indexing on the quality of retrieval in restricting
the retrieval to a relevant domain, itis yet to be empirically de-
termined how exactly it affects the quality of retrieval within
a given domain.

Related Research

The IDEAL system evolves from our earlier work on the Kritik
project (Goel, 1991a; 1991b; 1992). IDEAL’s SBF models, for
example, are directly borrowed from Kritik.

Falkenhainer, Forbus & Gentner (1989) describe the use of
mental models for enabling analogical transfer. But they do
not address the issue of analog retrieval. Our work on IDEAL
suggests that mental models are also useful for addressing the
indexing issues in analog retrieval.

Like Kritik and Kritik2, the analog memory in IDEAL is
organized functionally, i.e., the indexing depends on the func-
tional requirements of the reasoning task(s). This is a very
general organizational principle. Bhatta and Ram (1991),
for example, use the same principle to organize scripts and
schemas for the task of story understanding.

Since the SBF models provide an explanation of the func-
tioning of a device, our work is also related to explanation-
based approaches to learning such as explanation-based gen-
eralization (EBG) (Mitchell, Keller & Kedar-Cabelli, 1986),

5Two domains are considered distinct if the structural elements
(e.g., batteries, pipes) in the domains are different.



explanation-based learning (EBL) (Delong & Mooney,
1986), and especially explanation-based indexing (EBI) (Bar-
letta & Mark, 1988). This relationship can be analyzed along
the dimensions of the learning task, the learning strategy, and
the knowledge used by the learning method.

Learning task: The learning tasks in both (Mitchell, Keller &
Kedar-Cabelli, 1986) and (DeJong & Mooney, 1986) pertain
to concept learning, not index learning. The index learning
task addressed by Barletta and Mark (1988) is closely related
to and yet different from the one we address. EBI assumes
that a pre-enumerated set of indexing features is available, and
its learning task is to select some subset of the set of features.
In contrast, IDEAL knows only about the types of features
that are to be used as indices (e.g., the function) but identifies
the exact vocabulary for indices from its SBF model of the
new analog. Of course, IDEAL too knows the vocabulary as
part of its representations of the SBF model, but does not
know a priori the specific vocabulary for indexing. Further,
IDEAL learns multiple types of indices (e.g., device function
and structural constraints).

Learning strategy: In addition, our model-based scheme dif-
fers from EBlin the learning strategy itself, although both inte-
grate explanations and experience for index learning. Firstly,
EBI necessarily determines both irrelevant and relevant index-
ing features. IDEAL in contrast needs to determine only the
relevant features. This is because the SBF model generated
by its problem solver automatically rules out all irrelevant
features. Secondly, IDEAL integrates model-based learning
with similarity-based learning (SBL). Specifically, it uses the
model-based method to determine the relevant indexing fea-
tures, and SBL to generalize over the selected features.
Types of knowledge: The explanations in a SBF model are
quite different from the explanations in EBG, EBL, and EBI.
Firstly, the explanations in EBG, EBL, and EBI are general
in that they specify only the form of an explanation as being
a resolution proof in FOL (i.e., the explanation can be of
any type depending on which context it is used for), whereas
IDEAL'’s explanations are of a specific type (i.e., functional)
and the content theory of the explanations is critical to its
success. Secondly, the explanations in EBG and EBL specify
how an example is an instance of a target concept, and those
in EBI refer to the malfunctions of devices, while SBF models
are explanations of the normal functioning of devices. Thirdly,
the explanations in EBG, EBL, and EBI are constructed at run-
time from domain specific rules whereas IDEAL’s SBF models
are formed by revising old models as part of the problem
solving. Fourthly, IDEAL’s SBF models are grounded in a
well-defined component-substance ontology.

Conclusions

Our experiments with IDEAL lead us to conclude that mental
models of analogs provide a useful method for addressing
the indexing issues in analogical reasoning. In reference to
analogical design in particular, they lead to three specific
conclusions.

Model-Based Indexing: First, structure-behavior-function
models, together with a specification of the task for which
the design analog may be reused, give rise to the vocabulary
for indexing design analogs. This vocabulary arises from a
deeper domain ontology.
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Model-Based Index Learning: Second, the SBF models
enable the learning of the vocabulary for indexing new design
analogs. The model-based method for index learning can be
integrated with the similarity-based method for learning the
levels of generalization of the indices.

Use of Model-Based Indices for Analog Retrieval: Third,
the indexing vocabulary suggested by SBF models enables an
efficient and effective retrieval of stored analogs.
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